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ABSTRACT

In experimental design applications unbiased estimators s?
of the variances o? are possible., These estimators may be used in
Weighted Least Squares (WLS) when estimating the parameters B.
The resulting small-sample behavior is investigated in a Monte
Carlo experiment. This experiment shows that an asymptotically
valid covariance formula can be used if s? is based on, say, Zt
least 5 observgtions. The WLS estimator based on estimators sy
gives more accurate estimators of B, provided the 0? differ by a

factor, say, 10.
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1. INTRODUCTION

Generalized Least Squares (GLS) is a popular technique in
econometrics, a discipline that can be characterized as follows:
(i) In econometrics (and in the social sciences in general) the
explanatory or independent variables x can not be fixed by the
researcher. These variables are fixed by the environment; the in-
vestigator can only observe the variables.

(ii) Economic and statistical reasoning leads to rejection of the

classical assumption that stipulates independent errors g with

constant but unknown variance 02
Q =" (1.1)

where { denotes a covariance matrix and I the identity matrix.
A consequence of characteristic (i) is that replication of spe-
cific experimental conditions is impossible. Hence Qe is estima-

ted from the residuals (y-%).

In experimental design applications the variables x are

fixed by the scientist, either in a real-life experiment or in
a simulation experiment. Each experimental condition i can be re-
plicated resulting in the unbiased estimators

m

S? = .Z (yij“ii)g/(mi“'1) (1 = 1:"':n) (1'2)
J=1

e

In general it is realistic to replace eq. (1.1) by

02
1

(1.3)

L]

H=a
i
q

where D denotes a diagonal matrix, i.e. the n experiments are

assumed to be independent. In a simulation experiment - as opposed
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to a real-life experiment - independence is guaranteed by the use of
different random number streams.

In experimental design practice Ordinary Least Squares (0LS)
is standard, Let us briefly review OLS versus GLS. Consider the

model linear in the parameters B8:
X =2 Bt (1.4)

The technique for estimating § depends on the experimenter's cri-

terion or loss function. OLS minimizes Z(yi—ﬁi)g, resulting in
B= (%% X'y (1.5)

GLS -~ more specifically Weighted Least Squares (WLS) ~ minimizes
- . - N
Zmi(yi—yi) with weights w, = 1/0i yielding

0™ xpTy (1.6)

If the classical assumptions of eq. (1.1) hold, then OLS yields
best linear unbiased estimators (BLUE) E with

! (1.7)

Qu = og(g'z)_
~B
If, however, the more realistic and general assumption (1.3) holds,

then GLS results in BLUE g with

Q.= (xn'p" (1.8)
~ * ~ o~ ~
g
The practical problem addressed in this note is as follows:
The GLS estimators ﬁx assume non-constant but known varian-
ces 0., In practice the nuisance parameters c? are unknown. Esti-
mating o? results in the estimator E which upon substitution into

eq. (1.6) yields Estimated GLS (EQLS) estimators Ex. As Schmidt
(1976, p. 71) shows this new estimator has the same asymptotic
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distribution as the regular GLS estimator and (under certain mild
technical conditions) remains unbiased. Unfortunately its small-
sample behavior is unknown. It is our purpose to examine the
small-sample behavior in experimental design situations, as oppo-
sed to econometric situations. For that study we use the Monte
Carlo method.

We emphazise that even if the classical assumption (1.1) does
not hold, OLS can still be used as a mathematical technique for es-
timating the parameters f. However, the statistical properties of
the OLS estimator become different: E is no longer known to be
BLUE and the covariance matrix (1.7) is replaced by

9, =Hg, ¥ (1.9)

8 e
using the shorthand notation

X! {1.10)

The OLS estimator does remain unbiamsed, because eqs. {1.5), (1.4)
and (1.10) yield

e(B) =waly) =g (1.11)

Note that if X is ill-conditioned (nearly singular) then special

numerical techniques are needed; see Wampler (1979).

2. MONTE CARLO EXPERIMENT.

In section 1 we postulated that in experimental design appli-
cations each experimental condition i (i = 1,...,n) yields a vari-
ance estimator s? defined in eq. (1.2). In our Monte Carlo experi-
ment we further assume (for comvenience) that each condition i is
replicated the same number of times: m, = m, In a simulation expe-
riment with, say, a queuing system m denotes the number of inde-

pendent subruns into which the simuwlation run is divided; see
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. 1 .
Kleijnen (1979). ) In Monte Carlo experiments m denotes the rumter
of replications using different random number streams. Since are

other classical assumption hamely normality, is nct examined

2)

this study, €3 is sampled”™’ m times from N(0,0;) and the avera-

ge

m
e, = E e../m (2.1)

Hence in the notation of section 1 we have y' = (Fyaeneal

The output of the Monte Carlo experiment consists of estima-
tes of the covariance matrices of E and E*. Moreover the average
values of E and Etarecomputed. The average B can be used to veri-
fy the correctness of our program: OLS should yield unbiased esti-
mates; see eq. {1.11). The other outputs will be presented in the
next section.

The input parameters of our Monte Carlo experiment are: m, n,
a4, B, X, D, and the number of times the Monte Carlo experiment is
repeated, say, M. In a trial experiment we used M = 250 and could
reach significant conclusions. To save computer time we reduced M
to 150 and as we shall see significant conclusions can still be
reached. The emphasis is on how differences in the variances oy
which occur in D, affect OLS and EGLS. Hence one extreme is con-
stant variances: 0? = 02. The other extreme is provided by a case-
study (a harbor simulation) where the maximm and wminimum s? diffe-
red by a factor 1,456; see Kleijnen et al.(1979). Some intermediate
cases will be shown in the tables. The same case-study provided a
specific orthogonal X-matrix and a specific g with n = 16 and
q = 13.3) Asymptotic results for EGLS are examined by varying the

degrees of freedom (m-1) on which si is based. An absolute minimum
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is m = 2. In the case-study we had m = 9. Several more values are
shown in the tables. All Monte Carlo results are for orthogonal

X.

~

3. MONTE CARLO RESULTS

L)

(1) We test whether EGLS yields unbiased estimators, as is known
2
to occur when eij N(O,ci)

B:

The Monte Carlo experiment 1g analysed as follows:

. Therefore we compute per parameter

= ____igi;:_ﬁ_____ (3.1)
=1 {vér(ax)/M}1/2
Since M = 150 ty_4 can be replaced by z ~ N(0,1). Among the 141
observations”’ on t only one t-value is significant: t = 2.88 where
as za/2 = 2.60 for o = 0.01. If the null-hypothesis holds then the
expected number of significant values is (0.01) (1h1) = 1.41, So
BGLS indeed yields unbiased estimators Ex.

(2) We test whether the asymptotic covariance matrix (1.8) is a

valid approximation. Since in practice an experimenter uses only
the main diagonal elements s of eq. (1.8) we compute for each of

the ¢ parameters f#:

Xy 1 w, .
ii

2 varﬂﬁx)
(3.2)
In Table I the factor "heterogeneity" denotes

H=—-—2-——'— (3.3)

2 2 . ..
where Umax and gmin are the maximum and minimum elements on the

diagonal of D. This factor will become relevant in step (3). Ta~
ble I displays only the maximumm of the g xz—values. (A "per compa-
rison’ error rate of a = 0.01 corresponds to a familywise error
rate of qo; see Kleijnen, 1975, pp. 526-531,) Note that some (non-
displayed) xa—values are smaller than 1, i.e., eq. (1.8) does not
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TABLE I

Adequacy of asymptotic variance formula (1.8)

Case 1:n = 16, g = 13

Heterogeneity H

0 11.84 1,455,69
n 9 2 9 25 2 g 25
‘max x°  1.26  1.90% 122 1.e5  1.88%  1.25 1.22
Case 2: n =8, g=1
Heterogeneity H
0 10.83 1;h55.69
m 9 25 2 9 25 2 9 25
mex x°  1.2h 1.7 3.30% 1.2% 1.7 7.79% 1.21 1.20
Case 3:n=1U4, g =3
Heterogeneity H
10.38 ) 1,289.15
m L 5 9 25 N 5

x

max x=  1.43% 120 1.7 1.19 1.55% 1,18

~

systematically underestimate var(Bx). Only if c? is estimated from
extremely few observations like m = 2, the asymptotic formula un-
derestimates the true variance of E* significantly. For & small
X-matrix the effect of m is further examined: case 3. The under-
estimation becomes insignificant even for m as smeall as 5; since
in practical simulation experiments m is always higher than 5, we
recommend the use of the asymptotic formula (1.8) in simulation

studies.
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TABLE IT
Efficiency of EGLS versus OLS
Case 1: n = 16, g = 13
Heterogeneity H
0 11.84 1,455.69

n 9 2 9 25 2 9 25
min 2 0.82  0.92  o0.62% o.72% o0.10* o.07% 0.07"
nax x° 1.26  1.88% .18 1.13  1.51% .00  0.97

Case 2: n =8, g=1U4

Heterogeneity H

0 10.83 1,455.69

n 9 25 2 9 25 2 9 25
min x° 0.92 0.96 1.34 0.58% 0.52% 0.16* 0.05* 0.06*
nax x° 1.24  1.17  1.89% 0.70 0.67 1.371*0.21 0.21

Case 3:n=1L4, g =3

Heterogeneity H

10.38 1,280.15
n 4 5 9 25 Y 5
min y 0.57 0.55% 0.63% o.u7* o0.17* 0.19%
2

max y .17  0.89 0.85 0.88  1.06  0.81
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(3) We test whether EGLS is "better" than OLS. Therefore we com-

pare the Monte Carlo estimates of the variances of E* with the

known variances o, of g (see eq. (1.9))16)
a2k
2
2, = J_V?i”iﬁ ) (3.4)

Table II displays not all gq values of XE but only the maximum and
minimum value. A significant maximum x2 and insignificant minimum
X2 means that OLS is better; a significant minimum x2 and insigni-
ficant maximum X2 means that EGLS is better. Whether OLS is worse
than EGLS depends on the degree of heterogeneity of variance,
measured by H in eq. (3.3).

(i) In case of perfect homoscedasticity (H = 0) EGLS estimates D
whereas OLS correctly assumes that D = 02;. Hence OLS gives better
results but, as Table IT shows, not significantly better. Conse-
quently if we knew that the assumption of constant variances holds
then we could recommend OLS.

(ii) For strong heteroscedasticity (H > 1,000) all our tests (re-
member note 6) show that OLS is inferior, provided m > 2 50 that
reasongble estimates of 0? are possible.

(iii) In case of "intermediate" heterogeneity (H #® 10) EGLS is
still better than OLS provided m > 2. As expected the superiority
of EGLS is smaller than in case of strong heterogeneity. (For case
1 the tests of note 6 do not give significant results for inter-
mediate heterogeneity.)

Note that if n = q then OLS and EGLS become identical.

7)

4. PRACTICAL CONCLUSIONS

(1) In real-life experiments the individual variances ci are es-
timated from only a few replications (m) because of the effort

and practical difficulties involved. For "small" m (m between 1
and, say, 5) we recommend OLS for the estimation of the parameters
8. However, the standard errors of E should incorporate the varian-
ce estimators si using eq. (1.9) which replaces the standard formu-
la, eq. (1.7).
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{p% In simulation experiments replication is easy so that m is
. 2 . a: .
"iarge", say, m » 5. If the estimators s, indicate heterogeneity,

83Y, 52 /52. > 10 then we recommend WLS; else we recommend OLS
mex' “min

together with eq. (1.9).
NOTES

1, In renewal analysis of simulation m must be "large", say, m >

100.

o

The random number generator on our ICL 2900 turned out to be
undocumented, i.e., it is a multii)licative congruential genera-
tor with unknown parameters. Normal variates are generated
through a subroutine presumed to be the Box-Muller transforma-

tion.

3. ' = (-1.420, -0.769, 13.440, -11.508, 3.500, -1.375, 140.918
15.391, 0.046, 281.098, 21.250, 11.875, -49.483). X was defined

by the experimenﬁal design “generators” 1 = 56 and 3 = L5.

L. We also verified whether the program indeed yields unbiased OLS

estimators, computing per parameter B
2 = (-8)/tvar(B) My /2

where var(8) follows from eq. (1.9) so that z ~ N(0,1). We
further verified whether the estimated variances agree with eq.
(1.9), using the X2 statistic of eq.(3.2) . At o = 0.01 none

of the many z or XE values is significant.

1

Each combination of a B parameter and an m value yields one t

observation: 141 =7 x 13+ 8§ x 4 + 6 x 3,

on

We also compared the estimated variances of EGLS with the esti-

mated variances of OLS using an F-statistic. Moreover we com-

p

traces of these two covariance matrices. All tests yield the

puted the eigenvalues of QA—SZZ,A*, and the difference between the
[§

same qualitative conclusions.

7. If n = q then X" exists. Hence B and E‘* reduce to 5—1 Y.



SMALL-SAMPLE BEHAVIOR OF WLS 313
BIBLIOGRAPHY

Kleijnen, J.P.C., Statistical Techniques in Simulation (In two
volumes). Marcel Dekker, Inc., New York, 1974/1975.

Kleijnen, J.P.C.,, The role of statistical methodology in simula-
tion. In: Methodology in Systems Modelling and Simulation,
edited by B. Zeigler, M.S. Elzas, G.J. Klir and T.I. Oren,
North-Holland Publishing Company; Amsterdam, 1979.

Kleijnen, J.P.C., A.J. van den Burg and R.T. van der Ham, Genera-
lization of simulation results: practicality of statistical
methods. European Journal Operational Research, 3, 1979, pp.

50-64,

Schmidt, P., Econometrics. Marcel Dekker, Inc,, New York, 1976.

Wampler, R.H., Solution to weighted least squares problems by
modified Gram-Schmidt with iterative refinement. ACM
Transactions on Mathematical Boftware, 5, no. k., Dec. 1979,
pp. U5T-h65,

Received February, 1980; Revised July, 1980.

Recommended by Ralph A. Bradley, Florida State University,
Tallahassee, FL.

Refereed Anonymously.



