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Abstract 

We derive a matrix inequality, which generalizes the Cauchy-Schwarz inequality for 
vectors, and Khinchin’s inequality for zero-one matrices. Furthermore, we pose a related 
problem on the maximum irregularity of a directed graph with prescribed number of 
vertices and arcs, and make some remarks on this problem. 0 1998 Elsevier Science 
Inc. All rights reserved. 
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1. Introduction 

In a recent paper, de Caen [l] presented an upper bound on the sum of 
squares of degrees in a graph. His result was obtained by considering some pos- 
itive semidefinite quadratic form related to the line graph of the complete 
graph. In this paper we exploit this idea, which can be applied more generally, 
to obtain an inequality on arbitrary real matrices, and which generalizes 
Cauchy’s inequality for vectors. Surprisingly, the matrix inequality can also 
be derived by applying Cauchy’s inequality to a special vector related to the 
matrix. When we apply our result to zero-one matrices it reduces to a minor 
(and already known, cf. [2]) improvement of Khinchin’s inequality [3] for such 
matrices. Khinchin [4] applied his result to prove a surprising number theoretic 
result. 
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We also generalize our result to a “‘Cauchy-Schwarz matrix inequality”, 
which looks a bit complicated, but nevertheless may have some useful applica- 
tions. When we apply it to a square matrix and its transpose, we obtain another 
interesting matrix inequality, which resembles a Khinchin-type inequality for 
zero-one matrices found by MatG (cf. [2]). This resemblance pointed us to a 
problem on directed graphs (note that zero-one matrices can be identified with 
directed graphs). We wish to maximize some quantity which measures the 
irregularity of the graph, over all directed graphs with a prescribed number of 
vertices and arcs. A similar problem has been studied by several authors (cf. 
[5-7]), and turned out to have a rather complicated solution. In the final section 
of this paper we make some remarks on the new problem. 

2. The matrix inequality 

Theorem 1. Let X be a real m x n matrix. Then 

with equality if and only ifXij = yi + zj for some real vectors y and z, and all i and 
.i. 

Proof. To derive the inequality, we associate it with a quadratic form in mn 
variables. To do this we need to introduce some mn x mn matrices, with rows 
and columns indexed (symmetrically) by the ordered pairs (i,j), i = 1,. . . , m, 
j= I,..., n. Let Ai denote the (0, 1)-matrix which is 1 in the entry ((i,j), (i’,j’)) 
if and only if i = i’. Similarly let AZ denote the (0, I)-matrix which is 1 in the 
entry ((i,j), (i’,j’)) f d i an only if j = j’. Now possibly after rearranging the 
indices we have that A1 = I,,, ~3 J,, and A2 = J,,, 153 I,,, where I and J are identity 
and (square) all-ones matrices, respectively, with indices denoting the sizes, and 
63 denotes the Kronecker product. Now one easily checks that the inequality is 
equivalent to 

XT ( Jmn + mnImn - mL@J,,-nJ,,,@I,,)X>O, 

where X is regarded as a column vector of size mn. So the inequality is proven if 
we can show that R = J,, + mnImn - ml,,, @J, - nJ, @ I,, is positive semidefinite. 
To show this, we note that the four matrices J,,, I,,, Z,,t $3 J,, and J, @ I, mutu- 
ally commute. Hence they have a common basis of eigenvectors, and we can 
thus find the eigenvalues of R by combining the eigenvalues of its summands 
on each common eigenspace, as is done in the following table. This shows that 
R has eigenvalues 0 and mn, so indeed it is positive semidefinite. 
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I mn 
1 
1 
1 
1 

L @ Ji, 
n 
n 
0 
0 

Jm 8 Ii, R (multiplicity) 
m 0 (1) 
0 0 (m-1) 
m 0 (n-1) 
0 mn Km-l)(n-l)) 

J mn 

mn 
0 
0 
0 

Moreover, we have equality in the bound if and only if X is an eigenvector of R 
with eigenvalue 0 (for convenience we also consider the zero vector as an eigen- 
vector). From the above table, it follows that this is the case if and only if 
X = Y + Z, for some eigenvector Y of 1, @J,, with eigenvalue n, and some 
eigenvector Z of J, ~3 Z, with eigenvalue m. But this means precisely that for 
fixed i, xj is constant, i.e. Yj = yi for some vector y, and similarly Zij = zi for 
some vector z. 0 

Theorem 1 is proven in a similar fashion as de Caen’s inequality [I] (see be- 
low). His result was obtained by considering some positive semidefinite matrix 
in the Bose-Mesner algebra of the triangular 2-class association scheme, while 
here we consider one in the Bose-Mesner algebra of the rectangular 3-class as- 
sociation scheme. In fact, one can do a similar thing in any association scheme, 
giving an inequality on a vector X, which is indexed by the vertices of the as- 
sociation scheme. The rectangular scheme seems to be a very natural one, since 
it gives a matrix inequality. For some background in the theory of association 
schemes we refer the reader to [8] or [9]. In an arbitrary d-class association 
scheme on u vertices, with adjacency matrices Ai and dual eigenmatrix Q, we 
get an inequality by considering a minimal idempotent Ej = 1 /u Cf=, Q;jAl. 
In fact, in this way, and by considering the characteristic vector of a subset 
of the vertex set, Delsarte [lo] (cf. [8]) derived his linear programming bounds 
on the inner distribution of the subset. Thus for (0, I)-matrices the matrix in- 
equality (see Section 3) is a direct consequence of Delsarte’s linear program- 
ming bound. 

In a sense, the matrix inequality and de Caen’s inequality are equivalent. 
For example, if (Zii,j,) is a real vector indexed by the unordered pairs of a 
set of size n, then by applying the matrix inequality to the (symmetric) matrix 
X defined by X, = Z{ij} if i # j, and 

(after some straightforward, but tedious calculations) we obtain de Caen’s 
inequality 
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Going back from this inequality to the matrix inequality is also possible, but 
we shall not do that here. 

Also Cauchy’s famous inequality can be derived: let x be a real vector of size 
m, then by ap 

r 
lying the matrix inequality to the m x 2 matrix [x -xl, we find 

that (ELI xi) 6 m CL, a$‘. Note that Cauchy’s inequality also follows from 
considering the positive semidefinite matrix ml, - J,,, (in the Bose-Mesner alge- 
bra of the complete l-class association scheme, or in fact, any association 
scheme). Surprisingly, we can also find the matrix inequality (and hence give 
another proof of it) by applying Cauchy’s inequality, i.e., to the vector 
(Zj - (l/flJri - (l/m)Cj)ij indexed by the mn ordered pairs, where 
yi = Ci=, Xik is the ith row sum of X and cj = Cy=, X, is the $h column 
sum of X. As Cauchy’s inequality is a special case of the Cauchy-Schwarz in- 
equality I( < ll4lllvll ( or its slightly improved version (m(x,y) - CL, 
xi CL, yi)’ < (ml 1x1 I2 - (CL, xj)2)(ml lyl I2 - (Cz, ~i)~), this calls for the follow- 
ing generalization of Theorem 1. 

Theorem 2. Let X and Y be real m x n matrices with row sums ri and <, column 
sums cj and c$ and entries summing to CI and d, respectively. Then 

Proof. Consider the positive semidefinite matrix R from the proof of Theorem 1 
and, again, consider X and Y as vectors. Now also the 2 x 2 matrix 

X*RX XTRY 

YTRX YTRY 

is positive semidefinite. Hence it has a nonnegative determinant, and the result 
follows. 0 

Again surprisingly, Theorem 2 is in itself a generalization of the Cauchy- 
Schwarz inequality. For vectors x and y we obtain Cauchy-Schwarz by applying 
Theorem 2 to the matrices [x - x] and b - y]. 
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In case we have a square matrix X we can apply the result to X and its trans- 
pose XT to obtain the following. 

Corollary 1. Let X be a real n x n matrix with row sums ri and column sums cj. 
Then 

g(ri - ci)2 < nFe&; - n~~X&t = n Trace&XT -X2). 
i=l i=i j=i i=l j=l 

Proof. Theorem 2 applied to X and XT reduces to c2 + n2 Cy’, cy=, x,,X, - 
2n EYE, rici < a2 + n2 CyZ1 ‘& 4; - n CyZ1 6 - n cyZ1 cf, since the right- 
hand side is nonnegative, and the inequality follows. Now note that for any 
two n x n matrices A and B we have that CL1 CyZ, AijBij = Cb, (ABT)ii = 
Trace(ABT). 0 

3. Khinchin-type inequalities for zero-one matrices 

In the special case of (0, I)-matrices, the inequality of Theorem 1 reduces to 
the following Khinchin-type inequality. It was found earlier by Mat65 and Tu- 
zar [2], however by using different methods (from measure theory). 

Proposition 1. Let X be an m x n (0, 1)-matrix, with row sums ri, column sums cj, 
and entries summing to C. Then 

rn~$+n~c~<o’+rnno, 
i=l j=l 

with equality if and only ifX has constant rows (i.e., only rows of all-ones and 
rows of all-zeroes) or constant columns. 

Proof. The inequality is an obvious consequence of Theorem 1. In case of 
equality Xij = yi + zj for some y and z. Now suppose X has a row that is not 
constant, say Xij = 0 and Xih = 1. From this we get that zh = zj + 1, which 
implies that for any row k we have that X,h = yk + zh = yk + Zj + 1 = &j + 1, 
and hence &j = 0 and XkJ, = 1. This proves that X has constant columns. Thus, 
in case of equality we have constant rows or constant columns. On the other 
hand, it is also clear that if X has constant rows or constant columns, then we 
indeed have equality. 0 

This inequality is an improvement (in the nonsquare case) of a result by 
Khinchin [3], who proved that 1 Cy!, $ + I $$ CT < o2 + Z20, where 
I = max{m, n}. Khinchin [4] applied his inequality to prove a surprising number 
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theoretic result. He showed that the set of integer squares S is a so-called essen- 
tial component, that is, for any proper subset A of the positive integers, 

inf l(S+A)nl > inf ~ 
n=l,2,... n n=1.2.... n ’ 

whereB,={x~B~x~n}forasetB.Notethatinf{~S,~/n~n=1,2,...}=0. 
Several optimization problems concerning (0, 1)-matrices have been studied, 

a particular one being the problem of optimizing Cb, rici for a square matrix 
of given size and given number 0 of entries which are equal to one (cf. [l&7]). 
Note that for a symmetric matrix with zero diagonal this is the problem of 
optimizing the sum of squares of degrees in an undirected graph. Also several 
inequalities for (0, 1)-matrices have been derived, in particular, MatuS (cf. [2]) 
found that EYE, (ri - c,)~ < no - EYE, Tici. This inequality strongly resembles 
the inequality of Corollary 1, however, the two are incomparable. Here the 
problem arises of maximizing X:=1 (Y, - ci)2, given n and 0. In Section 4 we 
shall make some remarks concerning this directed graph problem. 

4. A problem on directed graphs 

A square (0, 1)-matrix X is the same as a directed graph G without multiple 
arcs (but allowing loops and digons). (For some background in directed graphs 
we refer the reader to [ll].) From u to v there is an arc (u, v) if and only if 
X,, = 1. It is then clear that a vertex u has outdegree d,’ = Y,,, the uth row 
sum of X, and in-degree d; = cl,, the uth column sum of X. Our (0, 1)-matrix 
problem is now formulated as a directed graph problem: maximize 
CuEy(dz - d;)‘, where V denotes the vertex set of G, over all graphs G with 
given number 12 of vertices and given number 0 of arcs. From a graph-theoretic 
point, the quantity that we are maximizing measures the irregularity of the di- 
graph, and hence is of interest. 

Let G(n, 6) denote the set of all directed graphs without multiple arcs, with n 
vertices and 0 arcs, and let 02(G) denote C,,,(d,+ - d;)2 in a given graph G. 
Furthermore, define f(n,a) = max{as(G) I G E G(n,a)}. Note that 
f(n, CJ) < 120 by Corollary 1. We shall see later that equality holds if and only 
if there is a directed complete bipartite graph in G(n, 0). We shall also show 
that f(n, 0) < 3 (n3 - n), and characterize the case of equality. Note that the in- 
equality also follows from Mat6 inequality CuEv(dU+ - d;)2 < no - CuEV 
d,+d; and the inequality CuEY d,+d; 3 m - i (n3 - n) (cf. [12]). Note also that 
if a graph minimizes C uEV d:di and has equality in Mat65 inequality, then it 
also maximizes CuEV(d,+ - d;) , and solves our problem. This is for example 
the case if (T = (!$ - i n, when a graph minimizing CUEV d,+d; must be a directed 
transitive complete multipartite graph &,...,2 (that is, the graph obtained by 
taking the undirected version, and directing all edges in the same direction) (cf. 
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[6]). The complete solution to the problem of minimizing CuEvdU+d; is sup- 
posed to be in [7], however, not all minimizing graphs are characterized there 
(for example, the directed transitive complete multipartite graphs KQJ and 
K1,3,2 are not mentioned as solutions in G(6,ll)). Therefore, we shall not use 
these results. Besides that, many solutions do not have equality in MatuS’ in- 
equality, and hence we have to do some work ourselves anyway. 

Lemma 1. Zf G is a graph maximizing Q(G) over all graphs in G(n, CT) such that 
for some vertices u and v neither (u, v) nor (v, u) is an arc in G, then G does not 
have digons or loops. 

Proof. Suppose G has a loop at some vertex, say w (which may be u or v), and 
suppose without loss of generality that d,’ - d; 3 d,’ - d;. Now consider the 
graph G’ E G(n, a) which is obtained from G by replacing the arc (w, w) (the 
loop at w) by the arc (u, v). Then 

a2(G’) = (d,f - d,- + l)* + (d,’ - d{: - 1)2 + c(d.f - dZ-)2 
ZfU.0 

= 02(G) + 2(d,+ - d;) - 2(d,t - d,-) + 2 > 02(G), 

which is a contradiction. Hence G has no loops, and similarly we can prove 
that G has no digons. 0 

This elementary lemma already simplifies the situation substantially, i.e., if 
CJ < (!$, then a maximizing graph will have no loops or digons. If o > (t), then 
between any two vertices there will be at least one of the possible two arcs. 

Note also that c2(G) = a2(G), w h ere G is the graph-theoretic complement of 
G (its adjacency matrix is obtained from that of G by interchanging zeroes and 
ones). Moreover, if G has c arcs, then G has n* - r~ arcs, hence 
f(n, CT) = f(n, n* - a). Without loss of generality we can therefore restrict to 
the case a< Ln*. 

‘2 

Lemma 2. If (;) < o < in2, then f(n, CJ) =f(n, (i)), and if G is a graph 
maximizing 02 (G) over all graphs in G(n, o), then between any two distinct 
vertices in G there will be precisely one arc. Zf CJ < (I;), then a maximizing graph 
will have no loops or digons. 

Proof. If (!J < cr < z ’ n2, then by the previous lemma there will be at least one 
arc between any two vertices. Now suppose we have a digon between vertices u 
and v in the maximizing graph G. It follows from easy counting arguments that 
there is a vertex, say w, at which there is no loop. If we assume, without loss of 
generality, that d,’ - d; > d,’ - d;, then replacing the arc (v, U) by the loop 
(w, w) will increase ~3, which is a contradiction. Hence G has no digons. Thus 
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between any two distinct vertices there is precisely one arc, and hence the other 
arcs are loops. Since adding loops does not change 02, it follows that 

th en the statement follows immediately from 

So now we can restrict to the case o 6 (;), where a maximizing graph will 
have no digons or loops. 

Lemma 3. If G is a graph maximizing o*(G) over all graphs in G(n, o), where 
a<(i),and( , ) u v is an arc in G, then d,’ - d,; 2 d,’ - dL; + 2. In particular, G is 
acyclic. 

Proof. Consider the graph G’ E G(n, C) which is obtained from G by reversing 
the arc (u, v). The only vertex degrees changed are those of u and u, so 

oz(G’) = (d,+ -d; - 2)2 + (d,’ -d,- + 2)’ + c(d,f - d,-)’ 
Z#U& 

= o*(G) - 4(d,+ - d,-) + 4(d,+ - d,-) + 8, 

and since Ok < az(G), the result follows. ??

An obvious generalization of this is that if G is again a graph maximizing 
Q(G) over all graphs in G(n, a), then for each vertex u and set S+ c rz (the 
set of all vertices u such that (u, v) is an arc), then 

and a similar result holds for subsets of r,. 
Even better, a maximizing graph is not just acyclic, but we can prove that it 

is transitive, that is, if (u, v) and (v, W) are arcs, then so is (u, w). 

Proposition 2. Zf G is a graph maximizing Q(G) over all graphs in G(n, (T), where 
o < (‘J, then G is transitive. 

Proof. Let (u, v) and (v, W) be arcs in G, and suppose that (u, W) is not. Note 
that (w, U) cannot be an arc either, since that would contradict the previous 
lemma. Now let G’ be the graph in G(n, o), obtained from G by replacing the 
arc (v, W) by (u, w). Then 

aI = (d,’ - d; + 1)2 + (d,’ - d,- - I)* + c(d__? - dZ-)’ 
Z#W 

= a;?(G) + 2(d,+ - d;) - 2(d; - d,-) + 2, 
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and since e2(G’) < ~J~(G), it follows that d,’ - dL: > d,’ - d; + 1. But by the 
previous lemma, we have that d,’ - d; 2 d,’ - dL: + 2, which is a contradic- 
tion. 0 

In the case r~ = (i) we have now found the maximizing graph, since up to 
isomorphism there is only one transitive graph with (!$ arcs (a transitive tour- 
nament). For such a graph ~72 = f (n3 - n), hence we have found that 

= f (n’ - n) for (2) ’ <CT < in’. Moreover, it is easy to show that for 
we have that f(n, 0 + 1) B f(n, 0) + 2, hence f(n, CJ) < i (H’ - n) for 

. In these cases the obtained necessary conditions still do not character- 
maximizing graphs, as we can see from the graph with arc set {(1,2), 

(1,3), (1,4), (2,4)} in G(4,4). Note that the maximizing graph here is the di- 
rected complete bipartite one (that is, the graph with arc set { (1,3), (1,4), 
(2,3), (2,4)}). In fact, any directed complete bipartite graph K,,_, is a maxi- 
mizing graph in G(n, a(n - a)). Even better, we can apply Theorem 1 to the 
skew-symmetric (0, fl)-adjacency matrix X of a graph G without loops and 
digons (i.e., X,, = -X0, = 1 if (u,u) is an arc) to find that 02(G) <no with 
equality if and only if G is directed complete bipartite (or empty). However, 
it is not true in general that a maximizing graph in G(n, c) should be bipartite 
if 06 in’ (that is, if G(n,a) contains a bipartite graph). Note that this is the 
case in the problem of minimizing C,,, d,fd; (cf. [6]). We suspect that the gen- 
eral solution to our problem will be as complicated as that minimization prob- 
lem. 
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