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Abstract

This paper studies how the difference between technical depreciation and
tax depreciation affects the firm’s optimal investment strategy. The objective
is maximization of shareholder value. When tax depreciation differs from
technical depreciation, an additional investment not only generates value due
to the fact that the firm can produce more, but also due to the fact that
an additional deferred tax liability arises. Two types of capital stock will
therefore affect shareholder value, i.e. the replacement value of the assets and
the tax base of the assets. We present a dynamic model of the firm with these
two types of capital stock, and study the effects of the tax depreciation rate
on the firm’s optimal dynamic investment strategy, dividend policy, and long
run capital stock level.
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1 Introduction

There is extensive empirical literature on the effect of corporate taxation on firm’s

investment and dividend policies. Some recent examples are: Devereux et al. (1994),

Faig and Shum (1999), Gentry (1994), Jacobs and Larkins (1998), Newberry (1998),

and Pereira (1994). This literature mainly focuses on the effects of the effective tax

rate, or asymmetries in corporate taxation, on firm’s investment behavior. Our aim

here is to study the effect of a difference between technical depreciation and tax

depreciation on optimal firm investments.

Since firms are allowed to adopt a number of different depreciation methods

for tax purposes, the depreciation method is often chosen in a strategic way (see

e.g. Scholes and Wolfson, 1992, for a thorough overview of the different incentives

that potentially affect this choice). As a consequence of this strategic behavior,

tax depreciation hardly ever equals technical depreciation, which represents the

real technical deterioration of the assets. This difference implies that the tax base

of the assets generates value to the firm. When, for example, tax depreciation

systematically exceeds technical depreciation, a deferred tax liability is generated,

and, consequently, shareholder value is lower than the replacement cost of the assets.

Sansing (1998) presents a descriptive model in which firm value is determined

under a given, static, investment policy, and provides a formula for the value of

the deferred tax liability. Our aim is to determine the optimal dynamic investment

policy, given the difference in tax depreciation and technical depreciation. The

objective of the firm is to maximize its shareholder value. In contrast to the existing

literature on dynamic firm investment (see e.g. Van Hilten et al., 1993), we consider

a dynamic model that explicitly takes into account the tax base of the assets as well

as the level of the capital stock. This allows us to study the effect of tax depreciation

on the optimal investment strategy, dividend policy and capital stock level.

The main conclusions are twofold. First, we present results regarding the effects of

the tax depreciation rate on the optimal long run capital stock level and investment

behavior. They can be summarized as follows. (1) The optimal long run capital stock
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level is the unique level at which marginal revenue of investment equals marginal

cost, and taxable income is positive. (2) A firm that uses more accelerated tax

depreciation has a higher optimal long run capital stock level. (3) While maintaining

the optimal capital stock level in the long run, taxable income is positive, and tax

depreciation converges to technical depreciation.

Second, we study the optimal dynamic investment strategy to reach the optimal

long run level. The focus here is on firms that are initially small, so that marginal

revenue of investment initially exceeds marginal cost. Here, we find that: (4) The

firm should initially grow until it first reaches a level of capital where marginal

revenue of investment equals marginal cost. Then, depending on the initial tax

base of the assets, and on the difference between tax depreciation and technical

depreciation, two situations can occur: (5i) A firm with low initial tax base or

highly accelerated tax depreciation will have a positive taxable income by the time

it first reaches a level where marginal revenue equals marginal costs, so that it is

optimal to stabilize at this level (see 1)). (5ii) In contrast, when the initial tax base

of assets is high and tax depreciation is not too accelerated, the firm will still have

a negative taxable income by the time it first reaches its optimal long run level. As

a consequence, marginal revenue at that time is still higher than marginal cost, so

that the firm can benefit from growing further. After some time, however, taxable

income will become positive, causing a reduction in marginal revenue. In order to

optimally anticipate on this future reduction, the firm has to start shrinking before

its taxable income becomes positive. In this way, it can avoid paying too much taxes

in the future. Taxable income will then have become positive by the time the firm

has shrunk to its optimal long run level, so that it can stabilize.

The paper is organized as follows. In section 2 we present the dynamic model of

the firm and formulate the optimization problem. In section 3 we derive the optimal

long run level of the capital stock, investment and dividend strategy, and show how

they are affected by the tax depreciation rate. In section 4, the optimal dynamic

investment strategies are presented and discussed. Here, we show how the difference

between tax depreciation and technical depreciation, as well as the difference be-
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tween initial tax base and capital stock level, affect the optimal investment strategy.

The paper is concluded in section 5. The dynamic model is solved by path-coupling.

The solution of the firm’s optimization problem is presented in Appendix A. All

other proofs are deferred to Appendix B.

2 The Model

The aim here is to study the effect of the tax depreciation rate on the firm’s optimal

investment strategy when the objective of the firm is to maximize its shareholder

value. Shareholder value equals the present value of the dividend stream during the

planning period, augmented with the value of the firm at the end of the planning

period.

In the sequel, we denote I = I(t) for the amount of money invested at time t,

and D = D(t) for the dividends paid to the shareholders at time t.

In order to be able to study the effect of the tax depreciation rate on the firm’s

optimal investment strategy, two separate capital stocks need to be distinguished.

First, there is the ’real’ capital K1 = K1(t) with which the firm produces. Second,

there is the tax base of the assets, which we denote K2 = K2(t).

Investments cause an equal increase in the capital stock and the tax base of assets.

On the other hand, both capital stock and tax base decrease due to depreciation.

Whereas the decrease of the real capital K1 depends on the technical depreciation

rate β, the decrease of the tax base depends on the tax depreciation rate γ that is

chosen by the firm. This implies that the evolution over time of the capital stock

and the tax base are given by:

K̇1 = I − βK1, (1)

K̇2 = I − γK2, (2)

where K̇i = ∂Ki(t)
∂t

, for i = 1, 2.

We consider tax depreciation rates in the range:

β ≤ γ ≤ r + β, (3)
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so that tax depreciation at least covers technical deterioration, but does not ex-

ceed the deterioration costs plus the time value of money (it will be difficult to

get legal support for higher depreciation rates). It is then clear from (1) and (2)

that the difference between the technical and the tax depreciation rate implies that

the evolution over time of the tax base can deviate from that of the real capital

stock. Moreover, whenever K2 deviates from K1, a deferred tax liability (or asset)

is generated.

The deferred tax liability can clearly also affect the firm’s investment and dividend

policies. As stated above, the aim is to study how the investment policy that

maximizes shareholder value depends on the choice of the tax depreciation rate γ.

Since shareholder value consists of the discounted dividend stream over the planning

period, augmented with the firm’s value at the horizon date, we first need to specify

how, for any given investment policy, the dividend policy and the final value of the

firm depend on γ.

Let us start with the dividend policy. Since the firm’s objective is to maximize

shareholder value it holds no cash, so that dividends consist of gross revenue reduced

with investments and tax payments. Producing with capital stock K1 yields a gross

revenue C(K1). The revenue is increasing in K1 (C ′(.) > 0), and exhibits decreasing

returns to scale (C”(.) < 0). A fixed tax rate T is paid over taxable income, which

equals gross revenue C(K1) minus tax depreciation γK2, if positive. Consequently,

the dividend paid to the shareholders equals:1

D(t) = C(K1(t))− I(t)− T
(
C(K1(t))− γK2(t)

)+
. (4)

In order to determine the value of the firm at the horizon date z, notice that in

general the optimal investment policy consists of roughly two phases: a final phase

where the firm carries out only replacement investments to keep its capital stock at

a long run optimal level, and an initial phase in which the firm grows or shrinks

towards its optimal long run level (see e.g. Van Hilten et al., 1993). We assume

1Here, x+ denotes the function that equals x if x > 0, and 0 otherwise, so that in (4) dividend

is only reduced with tax payments if taxable income is positive.
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that the time horizon is long enough so that the firm can reach this optimal size

before the final time z. It can then maintain its optimal size K1(z) by engaging in

replacement investment, i.e. investments to compensate for technical deterioration.

This implies that, for all t ≥ z, one has:

I(t) = βK1(z), (5)

K1(t) = K1(z). (6)

The value of the firm at time z, which we denote f(K1(z), K2(z)), equals the

discounted future dividend stream. Given that investments and capital stock evolve

according to (5) and (6), and since the firm’s taxable income is positive in the

future2, this implies that:

f(K1(z), K2(z)) =
∫ ∞
z

e−r(t−z)
[
(1− T )C(K1(z))− βK1(z) + TγK2(t)

]
dt.

Taking into account the evolution of the tax base of assets after time z, which

can be derived from (2) and (5), one finds that:

Proposition 2.1 The value of the firm at time z equals:

f(K1(z), K2(z)) =
1− T

r

[
C(K1(z))− βK1(z)

]
+
γ − β

r + γ
TK1(z)

+
γ

r + γ
T
[
K2(z)−K1(z)

]
, (7)

where K1(z) is the optimal long run level of the capital stock.

It follows from (7) that the marginal value generated by the tax base of assets at

time z, equals (see also Sansing, 1998):

∂f

∂K2
(K1(z), K2(z)) =

Tγ

r + γ
.

Notice now that the final value of the firm consists of three terms. The first term

represents the discounted value generated through production with the capital stock,

2In Appendix A it is proven that if the optimal investment policy is applied, taxable income

will be positive in the final phase.
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taking into account the technical depreciation and the replacement investments.

The last two terms result from a difference in tax depreciation rate and technical

depreciation rate, or a difference in initial tax base and initial capital stock level.

This implies that, when both γ = β, and K2(0) = K1(0), then the last two terms

vanish. Notice that the third term equals the value of the deferred tax liability

derived in Sansing (1998).

Now, for any given technical depreciation rate β, tax depreciation rate γ, initial

capital stock level K1(0), initial tax base of the assets K2(0), and investment policy

I(.), the resulting dividend policy D(.) and the final value f(., .) can be determined.

Shareholder value then equals:∫ z

0
e−rtD(t)dt + e−rzf(K1(z), K2(z)). (8)

Then, assuming irreversibility of investment, i.e. I(.) ≥ 0, (for arguments, see

e.g. Dixit and Pindyck, 1994), and non-negative dividends, the investment strate-

gy that maximizes shareholder value is the solution of the following optimization

problem:

max
I(t)

∫ z

0
e−rt

[
C(K1)− I − T (C(K1)− γK2)+

]
dt + e−rzf(K1(z), K2(z))

(9)

s.t. K̇1 = I − βK1,

K̇2 = I − γK2,

C(K1)− I − T
(
C(K1)− γK2

)+
≥ 0,

I ≥ 0,

where r denotes the discount rate, i.e. the shareholder time preference rate.

The optimization problem is solved by applying the maximum principle (see e.g.

Feichtinger and Hartl, 1986). In the sequel, we will assume that the revenue function
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satisfies C(0) = 0, and:

C ′(0) ≥
r

1− T
+ β, (10)

C ′(.) > β, (11)

C ′(∞) ≤ r + β, (12)

C(K1) >
β

1− T
K1, for all K1 ≤ K

∗
1 , (13)

where K∗1 denotes the optimal long run size of the firm, which will be derived in the

next section.

Given that the revenue function has decreasing returns to scale, (10) implies

that, at least when K1(.) = 0, marginal revenue of production exceeds the user cost

of capital, so that it is always worthwhile for the firm to start producing. If (12)

were not satisfied, then for firms with strongly accelerated tax depreciation marginal

revenue of investment would exceed marginal cost, even at extremely high levels of

the capital stock. This would clearly not be a realistic situation. Assumption (13)

implies that, as long as the capital stock level is lower than its optimal long run

level, a firm that engages in replacement investments will have after tax revenue to

pay out to the shareholders.

3 The optimal size of the firm

The optimal investment strategy of the firm can be divided in two parts. First, it

has to grow or shrink to its optimal long run capital stock level. From there on, it

has to invest and pay dividends so as to maintain this optimal level until the horizon

date.

In this section we first derive the optimal long run capital stock level, and show

how it depends on the depreciation rates, the tax rate, and the discount rate. The

following proposition yields an implicit expression for the optimal size of the firm.

Proposition 3.1 The optimal long run level of the capital stock K∗1 satisfies:

C ′(K∗1 ) =
(

r

1− T
+ γ

)(
r + β

r + γ

)
. (14)
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Moreover, K∗1 is the unique long run capital stock level at which marginal revenue

of investment equals marginal cost, and taxable income is positive.

Notice that the expression in (14) can be rewritten as follows:

C ′(K∗1 ) = β +
r

1− T
−

rT

(1− T )(r + γ)
(γ − β),

which, in its last term, clearly reveals the effect of a difference between γ and β on

the marginal revenue of investment at the optimal long run capital stock level.

The above proposition makes clear that the optimal size depends on both the tax

depreciation rate and the technical depreciation rate. Furthermore, it also depends

on the tax rate and on the time value of money. The following proposition provides

more details on the effect of these parameters on the optimal size of the firm.

Proposition 3.2 i) Whenever r > 0, K∗1 is increasing in γ, i.e. more accelerated

tax depreciation implies a higher optimal long run level of the capital stock.

Moreover, for each value of γ ≥ 0, one has

C ′(K∗1 ) ∈

[
r + β,

r + β

1− T

]
.

ii) K∗1 is decreasing in β, i.e. more accelerated technical depreciation implies a

lower optimal long run level of the capital stock.

iii) Whenever r > 0, the optimal long run capital stock level is decreasing in both

the interest rate r and the tax rate T .

iv) When the interest rate is zero, the optimal long run capital stock level is inde-

pendent of both the tax depreciation rate γ and the tax rate T , and satisfies:

C ′(K∗1 ) = β.

Figure 1 provides a graphical exposition of the joint effect of β and γ on the

optimal size of the firm, for T = 0.35, r = 0.20, and C(x) = 200
√
x.

It is known that, as long as the company’s taxable income is never negative,

more accelerated depreciation implies that the present value of future tax payments
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Figure 1: K∗1 as a function of β and γ (in units of $ 10.000).

decreases (see e.g. Wakeman, 1980). This is due to the time value of money. The

above proposition says that, as a consequence of this effect, a firm that uses more

accelerated depreciation should also grow to a higher level of capital stock. When

the interest rate is zero, there is no time value of money, and the depreciation policy

does not affect the net present value of future tax payments. The optimal capital

stock then does not depend on γ or on the tax rate T .

The following proposition describes the optimal dividend and investment policies

once the firm has reached its steady state, as well as the long run behavior of the

tax base of assets.

Proposition 3.3 Once the steady state is reached, the optimal strategy implies that:

i) The firm maintains its optimal level by engaging in replacement investment,

i.e. I(t) = βK∗1 .

ii) Tax depreciation converges to technical depreciation, i.e.

lim
t→∞

γK2(t) = βK∗1 .
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iii) Taxable income is positive, i.e. C(K∗1 )− γK2(t) > 0.

iv) Dividend payments equal:

D(t) = (1− T )
[
C(K∗1)− βK∗1

]
+ e−γ(t−z)T

[
γK2(z)− βK∗1

]
. (15)

We see from (15) that dividends consist of value generated through production

with the capital stock, taking into account the technical depreciation (first term),

and value generated through the difference in tax depreciation and technical depre-

ciation (second term). The latter converges to zero in the long run.

4 The optimal dynamic investment strategy

In the previous section the optimal long run behavior of the firm is derived. In this

section, we present the optimal dynamic strategy the firm should use in order to

reach to the optimal long run capital stock level. At each point in time, the firm

has to decide on how much it will invest. Given (4), this decision then immediately

determines the amount of dividend it will pay to its shareholders. The possible

decisions of the firm can therefore be categorized in four different policies:

P1) The firm does invest, but not all of its net profits, so that after tax revenues

are used for both paying a positive amount of dividend and for investing in

the firm.

P2) All after tax revenue is used for investments, so that no dividend is paid.

P3) The after tax revenue is as a whole paid to the shareholder, so that nothing is

invested.

P4) The firm neither pays dividend nor invests. Since the firm holds no cash, this

only occurs when K1 = 0.

Given (10), it is never optimal for the firm to have its capital stock reduced to

zero. Therefore, policy 4 will never be part of the optimal strategy.
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The optimal dynamic strategy can be described as a sequence of policies used

by the firm until it reaches its steady state. The initial state of the firm, and in

particular the difference between initial tax base and capital stock, and between

tax depreciation and technical depreciation will affect the optimal strategy. We

therefore introduce the following terminology.

• The firm has low initial tax depreciation if, when constantly investing all its

net revenue, it will have a positive taxable income by the time it reaches its

optimal long run level K∗1 .

• The firm has high initial tax depreciation if, even when investing all its net

revenue, it will still have a negative taxable income by the time it reaches its

optimal long run capital stock level. This could be due to a high initial tax

base K2(0), or a moderate γ, i.e. not too accelerated depreciation.

The following result holds for both type of firms.

Proposition 4.1 If the firm follows its optimal dynamic investment strategy, then,

once taxable income has become positive, it will remain positive.

This result confirms the following intuition. Due to the discounting effect, paying

taxes later is preferable to paying them now. Moreover, if it is optimal for a firm

to grow, it can grow faster as long as taxable income is zero. Notice finally that,

since uncertainty on realized revenue is not modeled explicitly, the evolution of the

capital stock and tax base of assets have to be seen as the average trend around

which the realized values will evolve. This implies that, although in expectation

taxable income will remain positive, fluctuations in realized revenues may cause

taxable income to be zero.

We now describe how the initial tax base as well as the tax depreciation rate

affect the optimal dynamic strategy of the firm. To focus attention, we consider

firms for which the marginal revenue of investment exceeds marginal cost at the

start of the planning period.
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Proposition 4.2 For firms with low initial tax depreciation, the optimal strategy is

as follows:

1) Policy 2 (i.e. invest all after tax revenue) is used until time t∗ where marginal

revenue of investment equals marginal cost. At time t∗, taxable income is

positive, and the capital stock level equals the optimal long run level K∗1 .

2) From there on, policy 1 is used with replacement investments (I = βK∗1).

The intuition is as follows. Since marginal revenue of investment exceeds marginal

cost at time 0, the firm should start investing all its net revenue until the marginal

revenue of an additional investment equals its marginal cost. This time instant is

denoted t∗. When the firm uses strongly accelerated depreciation, or when its initial

tax base K2(0) is sufficiently low, it starts paying taxes before time t∗, so that it

follows from proposition 3.1 and proposition 4.1 that the optimal level of the capital

stock is reached at time t∗. From this moment onwards until the end of the planning

horizon, there are only replacement investments, so that K1 stays at the level K∗1 .

The remaining net revenue (i.e. revenue net from taxes) is paid as dividend to the

shareholders.

Proposition 4.3 For firms with high initial tax depreciation, the optimal strategy

is as follows:

1) Policy 2 (i.e. invest all after tax revenue) is used until time t∗ where marginal

revenue of investment equals marginal cost. At time t∗, taxable income is

negative, and the capital stock level is strictly higher than the optimal long run

level K∗1 .

2) Then, in order to anticipate on future reduction in marginal revenues due to

tax payments, first policy 1 is used with (partial) replacement investments, and

subsequently, policy 3 is used, so that the firm shrinks maximally until it again

reaches its optimal long run level K∗1 . Taxable income will become positive

during this maximal shrinking phase, and before K∗1 is reached.
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3) From there on, policy 1 is used with replacement investments.

The intuition here is as follows. As before, the firm starts investing all its net

revenue and pays no dividends (policy 2), since in the initial state marginal revenue

of investment exceeds marginal costs. Due to the high initial tax depreciation,

however, the firm’s taxable income is still negative by the time it first reaches the

optimal long run capital stock levelK∗1 . This implies that, in contrast to the previous

case, marginal revenue exceeds marginal cost at the time K∗1 is reached.

The firm then has to choose between growing further and stabilizing. Both op-

tions have their disadvantage. Growing further implies that the capital level will be

suboptimally high by the time taxable income becomes positive, since at that time,

tax payments will cause a decrease in marginal revenues. Stabilizing at K∗1 implies

that the firm’s capital stock level will be suboptimally low as long taxable income

is still negative, since marginal revenue is higher than marginal cost.

The optimal strategy is therefore anticipative: first take advantage of the high tax

depreciation to grow to a high capital stock level, but anticipate on future reduction

in marginal revenue when taxable income will become positive.

More precisely, the firm should first exploit the benefits of high tax depreciation

by investing all its net revenue until the time t∗ where marginal cost of an additional

investment equals marginal revenue. Consequently, it grows to a level K1(t∗) that is

strictly higher than the optimal long run level. Maintaining the high level K1(t∗) >

K∗1 in the long run however implies high tax payments in the future. Indeed, when

the firm starts paying taxes, the marginal revenue of investment decreases from

C ′(K1) to (1 − T )C ′(K1). Due to tax depreciation, the net reduction in marginal

revenue of investment equals TC ′(K1)−γT . It follows from the proof of proposition

4.3 that in the optimal strategy the gain through tax depreciation (γT ) cannot fully

compensate for the loss in return on investment (TC ′(K1)). Therefore, there will

be an inefficient period in the optimal solution in which marginal revenue is less

than marginal costs. Given that there are decreasing returns to scale, the firm has

to anticipate on this by decreasing productive capital stock in order to increase

marginal revenue.
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Figure 2: Comparison of evolution over time of the capital stock K1(t) and the

investments I(t) for low and high initial tax depreciation.

This anticipative time period consists of two phases. First, the firm should sta-

bilize its capital stock by doing only replacement investments if γ = β, and should

shrink by doing partial replacement if γ > β (policy 1), while keeping marginal

revenue equal to marginal cost3. Then, as the tax base decreases further, it becomes

optimal to stop investing (policy 3), until the optimal capital stock level is reached

for the second time. From there on, the firm continues with replacement invest-

ments in order to maintain the optimal level of capital stock until the end of the

planning horizon, i.e invest I(t) = βK∗1 . During policy 3 the firm’s taxable income

has become positive.

Figure 2 illustrates the development of the capital stock (panel a)) and the in-

vestments (panel b)) in the optimal solution for both types of firms. We consider

two firms that start with the same capital stock level at date zero. For the first

firm (lower curves), the tax depreciation rate γ, and the initial tax base K2(0) are

such that γK2(0) < C(K1(0)), so that taxable income is positive at time zero. The

3During policy 1, marginal cost equals marginal revenue. When γ = β, the change in marginal

cost over time equals the change in marginal revenue. When γ > β, marginal revenue becomes

lower than marginal cost due to the change in time, so that the firm has to shrink in order to keep

marginal revenue equal to marginal cost.
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second firm (upper curves) uses a tax depreciation rate γ > β, and has an initial tax

base K2(0) such that γK2(0) > C(K1(0) > βK1(0). Its taxable income is therefore

negative at time zero. We see that, in the initial stage, the first firm grows slower

than the second one, since its taxable income is positive at date zero. The second

firm not only initially grows faster, but it also grows to a higher level than the first

one. It then shrinks to its optimal long run level, which, due to the higher value for

γ, is higher than the long run capital stock level for the first firm.

5 Summary of the results

The main conclusion of the paper is that the difference between tax depreciation

and technical depreciation affects the optimal size of the firm as well as its optimal

dynamic investment and dividend policy. Differences in tax and technical depre-

ciation can be caused by different depreciation rates, and by a difference in initial

capital stock level and tax base.

For the optimal size of the firm, we can conclude that a firm that uses a higher

tax depreciation rate should also grow to a higher level of capital stock.

For the dynamic dividend and investment policy that leads to the optimal size,

we can conclude that:

i) It is always optimal to grow until the first time t∗ where marginal revenue of

investment equals marginal costs. The optimal strategy from there on depends

on whether the capital level at time t∗, K1(t∗), equals the optimal long run

level, or is strictly higher than this level. The latter will occur if the firm’s

taxable income is still negative at time t∗, so that marginal revenue is not yet

negatively affected by tax payments.

ii) The optimal investment strategy implies that, once the firm’s taxable income

has become positive, it will remain positive all over the planning period.

Moreover, the optimal strategy of the firm crucially depends on its initial tax

base and initial capital stock level, and on the choice of the tax depreciation rate γ.
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The following holds:

iii) If the firm has low initial tax depreciation its taxable income will be positive

by the time it reaches its optimal capital stock level. Therefore, the firm can

stabilize from there on.

iv) Firms with high initial tax depreciation will still have a negative taxable in-

come by the time they first reach their optimal long run size. They therefore

maximize shareholder value by initially growing to a higher capital stock level,

and shrinking later on to the optimal size of the capital stock.

For firms that use a tax depreciation rate that equals the real technical depre-

ciation, and that have a tax base of assets equal to the capital stock, the optimal

strategy is intuitively clear, i.e. grow until the optimal size is reached, and then

stabilize.

For firms that start with a high tax base of assets, the dynamic investment

strategy is non-trivial in the sense that the firm should first grow, and consequently

shrink to its optimal level. The shrinking phase consists of two parts: first do partial

replacement investment, and then shrink maximally by not investing at all. The

second part of the shrinking phase is an inevitable inefficient, but optimal strategy.

It is a consequence of the fact that, for any reasonable value of γ, it is impossible to

keep marginal costs and marginal revenue equal at the time taxable income becomes

positive. So it is inefficient in the sense that marginal cost cannot be kept equal to

marginal revenue, but it is optimal in the sense that it maximizes shareholder value

for the firms with high initial tax depreciation.
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Appendices

A The path-coupling method

In this appendix we show how the path-coupling method is used to prove proposi-

tions 4.1, 4.2 and 4.3.

It is structured as follows. In section A.1 we define the Lagrangian of optimization

problem (9), and present the corresponding necessary conditions for optimality of

an investment strategy. The strategy of a firm can be defined as a sequence of paths.

In section A.2 we present the different paths and discuss their dynamics. To obtain

the optimal sequence of paths, a formal synthesizing procedure (path coupling)

is applied. It determines which path(s) can precede a given path, exploiting the

continuity of state- and costate variables, and the necessary conditions for optimality.

This procedure is presented in section A.3. The main theorem in that section states

that there are two master trajectories. This allows to prove propositions 4.2 and

4.3.

A.1 The necessary conditions

The current value Lagrangian of problem (9) is as follows:

L(K1, K2, I, λ1, λ2, η, µ) = (1 + η1)
{
C(K1)− I − T [C(K1)− γK2]+

}
+η2I + λ1(I − βK1) + λ2(I − γK2),

in which λ1 and λ2 are the co-state variables corresponding toK1 and K2, respective-

ly, and η1 and η2 are the Lagrange multipliers associated with the two non-negativity

constraints. The co-state variables can be interpreted as shadow-prices, i.e. λ1(t) is

the value of an additional unit of K1(t) in terms of shareholder value. The additional

contribution to the objective function of a unit of K2(t) is equal to λ2(t).
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The necessary conditions for optimality are:

K̇1 =
∂L

∂λ1
= I − βK1, (16)

K̇2 =
∂L

∂λ2
= I − γK2, (17)

λ̇1 = rλ1 −
∂L

∂K1
= (r + β)λ1 − [1 + η1]C ′(K1)[1− T · 1{C−γK2>0}], (18)

λ̇2 = rλ2 −
∂L

∂K2
= (r + γ)λ2 − γ(1 + η1)T1{C−γK2>0}, (19)

λ1 + λ2 = 1 + η1 − η2, (⇐
∂L

∂I
= 0), (20)

η1(C(K1)− I − T (C(K1) − γK2)+) = 0, η1 ≥ 0, (21)

η2I = 0, η2 ≥ 0, (22)

0 ≤ I ≤ C(K1)− T (C(K1)− γK2)+, (23)

λ1(z) =
∂f

∂K1
(K∗1 (z), K∗2(z)), (24)

λ2(z) =
∂f

∂K2
(K∗1 (z), K∗2(z)). (25)

The Lagrangian is not differentiable in the point where C(K1) = γK2. Therefore,

in this point, the necessary conditions (18) and (19) have to be be replaced by (see

e.g. Hartl and Kort, 1996, pp. 257):

λ̇1 ∈
[
(r + β)λ1 − (1 + η1)C ′(K1) , (r + β)λ1 − (1 + η1)C ′(K1)(1− T )

]
(26)

λ̇2 ∈
[
(r + γ)λ2 − γ(1 + η)T , (r + γ)λ2

]
. (27)

so that the changes of the shadow prices can vary within a certain range.

A.2 Evaluating the paths

The firm has to optimize its investments under the constraint that both investment

and dividend payments have to be non-negative. This yields constraints (23). One

can now characterize a path followed by the firm at a time instant depending on

whether either of the two constraints is binding at that time. The four different

paths are therefore characterized by:
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1 2 3 4

η1 = > = >

η2 = = > >

.

In terms of policies of the firm, path 1 is the policy of paying dividend and investing

a positive amount. With policy 2, the firm does not pay dividend but invests all its

after tax revenues. With policies 3 and 4, the firm does not invest. Using policy 3,

there is a positive amount of dividend paid to the shareholder, while using policy 4

implies dividend payments are zero.

Lemma A.1 Path 4 is not feasible.

Proof: On path 4, one has η1 > 0 and η2 > 0. (21) and (22) then imply that:

I(t) = 0 = C(K1)− T (C(K1)− γK2)+,

which implies that K1 = 0. It follows from (10) that it is never optimal to have the

capital stock reduced to zero. 2

In the sequel, we will refer to the use of policy i, i = 1, 2, 3, in a situation where the

firm’s taxable income is positive as policy iA, and in a situation where the firm’s

taxable income is negative as policy iB. We now present the dynamics of the states

and co-states on each of the six feasible paths.

1A) Here, taxable income is positive (C(K1) > γK2), and η1 = η2 = 0. Therefore,

we find:

λ̇1 = (r + β)λ1 −C
′(K1)(1− T ), (28)

λ̇2 = (r + γ)λ2 − γT, (29)

λ1 + λ2 = 1. (30)

Whether path 1A is a shrink- or a growth path will depend on the division of

net revenues in dividend and investments. This path can be a steady state

path with λ̇1, λ̇2 and K̇1 equal to 0.
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1B) The fact that taxable income is zero, and η1 = η2 = 0, imply that:

λ̇1 = (r + β)λ1 −C
′(K1), (31)

λ̇2 = (r + γ)λ2, (32)

λ1 + λ2 = 1. (33)

It is now shown that, if γ > β, then K̇1 < 0, so that the capital stock decreases

on path 1B . In contrast, when γ = β, one finds that K̇1 = 0, so that the capital

stock is then constant on this path.

Proposition A.1 On Path 1B, the firm’s capital stock decreases, i.e. K̇1 < 0,

when γ > β and is constant, i.e. K̇1 = 0 when γ = β.

Proof: Since

λ̇1 + λ̇2 = 0,

the continuity of the co-state variables implies that:

∂λ̇1

∂t
= −∂λ̇2

∂t

⇒ (r + β)λ̇1 − C”(K1)K̇1 = −(r + γ)λ̇2

⇒ −(r + β)λ̇2 −C”(K1)K̇1 = −(r + γ)λ̇2

⇒ C”(K1)K̇1 = (γ − β)λ̇2

Now, since C”(K1) < 0 and λ̇2 > 0, it is seen immediately that K̇1 < 0 when

γ > β and K̇1 = 0 when γ = β. λ̇2 > 0 holds if λ2 > 0. The path coupling

procedure later on in this Appendix shows that λ2 > 0 in an optimal solution.

Intuitively λ2 > 0 means that the value/shadow price of an additional unit of

K2 is positive. 2

2A) On this path, no dividend is paid, and η1 > 0, and η2 = 0, which implies that:

I = C(K1)− T (C(K1)− γK2)+. (34)
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Since taxable income is positive, one has:

λ̇1 = (r + β)λ1 − (1 + η1)C ′(K1)(1− T ), (35)

λ̇2 = (r + γ)λ2 − (1 + η1)γT, (36)

λ1 + λ2 = 1 + η1. (37)

Now, conditions (16) and (17), combined with (34) imply that:

K̇1 = C(K1)− T (C(K1)− γK2)− βK1,

K̇2 = (1− T )[C(K1) − γK2],

The fact that C(K1) − γK2 > 0 on this path clearly implies that K̇2 > 0,

so that the tax base increases on this path. Furthermore, (13) implies that

K̇1 > 0, so that also the capital stock increases for K1 ≤ K∗1 .

2B) Concerning the B-part, we find that:

K̇1 = C(K1)− βK1,

K̇2 = C(K1)− γK2,

On the B-part, clearly K2 is decreasing. As for the A-part, K1 is increasing.

The necessary conditions (18) and (19) of this path are:

λ̇1 = (r + β)λ1 − (1 + η1)C ′(K1), (38)

λ̇2 = (r + γ)λ2. (39)

3A) On this path investments are zero and dividends are positive, so that η1 = 0

and η2 > 0. The dynamics of the state are:

K̇1 = −βK1, (40)

K̇2 = −γK2, (41)

which clearly implies that both K1 and K2 are decreasing. Furthermore,

λ̇1 = (r + β)λ1 − (1− T )C ′(K1), (42)

λ̇2 = (r + γ)λ2 − γT. (43)
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These conditions are the same as for path 1A. The differences are that:

D = C(K1)− T (C(K1)− γK2), (44)

λ1 + λ2 = 1− η2. (45)

3B) For the B-part, (45) remains unchanged but the other three necessary condi-

tions become:

λ̇1 = (r + β)λ1 −C
′(K1), (46)

λ̇2 = (r + γ)λ2, (47)

D = C(K1). (48)

Since, as in 3A, K̇1 = −βK1, this also is a shrink-path.

A.3 Coupling the paths

In order to determine the optimal maximal sequence of policies, the analysis starts

at the end of the planning horizon. Necessary transversality conditions ((24) and

(25)) yield the optimal policy for the firm at the end of the planning period. For

a sufficiently long time-horizon, the firm typically end in a steady state path where

dividend is paid to the shareholder. This is shown in various other dynamic mod-

els of the firm (see e.g. Van Hilten et al., 1993). One then systematically checks

which paths can be coupled before the next path without violating the optimality

conditions.

Proposition A.2 The final path is path 1A. This is a steady state path.

Proof: To show that path 1A can be the final path, the necessary conditions

(28) - (30), together with the transversality conditions have to be solved. The

transversality conditions imply that λ2(z) = Tγ
r+γ

. Together with (29) one has:

λ̇2 = 0

23



(30) implies that λ̇1 + λ̇2 = 0. So it follows that λ̇1 = 0. Given (28) and (29) this

implies that:

r + βλ1 + γ(1− λ1)− C ′(K1)(1− T )− Tγ = 0,

Combined with λ̇i = 0, this yields the equilibrium:

λ1 =
r + (1− T )γ

r + γ
,

λ2 =
Tγ

r + γ
,

C ′(K1) =
(

r

1− T
+ γ

)(
r + β

r + γ

)
.

Hence, the transversality conditions imply that the co-state variables must be con-

stant on this path, which implies that also K1 is constant, so this is a steady state

path. Remains the question if this steady state can be maintained until infinity.

This can be done by investing I(t) = βK∗1 , where K∗1 satisfies (14). For these in-

vestments one has C(K∗1) > I , so D > 0, since C ′(K1) > β.

So one obtains a steady state with K̇1 = λ̇1 = λ̇2 = 0.

Moreover, suppose that on path 1A, λ2(t) < Tγ/(r+γ) (resp. >). Then (29) implies

that λ2 is decreasing (resp. increasing) so that λ2(u) < Tγ/(r + γ) (resp. >) for

u ≥ t. A similar argument holds for λ1, since λ1 + λ2 = 1. This implies that if the

firm is on path 1A, but not in a steady state (it does not satisfy the transversality

conditions), then it cannot satisfy the transversality conditions without leaving path

1A.

It now remains to show that the other paths cannot be the final paths. For path

1B , the only equilibrium is:

λ1 = 1,

λ2 = 0,

C ′(K1) = r + β,

so that the equilibrium conditions imply that K̇1 = 0. Consequently, one has

K̇2(t) = βK∗1 − γK2(t).
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It is verified easily that this implies that:

K2(t) = K2(t∗)e−γ(t−t∗) + (1− e−γ(t−t∗))
β

γ
K∗1 ,

where t∗ denotes the time instant where the steady state is reached. It then follows

immediately that:

lim
t→∞

γK2(t) = βK∗1 ,

so that in the long run C(K∗1)− γK2 will be positive, i.e. the B-path is abandoned.

This argument holds for all paths iB, independent of the values of λi. The transver-

sality conditions could be satisfied, but when the time-horizon is long enough it is

not possible to end in a situation where no taxes are paid.

Finally, notice that on path 2, one has K̇1 > 0, and on path 3, one has K̇1 < 0.

Therefore it is seen that an equilibrium is not possible. The transversality conditions

can be satisfied for path 2 (3) only with η1 = 0 (η2 = 0). However, then the firm is

on path 1 again. We can therefore conclude that the final path is 1A, and that this

is a steady state path. 2

It now remains to determine which paths can be coupled before each other. Propo-

sition 4.1 gives useful information for this path-coupling procedure, since it implies

that in the optimal solution, a B-path can never be preceded by an A-path.

Proof of Proposition 4.1: We need to show that: If in the optimal solution one

has C(K1) − γK2 ≤ 0 at some time τ , then C(K1) − γK2 < 0 at any time t < τ .

This means that zero tax payments at time τ imply zero tax payments at any time

t < τ .

Define the auxiliary function g(I) = ∂
∂t

(C(K1)− γK2). We find:

g(I) = C ′(K1)K̇1 − γK̇2 = (C ′(K1)− γ)I + γ2K2 − C
′(K1)βK1,

which is linear in the investments I . This implies that

g(0) ≤ g(I) ≤ g(C(K1)) if C ′(K1) ≥ γ,

and g(0) > g(I) > g(C(K1)) if C ′(K1) < γ.
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Given that γ ≥ β, C(.) is concave, and C(K1) ≤ γK2 (B-path), it holds that:

g(0) = γ(γK2)− βC ′(K1)K1,

> γC(K1)− βC(K1),

≥ 0,

and

g(C(K1)) = C ′(K1)C(K1)− γC(K1) + γ[γK2]−C ′(K1)βK1,

≥ C ′(K1)C(K1)− γC(K1) + γC(K1)−C ′(K1)βK1,

= C ′(K1)
[
C(K1)− βK1

]
,

> 0.

This implies that g(I) > 0 for all I ∈ [0, C(K1)], so that C(K1) − γK2 is strictly

increasing over time when the firm is on a B path. 2

The above proposition, combined with an elaborate path-coupling procedure, allows

to prove that there are two master trajectories.

A master trajectory is a maximal sequence of policies that can be applied in order

to obtain an optimal dynamic solution. Depending on the initial state of the firm,

the optimal solution starts at a certain point in one of the master trajectories. The

following definition will be helpful.

Definition A.1 We define γ̃ to be the fixed point of the equation C ′(K∗1 (γ)) = γ.

Given (14), this implies that:

γ̃ =
1

2
β +

√
1

4
β2 +

(r + β)r

1− T
.

Straightforward calculations yield:

γ̃ >
1

2
β +

√
1

4
(β + 2r)2 = β + r,

so that γ̃ /∈ [β, β + r].

We now proceed to determine the master trajectories. The following notation will

be used. The instant at which path i is coupled before path j will be denoted ti,j
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(irrespective of whether they are A or B paths). The time instant just before this

coupling will be denoted t−i,j.

Proposition A.3 The following is a master trajectory:

MT1 : 2B → 2A → 1A.

Proof: In order to show that a sequence of paths is a master trajectory, one

has to show that the paths can be coupled before each other without violating the

optimality conditions, and that no other path can precede the first path in the

trajectory. We will therefore subsequently show that

i) Path 2A can be coupled before path 1A.

ii) Path 2B can be coupled before the sequence 2A → 1A.

iii) Nothing can be coupled before the sequence 2B → 2A.

[ad i)] The fact that λ1 and λ2 are continuous implies that, in order to couple path

2A before 1A, one must have η1(t2,1) = 0.

[ad ii)] We first describe the dynamics on path 2A, given that it is coupled before

1A.

Path 2A has I = (1− T )C(K1) + γTK2 ≥ (1− T )C(K1). Condition (13) therefore

implies that K̇1 > 0. Since C(.) is concave, this implies that C ′(K1) is decreasing

over time on path 2A.

λ̇1, λ̇2 and therefore η̇ are continuous on 2A → 1A. Furthermore, one has η2(t2,1) = 0.

Since λ̇1(t2,1) = 0, λ̇1 is continuous, and C ′(.) decreases over time, it follows that

λ̇1(t−2,1) ≤ 0.

Furthermore, since on path 2A, one has η1 > 0, we know that η1(t−2,1) > 0. This,

together with (36), implies that λ̇2(t−2,1) ≤ 0. From (37), it now follows that η̇1(t−2,1) =

λ̇1(t−2,1) + λ̇2(t−2,1) ≤ 0, and C ′(K1) decreases over time.

Furthermore, λ̇i remain non-increasing, since if λ̇i would be zero at time τ because

of the change in λi, λ̇i(τ−) ≤ 0, since η̇1(τ−) = λ̇1(τ−) + λ̇2(τ−) ≤ 0.
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So we can conclude that on path 2A before the final path, λ1, λ2 and η1 are non-

increasing.

The fact that η̇1 < 0 on path 2A implies that path 2B can precede 2A. Since at the

coupling point t2,2, one has C(K1)− γK2 = 0, the costate variables do not have to

be differentiable at t2,2. Instead, (26) and (27) apply.

[ad iii)] In order to determine what can precede path 2B , we look at the dynamics

of the costates. On path 2B , one has:

η̇B1 = (γ − β)λ2 − (1 + η1)
[
C ′(K1)− (r + β)

]
. (49)

Given that:

- (39) implies that λ2 is increasing on path 2B ,

- C ′(K1) > r+ β (in the subsequent paths the firm will grow towards K∗1 , with

C ′(K∗1 ) > r + β),

- (13) implies that C ′(K1) is decreasing on path 2B (K̇1 > 0),

it follows from (49) that, if η̇B1 (τ ) < 0 at some time τ , then η̇B1 (t) < 0 for all t < τ .

Proposition 4.1 implies that only a B-path can precede path 2B . Then, in order

to couple another path before path 2B , ηB1 has to be 0 at that coupling instant

t.,2. The above then implies that η̇B1 (t2,2) has to be positive. Indeed, suppose that

η̇B1 (t2,2) < 0, then η̇B1 (t.,2) < 0. Now if ηB1 (t.,2) = 0, this is clearly impossible.

To see whether it is possible that η̇B1 (t2,2) ≥ 0, we consider the relation between

dynamics of η1 on path 2A and 2B . On path 2A one has:

η̇A1 = λ̇1 + λ̇2 = (γ − β)λ2 − (1 + η1)
[
(1− T )C ′(K1) + Tγ − (r + β)

]
(50)

Combined with (49), this implies:

η̇B1 = η̇A1 − (1 + η1)T (C ′(K1)− γ). (51)

Now since η̇A1 (t2,2) ≤ 0, η̇B1 (t2,2) can only be positive if C ′(K1) < γ.
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At path 2A and 2B on this master trajectory, one has C ′(K1) > C ′(K∗1). Therefore

γ > C ′(K1) implies γ > C ′(K∗1 ). This only holds when γ > γ̃. Path 2B can therefore

not be preceded by another path for γ ∈ [β, r+ β].

This concludes the proof. 2

Proposition A.4 The following is a master trajectory:4

MT2 : 2B → 1B → 3B → 3A → 1A.

Proof: Similarly to the proof of A.3, we will show that:

i) Path 3A can be coupled before path 1A.

ii) Path 3B can be coupled before 3A → 1A.

iii) Path 1B can be coupled before path 3B − 3A − 1A if C ′(K1) ≥ r + β.

iv) Path 2B can be coupled before path 1B − 3B − 3A − 1A.

v) Nothing can be coupled before 2B → 1B or 2B → 3B .

[ad i)] When coupling 3A before the terminating path, it holds that η2(t3,1) = 0.

[ad ii)] We first describe the dynamics on path 3A before 1A. Since the dynamics

of λ2 are the same on paths 3A and 1A, one has λ̇2 = 0 during path 3A (see (43)).

Furthermore, since path 3A is a shrink-path in capital stock, one has ∂C′(K1)
∂t

=

C”(K1)K̇1 > 0, which, with (42), implies that λ̇1 > 0. So η̇2 < 0 and only path 3B

can precede path 3A.

The coupling 3B → 3A is quite trivial. At the coupling instant, one has C(K1) −

γK2 = 0, and η2 > 0.

4Strictly speaking, the sequence 1B → 3B can also be 1B → 3B → 1B → 3B → · · · → 1B → 3B,

which is still a shrinking phase. This however can be excluded for functions C(·) with C ′′′(·) ≤ 0,

e.g. functions in the class C(K1) = aK1 − bK2
1 .
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[ad iii) and iv)] We first show that the sequence 3B → 3A can only be preceded by

another path if C ′(K1) ≥ r + β.

At the coupling point t.,3, η2 has to be zero, and at a certain point after the coupling

instant η2 has to be positive (in order to couple path 3B before 3A). Therefore,

λ1(t.,3) + λ2(t.,3) = 1, and η̇2(t.,3) ≥ 0, which implies for path 3B:

η̇2 = −λ̇1 − λ̇2,

= −(r + β)λ1 + C ′(K1)− (r + γ)λ2,

≤ −(r + β) + C ′(K1).

Therefore, η̇2(t.,3) ≥ 0 iff C ′(K1) ≥ r + β at time t.,3.

Therefore, when a path is coupled before path 3B , one has C ′(K1) ≥ r + β.

Proposition 4.1 implies that only a B-path can precede path 3B . Notice that the

coupling 2B → 3B is as a special case of 2B → 1B → 3B , with path 1B followed for

an infinitesimal small time period.

It can be verified easily that the coupling of 1B before 3B is feasible iff C ′(K1) ≤ r+β

at time t1,3. The coupling of 2B before 1B is quite trivial, since the continuity of

co-states is clearly maintained, and only the investment strategy changes.

[ad vi)] We show that when path 2B is coupled before another B-path, it cannot be

preceded by another path.

Preceding paths (1B or 3B) have λ̇1 + λ̇2 ≤ 0. This implies that C ′(K1) ≥ r + β.

We then find from (38), (39) and (37), together with the fact that 2B is a growth

path, that just before the coupling instant, one has η̇1(t−.,2) < 0. This implies:

η̇1(t
−
.,2) = (r + β)λ1 − (1 + η1)C ′(K1) + (r + γ)λ2,

= (γ − β)λ2 − (1 + η1) [C ′(K1)− (r + β)] ,

< 0.

Furthermore,

∂η̇1

∂t
= [γ − β]λ̇2 − [1 + η1]C”(K1)K̇1 − η̇1 [C ′(K1) − (r + β)] . (52)
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This is clearly positive, so η̇1 has increased to its negative value. Therefore, it is

negative along the path. This implies that only a path with η1 > 0 can precede path

2B , but proposition 4.1 implies that path 2A can not precede path 2B .

This concludes the proof. 2

In the following proposition, we prove that there are no other master trajectories,

so that the optimal investment strategies are determined.

Proposition A.5 MT1 and MT2 are the only master trajectories of problem (9)

Proof: In order to prove this proposition, it is necessary to show that:

i) There is no part of MT1 or MT2 that can be preceded by paths that are not

in these master trajectories, and

ii) There are no other possible couplings before the final path 1A.

In the following these two points will be addressed.

[ad i)] In the proofs of propositions A.3 and A.4, it is made clear that the couplings

in MT1 are unique and that the couplings for MT2 are unique taking into account

footnote (4). There were no other couplings possible than the ones that resulted in

the master trajectories.

[ad ii)] In order to prove this part, all paths other than 2A and 3A must be proven

to be not feasible before the final path 1A.

• Path 1B before Path 1A: Path 1B is a shrinkpath. When coupling path 1B

before 1A at time t1,1, λ̇1 and λ̇2 can be discontinuous (see (26) and (27)).

K1 however is continuous. Therefore at time t−1,1 we have C ′(K1) = C ′(K∗1 ).

Given (33), this implies:

λ̇1 + λ̇2 = 0,

⇒ (r + β) r+(1−T )γ
r+γ

− r+β
1−T

r+(1−T )γ
r+γ

+ Tγ = 0,

⇒ −T r+β
1−T

r+(1−T )γ
r+γ

= −Tγ,

⇒ γ = γ̃.
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Since γ̃ > r + β, the proof is complete. 2

• Path 2B before 1A: Path 2B can precede path 1A. Using the fact that λ̇1 +λ̇2 =

η̇1 < 0, the proof is similar to the case 1B → 1A.

Furthermore we know that nothing can precede 2B → 1A. This implies that

2B → 1A could be a master trajectory. This master trajectory is a special

case of master trajectory 1, that starts with path 2B and has path 2A for an

infinitesimal small interval. However it is just one special case, dependent on

all starting values and variables, such that full investments result in:

C(K1) = γK2,

C ′(K1) = C ′(K∗1 ),

at the coupling instant t∗. Therefore we neglect this possibility, since it is a

boundary case and a special case of MT1.

• Path 3B before 1A: This coupling is not feasible. Using the fact that λ̇1 + λ̇2 =

η̇1 < 0, the proof is similar to the case 1B → 1A.

This completes the proof 2

The above propositions immediately lead to the following theorem.

Theorem A.1 The two master trajectories and therefore optimal solutions are:

MT1 : 2B → 2A → 1A,

MT2 : 2B → 1B → 3B → 3A → 1A.

Proof: Follows immediately from propositions A.3, A.4, and A.5. 2

Depending on the initial state of the firm, its optimal strategy will start at some

point in one of the three master trajectories. If for example the firm’s taxable

income is positive in the initial state, its optimal strategy starts at the A part of the
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master trajectory. For firms that initially have marginal costs larger than marginal

revenues, the optimal strategy starts on path 3 of the second master trajectory. If

the firm pays taxes it starts on path 3A, and otherwise on path 3B .

Proof of Proposition 4.2: Follows immediately from Theorem A.1 and the def-

inition of low initial tax depreciation. For firms with low initial tax depreciation

master trajectory 1 applies, since there taxable income is positive by the time path

1 is reached.

Proof of Proposition 4.3: Follows immediately from Theorem A.1 and the def-

inition of high initial tax depreciation. For firms with high initial tax depreciation

master trajectory 2 applies, since there taxable income is negative by the time path

1 is first reached.

B The optimal size and the value of the firm

This Appendix contains the proofs of the propositions that are stated in sections 2

and 3.

Proof of Proposition 2.1: Given that the firm is in the steady state at time z,

we know that I(t) = βK1(z), for all t ≥ z. This, together with (2) implies that the

evolution of the tax base is given by:

K2(t) = K2(z)e−γ(t−z) + (1− e−γ(t−z))
β

γ
K1(z).

The value of the firm at time z therefore equals:

f(K1(z), K2(z)) =
∫ ∞
z

e−r(t−z)
{

(1− T )C(K1(z))− βK1(z) + TγK2(t)
}
dt

=
1− T

r
C(K1(z))−

β

r
K1(z)

+ γT
∫ ∞
z

(
e−r(t−z)e−γ(t−z)K2(z) + e−r(t−z)(1− e−γ(t−z))

β

γ
K1(z)

)
dt

=
1− T

r
C(K1(z))−

β

r
K1(z) +

γβT

r(r + γ)
K1(z) +

γ

r + γ
TK2(z).

Rearranging the terms leads to (7). 2
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Proof of Proposition 3.1: Follows immediately from the proof of proposition A.2.

We now show that K∗1 is the unique level at which, in a steady state, marginal

revenue equals marginal cost and taxable income is positive.

Consider the firm in a steady state at time t∗. This implies that investments equal

I(t) = βK1(t∗) for all t ≥ t∗. We now determine the marginal value of an additional

investment at time t∗. Due to the extra investment x at time t∗, the evolution over

time of the capital stock and the tax base after t∗ is given by:

K̃1(t, x) = K1(t∗) + xe−β(t−t∗),

K̃2(t, x) = K2(t) + xe−γ(t−t∗).

The marginal value generated by the additional investment is then given by:

∂

∂x |x=0

∫ ∞
t∗

e−r(t−t
∗)
[
(1− T )C

(
K1(t∗) + xe−β(t−t∗)

)
+ Tγ

(
K2(t) + xe−γ(t−t∗)

)]
dt

=
∫ ∞
t∗

e−r(t−t
∗)
[
(1− T )C ′(K1(t∗))e−β(t−t∗) + Tγe−γ(t−t∗)

]
dt

=
1

β + r
(1− T )C ′(K1(t∗)) + γT

1

γ + r
.

It now follows that the latter expression equals 1 (the marginal cost of the additional

investment), iff

C ′(K1(t∗)) =
(

r

1− T
+ γ

)(
r + β

r + γ

)
.

Since C ′(.) is strictly decreasing, this implies that K1(t∗) = K∗1 . 2

Proof of proposition 3.2:

i) Consider the case where r > 0. The optimal stock level of the firm satisfies:

C ′(K∗1 ) =
(

r

1− T
+ γ

)(
r + β

r + γ

)
.

Straightforward calculations yield:

∂

∂γ
C ′(K∗1 ) =

−rT

(1− T )(r + γ)

(r + β)

(r + γ)

< 0.
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Combined with the fact that

∂

∂γ
C ′(K∗1 ) = C ′′(K∗1)

∂

∂γ
K∗1 ,

and C ′′(.) < 0, we can conclude that
∂K∗1
∂γ

> 0.

ii), iii), iv) These statements can be verified in a similar way. 2
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