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1 Introduction

Country clubs, academic faculties, social networks as well as internet clubs share one com-

mon characteristic: they are status organizations. The interaction among the members of

these organizations increases the utility for the individual member. The value of interaction

depends on the status of the individual member. The higher the status of an individual

member (e.g. in an academic faculty the ability to publish high-quality research, or in a

country club, the social status) the more valuable this member is for others. Status is a

vertically differentiable and rival good. The more members interact with members of high

social status, the less valuable this interaction becomes individually. We focus on this wide

range of organizations and study how various decision making rules within the clubs affect

competition among them for new members.

Thereby, our focus is on the development rather than the formation of clubs (the two

main strands of the economics of organizations and clubs).1 We will concentrate on two

main questions. First, what are the main implications of the competition among clubs

regarding the allocation of new members and the distribution of the resulting surplus? Or

to put it more succinctly: will top PhDs join the best or just second tier universities and

for which salaries? Second, what is the impact of alternative decision making regimes and

organizational set-ups (e.g. majority voting, unanimity with or without side payments) on

this and how do they compare in terms of social welfare?

We will show that new candidates with the highest status levels join the club with the

highest average status. New potential candidates with low status levels either join the club

with a low average status or are not accepted by any club at all. Furthermore, we will show

that new entrants with low status levels are unable to appropriate any surplus from joining

the club. In contrast, members with higher status are protected by competition among the

clubs and therefore share the surplus with old club members.

With respect to the different decision rules and organizational set-ups we find that, under

the unanimity rule, clubs are more reluctant to let new candidates join than under majority

voting, leading to overexclusion of new candidates. In contrast, with meritocracy (i.e. the

club member with the highest status level decides) our analysis predicts overinclusion of new

members. That is, from the point of view of old club members as well as from a welfare

perspective majority voting turns out to be the most efficient decision making rule. This

finding translates to our main policy implication, that consensus-based clubs such as many

academic faculties in Europe could improve the well-being of their members (and society at

large) if they liberalized their internal decision making processes.

We model competition among clubs for new candidates in a two-club-framework. The

1Henceforth, we will use the terms status organizations and clubs interchangeably. For the sake of clarity,
the term clubs will be used more frequently.
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two clubs with a given number of old club members with given status levels differ in their

average status levels. A high average status club (e.g. Harvard University) competes with a

club with lower average status level (e.g. State University X). Old and new members trade

off the utility they receive via the average status levels of their companion club members

against the fees they have to pay for covering the costs of the resources necessary to run the

club (the research facilities of the university, the club house of the golf club, the software

platform of the internet club, etc.). The higher the average status of his fellows, the higher

the utility for a club member. Due to the fact that status is a rival good in our model, entry

of a new candidate with a lower than average status leads to a dilution of the status gains for

the old members. This dilution effect can, however, be overcompensated for by the entrance

fee paid by the new candidate.

The paper is organized as follows. In the next session we provide an overview of the

related literature. In section 3 we outline the basic model and look into the competition of

two clubs in the presence of majority voting. In section 4 we characterize the equilibrium in

this set-up. In section 5 we turn to alternative voting schemes, for which we investigate the

emerging allocation after club competition for new candidates. Section 6 is devoted to welfare

implications of the model. In section 7 we discuss robustness of our main assumptions, while

in section 8 we derive testable hypotheses from our analysis and conclude.

2 Related Literature

Our analysis forms part of the existing literature on club formation and competition, whereby

we focus on the latter. The distinguishing feature between most of this large body of litera-

ture and our paper is that the vast majority of papers on club competition has focused on

the idea that (some) clubs can be interpreted as social status organizations in which non-

monetary characteristics of particular club members (which can be ranked vertically) play a

crucial role. Taking this often crucial, but neglected, aspect of clubs into account leads us

to a different model and allows us to depict club competition in a completely new manner.

We can identify four different branches of literature related to our work. First, one has

to mention the seminal works on the economic theory of clubs which were published in the

1960s. Most notably, Buchanan (1965) and Olson (1965) initiated a major wave of research

on the economic theory of clubs and club goods which was to be further developed in the

decades following. Sandler and Tschirhart (1980) have prepared a survey of the first half of

this, while Cornes and Sandler (1996, ch.11) provide an overview of the more recent literature.

Therein, a club good has three major characteristics distinguishing it both from private and

public goods. First of all, clubs are voluntary organizations. Hence, each and every member

has to obtain a net benefit from joining a club. Second, clubs are subject to a congestion

function, i.e. their optimal size is finite, since a club’s resources are limited. Third, the
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feasibility of clubs depends on the existence of an exclusion mechanism to prevent unlimited

dilution of the club’s resources by unbounded access of new candidates.2 Our paper is in line

with this definition dealing specifically with various aspects. As in Ellickson et al. (1999),

we deal with the individual characteristics of new and incumbent club members and the

interrelation of a club’s aggregate characteristics and its competition for new candidates. In

contrast to them, we do not explicitly calculate the optimal size of clubs but equilibrium

levels of admittance fees for one new candidate. Helsley and Strange (1991) too, compare

discriminating pricing schemes, but our paper, furthermore, endogenizes clubs’ governance

structure.3

The second branch of literature we refer to analyzes the optimal size and structure of

political jurisdictions, which could be regarded as clubs on a macroeconomic or political

level. While Bolton and Roland (1997) model the basic trade-off in terms of the breakup

or unification of nations, Casella (2001) focuses on the relationship between jurisdictions

and overall market size. Wacziarg et al. (2003) include growth in their model, which is

empirically tested by Alesina et al. (2004). Casella and Frey (1992) discuss the issue of

overlapping political jurisdictions in a European context. From a formal perspective, these

models either distinguish between individuals horizontally, e.g. concerning preferences, or

vertically, e.g. with regard to income. But in contrast to our analysis, which looks into the

interplay between the change of the social status situation in the club that can be attributed

to new entry and monetary transfer, the interchange between new members and old members

just takes place via monetary transfers.

This is also the main difference between our model and the third strand of related lit-

erature, which comprises Tiebout models in the strict sense (see e.g. Wildasin (1986) or

Wellisch (2000) for an overview). Those models study the competition of jurisdictions in

the presence of mobile households and/or capital.4 The main policy areas thereby are either

of an allocative nature (public provision of goods) or of a distributive nature (redistribu-

tion among different members of a jurisdiction) (see e.g. Pauly (1974)). One part of this

literature analyzes competition for mobile households in a system of jurisdictions (see e.g.

Epple/Sieg (1999), Benabou (1996) and Epple/Romer (2001)). These articles ask for poten-

tial sorting of households along household income. There, however, vertical differentiation

of households takes place only in income levels. The potential trade off between vertically

2Therefore, Cornes and Sandler (1996, p.353 and p.347) also call club goods “impure public goods” or
”excludable (rivalrous) public goods”.

3For more details on collective choice schemes, see Zusman (1992).

4The second and third branches of our literature review are somehow interlinked. But whereas the second
branch investigates the question of optimal club size and club formation, the Tiebout type literature is more
concerned with competition of existing jurisdictions and therefore closer related to our main theme.
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structured non-monetary contributions to the well-being of club members (such as social

status) and monetary payoffs, which is in the center of our paper, is not a topic there.

Our paper builds on the idea of clubs as status organization being introduced by Hans-

mann (1986, 1996).5 Hansmann (1986), however, regards the formation of a club system

while we assume that clubs already exist. In contrast to Hansmann, we focus explicitly on

the strategic competition between two existing clubs and the decision making process be-

hind it.6 The papers most closely related to ours are, however, Epple/Romano (1998, 2002)

who analyze the competition among private and public schools for pupils in a world where

peer effects make school quality dependent on the ability composition of a school’s student

body. Epple/Romano (1998) show that the competition of tax-financed public schools and

profit-maximizing private schools leads the latter to skim off the wealthiest and most able

students. We differ significantly by looking at competition among clubs that have similar

objective functions and where club decisions are determined by existing members rather than

a profit-maximizing investor. Moreover, our focus is on the effect of various decision making

rules within clubs on competition among them.

3 The Model

3.1 Status, utility and entry

We model two clubs which compete for a new candidate. The total population of old club

members consists of N + 1 ∈ N+ individuals which are distributed across the two clubs,

whereby N is assumed to be an odd number. Individuals are, with the exception of their

status position, identical. The status position describes their relative value for fellows in

social exchange processes and can be attributed to a wide set of characteristics such as

income, wealth, abilities, skills and network relations.

Status positions of old members are assumed to be uniformly distributed on a vertical

line ranging from s to s̄.7 The endpoints of the lines are populated by one individual each.

We rank individuals along the status line, i.e. a lower number ni of an individual indicates

a higher status position. The first individual (with ni = 0) has the highest status level, s̄,

5Hansmann (1986, p.122) explains that “clubs” are a “prototypical example of status organizations”.

6Two other papers, which are rather closely related to the present one, are De Serpa (1977) and Baku
(1989). Both are related to the basic notion of clubs as social status organizations with, however, a focus that
is significantly different from ours. De Serpa (1977), by explicitly modelling the role of social interactions
in clubs, analyzes potential sources for inefficiency associated with club formation and competition. Baku’s
(1989) main focus is on an excess-demand equilibrium. He basically argues that if club members value social
status, it pays for a profit-maximizing club owner to ration access to clubs in order to avoid dilution.

7We will discuss the implications of relaxing this assumption in section 7.
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whereas the individual at the other endpoint of the vertical line with ni = N has the lowest

status, s. All individuals with higher status positions are members of the more exclusive

club A, which has nA +1 members, whereas the remaining individuals (N−nA) are members

of club B, the less exclusive club. Figure 1 summarizes the distributional assumptions.

nA N

s

s(nA)

s̄

s

ni

......................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ .................................................................................................................

Figure 1: Status distribution (for nA = 4 and N = 7)

A functioning club, which allows for active cooperation and social exchange among the

club members, requires financial resources in order to cover operating costs, which are borne

by all club members.8 By means of cooperation and social exchange club members can

increase their well-being. This effect hinges on the average social status of the other club

members, where status is a rival, non-tradeable good, meaning that each member dedicates

a fixed amount of resources to supporting the aggregate of his fellows.9 Support follows a

random exchange among club members. Therefore, in expectation, each member gains an

equal share of a fellow’s support. Social exchange and/or cooperation is the more productive

and valuable the higher the social status of the counterpart. Hence, we depict the utility

function of a particular member k in club j as:

Uk
j = θŝk

j − cj (1)

whereby ŝk
j denotes the average status of all the other members in club j from the point of

view of club member k, cj denotes the per-head operating cost of club j and θ ∈ (0, 1] denotes

8We assume these operating costs to be so large that it is prohibitive for a subset of members (or new
candidates) to form a third club. Without this assumption we would shift our focus from competition of
clubs to club formation. The latter, though, has been already researched (e.g. by Hansmann (1986)) and is
not of our primary concern.

9This notion of the status variable is different from status being equal to reputation, which is a non-rival
good.
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the relative preference of status versus money in the economy.10 Our linearity assumption

does not put any particular weight on either of the two arguments of the utility function,

besides θ: average status and monetary effects (the membership fee) are perfect substitutes

(see, however, footnote 13) . The marginal rate of substitution between status and money

is constant for all players and hence independent of own status.

For member k in the more exclusive club A the average status of all other club members

is:

ŝk
A =

∑nA

i=0 si − sk

nA

, (2)

whereas for the less exclusive club B we have:

ŝk
B =

∑N
nA+1 si − sk

N − nA − 1
(3)

with si denoting the status of the i− th member.

A candidate who is accepted as new member of the club11 affects both arguments of the

utility function of the old club members. First, the new candidate changes the average status

value of the remaining club members for old member k to:

ŝk
A =

∑nA

i=0,i6=k si + sC

nA + 1
(4)

in club A, with sC denoting the status of the candidate. The corresponding expression for

club B is:

ŝk
B =

∑N
nA+1 si − sk + sC

N − nA

. (5)

Second, with his entrance fee in club j, fj ≥ 0, the candidate contributes partially to covering

the financial burden.12 We assume that the old members benefit only partially from the new

entrant, i.e. the membership fee of the new entrant reduces the financial burden of the

old members in club j by αfj. The fact that α < 1 depicts the notion that the services

of the club are not a purely public good but rather increase less than proportionally with

additional club members. Alternatively, we can interpret this as frictions in the transfer of

money between old and new club members which might be due to the fact that, for example,

10Subscripts denote clubs, superscripts denote individuals.

11As customary in many Tiebout type models, we assume all old members to be immobile because of
switching costs. The new candidates, however, are mobile and, hence, can choose to apply at any of the two
clubs. Candidates could be young researchers who have to relocate after obtaining a Ph.D. degree, while old
members are settled professors for whom switching clubs/faculties is prohibitively costly. We will discuss
this assumption in section 7.

12We assume that clubs face some budget constraint. fj ≥ 0 meets this assumption without loss of
generality. In the model interpretation where clubs actually pay entrants, e.g. young Ph.D. researchers, to
enter the club, fj = 0 characterizes the maximum salary a club can offer and fj > 0 refers to lower salaries.
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the additional resources can only be consumed in the form of perks (better club services)

rather than as a reduction of membership fees.13

3.2 Majority voting in clubs

We start by focusing on the case in which majority voting in clubs prevails. Later on, we

will address other rules of decision making in the clubs as well. This implies that the median

club member is the one who actually determines the decisions of the club. The fact, that

the median along the status line is the median voter, stems from the strict monotonicity of

the utility gains from the new member. This characteristic can be shown as follows.14 The

utility differential (i.e. the utility after entry occurred minus the utility level before entry

took place) of the k-th individual in club A is:

∆k
A = θ

∑nA

0 si − sk + sC

nA + 1
+ α

fA

nA + 1
− θ

∑nA

0 si − sk

nA

= θ
sk −

∑nA

0 si

nA(nA + 1)
+

αfA + θsC

nA + 1
(6)

which is strictly increasing in sC and the rank of k within the club. Therefore we obtain

Lemma 1 Old club members with lower status rank gain less (or lose more) from a candi-

date’s entry than members with higher status. The minimal status level of a new member

required by an individual old member k is lower, the higher the status rank of this old member.

The lowest ranking old member of club A, nA, without entry enjoys a gross utility of

θ
PnA

i=0 si−snA

nA
which is strictly larger than the highest ranking member’s, 0’s utility, θ

PnA
i=0 si−s̄

nA
.

Upon entry of any new member, this advantage is diluted. Hence, nA suffers more than

proportional from entry, which is expressed by (6). As for increasing N (or nA) this difference

diminishes, our analysis is best suited for smaller numbers of old members.

We model the competition among the two clubs for new entrants as a two-stage game.

In the first stage, both clubs A and B simultaneously decide on the entrance fee demanded

by the new entrant, fj, and whether they are willing to allow the entrant to enter at all (i.e.

they choose a minimum status level, sj,min, for the entrant). In the second stage, the new

entrant chooses the club which provides him with the highest utility and accepts his entry.

In both stages of the game, complete information prevails. We solve this game by backward

induction for a subgame perfect solution.

13Moreover, the introduction of α relaxes our assumptions of status and money being perfect substitutes.
Any friction in the model that could be reached by assuming concave utility of status or convex operating
costs (with respect to the number of members of a club) can be reinterpreted with reference to α < 1 but
with significantly less calculus.

14We derive this characteristic for club A only. The same procedure applies to club B and is straightforward.
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4 Equilibria

4.1 The candidate’s decisions

In the final stage of the game the entrant has to decide between two issues: Should he join

a club at all and, if so, which one? The candidate will join a club j if the utility this option

offers is positive:

θŝC
j − fj ≥ 0, (7)

with ŝC
j denoting the average status of the old members of club j from the perspective of the

new club member, C. We will refer to this inequality as the participation constraint of the

entrant in club j, (PCj). It implies that entry will take place if, and only if, the expected

gains from interaction with the other club members are not lower than the costs associated

with the entrance fee.

Given that the entrant will join any club at all, he will choose the one which offers him

the highest net utility, meaning that he will prefer club j over club q if

θŝC
j − fj > θŝC

q − fq. (8)

If this inequality holds for the equality sign, we will call it the indifference condition (IC)

of the entrant. For matters of completeness we assume that, in this case, the candidate will

join club A. Using this and rearranging (8), we know that club A has to make sure that

fA = θ(ŝC
A − ŝC

B) + fB (9)

for being able to make an offer that leads the candidate to prefer membership in club A over

club B. Assuming the anticipated behavior of the entrant, we will now address the optimal

behavior of the clubs.

4.2 The choices of the clubs

In the first stage of the game, clubs A and B can perfectly predict the candidate’s behavior.

They compete by simultaneously choosing a tuple, (sj,min, fj),

The decision problem of the pivotal (median) member of club j is to maximize the

utility differential ∆
mj

j he will receive from entry of the candidate subject to the candidate’s

willingness to join club j (and not the other club, q):

Maxsj,min;fj
argmax

{
∆

mj

j , 0
}

(10)

s.t.

θŝC
j − fj ≥ 0

θŝC
j − fj > θŝC

q − fq.
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with

∆mA
A = θ

∑nA

0 si − smA + sC

nA + 1
+ α

fA

nA + 1
− θ

∑nA

i=0 si − smA

nA

(11)

and

∆mB
B = θ

∑N
nA+1 si − smB + sC

N − nA

+ α
fB

N − nA

− θ

∑N
nA+1 si − smB

N − nA − 1
(12)

Note that the second side constraint for club A may hold with equality.

As a first step towards deriving the subgame perfect equilibrium we analyze the minimal

status requirements of the respective clubs as function of the entrance fees.

Therefore, we use the indifference condition, which club A has to make sure is holding,

and solve ∆
mj

j = 0 for sC leading us to:15

sA,min(fB) =

∑nA

0 si

nA + 1
− α ·

(∑nA

0 si

nA + 1
−
∑N

nA+1 si

N − nA

)
− α

θ
fB (13)

and

sB,min(fB) =

∑N
nA+1 si

N − nA

− α

θ
fB. (14)

Since ∆
mj

j is strictly increasing in sC , this implies that club j will not make any acceptable

offer to candidates with sC < sj,min.

Comparing the minimum status position determined by the two clubs we find:

sA,min − sB,min = (1− α)

(∑nA

0 si

nA + 1
−
∑N

nA+1 si

N − nA

)
> 0

The strict inequality sign holds by definition, i.e. due to the fact that the average status

of the more exclusive club A is higher than the one of club B. Thus, we can state:

Lemma 2 The more exclusive club A makes offers to entrants with a relatively higher status

level. The required minimum status position of club B is strictly lower than the one of club

A (i.e. sA,min > sB,min∀fB).

Both sA,min and sB,min depend on fB. This makes fB a strategic tool in the hands of club

B: by reducing fB and thus raising sA,min, under certain circumstances club B can prevent

club A from making an offer to the candidate that is attractive for both, the candidate and

club A.

15Henceforth, when writing sj,min we implicitly refer to sj,min(sk), where k is the pivotal old club member
in the specific decision making process.
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To prepare characterization of the subgame perfect equilibrium below we define:

fE
B ≡ θ

∑N
nA+1 si

N − nA

f+
B ≡ θ

∑N
nA+1 si

N − nA

+
(1− α)θ

α
·
∑nA

i=0 si

nA + 1
− θ

sC + ε

α

and f̃A ≡ θ

(∑nA

0 si

nA + 1
−
∑N

nA+1 si

N − nA

)

In addition, we henceforth assume that the inefficiency of the money transfer, (1−α), is

sufficiently large:16

α ≤ smj − s

smj
. (15)

We prove in the appendix:

Proposition 1 The subgame-perfect equilibrium is characterized by actions depending on

the status of the candidate sC:

(i) Region IV: A candidate with very low status, sC < sB,min(fE
B ), does not get an acceptable

offer from either club.

(ii) Region III: A candidate with low status level, sC ∈ [sB,min(fE
B ), sA,min(fE

B )), only gets an

acceptable offer from club B, where fB = fE
B . He chooses to join club B but will not get any

surplus from entry.

(iii) Region II: A candidate with medium status level, sC ∈ [sA,min(fE
B ), sA,min(fB = 0)),

receives acceptable offers from both clubs, where fB = f+
B < fE

B . He chooses to join club B

and gains strictly positive utility (increasing in sC).

(iv) Region I: A candidate with high status level, sC ∈ [sA,min(fB = 0), s̄] receives acceptable

offers from both clubs. He joins club A. The entrance fee of f̃A leaves him a utility gain from

entry (constant in sC). The higher sC is the higher the gains of the club.

(v): The club losing the competition for the candidate in a region prices entry as competitive

as possible (such that ∆
mj

j = 0 for that club.)

Figures 2 (delineating the allocation of entrants to clubs) and 3 (plotting the fees paid

to the “winning” club) illustrate Proposition 1:

In region IV, it is obvious that candidates with very low status would not be willing to

pay an entrance fee that satisfies the median member mB (let alone mA). Hence Proposition

1.(i) follows. For candidates in region III, club B is protected from competition of club A

16The existence of region IV (and region III) described in Proposition 1 depends on assumption (15) to
hold for j = B (and j = A). If the exogenous efficiency exceeds that threshold, all candidates are accepted
in some club (and no candidate is completely exploited).
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sB,min(fE
B )

sA,min(fE
B )

sA,min(fB = 0)

s̄

s

No club; Region IV

Club B; Region III

Club B; Region II

Club A; Region I

Figure 2: Stratified segmentation of candidates in clubs A and B

since mA would only want to compete for the candidate if being remunerated extensively—

which would violate (PCA). This lets club B yield all surplus generated by entry of the

candidate. In region I, on the other hand, club A is protected from intense competition since

club B, because of its budget constraint, is not able to offer high ranking candidates a level of

utility via the combination of old members’ average status and the entrance fee that exceeds

club A’s. As a consequence, club A yields some surplus. Because of part (v) of Proposition

1 club A cannot completely exploit the candidate, however, leaving some surplus generated

by entry with the candidate. In region II, competition for the candidate is most intense:

no club is protected from very competitive bids of the other club, which lets the candidate

enjoy a share of surplus generated from entry that increases in her own status.

The intuition of Proposition 1.(v) is that the “losing” club j neither has an incentive

to ask for a lower fee than the most competitive fee (this would violate sj,min and make

∆
mj

j < 0) nor to ask for a higher fee (this would make membership in club j even less

attractive for the candidate and would not change mj’s surplus of zero). Given this strategy

of the losing club, the “winning” club’s best response, according to the arguments above, is

to ask fE
B , f+

B and f̃A in the respective regions III to I.

For matters of completeness, note that in figure 3 we plotted equilibrium fees of the winning

club for s̄ > N + 1 + nA

2
.17

As a direct consequence of Proposition 1, we have:

Corollary 1 In equilibrium, there is no convergence of clubs with respect to status levels,

rather the difference in average status levels across clubs is perpetuated.

This is due to the fact that, generally speaking, the best candidates (with sC ≥ sA,min(fB =

17If that inequality did not hold, fE
B ≤ f̃A. f+

B in region II would adjust accordingly starting from the
level of fE

B at sA,min(fE
B ) and decreasing linearly to a value of zero at sA,min(fB = 0).
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Figure 3: Entrance fees of the “winning” club

0)) join the best old members in club A, whereas lower ranking candidates join related old

members in club B, or even do not gain access to any club at all.18 Similarly, as a direct

consequence of Proposition 1 we have:

Corollary 2 The highest ranking new candidates (in region I) pay higher fees than some

candidates with relatively lower status (the best in region II).

In other words, top ranking scientists, for instance, according to our model, prefer to

join a top ranking faculty for comparatively low remuneration (= higher entrance fees),

and scientists with lower status join lower ranking faculties for a comparatively high salary.

Figure 3 visualizes this idea.

4.3 Different preferences for status

Up to now our analysis used the assumption of a given relative preference for status. We will

relax this assumption now and ask about the implications for club competition if we consider

settings in which individuals value status relatively less. Or to put it differently: how does

the nature of club competition change if individuals value monetary transfer relatively more

than status?

For this purpose we alter θ in the equilibrium values for the borders of Proposition 1’s

regions and the winning bids. This gives us:

18Note that, if we allowed old club members to switch clubs after entry of the candidate occurred (which we
abstract from), Corollary 1 would still be valid: depending on parameters, either the lower status members of
club A, who gain least from entry due to Lemma 1, would switch to club B, or the highest ranking members
of club B would switch to club A (because lower ranking club B members would not be accepted in club A).
As a consequence, average status in club A would still be larger than average status in club B.
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Corollary 3 If preferences for status are lowered, this (i): has no impact on the minimal

status levels the two clubs demand and (ii): implies that the entrance fees in regions I-III

are reduced as long as sC 6= sA,min(fB = 0). With sC = sA,min(fB = 0) club A’s entrance fee

remains constant with a lower θ.

Proof: i) A glance on sB,min(fE
B ), sA,min(fE

B ), and sA,min(fB = 0) reveals that they do not

depend on θ.

ii) Taking first order derivatives yields:
∂fE

B

∂θ
> 0,

∂f+
B

∂θ
> 0 and ∂f̃A

∂θ
> 0 for all sC 6=

sA,min(fB = 0).

The intuition behind this is the following. The minimal status levels are affected twofold.

On the one hand, lower preferences for status diminish the entrant’s willingness to pay for

entering the club implying ceteris paribus that the clubs would become more restrictive. On

the other hand, however, the dilution effect which accompanies the entrance of new members

becomes less important from the point of view of the old club members making them more

liberal with regard to the minimal status levels. Here, these two effects just cancel.

The intuition for the second part of Corollary 3 is the consequence of our first effect:

with lower θs new club members value entry less. Therefore, the clubs can only charge

lower entrance fees. This also explains why Corollary 3.(ii) makes an exemption at sC =

sA,min(fB = 0), where the outside option of the candidate, fB, cannot be reduced further.

Hence, at that point the entrance fee, f̃A, does not have to be reduced, too.

5 Alternative Voting Schemes

In this section, we discuss three other voting schemes, meritocracy and unanimity with and

without side-payments.

5.1 Competition in the Presence of Unanimity Voting

Let us begin by looking at unanimity voting in the absence of any side payments (consensus

based voting). In this situation every old club member has a veto right. As a first step

we have to find the pivotal member in each club. The utility differential of the k-th old

member in a club via entry of a new member is strictly increasing in his own status rank (see

Equation (6). This implies that in club j the old member with the lowest status position is

decisive.

In contrast to our basic model, now, the member in club j with the lowest status position

(being located at nA in club A and at N in club B) solves the maximization problem (with

15



mj replaced by nA or N in Eq. (11), respectively) yielding:

sveto
A,min(fB) = α ·

∑N
nA+1 si

N − nA

− α

θ
fB +

(
(1− α) +

1

nA

)
·
∑nA

i=0 si

nA + 1
− snA

nA

(16)

and

sveto
B,min(fB) =

∑N
nA+1 si − sN

N − nA − 1
− α

θ
fB (17)

This allows us to derive the respective borders of the regimes as stated in Proposition 1.

Substituting fE
B (which remains the same) in (16) gives us:

sveto
A,min(fE

B ) =

(
(1− α) +

1

nA

)
·
∑nA

i=0 si

nA + 1
− snA

nA

> sA,min(fE
B ) (18)

In the same manner we find:

sveto
A,min(fB = 0) = α ·

∑N
nA+1 si

N − nA

+

(
(1− α) +

1

nA

)
·
∑nA

i=0 si

nA + 1
− snA

nA

> sA,min(fB = 0) (19)

and

sveto
B,min(fE

B ) =

∑N
nA+1 si − sN

N − nA − 1
− α

θ
fE

B > sB,min(fE
B ) (20)

This implies that fewer potential entrants will join either of the two clubs (since sveto
B,min >

sB,min) and fewer entrants will join club A.

Since

sveto
B,min − sB,min = sveto

A,min − sA,min, (21)

the ranges along the status line of new candidates actually joining club B move upwards

but have the same size as with competition under the majority voting rule.19 The result is

that regions II and III remain the same size, region I decreases, and region IV increases (see

Panel (iii) of Figure 4). This implies

Proposition 2 In comparison to the case with majority voting in both clubs, i) with compe-

tition based on unanimity in clubs A and B, both will apply more stringent selection rules. ii)

Less candidates join club A which decreases A’s total surplus. iii) The number of candidates

joining club B remains constant leaving B’s total surplus constant, too.

Figure 4, Panel (iii) illustrates this finding. The intuition for this is the following. Unanimity

implies that the old club member which gains least from the entrance of new club members

is decisive. For the old club member with the respective lowest status in the existing club,

19Calculations are facilitated as our linearity assumption in the status distribution allows to use
PnA

0 si

nA+1 =

smA = s̄−mA = s̄− nA

2 and
PN

nA+1 si

N−nA
= smB = s̄−mB = s̄− N+nA+1

2 .
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the dilution effect is the largest. He has to share the existing high-status members with

somebody else and therefore will be more restrictive when it comes to opening the doors for

new members. This is true for both clubs. Hence, the minimal status requirements shift

up symmetrically implying that fewer entrants will be allowed to join altogether (region IV

shrinks) and has the consequence that fewer potential member can enter club A. Since the

shift is symmetric, this implies that club B “loses” member at the lower end of the status

ladder but gains members at the upper end to the same extent.

sB,min(fE
B )
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B )
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Figure 4: Unanimity and Majority Voting in the two Clubs

In addition to comparing majority voting with unanimity in both clubs we now briefly

discuss a mixture of the two decision rules across club A and B. The technicalities are derived

in the appendix. Figure 4, Panels (i) and (ii) give a graphical overview of the results. We

distinguish between two cases. First, we consider the combination of unanimity in club A

and majority voting in B. Then, we reverse it.

In the first case (unanimity in A, majority voting in B) matters are straightforward. Club

A becomes, relative to majority voting more restrictive while B’s optimal policy does not

change. Hence region I becomes smaller, allowing club B to attract more new members, not

only overall, but also in region II. This is due to the fact that the restrictiveness of club A

dampens competition, allowing club B to charge on average higher fees (i.e. push more of

its new members down to their participation constraint).

In the second case matters are somehow more difficult. There, club A behaves as in our

main analysis while B becomes more restrictive. This leads to the question whether region

III, in which club B does not face any competition and therefore can charge fE
B , still exists.

The answer depends on the realization of α. For small enough α the competition pressures
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are less pronounced implying that region III survives. With a large enough α, in contrast,

competition leads to an elimination of region III. This is driven by the following trade-off:

First, as is obvious from comparing sA,min and sB,min ((13) and (14)), these are equal for

α = 1, i.e. if there is no friction between the candidate paying the entrance fee and the old

club members receiving it. The spread increases with growing distortion (1 − α) reflecting

the fact that, in this case, old club A members value status dilution comparatively higher

than monetary gains and, therefore, become more restrictive. This effect is restricted to club

A because only this club has to satisfy the indifference condition which expresses the relative

value of status and fees for new members. Second, as shown above, a decisive old member

with lower status is more restrictive concerning new candidates’ acceptance than a member

with higher status. Hence, a change in club B’s control structure from the median to the

lowest ranking old member leads to a less liberal acceptance policy.

For α = α∗, these two effects are equal. For α < α∗, the first effect dominates. Region

III shrinks but still exists, while regions II and I are unaffected. For α > α∗, the second

effect dominates. No candidates will enter club B meaning that region III will disappear.

The same is valid for region II if club B sets fB = 0. For higher levels of fB the upper part

of region II (down to sA,min(fB > 0)) is served by club A. Region I remains constant. In

both cases, region IV grows larger.

5.2 Meritocracy

As mentioned in section 5, an obvious alternative decision design to voting by majority or

unanimity would be meritocracy, i.e. the old member of a club with the highest social status

would hold final decision authority.

In club A, he is positioned at ni = 0. According to equation (6), member 0 relative to his

club fellows gains the most from a candidate’s membership and hence will accept relatively

lower sC . Moreover, since we assume status to follow a uniform distribution, ∆0
A − ∆mA

A =

∆mA
A − ∆nA

A . This means that the extent to which club A becomes more restrictive by

changing from median to unanimity voting equals the extent to which it becomes more

liberal by moving from median voting to meritocracy. In line with this, using an analogous

argumentation as above, the regions where the candidate becomes a member of the club

increases. In this case, however, an increase of Region I decreases the aggregate surplus

of club A because pivotal member 0 offers candidates to enter the club for a fee that only

makes sure his own utility differential from entry is non-negative. ∆i
A of his fellows, however,

will be negative for most of them if sC ∈ [smerit
A,min(fB = 0), sA,min(fB = 0)). In turn, it are

exactly these candidates who have a net gain from the change in club A’s decision making

rule because they voluntarily join that club and were restricted to club B membership before.

The argumentation for club B is analogous. We can state:
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Proposition 3 (i) Changing from majority voting to meritocracy implies that the club mem-

ber with the highest status level becomes the decision maker, which lets the club adopt a more

liberal entry policy. (ii) This leads to a decrease of the club’s surplus.

5.3 Unanimity with side-payments (compensation)

A seemingly more sophisticated version of voting by unanimity is to maximize the joint

utility differential of a club’s old members and to allow those individual members gaining

from the decision to share profits with less fortunate fellows.

However, due to our assumption of a uniform distribution of status, we have for club

A:
∑nA

k=0(∆
k
A) = ∆mA

A . Thus, sA,min under this regime would equal sA,min under majority

voting. Since determination of sA,min is the main driver for the remaining results, using a

compensatory scheme is not different from using “regular” majority voting. Therefore, we

refrain from discussing it in more detail.

6 Welfare

Which implications does our model entail for a social planner who strives to maximize total

surplus of the economy? If the candidate joins a club, the net gain in total surplus is:

∆TS ≡
nA∑
i=0

∆i
A +

N∑
i=nA+1

∆i
B + ∆C = θsC − (1− α)fj (22)

If the candidate joins neither club, the net gain is zero. (22) captures a trade-off: since

the candidate cannot make use of his status if he is left without club membership, his entry

creates value worth θsC . On the other hand, without entry the candidate derives utility fj

from his monetary resources. Entry shifts this sum to the old members of a club and reduces

its value by the inefficiency factor (1 − α). It is obvious that, for any given status of the

candidate sC , a first-best allocation is reached by requiring an entrance fee of fj = 0 and

granting the candidate access to an arbitrary club. The latter reflects the fact that, from

the point of view of the old members, it is more efficient to allocate the new entrant to club

B,20 whereas the new entrant prefers joining club A. In total, the two effects just balance.

An alternative, somehow more realistic benchmark is a second-best allocation, in which

the constrained social planner aims to maximize welfare while taking the entry conditions

and fees as given. To obtain the second-best benchmark, let us note that ∆TS, as defined in

(22), strictly increases in sC . Using this and setting (22) equal to zero shows that the social

20This is due to the fact that old members in club B, on average, gain relatively more from an entrant
with high status and lose relatively less from an entrant with low status than old members in club A.
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planner prefers in a second-best (SB) world that all candidates characterized by sC ≥ sSB,min

enter a club, where:

sSB,min ≡
1− α

θ
fj (23)

To compare the second-best with the equilibria derived above, recall that, according to

Proposition 1, all candidates in regions I-III will gain access to a club, while candidates

in region IV will be excluded from entry. Under majority voting, the marginal candidate

allowed to enter a club is characterized by

sC = sB,min(fE
B ) = (1− α)

∑N
nA+1 si

N − nA

(24)

and pays fE
B . Inserting fE

B in (23) reveals that, under majority voting, market-based com-

petition among clubs leads to a second-best result, i.e. sB,min(fE
B ) = sSB,min(fE

B ).

At the second-best entry-threshold, where sC = sB,min(fE
B ), the candidate enters club B.

Therefore, by definition, each club A member gains ∆i
A = 0, the candidate is completely

exploited and the pivotal (median) member in club B also yields zero incremental net utility.

This implies (see Eq. (6) and Lemma 1) that old club B members with status levels below

smB will suffer from the candidate’s entry. Because of our linearity assumption of the status

distribution, however, their aggregate loss is exactly offset by the net gain of old club B

members with status levels above the median (for them ∆i
B > 0).

When club B changes from majority voting to unanimity, its pivotal member switches

from mB to N . As the pivotal member will make sure to get at least a net gain of zero, he

will grant access to less candidates than the median member (cf. Eq. (20)) thereby excluding

inefficiently many candidates from club membership.

Analogously, when club B switches from majority voting to meritocracy, i.e. the highest

ranking member (nA +1) becomes pivotal, its status requirement for new candidates declines

to smerit
B,min(fE

B ) < sB,min(fE
B ). As a consequence, all other club B members (with si < snA+1)

will each lose from entry of a candidate with sC ∈ [smerit
B,min(fE

B ), sB,min(fE
B )). We summarize

these findings in:

Proposition 4 (i) Market-based competition among clubs never leads to the first-best allo-

cation.

(ii) Under majority voting in club B, market-based competition among clubs leads to a second-

best result, i.e. sB,min(fE
B ) = sSB,min(fE

B ).

(iii) Under unanimity voting in club B, market-based competition among clubs leads to

overexclusion of candidates from club entry, i.e. sveto
B,min(fE

B ) > sSB,min(fE
B ).

(iv) If club B employs the meritocracy regime, market-based competition among clubs leads

to overinclusion of candidates, i.e. smerit
B,min(fE

B ) < sSB,min(fE
B ).
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Proposition 4.(i) is due to the fact that in equilibrium there does not exist a positive sC

where fj = 0. sC = sA,min(fB = 0)− ε comes close, but still a positive fee ε has to be paid

from the entrant to club B.

7 Discussion

We will focus in this section on what we consider the driving assumptions of our set-up and

its conclusions.

The main mechanism in our analysis hinges on the fact that club members with higher

status gain relatively more from a new member than old members with a lower status.

Technically, this stems from the fact that club members benefit from the average status of

their fellow members (excluding their own) independent of the specific form of the utility

function. The fact that old members with lower status gain less than old members with

higher status depicts the fact that, in case of entry, they have to share the possibility to

interact with higher status members with more fellows. In contrast, high status members

gain relatively less from social interaction anyway. They benefit more from club facilities

etc., i.e. from the monetary contribution of the new member. Given that we consider clubs

as status organizations, in which social interaction matters and in which social status is

vertically differentiated, this is a quite natural and general mechanism.

To illustrate this, consider the following extreme example: a club consisting of a high

and a low status member. The former communicates with the latter and gains rather little

from social interaction whereas the low status member experiences significant gains. If a

new member with an intermediate status level enters, the high status member even gains in

absolute terms whereas the low status member suffers from a dilution effect. Obviously, this

effect is most prevalent with a rather small number of club members and more and more

disappears if club sizes increase. Therefore, we consider our main mechanism to be robust

as long as we do not study clubs that are very large and as long as we accept the notion of

status being a vertically differentiated value.

We consider in the main body of our analysis a one-shot game (entry takes place only

once). Corollary 1 states our divergence result. What happens if we extent this one-shot

game to a repeated game setting? If new entrants are stochastically distributed along the

status line, the position of the median-voter in the two clubs remains the same over time.

That is, the resulting equilibrium in every stage game is not changed, differences in status

levels are perpetuated in every stage. There are two remaining issues in this respect. First,

in a repeated game setting, the median-voter might foresee the impact his decision has on the

subsequent stages. Letting a low status candidate enter now implies that the median-voter

in the subsequent stage game is more restrictive. Hence, the present median-voter has an

incentive to be marginally more liberal. But this effect turns in the opposite direction if the
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low status candidate is actually permitted. Therefore, we expect that in total the effect is

negligible. Second, new entrants lead to an even number of club members. The resulting

problem for the median-voter model could just be solved with a random choice mechanism

leading on average to the same effect.

A third issue that we think is worth a broader discussion is our assumption of α being

smaller than one. For our positive analysis, this assumption is analogous to assuming the

utility function being concave in monetary transfers. Therefore, and because we do not

think that club services are adequately modelled as public goods, we consider the ineffi-

ciency parameter (1 − α) as a reasonable description. With monetary transfers and status

being perfectly exchangeable (α = 1), new entrants could (and would be willing to) perfectly

compensate their lack of status by simply paying more fees. Consequently, club A would

attract all potential new entrants (sA,min = sB,min). This extreme result, which is an imme-

diate of the symmetry of the utility functions of all old members (see below) and the perfect

exchangeability between status and monetary transfers, is avoided with α < 1.

Finally, let us discuss the symmetry of the utility functions of all agents (existing members

of both clubs as well as the candidate), which our results crucially depend on. Most notably,

θ is identical across all agents. This implies that the marginal rate of substitution between

status and monetary transfers is identical for all agents. A relaxation of this assumption

has potentially strong, but in most cases quite obvious implications. The most interesting

application is when the new candidate has a lower θ than the old club members, i.e. the

new candidate values status less than money. In this case, the competitive advantage of club

A decreases. The difference in fees becomes more important. This becomes most obvious

with θ = 0. Then only fees are relevant for the new candidate. At the same time, a new

entrant with high status is relatively more attractive for club B than for club A (since the

effect on average status is more pronounced for club B). Hence, with a low θ club B is able

and willing to attract high status candidates leading to convergence of clubs. A potentially

relevant application of this is when highly reputable professors prefer second-tier universities

(making much more money there) than joining a top-university. Since there are no obvious

justifications of systematic differences in preferences, we stick to our symmetry assumption

in the main body of the analysis.

8 Empirical Implications and Conclusion

In this paper we have investigated the development of already existing member-owned clubs

and their competition for new members. Our model applies to a wide range of potential appli-

cations beyond our particular example of academic institutions. The defining characteristics

are that the clubs under consideration are member-owned clubs (i.e. the old members pos-

sess the decision rights) and that members’ utility depends on the status positions of the
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other members. Finally, some sort of membership fees should play a role in the admission

process of new members. Against this background, it is quite obvious that our analysis

applies not only to academic institutions but also to other clubs with a vertically structured

status variable such as country clubs, internet clubs, conference organizations etc. In con-

trast, our model cannot be applied without adaptations to clubs with a multi-dimensional

status variable, where members’ preferences are not single-peaked.21

The main hypotheses emerging from our theoretical analysis, which are empirically

testable, are the following. Our model predicts:

1. The best candidates entering the system should end up in the best clubs/institutions

(see Corollary 1)

2. However, they should accept lower salaries than second-tier candidates who join lower

ranking clubs (see Corollary 2).

3. If a club’s decision making process is switched from unanimous voting to majority vot-

ing, its acceptance policy with respect to new candidates should become more liberal,

meaning that the marginal status requirement for candidates to get a membership of-

fer should decrease. By switching to meritocracy we expect this process even to be

accelerated (see Lemma 1 and Propositions 2.(i) and 3.(i)).

4. As clubs profit, on a cooperative basis, from avoiding extreme decision making rules

such as the unanimity or meritocracy rules, we should expect to observe trends towards

majority voting. Since, for instance, many academic faculties in Europe are organized

in a consensus-based way, we expect them to liberalize their decision-making processes

over time (see Propositions 2.(ii) and 3.(ii)). This would be welfare enhancing (see

Proposition 4.(ii)).

There are a number of potential avenues for extensions: analyzing the implications of

competition of investor-owned clubs (such as some professional sports clubs) would be a

straightforward and particularly interesting one. As a first step in this direction it would be

crucial to define the objective function of such an organization.

21Current NATO members, for instance, when considering entry of new states into their club, could either
have a preference for military power or for a certain geographical location of candidate states (e.g. being
situated in Eastern Europe to serve as potential buffer against Russia). Old members’ preferences could
be horizontally differentiated in both dimensions, hence a unique ranking of potential candidates (and old
members alike) along the status line would be impossible.
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A Appendix

A.1 Proof of Proposition 1

(i): Because of Lemma 2, the cut-off status level below which candidates do not get an

acceptable offer from any club is determined by club B. fE
B denotes the entrance fee for

which (PCB) of the entrant just holds with equality. Since sB,min is decreasing in fB,

sB,min(fE
B ) is the lowest status level where club B makes an offer that meets (PCB).

(ii): By definition of sA,min, in the range sC ∈ [sB,min(fE
B ), sA,min(fE

B )) club A is not able

to make a membership offer to the candidate, which satisfies both parties (independently

of club B’s behavior). Therefore, club B is able to exploit the candidate completely, which

means to set fB = fE
B .

(iii): For sC ≥ sA,min(fE
B ), demanding fB = fE

B has the consequence that club A has an

incentive to match the offer of club B. The candidate would then join club A. In the range

sC ∈ [sA,min(fE
B ), sA,min(fB = 0)), however, club B can use the incremental reduction of fB

as a strategic tool and make sure that sA,min(fB) > sC > sB,min(fB). Thus, club A has no

incentive to offer the candidate entry for a fee that would both meet (PCA) and make him

prefer membership in club A over club B. Because of the second part of this inequality, club

B still has this incentive, though. As a reduction in the entrance fee reduces sA,min and

sB,min by the same factor, α
θ

(see (13) and (14)), B can sustain this behavior in the entire

region II. By using (13) we can find f+
B as defined above, whereby ε denotes a very small

number and (∂f+
B )/(∂sC) < 0. Hence, an entrant with sC very close to sA,min(fB = 0) does

have to pay almost no entrance fee and, consequently, realizes the highest possible utility

increase of candidates finally joining club B.

(iv): Because of the budget constraint of club B, fB cannot be lowered below zero. Hence,

club B has no tool to prevent club A from making candidates with sC ≥ sA,min(fB = 0) an

offer that benefits both of them, i.e. club A could let the indifference condition (and the

participation constraint) of the candidate hold. Comparing (7) and (9) reveals that, from

the point of view of club A, (9) is always more restrictive. This implies that, if club A sets

an entrance fee for which the indifference condition holds, the participation constraint is

always fulfilled. Thus, club A demands an entrance fee which is equal to the difference of the

average status levels of the two clubs from the point of view of the entrant, which produces

fA = f̃A. Since this expression is independent of sC , the entrance fee is the same for all

entrants into club A implying the same utility gain for all of them. As ∆mA
A increases in sC ,

however, the median of club A gains more the higher sC is.

(v): The club losing the competition for the candidate (both clubs in region IV, club A in

regions III and II, club B in region I) gets a surplus of zero, no matter which (rational)

strategy it employs. If it plays the most competitive strategy and asks for a (sj,min, fj)-
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combination such that ∆
mj

j = 0, it still has no incentives to deviate. However, it ensures

that the actions explained in parts (i)-(iv) are actually incentive-compatible, i.e. part of the

equilibrium strategy of the winning club, because then all constraints mentioned there have

to bind strictly. Otherwise, the “winning” club would lose. �

A.2 Unanimity in Club A and Majority Voting in Club B

In this case sB,min, that is the same minimum status requirement of club B as in our bench-

mark case, applies. However, due to sveto
A,min > sA,min club A employs a more restrictive

entrance policy, implying that the borders of regions I and II shift upward. The distance

between the two boundaries remains the same. However, since fB enters linearly into sveto
A,min

(see (16)), region II remains of the same size but shifts upwards. For any given sC , since club

A has become even more exclusive in its selection process, club B can charge higher entrance

fees, f ∗B, for sC ∈ [sveto
A,min(fE

B ), sveto
A,min(fB = 0)). Since sveto

A,min(fB = 0) > sA,min(fB = 0),

region I shrinks, implying that fewer potential members actually join club A. Due to the fact

that the critical status level, below which club B is not willing to offer affiliation to potential

new members, remains the same, region IV stays the same, whereas we observe an expansion

of region III.

A.3 Unanimity in Club B and Majority Voting in Club A

We now reverse the decision rules which apply in the two clubs: majority voting in the more

exclusive club A and unanimity in club B. In this case the behavior of club A is just the

same as in our benchmark analysis. Club B’s decisions are determined by the club member

with the lowest status (being located at N).

We find by comparing (14) and (17):

sveto
B,min − sB,min > 0 (25)

In comparison to majority voting, unanimity leads to more stringent selection procedures.

Club B will increase the threshold level for potential entrants’ status requirement. Therefore,

region IV increases, whereas region III shrinks. Region I remains the same as with majority

voting in both clubs. The open question is, however, whether the latter disappears completely

and, more generally, whether club B is able and willing to take in any new candidates at all,

that is, whether regions II and III still exist.

If sveto
B,min > sA,min, all new candidates that club B is interested in, will also receive a

membership offer by club A—and, while letting the indifference condition hold, club A will

attract the candidate. Then, club B would receive no new members meaning that regions II
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and III would disappear. sveto
B,min > sA,min equals:∑N

nA+1 si − sN

N − nA − 1
−
∑nA

0 si

nA + 1
+ α ·

{∑nA

0 si

nA + 1
−
∑N

nA+1 si

N − nA

}
> 0 (26)

Since the sum of the first two terms is strictly negative, the LHS is negative for α = 0. In

contrast, with α = 1, we have: sgnLHS = sgn(
PN

nA+1 si−sN

N−nA−1
−
PN

nA+1 si

N−nA
) = sgn(

PN
nA+1 si

N−nA
−

sN) which is positive, given the uniform distribution of status positions. Since the LHS is

continuous and strictly increasing in α, a unique α∗ exists so that for all α > α∗, sveto
B,min >

sA,min.
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