

No. 2003–66

CONDITIONS FOR SINGULAR INCIDENCE MATRICES

By W.H. Haemers

July 2003

ISSN 0924-7815

Conditions for singular incidence matrices

Willem H. Haemers

Tilburg University, Dept. of Econometrics and O.R., Tilburg, The Netherlands, e-mail: haemers@uvt.nl

Abstract

Suppose one looks for a square integral matrix N, for which NN^{\top} has a prescribed form. Then the Hasse-Minkowski invariants and the determinant of NN^{\top} lead to necessary conditions for existence. The Bruck-Ryser-Chowla theorem gives a famous example of such conditions in case N is the incidence matrix of a square block design. This approach fails when N is singular. In this paper it is shown that in some cases conditions can still be obtained if the kernels of N and N^{\top} are known, or known to be rationally equivalent. This leads for example to non-existence conditions for selfdual generalised polygons, semi-regular square divisible designs and distance-regular graphs.

1 Introduction

Consider a square 2- (v, k, λ) design with incidence matrix N. (We prefer the name 'square' above 'symmetric'.) Then $NN^{\top} = \lambda J_v + (k - \lambda)I_v$, where J_v is the $v \times v$ all-ones matrix and I_v is the identity matrix of size v. The Bruck-Ryser-Chowla theorem is based on two observations (see for example [5]). The first one is that det $N = \det N^{\top}$ is an integer. Therefore det $(\lambda J_v + (k - \lambda)I_v)$ is an integral square, hence $k - \lambda$ is a square if v is even. The other observation is that, since N is a non-singular rational matrix, $\lambda J_v + (k - \lambda)I_v$ is rationally congruent to I_v , and therefore these two matrices have the same Hasse-Minkowski invariants. These invariants can be expressed in terms of v, k and λ from which it follows that for odd v the Diophantine equation $(k - \lambda)X^2 + (-1)^{(v-1)/2}\lambda Y^2 = Z^2$ has an integral solution different from X = Y = Z = 0. Similar approaches work for other square incidence structures for which the determinant or the Hasse-Minkowski invariants of NN^{\top} are known. See for example [5], Chapter 12. It is clear that this approach gives no conditions if N is singular. In the present paper we modify the mentioned approach such that we still find conditions for singular N. The key lemma is a simple trick that changes a singular N into a non-singular matrix M in such a way that for some types of designs it is still possible to compute the Hasse-Minkowski invariants or the (square free part of the) determinant of MM^{\top} .

Lemma 1 Suppose N is a rational $v \times v$ matrix of rank v - m. Let Z be a rational $v \times v$ matrix of rank m, such that $N^{\top}Z = NZ^{\top} = O$. Define M = N + Z, then i. $MM^{\top} = NN^{\top} + ZZ^{\top}$,

ii. the eigenvalues of MM^{\top} are the positive eigenvalues of NN^{\top} together with the positive eigenvalues of ZZ^{\top} ,

iii. MM^{\top} is non-singular.

Proof. Part *i* is staightforward. To prove *ii*, first notice that NN^{\top} and ZZ^{\top} commute, so they have a common orthogonal basis of eigenvectors. Suppose **v** is such an eigenvector that corresponds to a positive eigenvalue of NN^{\top} . Then **v** is orthogonal to the kernel of NN^{\top} , which is the span of the columns of Z. Hence $Z^{\top}\mathbf{v} = \mathbf{0}$, so the corresponding eigenvalue of ZZ^{\top} equals 0. Similarly, a positive eigenvalue of ZZ^{\top} corresponds to an eigenvalue 0 of NN^{\top} . This proves *ii*, since NN^{\top} has v - m positive eigenvalues, and ZZ^{\top} has *m* positive eigenvalues. \Box

For a given N, a matrix Z with the required properties always exists. One way to make such a Z is the following. Take rational $v \times m$ matrices L and R, whose columns form a basis for the left and the right kernel of N, respectively. Then rank $L = \operatorname{rank} R = m$ and $N^{\top}L = NR = O$. Therefore $Z = LR^{\top}$ has the desired properties.

In the coming sections we will consider two kinds of square designs for which something new can be said: Self-dual designs and semi-regular square divisible designs.

2 Self-dual designs

Consider two *m*-dimensional subspaces V and W of the vectorspace \mathbf{Q}^{v} . Let L and R be rational $v \times m$ matrices whose columns span V and W, respectively. We call the subspaces V and W rationally equivalent if $L^{\top}L$ and $R^{\top}R$ are rationally congruent matrices, which means that $S^{\top}L^{\top}LS = R^{\top}R$ for some non-singular rational matrix S. Note that rational equivalence of vectorspaces does not depend on the choice of L and R indeed.

Lemma 2 Let N be a rational $v \times v$ matrix. If the left kernel and the right kernel of N are rationally equivalent then the product of the non-zero eigenvalues of NN^{\top} is a rational square.

Proof. Let *L* and *R* be $v \times m$ matrices whose columns form a basis for the left and the right kernel of *N*, respectively. Put $Z = LR^{\top}$. Then $ZZ^{\top} = LR^{\top}RL^{\top} = LS^{\top}L^{\top}LSL^{\top}$ (with *S* as above). The non-zero eigenvalues of $L(S^{\top}L^{\top}LSL^{\top})$ coincide with the non-zero eigenvalues of $(S^{\top}L^{\top}LSL^{\top})L$. But $\det(S^{\top}L^{\top}LSL^{\top}L) = (\det S)^2 (\det L^{\top}L)^2$ which is a non-zero rational square. Thus we have that the product of the non-zero eigenvalues of ZZ^{\top} is a square, and

Lemma 1 finishes the proof.

If N is the incidence matrix of a self-dual design (that is, N and N^{\top} are isomorphic), then left and right kernel of N are obviously rationally equivalent and Lemma 2 gives:

Theorem 1 If N is the incidence matrix of a self-dual design, then the product of the positive eigenvalues of NN^{\top} is an integral square.

For example if N is the incidence matrix of a self-dual partial geometry with parameters $s \ (= t)$ and α (see [4]), the non-zero eigenvalues of NN^{\top} are $(s + 1)^2$ of multiplicity 1, and $2s + 1 - \alpha$ of multiplicity $s^2(s + 1)^2/\alpha(2s + 1 - \alpha)$. So if the latter multiplicity is odd, $2s + 1 - \alpha$ is a square. In particular if $\alpha = 1$, the partial geometry is a generalised quadrangle of order s (denoted by GQ(s)) and we find:

Corollary 1 There exists no self-dual GQ(s) if $s \equiv 2 \pmod{4}$ and 2s is not a square.

For example no GQ(6) is self-dual. Similarly, if N is the incidence matrix of a generalised hexagon of order s (denoted by GH(s)), the non-zero eigenvalues of NN^{\top} are $(s + 1)^2$, s and 3s of multiplicity 1, $s(1 + s)^2(1 - s + s^2)/2$ and $s(1 + s)^2(1 + s + s^2)/6$, respectively (see for example [2] p.203). Thus we find:

Corollary 2 There exists no self-dual GH(s) if $s \equiv 2 \pmod{4}$.

Stronger condition are known if the incidence matrix of a GQ(s) or GH(s) is symmetric (see [7] p.309). A symmetric incidence matrix clearly implies that the structure is self-dual, but the converse is not true in general.

3 Square divisible designs

Another case when Lemma 1 can be applied is when the left and right kernel of N are determined by the design requirements. Note that the left kernel of N is the kernel of N^{\top} , and similarly, the right kernel of N is the kernel of $N^{\top}N$. So the lemma applies for square incidence matrices N for which NN^{\top} and $N^{\top}N$ are prescribed. For example, consider a 2- (v, k, λ) design with a $v \times b$ incidence matrix where b > v. Extend the $v \times b$ incidence matrix with b-v zero rows. For the $b \times b$ matrix N thus obtained NN^{\top} is known, and so is its left kernel. The right kernel of N is in general not known, but there are some types of designs for which $N^{\top}N$ is prescribed. These include strongly resolvable designs and triangular designs. For these designs Bruck-Ryser-Chowla type conditions have been worked out; see [6], [5] and [3], so we will not do it again.

In this section we consider semi-regular square divisible designs. A divisible design (also called group-divisible design) with parameters k, g, n, λ_1 and λ_2 , is an incidence structure,

 \Box

denoted by $GD(k, g, n, \lambda_1, \lambda_2)$, for which the points can be ordered such that the incidence matrix N satisfies

$$NN^{\top} = \lambda_2 J_v + (\lambda_1 - \lambda_2) K_{n,g} + (r - \lambda_1) I_v$$
, and $N^{\top} J_v = k J_v$,

where $K_{n,g}$ is the block diagonal matrix $I_n \otimes J_g$, v = ng is the number of points and $r = ((n-1)g\lambda_2 + (g-1)\lambda_1)/(k-1)$ is the replication number. The eigenvalues of NN^{\top} are easily seen to be kr, $r - \lambda_1$, and $g(\lambda_1 - \lambda_2) + r - \lambda_1$ with multiplicities 1, n(g-1) and n-1, respectively. Assume that N is a square matrix. Then r = k, and the eigenvalues of NN^{\top} become k^2 , $k - \lambda_1$ and $k^2 - gn\lambda_2$. If N is non-singular, the divisible design is called regular, and necessary conditions for existence have been known for a long time, see [1], [5] p.228, or [2] p.23. If N is singular, either $k = \lambda_1$ and $N = N' \otimes J_n$, where N' is the incidence matrix of a square block design (then the divisible design is called singular), or $k^2 = ng\lambda_2$ and the divisible design is called semi-regular.

Theorem 2 Let D be a design with the property that both D and its dual are a semi-regular $GD(k, g, n, \lambda_1, \lambda_2)$. Then

i. if g is even and n is odd, $k - \lambda_1$ is an integral square,

ii. if g is even and $n \equiv 2 \pmod{4}$ then $k - \lambda_1$ is the sum of two integral squares,

iii. if g and n are odd, the equation $(k - \lambda_1)X^2 + (-1)^{(g-1)/2}gY^2 = Z^2$ has an integral solution different from X = Y = Z = 0.

Proof. Suppose N is the incidence matrix of D. We may assume that $NN^{\top} = N^{\top}N$, which implies that N^{\top} and N have the same kernel, so by Lemma 2 the product of the non-zero eigenvalues of NN^{\top} is a square, which proves *i*. Define $Z = (J_n - nI_n) \otimes J_g$. Then rank Z = n - 1, and $NN^{\top}Z = N^{\top}NZ = O$, so Z satisfies the requirement for Lemma 1. Hence

$$MM^{\top} = NN^{\top} + ZZ^{\top} = (\lambda_2 - gn)J_v + (\lambda_1 - \lambda_2 + gn^2)K_{n,g} + (k - \lambda_1)I_v .$$

has eigenvalues k^2 , $\rho = k - \lambda_1$ and $\sigma = g^2 n^2$ of multiplicity 1, n(g-1) and n-1 respectively. The Hasse-Minkowski invariant $C_p(MM^{\top})$ with respect to the odd prime p of a matrix MM^{\top} of the above form is known, see for example [1].

$$C_p(MM^{\top}) = (\rho, -1)_p^{n(g-1)(n+g-1)/2} (\sigma, -1)_p^{n(n-1)/2} (\sigma, g)_p^n (\rho, g)_p^n (\sigma, \lambda_2 - gn)_p = (\rho, -1)_p^{n(g-1)(n+g-1)/2} (\rho, g)_p^n ,$$

where $(a, b)_p$ is the Hilbert norm residue symbol, defined by $(a, b)_p = 1$ if for all t the congruence $aX^2 + bY^2 \equiv 1 \pmod{p^t}$ has a rational solution, and $(a, b)_p = -1$ otherwise. Since M is a non-singular rational matrix, $C_p(MM^{\top}) = C_p(I_v) = 1$ for every odd prime p, and the conditions ii and iii follow. For example there exists no GD(18, 4, 9, 6, 9) for which the dual is also such a design. Note that in case n = 1, D is a square block design and the conditions are those of Bruck, Ryser and Chowla. The above theorem also has concequences for distance-regular graphs. Some putative distance-regular graphs imply the existence of square divisible designs (see [2] p.22), and in case these divisible designs are semi-regular we obtain new conditions.

Corollary 3 Suppose there exists a distance-regular graph of diameter 4 with $2g^2\mu$ vertices and intersection array $\{g\mu, g\mu - 1, (g-1)\mu, 1; 1, \mu, g\mu - 1, g\mu\}$. Then

i. If μ is odd and $g \equiv 2 \pmod{4}$ then $g\mu$ is the sum of two integral squares.

ii. If μ and g are odd, then the equation $\mu X^2 + (-1)^{(g-1)/2}Y^2 = gZ^2$ has an integral solution different from X = Y = Z = 0.

Proof. Such a distance-regular graph is the incidence graph of a $GD(g\mu, g, g\mu, 0, \mu)$ for which the dual is also such a design.

For example a distance-regular graph with intersection array $\{15, 14, 12, 1; 1, 3, 14, 15\}$ does not exist. Note that a distance-regular graph with intersection array $\{g\mu - 1, (g - 1)\mu, 1; 1, \mu, g\mu - 1\}$ also gives rise to a semi-regular square divisible design; see [2], p.24. But here we find no new restrictions.

Acknowledgement. I thank Edwin van Dam for many relevant conversations.

References

- [1] R.C. Bose and W.S. Connor, *Combinatorial properties of group divisible incomplete block designs*, Ann. Math. Statist. 23 (1952) 367-383.
- [2] A.E. Brouwer, A.M. Cohen and A. Neumaier, *Distance-Regular Graphs*, Springer, Heidelberg, 1989.
- [3] M.J. Coster and W.H. Haemers, *Quasi-symmetric designs related to the triangular graph*, Designs, Codes and Cryptography 5 (1995), 27-42.
- [4] F. De Clerck and H. Van Maldeghem, *Some classes of rank 2 geometries*, in: Handbook of Incidence Geometry (F. Buekenhout ed.), Elsevier Science B.V., 1995, pp. 433-475.
- [5] D. Raghavarao, Constructions and combinatorial problems in designs of experiments, John Wiley & Sons, Inc., 1971.
- [6] S.S. Shrikhande, D. Raghavarao and S.K. Tharthare, Non-existence of some unsymmetrical partially balanced incomplete block designs, Canad. J. Math. 15 (1963), 686-701.
- [7] H. Van Maldeghem, *Generalized polygons*, Birkhäuser, 1991.