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Abstract. We propose a merit function for the expected contrast to noise ratio
in tissue quantifications, and formulate a nonlinear, nonconvex semidefinite opti-
mization problem to select locally-optimal balanced steady-state free precession
(bSSFP) pulse-sequence design variables. The method could be applied to other
pulse sequence types, arbitrary numbers of tissues, and numbers of images. To solve
the problem we use a mixture of a grid search to get good starting points, and a
sequential, semidefinite, trust-region method, where the subproblems contain only
linear and semidefinite constraints. We give the results of numerical experiments
for the case of three tissues and three, four or six images, in which we observe
a better increase in contrast to noise than would be obtained by averaging the
results of repeated experiments. As an illustration, we show how the pulse sequences
designed numerically could be applied to the problem of quantifying intraluminal
lipid deposits in the carotid artery.

Keywords: magnetic resonance imaging, balanced steady-state free precession,
Dixon method, semidefinite programming, trust-region algorithm

1. Introduction

Magnetic Resonance Imaging (MRI) is widely used in diagnosis, treat-
ment monitoring and research to generate information both about struc-
ture and function of tissues. Most clinical imaging focuses on qualitative
imaging (Haacke et al., 1999, Ch. 15), but quantitative applications do
exist (Haacke et al., 1999, Ch. 21), especially in functional imaging, be
it flow measurements in arteries or brain activity (Haacke et al., 1999,
Ch. 24). In this paper, we focus on quantitative imaging of structure.
Quantification of different tissue components is commonly performed
in clinical MR spectroscopy (MRS) (Salibi and Brown, 1998), which
offers very detailed information about tissue concentrations, but has
either restricted spatial resolution, or extremely long acquisition times;
and via the Dixon method (Dixon, 1984), in which concentrations of
fat and water are calculated by taking linear combinations of images
that were acquired by using pulse-sequence design variables chosen to
create prescribed phase relationships between fat, water and (less com-

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

AnandSotirovTerlakyZheng.tex; 13/09/2006; 11:46; p.1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6714794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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monly) silicone. Many pulse sequences provide a measure of fat-water
separation, which may be referred to as quantification. We will reserve
“quantification” for the case where the reported quantities depend only
on tissue quantity and not other tissue parameters (resonance offset,
relaxation) described below. Sequences which are described in the liter-
ature as “T1− or T2−weighted” are not quantitative in our strict sense,
because pixel intensity in these images depends on relaxation rates in
addition to tissue quantity.

After explaining the Dixon method, we show how it can be gener-
alized by allowing more general phase relationships, and we develop a
measure of the efficacy of a given set of pulse-sequence design variables
for tissue quantification. We carry this out for balanced Steady-State
Free Precession (bSSFP) (Carr, 1958; Oppelt et al., 1986) imaging, but
other sequence types can be similarly modeled. Having such a model
opens up the possibility of choosing pulse-sequence design variables
to minimize the expected noise in the computed tissue densities, by
solving a nonlinear, semidefinite optimization problem (Ben Tal and
Nemirovski, 2001). We present here an iterative method for solving
this problem numerically. Our algorithm converges to a local optimum.

Note that although our approach can be developed into a clinical
replacement for some applications of MRS, it is not closely related to
MRS, and we have not considered the application of our models and
method of optimization to the maximization of information in MRS
signals.

The paper is organized as follows. In Section 2, we present several
advantages of our method of quantification. In Section 3, we sketch
the theory of bSSFP signal generation, which we need in Section 4
to formulate the optimization problem. In Section 5, we present an
algorithm for solving the problem, and in Section 6 we give numeri-
cal results to support the adequacy of this strategy. In Section 7, we
present an illustration of a possible clinical application of these methods
for carotid artery imaging. In the final section, we address the many
possibilities for applying our method, generalizing the model to other
sequence types and including sources of systematic error, and further
developing the theory and practice of the solution to the optimization
problem.

2. Advantages of the Proposed Method of Quantification

In cases where distinct tissue types are well separated physically, and
large in extent relative to image resolution, quantitative tissue volume
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Optimal MR Tissue Separation 3

has been successfully extracted from qualitative images by calcula-
tions based on manual and automatic contour estimation (Jardim and
Figueiredo, 2003). These methods of tissue separation are based on
selectively suppressing tissue from undesired components, and are sen-
sitive to main field inhomogeneity and other conditions, which make
them unsuitable for quantification. However, our method has no such
restrictions.

An alternative to MR imaging is MR spectroscopy, which can be
used to quantify multiple molecules in regions of interest. Unfortu-
nately, it is extremely limited in spatial and temporal resolution, and
it is at least an order of magnitude slower to acquire than imaging
methods, such as the method we propose.

Our method improves on conventional Dixon methods (Glover, 1991;
Huang et al., 2004; Reeder et al., 2004; Vasanawala et al., 2000) since
it

− does not dictate a particular configuration of phases (e.g., in and
out of phase) and look for pulse-sequence design variables to match
this configuration,

− takes all tissue parameters into account (relaxation constants, as
well as resonance offset),

− can be used to quantify any number of tissues, and

− increases contrast-to-noise ratio as a function of images acquired
faster than signal averaging–and allows greater latitude in trading
off imaging time versus contrast to noise.

These advantages are the direct results of formulating the selection of
pulse-sequence design variables as an optimization problem, including
the formulation of an objective function which measures contrast to
noise.

Since our model takes all tissue parameters into account, we expect
to be able to separate tissue types which could not have been sepa-
rated by conventional Dixon methods, but we have only verified this
numerically in the present work, and plan to undertake further work
to make this technique robust enough for clinical application. Most
importantly, we have started to incorporate calibration and correction
for unavoidable variation in the main magnetic field (called B0 inhomo-
geneity estimation in the MR literature), with the same aim as (Sutton
et al., 2003), but with different numerical techniques.
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3. Theory of MRI

There are many types of MR imaging sequences, to which our methods
apply. We only formulate the design problem for tissue optimization
for bSSFP, introduced in (Oppelt et al., 1986). We generally follow the
notation of (Hargreaves et al., 2003). To make the paper self-contained,
we sketch the basic theory needed to formulate this problem, both for
mathematicians who want some understanding of the source of the
problem, and for imaging experts. Readers looking for a more details
should consult (Haacke et al., 1999). References to specific sections are
contained within the text.

3.1. MR Signal Generation and the Bloch Equation

Magnetic Resonance Imaging and Spectroscopy measure the aggregate
magnetic field generated by the spins of one or more nuclei in the object.
Proton (hydrogen) imaging is by far the most common. Because the
number of protons is very large, we model them as a density, using con-
tinuous or discontinuous functions. The most common functions come
from a regular division of the imaging volume into equal cubes or more
general rectangular prisms, called voxels. Approximating functions can
be either piecewise constant, or sums of delta functions centered on each
voxel. To each voxel, then, we can assign a vector M ∈ R3 representing
the net magnetic moment of all the protons in that voxel. For each
type of tissue, the magnitude of M is proportional to the quantity of
protons. Since we are interested in quantifying different tissue types, our
voxel model includes magnetization vectors for tissues of different types.
This tissue model is an approximation, with all real tissues comprising
different cell types, with multiple molecular environments. How detailed
to make the model depends on the application: for example, some ap-
plications may require separate “tissue” components for intracellular
and extracellular water for each tissue, while an automated fat volume
estimator may work with only two components. The mathematics does
not require that components correspond to tissues, but we do so to
simplify the presentation.

In the rest of this paper, we will simplify the exposition, by consid-
ering a single voxel with fixed tissue concentrations, i.e. we ignore flow
across the voxel boundary. The evolution in the magnetization in one
voxel is independent of the magnetization in neighboring voxels, hence,
we can consider the signal from each voxel separately.
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Optimal MR Tissue Separation 5

An MR imager is basically a big magnet. The moment, M , precesses
in the external field, B ∈ R3, according to

dM

dt
= γM ×B, (1)

where γ is a physical constant (Haacke et al., 1999, Ch. 2). This is the
same equation which governs a gyroscope suspended on a string. The
magnetic field, B, is a function of the chemical environment, so it varies
from one tissue to another (Liang and Lauterbur, 1999, Ch. 3). (In a
real imager, manufacturing tolerances and other factors also influence
B, but we don’t discuss them in this paper.) This equation can be
empirically validated for short time periods (microseconds), but for long
time periods (milliseconds), quantum interactions must be taken into
account. Quantum interactions cause the net magnetization to return
to thermodynamic equilibrium M0 = (0, 0,proton density)T (Haacke
et al., 1999, Ch. 5). Adding two terms to account for the empirically
measured relaxation, we arrive at the Bloch Equation (Haacke et al.,
1999, Ch. 4):

dM

dt
= γM ×B − 1

τ2

Mx

My

0

− 1
τ1

 0
0

Mz −M0,z

 , (2)

here M(t) ∈R3 is the aggregate magnetization and τ1,τ2 are empirically-
determined, tissue-dependent constants that represent the longitudinal
relaxation time and transverse relaxation time, respectively. (In the MR
literature, T1 and T2 is the more common notation, but this conflicts
with the natural names for design variables to be introduced later.)
Since (2) depends on material properties, one solves for the evolution of
each tissue’s magnetization separately. The measured signal is a linear
combination of the signals from each tissue component.

In an MR imager, we use electro-magnets to transmit magnetic
waves at different frequencies to perturb spins from equilibrium, M0,
parallel to the main field, and measure the projection of the resulting
precession on the transverse plane, which we interpret as a complex-
value, Mx + iMy. We will next explain how the tissue quantities can be
recovered from these complex values. Then we will return to the Bloch
Equation and model the generation of the signal for a particular pulse
sequence, and explain how given such a model we can minimize the
error in the resulting tissue quantification.
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3.2. Tissue Quantification

For a sample voxel that consists of m tissue types with concentrations
(ρ1,ρ2,. . . ,ρm) ∈ Rm, which is imaged n times by varying the pulse
sequence, the resulting signals (ι1,ι2,. . . ,ιn) ∈ Cn, are given by

ι1 = a11ρ1 + a12ρ2 + . . . + a1mρm,

ι2 = a21ρ1 + a22ρ2 + . . . + a2mρm,

...
ιn = an1ρ1 + an2ρ2 + . . . + anmρm,

where by convention ιk = Mx(k) +
√
−1My(k) is the projection of the

magnetization Mkth tissue to the x-y plane, which is identified with the
complex plane, and aij ∈ C gives the expected signal in image i of a
unit quantity of tissue j. If rank(S) = m (where S is considered as a real
matrix of having twice the number of rows as the complex coefficient
matrix SC=(aij)n×m by splitting the real and imaginary parts of aij

into two adjacent rows), then we can invert this linear system to find
the tissue concentrations. This is the basic idea of tissue quantification,
the interesting part is how to choose pulse-sequence design variables so
that S is well conditioned.

3.3. Dixon Method

All imaging methods in MR are based on understanding (and working
with) the behavior of solutions to the Bloch equation (2). The Dixon
Method, (Dixon, 1984), uses chemical differences between tissues which
manifest themselves as different external field values, and hence differ-
ent resonant frequencies. For tissues with different resonant frequencies,
the signals will go in and out of phase periodically. Dixon observed that
for fat and water, if one image is acquired while both are in phase and
one while they have opposite phases, then

SC =
(

1 1
1 − 1

)
, (3)

with respect to the natural bases for the complex vector space of pixel
values in two images, and the real vector space of tissue quantities.
Expressed with respect to the real basis of real and imaginary parts of
image one, followed by real and imaginary parts of image two:

S =


1 1
0 0
1 − 1
0 0

 . (4)
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Note that addition and subtraction of images is all that is required to
recover the original fat and water concentrations.

The difference between the effective excitation time and the effec-
tive measurement time is called the echo time. Dixon fixed the phase
relationship by altering the echo time, but ignored differences caused
by relaxation. When we formulate the model for bSSFP sequences, we
will be concerned with repetition time, the time between successive
excitation pulses. Repetition time always effects signal generation, but
for spoiled pulses, it can be excluded from calculations of the complex
phase of the signal, whereas for bSSFP, phase (and magnitude) are very
sensitive to repetition times (Zur et al., 1988; Scheffler, 1999).

The Dixon method usually uses spoiled sequences, because (ignoring
the calibration issue) relaxation parameters can be ignored. For bSSFP
sequences, relaxation parameters cannot be ignored, and Hargreaves et
al., (Hargreaves et al., 2003), adjust the pulse-sequence design variables
of bSSFP sequences by proper selection of the sequence repetition
time and the center frequency offset respectively in order to realize
a 180◦ phase difference between fat/water signals. Other authors, e.g.,
Vasanawala et al., (Vasanawala et al., 2000), have considered more
general tissue separation problems, but always with similar simple
structures for SC.

Dixon introduced the principle of separating different tissue types by
manipulating the phase relationships, which can be easily extended to
the cases more than fat and water, as shown in our simulation section
(see §7). The linear transformations S used in the Dixon method are
simple by design, and therefore usually not written in matrix form.
Not doing so obscured the fact that more general linear combinations
of tissue densities can be used for tissue quantification. Recently, Ry-
bicki et al., (Rybicki, 2001), and Reeder et al., (Reeder et al., 2004),
have considered matrices containing square roots and arbitrary complex
roots of unity, respectively. This complex matrix can be approximated
by manipulating a single pulse design variable (echo time), when the
resonant frequencies of the different tissues are well separated. To the
best of our knowledge, we are the first to point to, and to exploit the
generalization to arbitrary complex values. The introduction of a merit
function, and a systematic computational method of optimizing this
function over all possible choices of pulse-sequence design variables for
the case of bSSFP pulses are the main contributions of this paper. Note
that Reeder et al., do use noise in the tissue separations as an objective,
and discuss the merits of their proposed heuristic for choosing echo
times. They find that in the best case, noise in computed tissue separa-
tions is reduced as would be expected from signal averaging alone. By
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optimizing over a larger number of design variables, we observe better
than the expected reduction from signal averaging alone (see §7).

3.4. Balanced Steady-State Free Precession

When a spin system is excited by a train of periodic radio frequency
(RF) pulses with repetition time T � τ2, the spin system will reach
a dynamic equilibrium, known as the steady state (Carr, 1958). There
are quite a number of studies about the bSSFP signal and bSSFP pulse
sequences in recent years, such as (Hanicke and Vogel, 2003; Scheffler,
2003; Hargreaves et al., 2001) because bSSFP has the advantage of
yielding high signal in short scan time, high image resolution and good
image contrast, etc. For this reason, we use bSSFP sequences to demon-
strate our approach of optimally determining the pulse-sequence design
parameters to maximize contrast to noise.

The physical system is well described by the Bloch equation (2), but
for our purposes it is simpler to discretize the system by assuming the
fixed simple pulse-sequence design shown in Figure 1 and integrating
the Bloch equation in each section. The magnetization we measure is
the unique fixed-point corresponding to the steady state of this dynam-
ical system, which is a function of the design variables and parameters
describing the physical properties of the tissues we wish to measure.

The dynamical system is the composition of several simple compo-
nents, parameterized by the tissue parameters

(τ1, τ2, κ) ∈ R+ × R+ × R, (5)

and the pulse-sequence design variables

(α, f, T ) ∈ R× R× R+, (6)

where τ1, τ2 are decay times of the magnetization measured in millisec-
onds (ms), κ is the resonance offset of the tissue measured in Hz, R+

denotes the set of nonnegative real numbers, α is the flip angle, f is
the angle of RF phase cycling, T is the echo time which we fix to be
half the repetition time. Fixing the echo time to be midway between
RF pulses corresponds to the most basic spin-warp and radial k-space
trajectories (Haacke et al., 1999, Ch. 9). Other choices of readout tra-
jectories would lead to other fixed ratios. Simultaneously optimizing RF
pulse design and readout trajectories would lead to a more complicated
optimization problem, which is beyond the scope of this paper.

The dynamical system (Hargreaves et al., 2001; Janes, 2000) has the
form

Mk+1 = ĀMk + b (7)
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(d)

(e) (f)

(c)

(a) (b)

Figure 1. bSSFP pulse sequence showing two pulse repetitions (a) and (b). Each
pulse interval contains one readout interval (c) when data is collected, and one RF
pulse (d). We model the RF pulse and data readout as occurring at single points
of time, with the readout time equally spaced (by time T (e) and (f) from its
bracketing RF pulses. The affine transformations associated with these events are
R and Q acting at (d), and P and C ·+D acting twice during each repetition at (e)
and (f).

with steady state MSS(α, f, T, τ1, τ2, κ) which has been calculated ex-
plicitly in (Freeman et al., 1971). We will build up the dynamical system
from its components slightly differently from previous developments,
because we want to optimize the signal at the middle point of the read-
out. This computation is not difficult, but establishes the notation we
use, and makes the paper self-contained for readers without sufficient
knowledge of MR physics.

The first component is the rotation of the magnetization vector
caused by the RF pulse (consider the RF pulse to be a delta function)

R =

 1 0 0
0 cos(α) sin(α)
0 − sin(α) cos(α)

 . (8)

Variations in bulk susceptibility of the different tissues cause different
tissue to observe different magnetic fields B, which we capture by the
parameter κ, this causes a rotation about the z axis:

P =


cos (κT ) sin (κT ) 0

− sin (κT ) cos (κT ) 0

0 0 1

 . (9)

In designing the pulse sequence, we can change the axis of rotation of
the RF pulse. This is referred to as RF pulse phase cycling, because
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current generation scanners have the ability to rotate this angle by a
fixed constant, which is usually an integral fraction of 2π. To simplify
this analysis, it is easier to fix the RF phase, and pretend that the rest
of the experiment rotates from one RF pulse to the next by

Q =

 cos(f) sin(f) 0
− sin(f) cos(f) 0

0 0 1

 . (10)

We collect the effect of relaxation into two components:

C =


e−T/τ2 0 0

0 e−T/τ2 0

0 0 e−T/τ1

 (11)

and

D =


0

0(
1− e−T/τ1

)
 , (12)

where the scaling of D assumes that M has been scaled so that the
minimum energy state is M0 = (0, 0,proton density)T . Therefore

Mk+1 = P (C (RQP (CMk + D)) + D) .

If a steady state exists, it satisfies

AMSS = b, (13)

where Ā = PCRQPC, A = I − Ā and b = PCRQPD + PD.
Since the rotations R, P , and Q have unit eigenvalues, and all the

eigenvalues of the relaxation matrix C are less than one (and positive),
the matrix A is invertible, and so the steady state exists.

3.5. Imaging

Let m be the number of tissues, and n the number of experiments. We
denote ul = (u1l, u2l, u3l, u4l, Tl) ∈ R5, l = 1, . . . , n, tk = (τ1k, τ2k, κk) ∈
R3, k = 1, . . . ,m, where we represent the angles αl and fl by unit
vectors (u1l, u2l) = (cos(αl), sin(αl)) and (u3l, u4l) = (cos(fl), sin(fl)).
If MSS(ul, tk) ∈ R3 is the steady-state magnetization corresponding
to design variables ul and tissue tk, with components MSS,x, MSS,y,
MSS,z, and ρk is the density of tissue k, then the measured signal from
experiment l is(

m∑
k=1

MSS,x(ul, tk)ρk,
m∑

k=1

MSS,y(ul, tk)ρk

)
.
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If we write the results of n experiments (i.e. images) as a 2n dimensional
real vector, and the m dimensional tissue densities as an m dimensional
real vector, the transformation from tissue densities to measurements
is

S =


MSS,x(u1, t1) . . . MSS,x(u1, tm)
MSS,y(u1, t1) . . . MSS,y(u1, tm)

...
...

...
MSS,x(un, t1) . . . MSS,x(un, tm)
MSS,y(un, t1) . . . MSS,y(un, tm)

 , (14)

If S does not have full rank, we cannot reconstruct tissue densities
from this set of images. If S does have full rank, the Moore-Penrose

Pseudo-Inverse (Horn and Johnson, 1985) of S,
(
ST S

)−1
ST , is an un-

biased maximum likelihood estimator (Mardia et al., 1979, Thms. 6.2.1,
6.2.2) for the tissue densities as a function of the measured image
data. In the next section, we will show how the pulse-sequence design
variables can be chosen, not only to avoid singular transformations, but
to maximize the quality of the computed tissue densities.

4. Optimal bSSFP Design for Tissue Segmentation

Our objective is to choose the pulse-sequence design variables such
that the error in the reconstructed tissue densities is minimized. As is
standard practice in MR imaging, we will assume that measurement
noise is white, that is, independent and normally distributed (Haacke
et al., 1999). Under this assumption the error in the reconstructed tissue
densities will also be normally distributed (since the reconstruction is
a linear transformation), but the error in different tissue components
will not necessarily be independent. Barring additional information
about the use of the tissue segmentation (e.g., the method of diagnosis
in which they will be employed), we assume that the objective is to
minimize the worst-case error among different tissue densities. Even
if in a particular application, we were only concerned with the quan-
tification of one tissue, it is likely that radiologists would occasionally
want to examine other tissue quantification images, so minimizing the
worst-case error is a good conservative design criterion.

4.1. Formulation

Since the Moore-Penrose Pseudo-Inverse (Horn and Johnson, 1985) is a
linear map from measured signals to quantity estimates, it follows that
if ε ∈ R2m is a vector of measured noise, then the resulting errors in

AnandSotirovTerlakyZheng.tex; 13/09/2006; 11:46; p.11



12 Anand, Sotirov, Terlaky, Zheng

the tissue densities are also normally, but not identically distributed,

and given by
(
ST S

)−1
ST ε.

We can calculate the expected error in the tissue quantity estimates
by using a singular-value decomposition S = V T DU , where V and U
are orthonormal and D is diagonal. Then we have

(ST S)−1ST ε = UT D−1V ε. (15)

Since each measurement noise is independent with distribution N(0, σ),
for any two rows Vi and Vj in the orthonormal matrix V , Viε and
Vjε are also independent with distribution N(0, σ), which means that
each component in ε

′
=V ε is also independent with distribution N(0, σ).

Similarly, each component in ε
′′

= D−1ε
′
is independent with distribu-

tion N(0, λ−1
i σ), in which λi is the ith eigenvalue of D. When left

multiplied by the matrix UT , the resulting error ε
′′′

= UT ε
′′

also has
independently distributed components, with the ith element having
distribution N(0, σ

√∑
j(UT

i,j)2λ
−2
j ). To minimize the worst-case error,

we want to minimize the largest value

σ
√∑

j

(UT
i,j)2λ

−2
j ,

for all values of i. This is equivalent to minimizing the maximal λ−2
i ,

which is equivalent to maximizing the minimal λi. Since

ST S = UT DV V T DU = UT D2U,

and the eigenvalues of D2 and UT D2U coincide because UT U = I, the
eigenvalues of D2 are the same as the eigenvalues of ST S. Thus our
goal is to

max
design variables

min{eigenvalues of ST S}. (16)

We formulate the eigenvalue optimization problem (16) using semi-
definite inequalities as

max λ

ST S − λI � 0,

where � means positive semidefiniteness, and additional constraints
for S and for the design variables describe the set of accessible design
variables.

The formulation of the constraints involves three angles that always
occur as sine-cosine pairs, which define rotations around two of the
coordinate axes in R3. We can replace the sines and cosines that appear
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in the rotation matrices R and Q with unit vectors u1l and u2l, and
add the constraints

u2
1l + u2

2l = 1, (17)

u2
3l + u2

4l = 1. (18)

In our model we relax the constraints (17)-(18) to the convex quadratic
constraints

u2
1l + u2

2l ≤ 1, (19)

u2
3l + u2

4l ≤ 1. (20)

The numerical computations justify such relaxation and verify our ex-
pectations; the convergence of the relaxed constraints to the boundary
of the feasible set occurs during iterations of our solving algorithm. At
the local optimum we obtain equalities in (19)-(20).

In addition to the angles, we have variables Tl, which control the
repetition time of the pulse sequence used to collect an image. In
practical applications, this variable is bounded below by hard physical
constraints on the instrumentation (Tmin), and it is bounded above
by practical limits on bSSFP image stability (Tmax), and limits on the
patients ability to remain still (possibly including holding their breath).
(These limits also depend on the particular model of imager, on the part
of the body being imaged, and the field strength of the magnet.)

4.2. Complete System

Recall that m stands for the number of tissues and n stands for the
number of experiments, and

A(ul, tk) =
I−P (Tl, κk)C(Tl, τ1k, τ2k)R(u1l, u2l)Q(u3l, u4l)P (Tl, κk)C(Tl, τ1k, τ2k),

b(ul, tk) =
(P (Tl, κk)C(Tl, τ1k, τ2k)R(u1l, u2l)Q(u3l, u4l)+I)P (Tl, κk)D(Tl, τ1k),

and

S(u1, . . . , un, t1, . . . , tm)=


MSS,x(u1, t1) . . . MSS,x(u1, tm)
MSS,y(u1, t1) . . . MSS,y(u1, tm)

...
...

...
MSS,x(un, t1) . . . MSS,x(un, tm)
MSS,y(un, t1) . . . MSS,y(un, tm)

 . (21)
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14 Anand, Sotirov, Terlaky, Zheng

Using this notation, we can now write the entire optimization model in
the compact form:

max λ

s.t. ST S − λI � 0
A(ul, tk)MSS(ul, tk) = b(ul, tk) ∀l, k
u2

1l + u2
2l ≤ 1 ∀l

u2
3l + u2

4l ≤ 1 ∀l
Tl ∈ [Tmin, Tmax],

(NL-SDO)

where l = 1, . . . , n, k = 1, . . . ,m. Note that in the nonlinear semi-
definite optimization problem (NL-SDO), constraints u2 + v2 ≤ 1 are
second-order cone constraints (SOCO), see (Ben Tal and Nemirovski,
2001).

5. A Trust-Region Algorithm for NL-SDO

In this section, we explain our algorithm for solving (NL-SDO), where
(T1, . . . , Tn) and (t1, . . . , tm) are fixed parameters. We name the model
with fixed Tl and tk values (NL-SDO), (see page 14). The values of the
tissue parameters (t1, . . . , tm) that are used in the algorithm for solving
(NL-SDO), are representative values chosen from the literature, and the
values of the design variables Tl, l = 1, . . . , n are obtained by a grid
search that is explained in §5.2.

Our aim is to solve the nonlinear semidefinite problem (NL-SDO) by
solving a sequence of linear mixed semidefinite (SDO) and second-order
cone (SOCO) trust-region subproblems. We chose to fix the values of
Tl in the nonlinear problem because the Tl appear in multiple places
in the constraints (within both real exponentials and sine and cosine)
which come from the dynamical system (13), and we couldn’t find a
suitable change of coordinates (as we did in changing from angles to
unit vectors) to reduce the nonlinearity. This decision was supported by
subsequent visual exploration of the objective function, which strongly
suggested that the objective is ‘less convex’ and has a larger Lipschitz
constant in the Tl directions than the other variable directions. Rapid
changes in the objective as a function of the variables Tl is consistent
with the inverse relationship between the repeat time and the resonance
frequency. More investigation is required to understand the differences
in roles of the pulse-sequence design variables, methods such as au-
tomatic differentiation are needed to overcome the technical difficulty
in treating the Tl variables–and in dealing with many more degrees of
freedom, and more complicated pulse design problems. Given the focus
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Optimal MR Tissue Separation 15

of the present paper on demonstrating the validity of the SDO formu-
lation and gauging the difficulty of solution (on a clinically relevant,
but relatively simple test problem), we felt it was reasonable to fix the
values of Tl in the subproblems.

In this section we first derive a linear mixed SDO and SOCO trust-
region subproblem (Plin), (see page 17) obtained by linearizing (NL-
SDO) with respect to (u1l, u2l, u3l, u4l), l = 1, . . . , n, and then explain
our sequential SDO-trust-region algorithm based on (Plin), (see page
17). Sequential semidefinite programming methods are also observed in
(Freund and Jarre, 2003) and (Kruk and Wolkowicz, 1998).

5.1. Linearization and the SDO-Trust Region Subproblem

It is known that mixed SDO and SOCO problems can be solved effi-
ciently with interior-point methods (IPMs), (see (Sturm, 2002)). There-
fore, for the eigenvalue problem (NL-SDO) we introduce SDO-SOCO
subproblems defined on a trust region. The semidefinite eigenvalue
constraint

ST S − λI � 0 (22)

is not fitting in the form of linear conic optimization, therefore we
substitute out the quadratic term as X = ST S and replace constraint
(22) by the following two constraints

X = ST S
X − λI � 0.

The first constraint is nonlinear while the second one is a standard
SDO constraint that can be straightforwardly implemented in any stan-
dard solver. By taking into consideration that Tl are fixed parameters,
we rewrite (NL-SDO) problem as follows

max λ

s.t. X − λI � 0

X = ST S,

A(ul, tk)MSS(ul, tk) = b(ul, tk), ∀l, k
u2

1l + u2
2l ≤ 1, ∀l

u2
3l + u2

4l ≤ 1, ∀l,

(P)

where l = 1, . . . , n, and k = 1, . . . ,m.
Now, we develop a sequential semidefinite trust-region based algo-

rithm for solving (NL-SDO). At each iteration we define a linear SDO-
SOCO trust-region subproblem by linearizing the nonlinear constraint
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16 Anand, Sotirov, Terlaky, Zheng

around the current point and restrict the movement to a certain trust
region. Our next step is to linearize with respect to (u1l, u2l, u3l, u4l),
l = 1, . . . , n the constraint

X = ST S, (23)

To simplify the notation, we write X = X(u1, . . . , un, t1, . . . , tm).
Each element in matrix S corresponds to x or y component of a steady-
state magnetization that depends on tissue parameters tk and design
variables ul, (see 21). Therefore, for the linearization of the nonlinear
constraint (23) we explore the nonlinear constraints

A(ul, tk)MSS(ul, tk) = b(ul, tk), l = 1, . . . , n, k = 1, . . . ,m, (24)

and remove them from the derived conic subproblem. It is easy to see
that

Xpq =
n∑

l=1
SlpSlq

=
n∑

l=1
(MSS,x(ul, tp)MSS,x(ul, tq) + MSS,y(ul, tp)MSS,y(ul, tq)),

(25)
and

∂Xpq

∂ujl
=

∂MSS,x(ul, tp)
∂ujl

MSS,x(ul, tq) + MSS,x(ul, tp)
∂MSS,x(ul, tq)

∂ujl

+
∂MSS,y(ul, tp)

∂ujl
MSS,y(ul, tq) + MSS,y(ul, tp)

∂MSS,y(ul, tq)
∂ujl

,(26)

where p, q = 1, . . . ,m, j = 1, . . . , 4, l = 1, . . . , n. In point (ul, tk) the
values of the steady-state magnetization and the corresponding partial
derivatives are computed from (24), and

A(ul, tk)
∂MSS,x(ul, tk)

∂ujl
=

∂b(ul, tk)
∂ujl

− ∂A(ul, tk)
∂(ul)j

MSS,x(ul, tk), (27)

respectively, where k = 1, ...,m, MSS,x(ul, tk) = (MSS(ul, tk))1, and
MSS,y(ul, tk) = (MSS(ul, tk))2. Since A(ul, tk) is nonsingular (see page
8), we can always solve for MSS(ul, tk) and ∂MSS(ul, tk)/∂ujl in (24)
and (27). These values are then used for computing (25) and (26) that
are explored further in linearization.

Let hl = (h1l, h2l, h3l, h4l, h5l) ∈ R5 denote the displacement in ul

for l = 1, . . . , n. Since in problem (P) parameters Tl are fixed, it follows
that h5l = 0 for all l. Now, from (25)–(27) we derive the first order
approximation of the nonlinear constraint (23), i.e.
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X̃(u1 + h1, . . . , un + hn, t1, . . . , tm)p,q = Xpq +
n∑

l=1

hT
l ∇ul

Xpq. (28)

Finally, by using (28) we derive the following problem that is obtained
by linearizing the nonlinear, non-SOCO, non-SDO constraints of (P)
around the point (u1, . . . , un), where Tl are fixed, and with respect to
the trust-region radius ∆:

max λ

s.t. Xlin − λI � 0

(Xlin)pq = X̃(u1 + h1, . . . , un + hn, t1, . . . , tm)pq, ∀p, q (Plin)

(u1l + h1l)2 + (u2l + h2l)2 ≤ 1, ∀l
(u3l + h3l)2 + (u4l + h4l)2 ≤ 1, ∀l

n∑
l=1

4∑
j=1

h2
jl ≤ ∆2,

where p, q = 1, . . . ,m, l = 1, . . . , n, and X̃(u1 + h1, . . . , un + hn, t1, . . . ,
tm)p,q is computed as in (28). Note that the trust-region constraint is a
second-order cone constraint, and therefore the optimization problem
(Plin) is a linear mixed SDO-SOCO problem. Observe that we do not
need to linearize the constraints (24) for S, because the new S can be
effectively computed as a function of the variables ul, i.e. reconstructed
from the optimal solution of (Plin), that by the definition of X = ST S
naturally imply positive semidefiniteness of the new matrix X. If S
were only defined by the constraints, we would have to linearize those
constraints and project the solution of the linear subproblem onto the
constraint manifold. Direct computation reduces the size of the linear
subproblem and eliminates the projection step, see Section 6 for further
details.

Problem (Plin) is the trust-region subproblem in the algorithm that is
described in the following subsection. We use the optimization software
SeDuMi (Sturm, 1999) for solving these subproblems.

5.2. The Algorithm

Here we describe our trust-region based algorithm that solves (P), (see
page 15). Problem (P) is a nonconvex problem and the algorithm con-
verges to a local optimum. We ensure that the point computed by the
algorithm is at least a local optimum of (P), by numerically verifying
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18 Anand, Sotirov, Terlaky, Zheng

the Karush-Kuhn-Tucker conditions at that point. The algorithm is
iterative and maintains at each iteration a feasible current point and
the solution of the linearized model in it. It also maintains the smallest
eigenvalue of ST S, where S is computed at the current point.
Grid search to fix Tl and the Starting Point. Although we can start
the algorithm from any feasible point of (NL-SDO), (see page 14), a
grid search is developed for finding a “good” initial point and to find
good Tl values, that are fixed for the rest of the algorithm. Note that
in model (NL-SDO), Tl, l = 1, . . . , n are variables. We form a grid with
respect to (αl, fl, Tl), l = 1, . . . , n, and compute S at each point of that
grid. The “best” point obtained by the grid search, is the one with
the property that the smallest eigenvalue of ST S is the largest, among
smallest eigenvalues of the matrices ST S at different grid points. The
values for Tl from the “best” grid point are now fixed parameters in
the algorithm for solving (NL-SDO). The values for (αl, fl), l = 1, . . . , n
at the “best” grid point, are the starting values of the algorithm. Our
numerical experiments justify this choice of starting point (see Section
6).

Note that the quality of the “best” initial point in the described
way depends on the density of the grid. Namely, the denser the grid,
the “better” starting point is computed. However, the cost of the grid
search increases exponentially with the number of the experiments n
in the model and/or the grid density. In Section 6, where our numer-
ical results are presented, we discuss the trade off between the time
consumed in the grid search and the number of the experiments in the
model.

We denote now the initial point obtained from the grid search,
by (u0

1, . . . , u0
n, t1, . . . , tm), and the smallest eigenvalue of (S0)T S0 by

λ0. Note that the input values T 0
l are fixed during the optimization

algorithm. We specify the initial trust-region radius, e.g., ∆0 := 1.
General step. To describe a general step of the algorithm, we assume
to have a current feasible point (u1, . . . , un, t1, . . . , tm). Let the value of
the objective function in the current point be λ̄, which is the smallest
eigenvalue of ST S. The minimization of (Plin), (see page 17) around the
current point with respect to the corresponding trust-region radius ∆
gives a new candidate point (u1+h∗1, . . . , un+h∗n), and the corresponding
value of the objective function λ∗. Note that the new candidate point
will satisfy (24) due to the construction of the algorithm, i.e. by solving
(24) for MSS(ul, tk) at each iterate. Therefore the feasibility of each
iterate is ensured. More precisely, the steps in the algorithm are

h∗ → u + h∗ → (from(24)) M(u + h∗, t)→ (from (Plin)) λ∗.
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We denote by λ̂∗ the smallest eigenvalue of ST S, where S is computed
at the new candidate point. Then we compute the trust-region ratio %
based on the information of the new candidate point, i.e.

% =
λ− λ̂∗

λ̄− λ∗
. (29)

Note that the closer the value of % is to one, the better approximation by
the linearized model is realized. If a sufficient reduction at the objective
function is obtained at the candidate point, then that point is accepted
as the next iterate and the trust-region radius is expanded or kept the
same, as specified by (30). A negative or very small % indicates a poor
approximation, and therefore the point is rejected and the trust-region
radius is reduced. More precisely, we update the trust-region radius ∆,
(see e.g., (Berstekas, 1995; Conn et al., 2000)), in the following way:

∆∗ =


c1∆, if % < r1

c2∆, if % > r2

∆, otherwise.
(30)

In our computations we set c1 = 0.25, c2 = 2 and r1 = 0.2, r2 = 0.95.
The choice of these parameters is made after extensive testing and
benchmarking.
Stopping criteria. Several conditions are used for terminating the algo-
rithm. When the trust region becomes very small (e.g., ≤ 10−8), or
when after a pre-specified number of iterations there is no significant
improvement in the objective, we stop the algorithm. We also stop the
algorithm if the total number of iterations reaches 25.

Finally, we present our sequential SDO-trust-region algorithm for
solving problem (P), by the pseudo code in Figure 5.2.

6. Numerical Results

In this section, we present the results of numerical tests of our optimal
pulse-sequence design algorithm, for the model (NL-SDO), (see page
14), as computed by our Algorithm I. We have implemented the al-
gorithm in MATLAB for three tissues m = 3, and small numbers of
experiments n ≤ 6. Performance was measured on a PC (Pentium 4,
processor 2.66 GHz).

In all our numerical computations, we use tissue parameters rep-
resentative of fat, blood and muscle, as given in Table I. We selected
these tissues because they are familiar to non-experts, and allow us
to illustrate the utility of quantification at higher resolution in a very
simple numerical model.
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Algorithm I

Input:
tissue parameters: tk = (τ1k, τ2k, κk), k = 1, . . . ,m;

repetitive time parameters: T 0
l , l = 1, . . . , n;

initial design variables: (α0
l , f

0
l ), l = 1, . . . , n;

compute: u0
l = (cos(α0

l ), sin(α0
l ), cos(f0

l ), sin(f0
l ), T 0

l ), l = 1, . . . , n;

initial trust-region radius: ∆0 = 1;
input parameters: r1 = 0.25, r2 = 2, c1 = 0.2, c2 = 0.95;

begin
∆← ∆0;
ul ← u0

l , l = 1, . . . , n;

while one of the stopping criteria is satisfied (see page 19)
solve (Plin), (see page 17)  optimal value λ∗, h∗l , l = 1, ...,m;
new candidate point: u∗l = ul + h∗l , l = 1, . . . , n;
compute ρ from (29);
if % < r1

reduce ∆;
else

update ∆ according to (30)
ul ← u∗l , l = 1, . . . , n;

end
end
return (αl, fl), l = 1, . . . , n and λ̂∗;

end

Figure 2. Sequential, trust-region, second-order conic algorithm.

The number of design variables in the bSSFP model for tissue seg-
mentation with n experiments is 3n, and these variables are (αl, fl, Tl),
l = 1, . . . , n. Let α := (α1, . . . , αl)T , f := (f1, . . . , fl)T , and T :=
(T1, . . . , Tl)T . Note that in (NL-SDO) we introduce the substitutions
u1l = cos(αl), u2l = sin(αl), u3l = cos(fl), and u4l = sin(fl). Algorithm
I is initialized by the input values (α0, f0, T 0) that are obtained by
the grid search (see §5.2, page 18), then we compute (u1l, u2l, u3l, u4l),
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Table I. Tissue parameters for fat,
blood and muscle.

fat blood muscle

τ1 250 1200 900

τ2 60 50 50

κ 0.6π 0 − 0.1π

Table II. Design variables for n = 3 obtained
from grid search and computed by Algorithm I.

α0
l f0

l T 0
l α∗

l f∗
l

1 20 180 3.0 17.71 190.48

2 20 90 4.5 15.00 97.92

3 30 180 5.0 23.63 180.51

l = 1, . . . , n, and finally Algorithm I returns the optimal values (α∗, f∗).
Our computational results for n = 3, 4, 6 are given in the sequel.
• Case n = 3. First, we give our numerical results for the model in
which the number of tissues is equal to the number of experiments, i.e.
when m = n = 3. In our experiments, the grid on which we search for
the “best” initial point is: αl = {10, 20, . . . , 50}, fl = {0, 30, . . . , 180},
l = 1, 2, 3, and T1 = {3, 3.1, . . . , 3.9}, T2 = {4, 4.1, . . . , 4.9}, T3 =
{5, 5.1, . . . , 5.9}. The search for the “best” point on this grid requires
7934 sec ≈ 2.2 hours.

In Table II, we give the values (α0, f0, T 0) that are obtained from
grid search, and the optimal values (α∗, f∗) that are computed by
Algorithm I. The smallest eigenvalue of ST S, where S is computed
for (α0, f0, T 0) is λ0 = 0.02448, and the value of the objective function
in (NL-SDO) for (α∗, f∗, T ∗) is λ∗ = 0.02834 (see also Table V). For
obtaining that value, Algorithm I needs 2.21 seconds.
Convergence area. In order to find the radius of convergence of our
algorithm around the “best” computed initial point, we did the fol-
lowing experiment. We fix T 0 = (3, 4.5, 5) and form the grid around
(α0, f0). The computational results show that for any initial point
taken on the grid (α+, f+, T 0), where α+

l = α0
l ± dα

l , f+
l = f0

l ± df
l ,

dα
l , df

l = 1, . . . , 7, l = 1, 2, 3, Algorithm I converges to the same (α∗, f∗).
Our results also show that if dα

l ,df
l = 1, . . . , 9, then Algorithm I con-
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Table III. Design variables for n = 4 obtained from grid search and computed by
Algorithm I.

α0
l f0

l T 0
l α∗

l f∗
l

1 20 180 3.15 20.86 184.05

2 20 180 4.20 20.72 190.59

3 20 60 4.65 13.45 63.60

4 20 150 5.25 20.62 142.22

verges from 98% of points taken on that grid towards (α∗, f∗), and
if dα

l , df
l = 1, . . . , 12, then it converges to (α∗, f∗) for 93 % of the

initial points on the grid. Hence, for the fixed T 0 our nonconvex prob-
lem (NL-SDO) is unimodal on a certain region around our “best”
initial point. However, since our problem (NL-SDO) is nonconvex we
can find points outside of the described region of convergence that
converge to other local optimum. For instance, if we take the input
values α0 = (30, 10, 30)T , f0 = (180, 90, 150)T , then λ0 = 0.01796
and Algorithm I converges to the local optimum λ∗ = 0.02839, where
α = (20.0621, 14.6718, 23.8554)T , f = (203.1231, 97.4414, 179.4882)T .
Observe that this solution is slightly better than the one generated by
Algorithm I.
• Case n = 4. We give now the numerical results for the optimization
problem (NL-SDO) in which n = 4. The grid was chosen with respect to
the design variables as αl = {10, 20, . . . , 50}, fl = {0, 30, . . . , 180}, l =
1, . . . , 4, and T1 = {3, 3.15, . . . , 3.70}, T2 = {3.75, 3.90, . . . , 4.45}, T3 =
{4.50, 4.65, . . . , 5.20}, T4 = {5.25, 5.40, . . . , 5.95}. Our code for heuristic
needs 55.2611 hours (!) to find the “best” initial values (α0, f0, T 0), but
Algorithm I needed only 3.10 seconds for computing (α∗, f∗, T ∗) (see
Table III) from the initial point. Note the dramatic increase in CPU
time for the grid search computations, with respect to the number
of experiments in the model. However, the CPU time for performing
Algorithm I does not increase significantly with the increase of n in the
model. The size of the cone program depends only on the number of
tissues m, and the small increase in the CPU time is due to the cost
for forming (28). In Table V are given values for λ0 and λ∗.
Convergence area. The numerical results indicate that for fixed T 0 =
(3.15, 4.20, 4.65, 5.25)T , the radius of convergence concerning (α0, f0)
towards the local optimum is somewhere between 4 and 6. If we consider
the points in the 8 dimensional “cube” of radius 6 around (α0, f0) then
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Table IV. Design variables for n = 6 obtained
from heuristic and computed by Algorithm I.

α0
l f0

l T 0
l α∗

l f∗
l

1 30 60 3.00 11.76 59.22

2 30 180 3.50 24.77 201.23

3 30 180 4.30 21.86 223.30

4 30 60 4.50 16.29 83.72

5 30 180 5.00 20.82 226.79

6 50 180 5.95 25.91 172.03

Table V. λ0 and λ∗ values for n = 3, 4, 6, obtained by grid search and
Algorithm I, respectively.

n 3 4 6

λ0 0.02648 0.03765 0.04682

λ∗ 0.02834 0.04108 0.06193

87 % points inside that cube converge towards the same local optimum,
and for the “cube” of radius 7 only 81 % of the points.
• Case n = 6. Finally, we provide some computational results for
the optimization problem (NL-SDO), where m = 3 and n = 6. We
search for the “best” starting point on the grid: αl = {10, 30, 50},
fl = {0, 60, 120, 180}, l = 1, . . . , 6, and T1 = {3, 3.15, . . . , 3.45}, T2 =
{3.50, 3.65, . . . , 3.95}, T3 = {4.00, 4.15, . . . , 4.45}, T4 = {4.50, 4.65, . . . ,
4.95}, T5 = {5.00, 5.15, . . . , 5.45} and T6 = {5.50, 5.65, . . . , 6.00}. The
program for the grid search was running for 1685 hours, and Algorithm
I needed only 5.61 seconds for computing the local optimum given in
Table V.

Since the problem of minimizing the errors in the reconstructed
tissue densities is equivalent to solving the maximization problem (NL-
SDO), and a value of the objective function in (NL-SDO) increases
almost linearly with the number of experiments (see Table V), we
conclude that adding multiple images considerably minimizes the noise
in the calculated tissue concentrations.
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7. Numerical Simulation and Validation

In this section we present results of a simplified numerical simulation
of a carotid-artery cross-section, with three aims:

1. to validate the solver against the signal generation model,

2. to illustrate the kind of clinical applications, and the relative per-
formance versus MR spectroscopy, and

3. to measure the advantage of removing restrictions on phase rela-
tionships.

Intraluminal lipids, i.e. fat deposits inside arteries, are an indication
of arterial disease. For example, some strokes are caused by the ruptur-
ing of large lipid deposits in the carotid artery, which carries blood from
the heart to the brain. Figure 3 depicts a cross-section of an idealized
carotid artery. Large arteries are essentially composed of a tube of
muscle (which contracts in sympathy with the heart to increase blood
flow), containing (flowing) blood and surrounded by fat (and other)
tissues. For simplicity, we can ignore the surrounding tissue which is
not fat. In Figure 3, we also show a layer of lipid deposited uniformly
on the inside of the vessel wall. The exact distribution of lipids is not
important, since we have not chosen a resolution sufficient to determine
the exact distribution. Superimposed on the vessel structure is a 1mm
grid representing the voxel size for bSSFP tissue quantification, whereas
the entire figure represents a single voxel for MR spectroscopy. So no
matter how we line up this 1cm2 voxel, we cannot separate the intralu-
minal lipids from the extraluminal lipids. Furthermore, a spectroscopic
exam would take on the order of minutes, whereas the individual bSSFP
images at this resolution would only require 256x6ms, or about 1.5
seconds, plus some overhead for instrument setup.

In order to demonstrate the advantage of generalizing the Dixon
method by allowing arbitrary phase relationships between tissues (as
expressed in the S matrix), we compare our 3-experiment with a 3-
experiment result using conventional phase relationships:

SC =

1 1 1
1 − 1 1
1 − 1 − 1

 . (31)

To be comparable, we use bSSFP sequences for the conventional Dixon
case, with pulse-sequence design variables in the same ranges. We used
a grid search to find design values which result in an SC of the form
(31), after an overall complex scaling, and we allow a variation of 5 per
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blood

muscle

fat

fat

1mm SSFP voxel width

1cm MRS voxel width

Figure 3. The cross-section of idealized carotid artery

cent in each entry. We allowed the variation in each entry to make the
grid search reasonable. To not disadvantage the conventional case, we
also use the Moore-Penrose Pseudo-Inverse for this case. The resulting
three sets of pulse-sequence design variables are listed in Table VI. Note
that the resulting sequences use very small flip angles, which would be
difficult to work with in practice. We didn’t want to add a constraint to
the model with fixed phase relationships to prevent this, because that
would adversely effect it in comparison with our generalized model.

The advantage of optimal sequence design over the design based on
the conventional Dixon phase relationships is clear in a numerical sim-
ulation of the carotid artery simulation described by Figure 3. Figure 4
shows gray-scale images reconstructed by applying the Moore-Penrose
Pseudo-Inverse to simulated bSSFP images, for different sequence de-
signs, but with identical noise, to render noise effects comparable. The
final row shows the results of the conventional Dixon phase relation-
ships. The middle rows are the result of our algorithm, using only the
grid search, and the grid search followed by the iterative method. The
first row is the ideal case with zero noise. Note that without noise, all
reconstruction methods and sequence designs produce the same results.

Table VII shows the relative performance of optimal pulse-sequence
designs using our method for the cases of 3, 4 and 6 experiments. In
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blood fat muscle

a)

b)

c)

d)

Figure 4. Simulation of tissue quantification: each column represents a different
tissue, as labeled; ideal (zero noise) tissue densities are shown in row a), densities
reconstructed from data collected with the optimal pulse-sequence design are in row
b), row c) shows the densities from the pulse sequence found by grid search, and
row d) illustrates the tissue quantification based on Dixon method. All values are
displayed using the same gray scale.

Table VI. pulse-sequence design variables for Dixon method,
where α and f are in degrees and T is in ms

α f T

4.0 45.0 1.2

1.0 21.0 4.9

1.0 86.5 5.0
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Table VII. Numerical results for tissue quantification based on 1000 experiments,
measured in mm2.

3-Ex 4-Ex 6-Ex Zero-noise

Actual intraluminal lipid 5.4000 5.4000 5.4000 5.4000

Estimated intraluminal lipid 5.4028 5.4016 5.3987 5.4000

Standard deviation of the estimate 0.0735 0.0650 0.0467 0.0000

Expected std. deviation from averaging 0.0735 0.0637 0.0520 0.0000

Expected std. deviation from objective 0.0735 0.0610 0.0497 0.0000

all cases, we use the sum of the fat components of all of the voxels
marked with a Σ in Figure 3 to estimate the total intraluminal lipids
in this cross-section. The estimated intraluminal lipid is close to the
actual value in the simulations, for all numbers of experiments, but
more importantly, the standard deviation of the lipid quantification
decreases as a function of the number of experiments, and it does so
faster than one would obtain by simply averaging the three experiments
to reduce noise in the source images. The standard deviations in the
simulation are also consistent with the deviations predicted by the
objective function.

8. Conclusions and Future Work

We have shown that Dixon methods can be generalized by removing
assumptions about the best complex phase relationships between tissue
types across multiple images. The resulting model represents what clini-
cians and researchers want most: the reduction of error in the calculated
tissue quantities. Although the resulting problem has semidefinite, and
highly-nonlinear constraints, we have developed a method of solving
it combining grid search and sequential SDO. Since we do not ob-
tain conventional Dixon phase relationships for the generated signals,
we can conclude that conventional Dixon methods are not optimal.
More significantly, we have provided computational evidence that our
generalized Dixon method produces more accurate results than signal
averaging (see Table VII).

Identifying tissue distribution in-vivo has many applications in diag-
nostic imaging, treatment monitoring, and biological research. In many
cases, information about tissue composition may be known from MR
spectroscopy, but acquisition times are too long to apply spectroscopy
to clinical diagnosis. Since MR does not involve ionizing radiation,
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it is attractive for population-scale screening, and after developing
appropriate sequences using our optimization method, it may be cost-
effective to do so, e.g., for quantifying liver fat. In a similar way, the
reduced imaging time requirements for bSSFP-based quantification will
make longitudinal studies feasible, e.g., brain development studies in
infants based on white and gray matter quantification. We have clinical
partners for one such application and are planning to conduct research
in this direction.

We have formulated the parameter selection problem in terms of
bSSFP imaging. Since different sequence types are sensitive to different
tissue properties, one would expect better quantification by looking at
mixed imaging, using some bSSFP images and some other imaging
types, e.g., fast spin echo, spoiled sequences, gradient-reversed fast
imaging with steady-state precession, inversion recovery sequences, see
(Haacke et al., 1999). There is no fundamental obstacle to formulat-
ing mixed imaging parameter selection, but the software complexity
will increase by having a nonconvex mixed continuous and discrete
optimization problem.

In most imaging environments, technicians are free to adjust pulse-
sequence design variables to suit the subject (including the subject’s
ability to remain still). Although our sequential trust-region SDO-
SOCO algorithm is very fast, as expected from a modern interior point
code solving a problem of this size, the initial grid search, whose cost
grows exponentially with the number of experiments, would probably
be too slow to use in this setting. We are exploring several heuristics to
find good starting points quickly, even if we are less likely to find the
global optimum. We are optimistic about such heuristics. We will also
investigate including the variables Tl in the subproblems, as a possible
way of increasing the basins of convergence (and thus reducing the
cardinality of the grid). If these methods are not sufficient, we may
choose to pre-compute good starting points for ranges of parameters to
hide the cost of the grid search from the end user.

The most challenging area for future investigation is the adapta-
tion of our method to situations in which parameters change between
patients and within patients. Not all tissue parameters are accurately
known, and some are known to vary as a function of pH and hydration.
For our methods to be applicable in these situations, we will have to
develop integrated methods of estimating these parameters. As a special
case of this problem, we will need to incorporate field inhomogeneity
into the tissue quantification process, and design sequence parameters
which will guarantee a minimum contrast to noise ratio for a range of
field inhomogeneity. The three-point Dixon technique (Glover, 1991),
solves this problem by collecting two in-phase images at different echo
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times. These images can be compared to generate a field map, which
can be used to correct for inhomogeneity effects in the source images,
before the linear transformation is applied. A similar approach would
work to correct for inhomogeneity in our situation, but we would have
to recalculate the linear transformation for each pixel. We would also
have to calibrate RF penetration.

Although these issues are challenging, we believe that they are all
solvable by adapting known techniques. We will also pursue extensions
to the existing model to integrate estimation of these parameters into a
larger inverse problem. Our success in modeling and solving the design
problem for optimal pulse-sequence design variables, gives us confidence
to tackle these larger problems.
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