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1. Introduction 

 

Firms’ productivity indices do not sum to the industry productivity index, except 

when production is linear in the sense that marginal rates of substitution and 

marginal rates of transformation are constant and these constants are common to 

the firms (Blackorby and Russell, 1999).  The trouble is that industry productivity 

is influenced not only by the performance of firms, but also by the allocation of 

resources between the firms.  In an attempt to salvage the aggregation of 

productivity, Färe and Primont (2003) show that if all firms are allocatively 

efficient and their technologies admit time-invariant quadratic approximations, 

then the productivity indices can be aggregated.  Unfortunately, the Färe-Primont 

conditions are also prohibitively restrictive.  To me the bottom line seems to be 

that the determination of industry productivity requires not only the aggregation of 

firm productivities, but also the inclusion of some allocative efficiency terms.  

Indeed, in a recent growth accounting study, Jorgenson, Ho, and Stiroh (2003) 

aggregate industry productivities to total productivity growth and capture 

allocative efficiency changes in their formula (53).  Johansen (1972) offers a 

simple but powerful framework that I will use for a back-of-the-envelop theory 

that encompasses the different strands of the productivity aggregation literature 

and quantifies the aggregation inconsistency.      

 

Unfortunately, the literature is loaded with formulas.  Part of the blame can be put 

on the mix of conceptual and approximation issues.  A conceptual issue is the 

definition of productivity.  Roughly speaking, it is the output/input ratio, but input 

and output are multi-dimensional objects.  An approximation issue is at which 

level to meter rates of changes.  It makes a difference if one approximates the time 

derivative of an input or the time derivative of the logarithm of the input.  

Respective measures are the Fisher ideal and the Törnqvist indices.  This 

difference dissolves in the continuous time framework, which I henceforth use for 

analytical convenience.   I also simplify the concept of a productivity indicator.   

Färe and Primont (2003) use the Luenberger indicator, which is based on the 

distance to the frontier along some direction in commodity space; they remain 

silent about the choice of direction.  I suggest that, at least for single-output 
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industries, the appropriate Luenberger direction is along output.  In this case the 

production structure is quasi-linear in output.  Now Woertman and ten Raa (2004) 

argue that for quasi-linear functions the direction is determined by the linear 

commodity component, as in that case Luenberger’s measure is equal to both the 

compensating and the equivalent variations.  In the context of consumption theory 

this is the direction of the numerair commodity and in the context of production 

theory it is the direction of output.  This observation reduces the distance function 

to the output gap and, as we shall see, the derived productivity indicator to the 

Solow residual.  It makes the analysis so crisp that the extension to multi-output 

industries becomes obvious. 

 

 

2. Indices 

 

Let me introduce the formalities.  Single-output firm k maps input vector xk(t) in 

output scalar yk(t) � Fk(xk(t), t), where Fk(•, t) is its production function at time t.  

(Parameter t shifts the production function, or what is called technical change.)  In 

this one-dimensional output case Luenberger’s output based distance function is 

given by 

 

 ( ( ), ( ), ) ( ( ), ) ( )k k k k k kD x t y t t F x t t y t= −  (2.1) 

  

and measures the output gap (Färe and Grosskopf, 2004, p. 107).  In general, even 

without the quasi-linear structure of (2.1), the distance function measures 

inefficiency.  Efficiency change is therefore defined by minus the change in the 

distance function: 

 

 k
k

dD
EC

dt
= −  (2.2) 

 

The distance to the frontier may grow without any change in inputs or outputs, 

simply because the frontier shifts out.  This is called technical change.  It is 

defined by the partial derivative of the distance function with respect to time: 



 4

 

 k
k

D
TC

t

∂=
∂

 (2.3) 

 

The sum of efficiency change and technical change defines productivity change: 

 

 k k kPC EC TC= +  (2.4) 

 

Application of the chain rule to (2.2) and addition of (2.3) transforms (2.4) into 

 

 ( ) ( )k k
kk k

k k

D D
PC x t y t

x y

• •∂ ∂
= − −

∂ ∂
 (2.5) 

   
Here, as usual, a dot denotes the derivative of a function of time and the 

derivatives with respect to the input and output vectors are row vectors (so that the 

terms on the right hand side are inner products which can be denoted without dot).  

The discrete time approximation of (2.5) is what Chambers, Färe, and Grosskopf 

(1996) call the Luenberger productivity index.  That index is the point of 

departure of Färe and Primont’s (2003) aggregation analysis.  In case of the quasi-

linear structure of (2.1), expression (2.5) simplifies quite dramatically into 

 

 ( ) ( ( ), ) ( )k
kk kk

F
PC y t x t t x t

x

• •∂= −
∂

 (2.6) 

 
In other words, productivity change is equal to firm k’s Solow residual between its 

output change and input changes, where the latter are weighted by their marginal 

product values.  

  

 

3. Aggregation 

 

The more standard Solow residual is at the macro level, or, in the context of the 

present literature, the industry level.  For this I need the industry distance function 

or output gap.  Following Johansen (1972), potential industry output is a function 
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of total input, x(t) = ( )kx t∑ , determined by the following constrained 

maximization problem: 

 

 max ( , ) : ( )k kk
F t x tξ ξ =∑ ∑  (3.1) 

 

Since the optimal allocation depends on time (through the constraint and the 

objective function), let me denote it by k = xk*(t).  In my view the (negative) 

aggregation results of Blackorby and Russell (1999) and Färe and Primont (2003) 

reflect the condition that attainment of the optimal industry output requires not 

only a push of the firms to their respective frontiers, from yk(t) to Fk( , t), but also 

a reallocation of resources between them, that is from xk(t) to xk*(t).  The benefit 

of the latter reallocation is simply missed when firm efficiency indices are 

aggregated, without correction.  The missing element is the potential allocative 

efficiency gain; it will be derived next. 

 

It is important to realize that potential industry output does not depend on the 

allocation of the actual inputs, (xk(t)), and not even on the allocation of the optimal 

inputs, (xk*(t)).  Potential industry output depends only on total input, x(t) = 

( )kx t∑ .  True, the solution to (3.1) can be written ( *( ), )k k
F x t t∑ , but the 

xk*(t)’s are functions of x(t).  In short, program (3.1) maps one input vector, x(t), 

in potential output.  Symbol F denotes the mapping.   

 

Potential industry output is F(x(t), t) and, therefore, the industry output gap of 

(2.1) becomes 

 

 ( ( ), ( ), ) ( ( ), ) ( )D x t y t t F x t t y t= −  (3.2) 

 

where the last term is defined by y(t) = ( )ky t∑ .  The productivity analysis of the 

firm can now be applied to the industry.  The data are now inputs x(t), outputs y(t), 

and production function F(•, t).   Subjection to (2.6) yields the following 

expression for industry productivity change: 
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 ( ) ( ( ), ) ( )
F

PC y t x t t x t
x

• •∂= −
∂

 (3.3) 

 
The “aggregation problem” consists of interrelating the micro- and macro-

productivity changes, (2.6) and (3.3), respectively.  This boils down to an analysis 

of the industry production function, F, which is the solution to (3.1).   

 

Denote the Lagrange multipliers of the (vector) constraint in (3.1) by (row) vector 

w.  Since Lagrange multipliers measure the sensitivity of the objective function, F, 

with respect to the bounds in the constraints, x(t), I obtain 

  

 ( ) ( ( ), )
F

w t x t t
x

∂=
∂

 (3.4) 

 

Now the first order condition of (3.1) with respect to k reads, in the optimum, 

  

 ( *( ), ) ( )k
k

F
x t t w t

x

∂ =
∂

 (3.5) 

 
This is the well-known result that efficiency implies the equalization of marginal 

productivities.  Substitution of (3.5) in (3.4) and subsequently in (3.3) yields 

   

 [ ( ) ( *( ), ) ( )]k
kkk

F
PC y t x t t x t

x

• •∂= −
∂∑  (3.6) 

  
Comparison of this result with (2.6) shows that aggregation is perfect, in the sense 

that PCk sum to PC, if 

 

 ( *( ), ) ( ( ), )k k
k k

F F
x t t x t t

x x

∂ ∂=
∂ ∂

 (3.7) 

 
This condition is indeed fulfilled if marginal productivities are constant, an 

observation that confirms sufficiency part of the result of Blackorby and Russell 

(1999).  The condition is also fulfilled if the mixes of the observed input vectors 

are right, i.e. if the observed inputs xk(t) are collinear with the optimal xk*(t), and 

returns to scale are constant, an observation that confirms the result of Färe and 
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Primont (2003).  If none these conditions are fulfilled, a correction must be made.  

In fact, the connection between (2.6) and (3.6) is: 

 

 [ ( ( ), ) ( *( ), )] ( )k k
kk k k

F F
PC PC x t t x t t x t

x x

•∂ ∂= + −
∂ ∂∑ ∑  (3.8) 

 

It is interesting that the correction consists of a sum of terms, one for each firm.  

For each firm the correction measures the excess marginal productivities (over 

and above the competitive, economy-wide ones), weighted by the changes in 

inputs.  The difference in brackets is the excess rate of return, or the difference 

between the private and social values of inputs.   

 

It is not difficult to understand the correction expression.  Suppose firm k is under 

endowed with input 1.  Then input 1 is relatively scarce at firm 1, hence will carry 

a high marginal product or supernormal private value.  But the latter is used as a 

weight in the Solow residual of firm k, where the input change contributes 

negatively.  In short, the scarcity of input 1 causes a downward bias in the Solow 

residual of firm k when the private value weight is used instead of the social value.  

The positive correction term (the excess rate of return times the change in the 

input at firm k) offsets the bias. 

 

The aggregation bias of productivity changes can go either way.  In terms of 

efficiency levels, however, it goes one way, a fact that is exceedingly simple to 

demonstrate.  The solution to (3.1) exceeds the value without reallocations: 

 

 ( ( ), ) ( ( ), )kF x t t F x t t≥ ∑  (3.9) 

 
In view of (2.1) and (3.2) it follows that 

      

 ( ( ), ( ), ) ( ( ), ( ), )k k k k kD x t y t t D x t y t t≥∑ ∑ ∑  (3.10) 

 
This inequality, noted by Färe and Grosskopf (2004, p. 108), states that industry 

inefficiency exceeds aggregate firms’ inefficiency.  The difference is the 
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allocative inefficiency.  The salient contribution of this paper is to quantify the 

aggregation inconsistency: the second term on the right hand side of formula (3.8). 

 

 

4. Generalizations 

 

I have derived this result for quasi-linear output gaps, F(x(t),t) – y(t) � 0.  The 

extension to general production structures, F(x(t), -y(t), t) � 0, is obvious.  If I 

redefine (x(t), -y(t)) as net input vector x(t), I may simply drop ( )ky t
•

from 

productivity changes (2.6) and (3.3).  Since (3.8) does not display output y(t), 

decomposition formula (3.8) remains valid for general net input vectors x(t)! 

 

The formula does not even seem to depend on the direction in commodity space 

along which Luenberger’s distance function is measured.  It is implicit, however.  

The appropriate direction is given by the gradient of the general industry 

production structure.  However, in this general setting the optimal input allocation, 

where the gradient is to be evaluated, depends on the desired mixed of outputs and 

for the latter we need a criterion.  If the industry is a price-taker (e.g., exposed to 

world competition), then that price vector (e.g., the terms of trade) specifies the 

Luenberger direction.  In general, the direction should be determined by the 

perfectly competitive equilibrium prices. 

 

Strictly speaking, the program defining the industry production function should 

feature nonnegativity constraints.  The incorporation of these constraints is a 

straightforward application of the Kuhn-Tucker conditions.  First order condition 

(3.5) is replaced by the following complementary slackness condition:   

 

 ( *( ), ) ( ),[ ( ) ( *( ), )] *( ) 0k k
k k

F F
x t t w t w t x t t x t

x x

∂ ∂≤ − =
∂ ∂

 (4.1) 

 
 

In view of equations (3.3) and (3.4) the optimal marginal productivity in formula 

(3.8) must be replaced by w(t):   
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 [ ( ( ), ) ( )] ( )k
kk k

F
PC PC x t t w t x t

x

•∂= + −
∂∑ ∑  (4.2) 

 

Formula (4.2) tells us to subtract the industry marginal productivity from the 

firm’s marginal productivity.  If there are no nonnegativity constraints, the 

envelope theorem, see equation (3.5), equates industry marginal productivity with 

optimal firm’s marginal productivity and we are back in the ball game of (3.8).   

 

The modification is quite intuitive.  Imagine a single input-single output industry 

with two firms, y1 � x1 � 0 and y2 � 2x2 � 0.  Then the industry production 

function is given by y � 2x � 0.  Suppose x1(t) = x2(t) = t, y1 = t and y2 = 2t.  Both 

firms remain on their efficiency frontiers and, therefore, have zero efficiency 

change.  Technical change is zero too, as the production functions do not change.  

Hence PC1 = PC2 = 0.  Now look at the industry.  Technical change is zero.  There 

is efficiency change though.  The distance function, (3.2), reads 2x – y.  As a 

function of time it reads 2(t + t) – (t + 2t) = t.  By the industry version of 

efficiency change expression (2.2) the latter becomes –1.  Indeed, the growth of 

the inferior firm, 1, reduces efficiency.  The allocation is wrong.  All input should 

go to firm 2.  The allocative efficiency changes, the second sum in (4.2), capture 

this.  By equation (3.4) the shadow price is 2.  The allocative efficiency change 

imputed to the first firm is [1 – 2]1 = -1.  The allocative efficiency term efficiency 

term of the second firm is zero.  If we would not have Kuhn-Tucker modified 

equation (3.8), but compared the actual marginal productivity to the optimal 

marginal productivity of firm 1, we would have missed the allocative efficiency 

term, simply because its marginal productivity is constant.  The upshot is that firm 

1’s productivity is so low that it is irrelevant as a benchmark for efficiency change 

measurement.                     

 

An alternative procedure to incorporate nonnegativity constraints is to absorb 

them in the general production structure, F(x(t), -y(t), t) � 0.  Then the just given 

generalization of (3.8) can be applied to net input structures.  This approach, 
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however, requires the use of subgradients instead of partial derivatives, and is not 

pursued here.       

 

 

5. Concluding remarks 

 

Aggregate productivity is the sum of firm productivities and firm allocative 

efficiency changes.  A firm’s allocative efficiency change is measured by its 

excess marginal productivities (over and above the competitive economy wide 

ones), weighted by input changes.   

 

The allocative efficiency correction term requires knowledge of the production 

function for each firm at each point in time, or, at the very least, the marginal 

products at both the observed inputs and at the optimally allocated inputs for each 

firm.  Diewert (1992) largely dismisses the possibility of estimating these 

production functions.  However, the logic of the aggregation of efficiency extends 

to the industries that make an economy; see Jorgenson, Ho, and Stiroh (2003).    
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