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Abstract

Suppose one looks for a square integral matrix N , for which NN� has a prescribed

form. Then the Hasse-Minkowski invariants and the determinant of NN� lead to

necessary conditions for existence. The Bruck-Ryser-Chowla theorem gives a famous

example of such conditions in case N is the incidence matrix of a square block design.

This approach fails when N is singular. In this paper it is shown that in some cases

conditions can still be obtained if the kernels of N and N� are known, or known to

be rationally equivalent. This leads for example to non-existence conditions for self-

dual generalised polygons, semi-regular square divisible designs and distance-regular

graphs.

1 Introduction

Consider a square 2-(v, k, λ) design with incidence matrix N . (We prefer the name ‘square’
above ‘symmetric’.) Then NN� = λJv + (k − λ)Iv, where Jv is the v × v all-ones matrix
and Iv is the identity matrix of size v. The Bruck-Ryser-Chowla theorem is based on two
observations (see for example [5]). The first one is that detN = detN� is an integer.
Therefore det(λJv + (k − λ)Iv) is an integral square, hence k − λ is a square if v is even.
The other observation is that, since N is a non-singular rational matrix, λJv + (k− λ)Iv is
rationally congruent to Iv, and therefore these two matrices have the same Hasse-Minkowski
invariants. These invariants can be expressed in terms of v, k and λ from which it follows
that for odd v the Diophantine equation (k − λ)X2 + (−1)(v−1)/2λY 2 = Z2 has an integral
solution different fromX = Y = Z = 0. Similar approaches work for other square incidence
structures for which the determinant or the Hasse-Minkowski invariants of NN� are known.
See for example [5], Chapter 12. It is clear that this approach gives no conditions if N is
singular. In the present paper we modify the mentioned approach such that we still find
conditions for singular N . The key lemma is a simple trick that changes a singular N into
a non-singular matrix M in such a way that for some types of designs it is still possible
to compute the Hasse-Minkowski invariants or the (square free part of the) determinant of
MM�.
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Lemma 1 Suppose N is a rational v × v matrix of rank v −m. Let Z be a rational v × v
matrix of rank m, such that N�Z = NZ�= O. Define M = N + Z, then

i. MM�= NN�+ ZZ�,

ii. the eigenvalues of MM� are the positive eigenvalues of NN� together with the positive

eigenvalues of ZZ�,

iii. MM� is non-singular.

Proof. Part i is staightforward. To prove ii, first notice that NN� and ZZ� commute, so
they have a common orthogonal basis of eigenvectors. Suppose v is such an eigenvector that
corresponds to a positive eigenvalue of NN�. Then v is orthogonal to the kernel of NN�,
which is the span of the columns of Z. Hence Z�v = 0, so the corresponding eigenvalue
of ZZ� equals 0. Similarly, a positive eigenvalue of ZZ� corresponds to an eigenvalue 0 of
NN�. This proves ii, since NN� has v −m positive eigenvalues, and ZZ� has m positive
eigenvalues. Statement iii follows because MM� has only positive eigenvalues. ��

For a given N , a matrix Z with the required properties always exists. One way to make
such a Z is the following. Take rational v ×m matrices L and R, whose columns form a
basis for the left and the right kernel of N , respectively. Then rankL = rankR = m and
N�L = NR = O. Therefore Z = LR� has the desired properties.

In the coming sections we will consider two kinds of square designs for which something
new can be said: Self-dual designs and semi-regular square divisible designs.

2 Self-dual designs

Consider two m-dimensional subspaces V and W of the vectorspace lQ
v. Let L and R be

rational v×m matrices whose columns span V and W , respectively. We call the subspaces
V and W rationally equivalent if L�L and R�R are rationally congruent matrices, which
means that S�L�LS = R�R for some non-singular rational matrix S. Note that rational
equivalence of vectorspaces does not depend on the choice of L and R indeed.

Lemma 2 Let N be a rational v × v matrix. If the left kernel and the right kernel of N
are rationally equivalent then the product of the non-zero eigenvalues of NN� is a rational

square.

Proof. Let L and R be v×m matrices whose columns form a basis for the left and the right
kernel of N , respectively. Put Z = LR�. Then ZZ�= LR�RL�= LS�L�LSL� (with S as
above). The non-zero eigenvalues of L(S�L�LSL�) coincide with the non-zero eigenvalues
of (S�L�LSL�)L. But det(S�L�LSL�L) = (detS)2(detL�L)2 which is a non-zero rational
square. Thus we have that the product of the non-zero eigenvalues of ZZ� is a square, and
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Lemma 1 finishes the proof. ��

If N is the incidence matrix of a self-dual design (that is, N and N� are isomorphic), then
left and right kernel of N are obviously rationally equivalent and Lemma 2 gives:

Theorem 1 If N is the incidence matrix of a self-dual design, then the product of the

positive eigenvalues of NN� is an integral square.

For example if N is the incidence matrix of a self-dual partial geometry with parameters
s (= t) and α (see [4]), the non-zero eigenvalues of NN� are (s + 1)2 of multiplicity 1,
and 2s + 1 − α of multiplicity s2(s + 1)2/α(2s + 1 − α). So if the latter multiplicity is
odd, 2s + 1 − α is a square. In particular if α = 1, the partial geometry is a generalised
quadrangle of order s (denoted by GQ(s)) and we find:

Corollary 1 There exists no self-dual GQ(s) if s ≡ 2 (mod 4) and 2s is not a square.

For example no GQ(6) is self-dual. Similarly, if N is the incidence matrix of a generalised
hexagon of order s (denoted by GH(s)), the non-zero eigenvalues of NN� are (s + 1)2, s
and 3s of multiplicity 1, s(1 + s)2(1 − s + s2)/2 and s(1 + s)2(1 + s + s2)/6, respectively
(see for example [2] p.203). Thus we find:

Corollary 2 There exists no self-dual GH(s) if s ≡ 2 (mod 4).

Stronger condition are known if the incidence matrix of a GQ(s) or GH(s) is symmetric
(see [7] p.309). A symmetric incidence matrix clearly implies that the structure is self-dual,
but the converse is not true in general.

3 Square divisible designs

Another case when Lemma 1 can be applied is when the left and right kernel of N are
determined by the design requirements. Note that the left kernel of N is the kernel of
NN�, and similarly, the right kernel of N is the kernel of N�N . So the lemma applies
for square incidence matrices N for which NN� and N�N are prescribed. For example,
consider a 2-(v, k, λ) design with a v × b incidence matrix where b > v. Extend the v × b
incidence matrix with b−v zero rows. For the b×b matrix N thus obtained NN� is known,
and so is its left kernel. The right kernel of N is in general not known, but there are some
types of designs for which N�N is prescibed. These include strongly resolvable designs
and triangular designs. For these designs Bruck-Ryser-Chowla type conditions have been
worked out; see [6], [5] and [3], so we will not do it again.

In this section we consider semi-regular square divisible designs. A divisible design (also
called group-divisible design) with parameters k, g, n, λ1 and λ2, is an incidence structure,
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denoted by GD(k, g, n, λ1, λ2), for which the points can be ordered such that the incidence
matrix N satisfies

NN�= λ2Jv + (λ1 − λ2)Kn,g + (r − λ1)Iv , and N�Jv = kJv,

where Kn,g is the block diagonal matrix In ⊗ Jg, v = ng is the number of points and
r = ((n − 1)gλ2 + (g − 1)λ1)/(k − 1) is the replication number. The eigenvalues of NN�

are easily seen to be kr, r− λ1, and g(λ1 − λ2) + r− λ1 with multiplicities 1, n(g− 1) and
n− 1, respectively. Assume that N is a square matrix. Then r = k, and the eigenvalues of
NN� become k2, k − λ1 and k2 − gnλ2. If N is non-singular, the divisible design is called
regular, and necessary conditions for existence have been known for a long time, see [1],
[5] p.228, or [2] p.23. If N is singular, either k = λ1 and N = N ′ ⊗ Jn, where N ′ is the
incidence matrix of a square block design (then the divisible design is called singular), or
k2 = ngλ2 and the divisible design is called semi-regular.

Theorem 2 Let D be a design with the property that both D and its dual are a semi-regular

GD(k, g, n, λ1, λ2). Then

i. if g is even and n is odd, k − λ1 is an integral square,

ii. if g is even and n ≡ 2 (mod 4) then k − λ1 is the sum of two integral squares,

iii. if g and n are odd, the equation (k − λ1)X
2 + (−1)(g−1)/2gY 2 = Z2 has an integral

solution different from X = Y = Z = 0.

Proof. Suppose N is the incidence matrix of D. We may assume that NN� = N�N ,
which implies that N� and N have the same kernel, so by Lemma 2 the product of the
non-zero eigenvalues of NN� is a square, which proves i. Define Z = (Jn−nIn)⊗Jg. Then
rankZ = n − 1, and NN�Z = N�NZ = O, so Z satisfies the requirement for Lemma 1.
Hence

MM�= NN�+ ZZ�= (λ2 − gn)Jv + (λ1 − λ2 + gn2)Kn,g + (k − λ1)Iv .

has eigenvalues k2, ρ = k−λ1 and σ = g2n2 of multiplicity 1, n(g−1) and n−1 respectively.
The Hasse-Minkowski invariant Cp(MM�) with respect to the odd prime p of a matrix
MM� of the above form is known, see for example [1].

Cp(MM�) = (ρ,−1)n(g−1)(n+g−1)/2
p (σ,−1)n(n−1)/2p (σ, g)np(ρ, g)

n
p(σ, λ2 − gn)p =

(ρ,−1)n(g−1)(n+g−1)/2
p (ρ, g)np ,

where (a, b)p is the Hilbert norm residue symbol, defined by (a, b)p = 1 if for all t the
congruence aX2 + bY 2 ≡ 1 (mod pt) has a rational solution, and (a, b)p = −1 otherwise.
Since M is a non-singular rational matrix, Cp(MM�) = Cp(Iv) = 1 for every odd prime p,
and the conditions ii and iii follow. ��
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For example there exists no GD(18, 4, 9, 6, 9) for which the dual is also such a design. Note
that in case n = 1, D is a square block design and the conditions are those of Bruck,
Ryser and Chowla. The above theorem also has concequences for distance-regular graphs.
Some putative distance-regular graphs imply the existence of square divisible designs (see
[2] p.22), and in case these divisible designs are semi-regular we obtain new conditions.

Corollary 3 Suppose there exists a distance-regular graph of diameter 4 with 2g2µ vertices

and intersection array {gµ, gµ− 1, (g − 1)µ, 1 ; 1, µ, gµ− 1, gµ}. Then

i. If µ is odd and g ≡ 2 (mod 4) then gµ is the sum of two integral squares.

ii. If µ and g are odd, then the equation µX2+(−1)(g−1)/2Y 2 = gZ2 has an integral solution

different from X = Y = Z = 0.

Proof. Such a distance-regular graph is the incidence graph of a GD(gµ, g, gµ, 0, µ) for
which the dual is also such a design. ��

For example a distance-regular graph with intersection array {15, 14, 12, 1 ; 1, 3, 14, 15}
does not exist. Note that a distance-regular graph with intersection array {gµ − 1, (g −
1)µ, 1 ; 1, µ, gµ − 1} also gives rise to a semi-regular square divisible design; see [2], p.24.
But here we find no new restrictions.
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