Center \mathcal{G}

No. 2003-66

CONDITIONS FOR SINGULAR INCIDENCE MATRICES

By W.H. Haemers

July 2003

Conditions for singular incidence matrices

Willem H. Haemers
Tilburg University, Dept. of Econometrics and O.R., Tilburg, The Netherlands, e-mail: haemers@uvt.nl

Abstract

Suppose one looks for a square integral matrix N, for which $N N^{\top}$ has a prescribed form. Then the Hasse-Minkowski invariants and the determinant of $N N^{\top}$ lead to necessary conditions for existence. The Bruck-Ryser-Chowla theorem gives a famous example of such conditions in case N is the incidence matrix of a square block design. This approach fails when N is singular. In this paper it is shown that in some cases conditions can still be obtained if the kernels of N and N^{\top} are known, or known to be rationally equivalent. This leads for example to non-existence conditions for selfdual generalised polygons, semi-regular square divisible designs and distance-regular graphs.

1 Introduction

Consider a square $2-(v, k, \lambda)$ design with incidence matrix N. (We prefer the name 'square' above 'symmetric'.) Then $N N^{\top}=\lambda J_{v}+(k-\lambda) I_{v}$, where J_{v} is the $v \times v$ all-ones matrix and I_{v} is the identity matrix of size v. The Bruck-Ryser-Chowla theorem is based on two observations (see for example [5]). The first one is that $\operatorname{det} N=\operatorname{det} N^{\top}$ is an integer. Therefore $\operatorname{det}\left(\lambda J_{v}+(k-\lambda) I_{v}\right)$ is an integral square, hence $k-\lambda$ is a square if v is even. The other observation is that, since N is a non-singular rational matrix, $\lambda J_{v}+(k-\lambda) I_{v}$ is rationally congruent to I_{v}, and therefore these two matrices have the same Hasse-Minkowski invariants. These invariants can be expressed in terms of v, k and λ from which it follows that for odd v the Diophantine equation $(k-\lambda) X^{2}+(-1)^{(v-1) / 2} \lambda Y^{2}=Z^{2}$ has an integral solution different from $X=Y=Z=0$. Similar approaches work for other square incidence structures for which the determinant or the Hasse-Minkowski invariants of $N N^{\top}$ are known. See for example [5], Chapter 12. It is clear that this approach gives no conditions if N is singular. In the present paper we modify the mentioned approach such that we still find conditions for singular N. The key lemma is a simple trick that changes a singular N into a non-singular matrix M in such a way that for some types of designs it is still possible to compute the Hasse-Minkowski invariants or the (square free part of the) determinant of $M M^{\top}$.

Lemma 1 Suppose N is a rational $v \times v$ matrix of rank $v-m$. Let Z be a rational $v \times v$ matrix of rank m, such that $N^{\top} Z=N Z^{\top}=O$. Define $M=N+Z$, then
i. $M M^{\top}=N N^{\top}+Z Z^{\top}$,
ii. the eigenvalues of $M M^{\top}$ are the positive eigenvalues of $N N^{\top}$ together with the positive eigenvalues of $Z Z^{\top}$,
iii. $M M^{\top}$ is non-singular.

Proof. Part i is staightforward. To prove $i i$, first notice that $N N^{\top}$ and $Z Z^{\top}$ commute, so they have a common orthogonal basis of eigenvectors. Suppose \mathbf{v} is such an eigenvector that corresponds to a positive eigenvalue of $N N^{\top}$. Then \mathbf{v} is orthogonal to the kernel of $N N^{\top}$, which is the span of the columns of Z. Hence $Z^{\top} \mathbf{v}=\mathbf{0}$, so the corresponding eigenvalue of $Z Z^{\top}$ equals 0 . Similarly, a positive eigenvalue of $Z Z^{\top}$ corresponds to an eigenvalue 0 of $N N^{\top}$. This proves ii, since $N N^{\top}$ has $v-m$ positive eigenvalues, and $Z Z^{\top}$ has m positive eigenvalues. Statement iii follows because $M M^{\top}$ has only positive eigenvalues.

For a given N, a matrix Z with the required properties always exists. One way to make such a Z is the following. Take rational $v \times m$ matrices L and R, whose columns form a basis for the left and the right kernel of N, respectively. Then $\operatorname{rank} L=\operatorname{rank} R=m$ and $N^{\top} L=N R=O$. Therefore $Z=L R^{\top}$ has the desired properties.

In the coming sections we will consider two kinds of square designs for which something new can be said: Self-dual designs and semi-regular square divisible designs.

2 Self-dual designs

Consider two m-dimensional subspaces V and W of the vectorspace \mathbb{Q}^{v}. Let L and R be rational $v \times m$ matrices whose columns span V and W, respectively. We call the subspaces V and W rationally equivalent if $L^{\top} L$ and $R^{\top} R$ are rationally congruent matrices, which means that $S^{\top} L^{\top} L S=R^{\top} R$ for some non-singular rational matrix S. Note that rational equivalence of vectorspaces does not depend on the choice of L and R indeed.

Lemma 2 Let N be a rational $v \times v$ matrix. If the left kernel and the right kernel of N are rationally equivalent then the product of the non-zero eigenvalues of $N N^{\top}$ is a rational square.

Proof. Let L and R be $v \times m$ matrices whose columns form a basis for the left and the right kernel of N, respectively. Put $Z=L R^{\top}$. Then $Z Z^{\top}=L R^{\top} R L^{\top}=L S^{\top} L^{\top} L S L^{\top}$ (with S as above). The non-zero eigenvalues of $L\left(S^{\top} L^{\top} L S L^{\top}\right)$ coincide with the non-zero eigenvalues of $\left(S^{\top} L^{\top} L S L^{\top}\right) L$. But $\operatorname{det}\left(S^{\top} L^{\top} L S L^{\top} L\right)=(\operatorname{det} S)^{2}\left(\operatorname{det} L^{\top} L\right)^{2}$ which is a non-zero rational square. Thus we have that the product of the non-zero eigenvalues of $Z Z^{\top}$ is a square, and

Lemma 1 finishes the proof.
If N is the incidence matrix of a self-dual design (that is, N and N^{\top} are isomorphic), then left and right kernel of N are obviously rationally equivalent and Lemma 2 gives:

Theorem 1 If N is the incidence matrix of a self-dual design, then the product of the positive eigenvalues of $N N^{\top}$ is an integral square.

For example if N is the incidence matrix of a self-dual partial geometry with parameters $s(=t)$ and α (see [4]), the non-zero eigenvalues of $N N^{\top}$ are $(s+1)^{2}$ of multiplicity 1 , and $2 s+1-\alpha$ of multiplicity $s^{2}(s+1)^{2} / \alpha(2 s+1-\alpha)$. So if the latter multiplicity is odd, $2 s+1-\alpha$ is a square. In particular if $\alpha=1$, the partial geometry is a generalised quadrangle of order s (denoted by $G Q(s)$) and we find:

Corollary 1 There exists no self-dual $G Q(s)$ if $s \equiv 2(\bmod 4)$ and $2 s$ is not a square.
For example no $G Q(6)$ is self-dual. Similarly, if N is the incidence matrix of a generalised hexagon of order s (denoted by $G H(s)$), the non-zero eigenvalues of $N N^{\top}$ are $(s+1)^{2}, s$ and $3 s$ of multiplicity $1, s(1+s)^{2}\left(1-s+s^{2}\right) / 2$ and $s(1+s)^{2}\left(1+s+s^{2}\right) / 6$, respectively (see for example [2] p.203). Thus we find:

Corollary 2 There exists no self-dual $G H(s)$ if $s \equiv 2(\bmod 4)$.
Stronger condition are known if the incidence matrix of a $G Q(s)$ or $G H(s)$ is symmetric (see [7] p.309). A symmetric incidence matrix clearly implies that the structure is self-dual, but the converse is not true in general.

3 Square divisible designs

Another case when Lemma 1 can be applied is when the left and right kernel of N are determined by the design requirements. Note that the left kernel of N is the kernel of $N N^{\top}$, and similarly, the right kernel of N is the kernel of $N^{\top} N$. So the lemma applies for square incidence matrices N for which $N N^{\top}$ and $N^{\top} N$ are prescribed. For example, consider a $2-(v, k, \lambda)$ design with a $v \times b$ incidence matrix where $b>v$. Extend the $v \times b$ incidence matrix with $b-v$ zero rows. For the $b \times b$ matrix N thus obtained $N N^{\top}$ is known, and so is its left kernel. The right kernel of N is in general not known, but there are some types of designs for which $N^{\top} N$ is prescibed. These include strongly resolvable designs and triangular designs. For these designs Bruck-Ryser-Chowla type conditions have been worked out; see [6], [5] and [3], so we will not do it again.

In this section we consider semi-regular square divisible designs. A divisible design (also called group-divisible design) with parameters k, g, n, λ_{1} and λ_{2}, is an incidence structure,
denoted by $G D\left(k, g, n, \lambda_{1}, \lambda_{2}\right)$, for which the points can be ordered such that the incidence matrix N satisfies

$$
N N^{\top}=\lambda_{2} J_{v}+\left(\lambda_{1}-\lambda_{2}\right) K_{n, g}+\left(r-\lambda_{1}\right) I_{v}, \quad \text { and } \quad N^{\top} J_{v}=k J_{v}
$$

where $K_{n, g}$ is the block diagonal matrix $I_{n} \otimes J_{g}, v=n g$ is the number of points and $r=\left((n-1) g \lambda_{2}+(g-1) \lambda_{1}\right) /(k-1)$ is the replication number. The eigenvalues of $N N^{\top}$ are easily seen to be $k r, r-\lambda_{1}$, and $g\left(\lambda_{1}-\lambda_{2}\right)+r-\lambda_{1}$ with multiplicities $1, n(g-1)$ and $n-1$, respectively. Assume that N is a square matrix. Then $r=k$, and the eigenvalues of $N N^{\top}$ become $k^{2}, k-\lambda_{1}$ and $k^{2}-g n \lambda_{2}$. If N is non-singular, the divisible design is called regular, and necessary conditions for existence have been known for a long time, see [1], [5] p.228, or [2] p.23. If N is singular, either $k=\lambda_{1}$ and $N=N^{\prime} \otimes J_{n}$, where N^{\prime} is the incidence matrix of a square block design (then the divisible design is called singular), or $k^{2}=n g \lambda_{2}$ and the divisible design is called semi-regular.

Theorem 2 Let D be a design with the property that both D and its dual are a semi-regular $G D\left(k, g, n, \lambda_{1}, \lambda_{2}\right)$. Then
i. if g is even and n is odd, $k-\lambda_{1}$ is an integral square,
ii. if g is even and $n \equiv 2(\bmod 4)$ then $k-\lambda_{1}$ is the sum of two integral squares,
iii. if g and n are odd, the equation $\left(k-\lambda_{1}\right) X^{2}+(-1)^{(g-1) / 2} g Y^{2}=Z^{2}$ has an integral solution different from $X=Y=Z=0$.

Proof. Suppose N is the incidence matrix of D. We may assume that $N N^{\top}=N^{\top} N$, which implies that N^{\top} and N have the same kernel, so by Lemma 2 the product of the non-zero eigenvalues of $N N^{\top}$ is a square, which proves i. Define $Z=\left(J_{n}-n I_{n}\right) \otimes J_{g}$. Then $\operatorname{rank} Z=n-1$, and $N N^{\top} Z=N^{\top} N Z=O$, so Z satisfies the requirement for Lemma 1 . Hence

$$
M M^{\top}=N N^{\top}+Z Z^{\top}=\left(\lambda_{2}-g n\right) J_{v}+\left(\lambda_{1}-\lambda_{2}+g n^{2}\right) K_{n, g}+\left(k-\lambda_{1}\right) I_{v}
$$

has eigenvalues $k^{2}, \rho=k-\lambda_{1}$ and $\sigma=g^{2} n^{2}$ of multiplicity $1, n(g-1)$ and $n-1$ respectively. The Hasse-Minkowski invariant $C_{p}\left(M M^{\top}\right)$ with respect to the odd prime p of a matrix $M M^{\top}$ of the above form is known, see for example [1].

$$
\begin{gathered}
C_{p}\left(M M^{\top}\right)=(\rho,-1)_{p}^{n(g-1)(n+g-1) / 2}(\sigma,-1)_{p}^{n(n-1) / 2}(\sigma, g)_{p}^{n}(\rho, g)_{p}^{n}\left(\sigma, \lambda_{2}-g n\right)_{p}= \\
(\rho,-1)_{p}^{n(g-1)(n+g-1) / 2}(\rho, g)_{p}^{n},
\end{gathered}
$$

where $(a, b)_{p}$ is the Hilbert norm residue symbol, defined by $(a, b)_{p}=1$ if for all t the congruence $a X^{2}+b Y^{2} \equiv 1\left(\bmod p^{t}\right)$ has a rational solution, and $(a, b)_{p}=-1$ otherwise. Since M is a non-singular rational matrix, $C_{p}\left(M M^{\top}\right)=C_{p}\left(I_{v}\right)=1$ for every odd prime p, and the conditions $i i$ and $i i i$ follow.

For example there exists no $G D(18,4,9,6,9)$ for which the dual is also such a design. Note that in case $n=1, D$ is a square block design and the conditions are those of Bruck, Ryser and Chowla. The above theorem also has concequences for distance-regular graphs. Some putative distance-regular graphs imply the existence of square divisible designs (see [2] p.22), and in case these divisible designs are semi-regular we obtain new conditions.
Corollary 3 Suppose there exists a distance-regular graph of diameter 4 with $2 g^{2} \mu$ vertices and intersection array $\{g \mu, g \mu-1,(g-1) \mu, 1 ; 1, \mu, g \mu-1, g \mu\}$. Then
i. If μ is odd and $g \equiv 2(\bmod 4)$ then $g \mu$ is the sum of two integral squares.
ii. If μ and g are odd, then the equation $\mu X^{2}+(-1)^{(g-1) / 2} Y^{2}=g Z^{2}$ has an integral solution different from $X=Y=Z=0$.

Proof. Such a distance-regular graph is the incidence graph of a $G D(g \mu, g, g \mu, 0, \mu)$ for which the dual is also such a design.

For example a distance-regular graph with intersection array $\{15,14,12,1 ; 1,3,14,15\}$ does not exist. Note that a distance-regular graph with intersection array $\{g \mu-1,(g-$ 1) $\mu, 1 ; 1, \mu, g \mu-1\}$ also gives rise to a semi-regular square divisible design; see [2], p. 24 . But here we find no new restrictions.

Acknowledgement. I thank Edwin van Dam for many relevant conversations.

References

[1] R.C. Bose and W.S. Connor, Combinatorial properties of group divisible incomplete block designs, Ann. Math. Statist. 23 (1952) 367-383.
[2] A.E. Brouwer, A.M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer, Heidelberg, 1989.
[3] M.J. Coster and W.H. Haemers, Quasi-symmetric designs related to the triangular graph, Designs, Codes and Cryptography 5 (1995), 27-42.
[4] F. De Clerck and H. Van Maldeghem, Some classes of rank 2 geometries, in: Handbook of Incidence Geometry (F. Buekenhout ed.), Elsevier Science B.V., 1995, pp. 433-475.
[5] D. Raghavarao, Constructions and combinatorial problems in designs of experiments, John Wiley \& Sons, Inc., 1971.
[6] S.S. Shrikhande, D. Raghavarao and S.K. Tharthare, Non-existence of some unsymmetrical partially balanced incomplete block designs, Canad. J. Math. 15 (1963), 686-701.
[7] H. Van Maldeghem, Generalized polygons, Birkhäuser, 1991.

