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Abstract

Deductive object bases attempt to combine the advantages of deductive rela-
tional databases with those of object-oriented models. We review modeling and
optimization issues encountered during the development of ConceptBase, a pro-
totype deductive object base supporting the Telos data model. We also report on
a number of application experiences in the �eld of meta data management.
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1 Introduction

Proposals for next-generation databases tend to stem from three traditions [BMS84]:

� Databases: This stream is best typi�ed by object-oriented and extended relational
databases (e.g., NF2). The main extension is the addition of complex domains,
shared sub-objects, and procedures to the database. Examples include Postgres,
Damokles, Cactis, Iris, DASDBS, and many others.

� Programming languages: The main goal is to provide persistence and sharing to
one or more programming languages, ideally orthogonal to the type systems of
these languages. Examples include the O2 system for imperative programming
languages, and typed versions of Prolog such as LOGIN or PROTOS-L.

� Knowledge representation: Some of these systems aim at providing database ser-
vice to AI applications, others come from the tradition of deductive databases or
semantic data models and aim at formal as well as practical support for general
database systems and applications.

A sample of the former two groups of systems is described in [TKDE90], whereas several
prototypes of the latter are reported in [SIGA91]. Although a certain conuence can be
observed, these systems do not only di�er in their background theories but also in their
intended application domains.

The �rst group is typically intended to support non-standard applications such as the
handling of complex engineering objects. The second group mostly aims at an easier
programming environment for standard applications: additionally, they emphasize the
goal of making applications written in di�erent languages interoperable.

The third group pursues, as one of its goals, the support for AI applications such as
natural language understanding, expert systems, and recursive search tasks. However,
this may remain a fairly limited portion of the software market. The reason why we
became interested in this group of languages is therefore a slightly di�erent one: the
important role we expect them to play in meta data management. Such applications
range from the uniform access to heterogeneous data sources, to the coordination of
design processes, to the integration of heterogeneous information services in networked
production chains (CIM), whole enterprises, or even transnational networks. In these
applications which are crucial for the huge integration tasks to be tackled in the 1990s,
the possibility not only to execute systems but also to reason formally about their
structure and capabilities, can be considered a competitive advantage over the other
approaches. The ConceptBase prototype, described in this paper, has provided some
validity to this claim by extensive usage experiments in almost all of the above-mentioned
areas.

The language supported by ConceptBase, Telos ([STAN86],[MBJK90]), has been one
of the earliest attempts to integrate deductive and object-oriented database features,
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Telos takes a very conservative approach to this problem, with simplicity as the main
goal. This emphasis on simplicity has paid o� both in user acceptance and in ease of
implementation.

In contrast to other object-oriented databases, with a minor transformational trick, the
O-Telos [JEUS92] variant of Telos used in ConceptBase can be shown to be equivalent in
expressiveness to Datalog with strati�ed negation and perfect model semantics. Thus,
our design goal of being able to reason about a system's structure and capabilities is
addressed. Moreover, all existing and future analysis and implementation techniques
for deductive databases can be reused for Telos implementations. For example, the
currently distributed version of ConceptBase supports a variant of the Supplementary
Magic Set method for recursive query evaluation, and an extension of the deductive
integrity checking method proposed by [BDM88].

For large systems, deductive capabilities are not enough but must be augmented with
semantic structuring as o�ered in the object-oriented approach. In contrast to standard
deductive databases, any O-Telos database includes a number of structural axioms that
can be expressed as facts, rules, or integrity constraints of the corresponding Datalog
model. These axioms de�ne the naming conventions as well as the abstraction prin-
ciples (classi�cation, generalization, aggregation) of object-oriented databases and also
allow the speci�cation of certain methods through deductive rules and constraints. An
important design goal was that all this was achieved without leaving the Datalog frame-
work [JJ91]; recently, other researchers have also recognized the importance of this point
[ALU93]. ConceptBase exploits the structural axioms in three ways:

� At the user interface level, it o�ers a choice of structured frame and graph syntax
in addition to the usual logical language. Unusual features include the hypertext-
like switching between these notations, the treatment of attributes as full-edged
objects, and the availability of an in�nite classi�cation hierarchy which is partic-
ularly suitable for repository applications.

� At the transformational level, the axioms lead to certain semantic controls and
pre-optimizations that can be applied to rules, constraints, and repetitive queries
when these are entered, and improve correctness and e�ciency of rule evaluation.

� At the storage level, they lead to a special-purpose object store with a fully in-
verted representation of objects and a special object algebra on which set-oriented
bottom-up processing of Magic Set transformed rules is realized.

In section 2, we describe the syntax and semantics of O-Telos, including the semantic
optimizations. The ConceptBase system itself has a client-server architecture where the
server supports queries (ASK) and updates (TELL) of O-Telos object bases and clients
o�er user interface facilities and application-speci�c processing. The implementation of
the server is described in section 3, the client-server interaction in section 4.
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Versions of ConceptBase have been distributed for research experiments since early 1988.
The current distribution version, ConceptBase V3.2, has been installed at more than
one hundred sites worldwide and is seriously used by about a dozen research projects in
Europe and North America 1. Section 5 summarizes some of the application experiences.
Section 6 concludes with a brief comparison to related work and the description of
ongoing ConceptBase extensions.

2 The O-Telos Data Model

There are two equivalent de�nitions of a deductive object base, depending on the parent
discipline you wish to emphasize:

� logic perspective: A deductive object base is a deductive database (i.e., a logical
theory) which consistently includes a pre-de�ned set of so-called structural axioms.

� object perspective: A deductive object base is an object-oriented database
in which deductive rules and integrity constraints are the only means to specify
methods.

In this section, we describe the O-Telos deductive object base model mostly from the
logic perspective. A deductive object base is a triple DOB = (OB;R; IC) where OB is
the extensional object base, R and IC contain deduction rules and integrity constraints.
As usual we require that (OB;R; IC) is consistent, i.e. OB [ R j= IC. The object-
oriented dictions like object identity are encoded as prede�ned deductive rules and
integrity constraints. Thereby, O-Telos formally remains in the framework of deductive
databases and inherits the well-known �xpoint semantics from there.

The following subsections de�ne the O-Telos data model in three steps. First, the se-
mantics of the O-Telos object structure is de�ned by specifying the extensional database
structure and the predi�ned axioms. The semantic structure allows three equivalent sur-
face syntax varieties which the ConceptBase user interface combines in a hypertext-like
style: the underlying logical language, a graph syntax which interprets instances of the
base relations as nodes or arcs, and a frame syntax which groups arcs around nodes
or other arcs in a certain way. From a structural viewpoint, O-Telos is a very pow-
erful semantic modeling language whose distinguishing features include attributes as
full-edged objects and a potentially in�nite hierarchy of classi�cation (meta classes).

Next, the integration of deduction rules, integrity constraints, and query classes in the
same framework is described; query classes, another novel feature of O-Telos, are a form
of parameterized view de�nition which seems to capture particularly well the integration
of deductive and object-oriented aspects.

1A scaled-down version is available via anonymous ftp from ftp.informatik.rwth-aachen.de, directory
pub/CB.
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With these two sections, we have a complete picture of the O-Telos syntax and seman-
tics. However, this "external" object base semantics is not very suitable for semantic
analysis of the database with respect to features such as correct typing, strati�cation, or
precision of query processing and integrity checking algorithms. We convert user-de�ned
deductive rules, integrity constraints and query classes into an "internal" format which
partitions the single original base relation in a large number of very small base rela-
tions. Constants are assigned uniquely to objects identi�ers, variables are bound to
classes, and predicates are assigned to attributes resp. classes. An assignment failure is
reported as structural error (according to O-Telos axioms). This partitioning then leads
to a number of optimizations on rules, queries, and constraints which can be applied at
compile time and independently of the actual evaluation techniques used later on. In the
process of converting the external to the internal DOB, constants are largely replaced
by internal OIDs which is later exploited in e�cient storage access (cf. section 3).

The language and implementation techniques are illustrated with the following simple
scenario:

A company has employees, some of them being managers. Employees have a
name and a salary. They are assigned to departments which are headed by
managers. The boss of an employee can be derived from his department and
its respective manager. No employee is allowed to earn more money than his
boss.

In the formalisms below, we employ small italic letters for variables, capital italic letters
for predicate names, and computer font for example constants.

2.1 The O-Telos Object Structure

Let ID and LAB be sets of identi�ers, and labels resp. An extensional O-Telos

object base is a �nite subset

OB � fP (o; x; l; y) j o; x; y 2 ID; l 2 LABg:

The elements of OB are called objects with identi�er o, source and destination compo-
nents x and y and name or label l. Object identi�ers are system-generated; to represent
them, we shall adopt the convention that the identi�er of an object with name i is
written as #i

An extensional object base can be visualized as a structured semantic net. Objects of the
form P (o; o; l; o) (called individuals) are represented as nodes with name l. Instantiations
of the form P (o; x; in; c) (= "x is in class c") and specializations of the form P (o; c; isa; d)
(= "c is subclass of d") are represented as dotted resp. shaded directed links. All other
objects P (o; x; l; y) are called attributes and are drawn as l labeled directed links between
x and y.
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Figure 1: Semantic net view of an example object base

Fig. 1 shows an example graph. OB contains an object named Mary who is instance of
the object Manager and works in two departments PR and R&D. In addition, the object
base contains Mary's full name and her salary. Obviously OB has two layers: a so-called
Token layer which comprises all concrete objects which are direct representatives of real
world objects and a SimpleClass layer which corresponds to the schema in traditional
databases. There is no restriction on the number of layers; the schema can be instance
of a set of metaclasses, these can be instances of metametaclasses, and so on. As can be
seen from �g. 1 , the top layer of an object base is prede�ned by the objects Object and
Class . The former contains all objects in OB as instances and the latter all objects
which have instances themselves.

A third syntactic representation of deductive object bases results in a frame-based nota-
tion which only relies on object labels rather than object identi�ers. Around the label l
of an object o we group the labels of all other objects which have o as source component.
The frame notation of the objects Manager, Employee and Mary is e.g.

Employee in Class with Mary in Manager with
attribute dept

dept:Department; currentdept:R&D;
boss:Manager; advises:PR
salary:Integer; salary
name:String earns:50000

end name
hername:"Mary Smith"

Manager in Class isA Employee end end
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For each attribute the frame description includes the labels of its attribute classes, e.g.
dept is assigned to currentdept.

The object model O-Telos has a couple of object-oriented dictions present in most object-
oriented data models and each addressing a certain objective. In our approach, these
objectives are simply encoded as prede�ned deductive rules and integrity constraints,
referred as the axioms of O-Telos. The following list presents the four interacting dictions
and some of the axioms realizing their semantics (see appendix for a complete list).

Object identity and referencing. Each object must have a unique identi�cation,
and each referenced object must exist.

External naming of objects. Each object can be referenced by a unique sequence
of labels. For an individual object, this reference is just its label. For other objects,
e.g. attribute, the sequence is constructed from the labels of its source and destination
components. This justi�es the usage of only external labels in the frame syntax and
guarantees a unique mapping of frames to the other syntax forms.

De�nition of abstraction principles as derived relations. Instantiation, gener-
alization, and attribute relationships between two objects can also be derived. This
goal is realized by de�ning the following deductive ruler for the three predicates In (for
instantiation relationships), Isa (generalization)and A2 (attribution).

8o; x; y P (o; x; in; y)) In(x; y)

8o; c; d P (o; c; isa; d)) Isa(c; d)

8o; x; l; y; p; c;m; d P (o; x; l; y) ^ P (p; c;m; d) ^ In(o; p)) A0(x; l;m; y)

8x; l;m; y A0(x; l;m; y)) A(x;m; y)

For our example we can e.g. deduce that In(#Mary,#Manager), A(#Mary,dept,#PR),
A(#Mary,dept,#R&D), A(#Mary, name, "Mary Smith"), and A(#Mary,salary,50000)
hold in the object base. One should note that these rules are only the prede�ned ones.
Any O-Telos object base may de�ne further rules with the same conclusion predicate
(see next subsection).

De�nition of abstraction semantics. The attributes of an object must be correctly
typed according to the attribute de�nitions of its classes. This goal is formally repre-
sented as an integrity constraint:

8o; x; l; y; p P (o; x; l; y) ^ In(o; p)) 9c;m; d P (p; c;m; d) ^ In(x; c) ^ In(y; d)

In combination with an axiom that de�nes the semantics of generalization (isA) links,
namely, instances of an object are also instances of its superclasses,

8o; x; c; d In(x; d) ^ P (o; d; isa; c)) In(x; c)

2We will show in a later section why we need the predicate A0 which is less general than A.
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the typing condition allows attribute inheritance of subclasses from superclasses3. In
the example, Mary is also an instance of the object Employee.

The above properties make up the "core" of the object-orientation in O-Telos. Addi-
tional properties like non-circularity of part-of relationships can easily be de�ned in the
same way. Since each property is de�ned within the framework of deductive databases
(Datalog with negation) the unique model is guaranteed by the �xpoint semantics. Of
course, as for all deductive databases containing integrity constraints, the database de-
signer should make sure that there exists at least one extensional object base satisfying
the integrity constraints.

2.2 Deduction Rules, Constraints, and Query Classes

In addition to the O-Telos axioms the sets R and IC of a deductive object base
(OB;R; IC) may contain application-speci�c deduction rules and integrity constraints
which are speci�ed in a many-sorted �rst order language interpreted under closed-world
assumption. Quanti�ed variables range over classes and are interpreted as instantiation
relationships. The admissible literals of the language are label-based abbreviations of
the predicates In, Isa and A.

We illustrate this for our standard example by extending the de�nition of Employeewith
a rule and a constraint. The (recursive) rule deduces for a given employee the managers
who are his bosses, i.e. are head of a department he works for or are themselves bosses of
one of his department chairs. Based on this, one may impose an integrity constraint on
Employee that all its instances are not allowed to earn more money than their bosses.

Employee in Class with
attribute
...

rule
bossrule:$ forall t/Manager

( exists d/Department (this dept d) and (d head t)
or exists m/Manager (this boss m) and (m boss t) )
==> ( this boss t) $

constraint
salaryIC:$ forall m/Manager x,y/Integer

(this boss m) and (this salary x) and (m salary y) ==> x <= y $
end

this refers to the instances of Employee and e.g. (d head t) corresponds toA(d; head; t).
The constants Manager, Department etc. are replaced by object identi�ers according to
axiom 2 to 4 for external naming of objects. Using our convention, the identi�er for

3Since rules and constraints are seen as attribute classes in the object perspective of O-Telos, method
inheritance is also guaranteed by this axiom.
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Manager is #Manager. By this, we get the following logical representation of the boss
rule:

8e; t In(e;#Employee) ^ In(t;#Manager) ^

9d In(d;#Department) ^A(e; dept; d) ^ A(d; head; t)_

9m In(m;#Manager) ^A(e; boss;m) ^A(m; boss; t)

) A(e; boss; t)

Queries are treated in a very similar way to rules and constraints. However, to reect
the deductive and object-oriented style of the language, a special language construct
is introduced which generalizes the notion of view in relational databases in several
ways: the query class. The ConceptBase query language CBQL [STAU90] represents
queries as classes whose instances are the answer objects to the query. Semantically, the
system-internal object QueryClassmay have as instances so-called query classes which
contain necessary and su�cient membership conditions for their instances (answers).
These conditions can be used to check whether a given object is an instance of a query
class or not. On the other hand, they can be used to compute the set of answer objects.

Query classes have superclasses to which they are connected by an isa-link. These
superclasses restrict the set of possible answers to their common instances. Two di�erent
kinds of query class attributes can be distinguished. Retrieved attributes are already
de�ned for one of the superclasses of the query class. An explicit speci�cation of such
an attribute in a query class description means that answer instances are given back
with values for this attribute, as in the projection operation of relational algebra. In
addition, a necessary condition for the instantiation by an admissible value is included.
The attributes of superclasses can also be re�ned, i.e. the target class is substituted by
a subclass which results in an additional value restriction. The query class

QueryClass TopFemaleManager isA Manager,FemalePerson with
attribute
salary:HighSalary

end

where HighSalary is de�ned as a subclass of Integer (with a range speci�ed e.g. by
a deduction rule) has those female managers as instances who draw a high salary. In
addition this salary is included in the answer description.

Computed attributes have values derived in the query evaluation process. Neither the
extensional object base contains this relationship between the answer instance and the
attribute value, nor is it derivable by deduction rules. For prescribing how to deduce
these new relationships and for expressing arbitrary other constraints (comparable with
relational selection) for the answer instances by analogy to deduction rules and integrity
constraints many-sorted �rst order logic expressions are admissible as building elements
for query classes. The example query class
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QueryClass IndEmp isA Employee with
attribute, parameter
lowersal : Employee

constraint
lowersal_noboss:$ exists s,t/Integer (this salary s) and (lowersal salary t)

and (s > t) and not exists m/Manager (this boss m) $
end

retrieves all employees from the object base who don't have a boss and deduces those
other employees who have a lower salary. As above this refers to the answer instances
of IndEmp. The computed attribute lowersal is identi�ed with the variable of the same
name within the formula. Note that, for answering this query, we have to evaluate the
recursive deduction rule concluding the boss attribute.

In order to avoid the frequent reformulation of similar more specialized queries, at-
tributes of query classes can be declared as instances of an attribute class parameter.
Substitution of a concrete value for such an attribute or specialization of its target class
by a subclass leads to a subclass of the original query which implies a subset relationship
of the answer sets. Since the lowersal attribute is declared as parameter the expressions

IndEmp(Bill/lowersal)

IndEmp(lowersal:UnionMember)

denote two derived query classes which restrict the answer instances of IndEmp to those
employees without boss who earn more money than Bill or resp. some other employee
of a special subclass UnionMember of Employee.

In deductive databases queries are represented as intensional relations derived by a set
of rules. Analogously, the de�nition of a query class Q induces a so called query literal
Q(x; x1; :::; xn) whose arity depends on the number of attributes and parameters of Q.
The �rst argument x of Q stands for the answer object identi�ers. Query classes are
transformed to rules concluding their corresponding query literals ([SNJ93]).

Our example query class IndEmp is transformed to the following rule:

8e; c In(e;#Employee) ^ In(c;#Employee) ^

9s; t In(s; Integer)^ In(t; Integer)^ A(e; salary; s)^A(c; salary; t)^

(s > t) ^ :9m In(m;#Manager) ^ A(e; boss;m)

) IndEmp(e; c)

2.3 Internal Deductive Object Bases

Let us summarize how far we got up to now. We have shown that an O-Telos deductive
object base is equivalent to a relational deductive database which consists of a single base
relation, P , a number of additional pre-de�ned axioms (facts, rules, and constraints),
and a set of user-de�ned rules, constraints, and query de�nitions.

10



However, looking at this structure from the viewpoint of deductive database theory as
well as from the viewpoint of the intent of object-oriented modeling, we can identify
a number of shortcomings. First, if negation is present in rules it becomes close to
impossible to have a strati�ed database if there is only a single relation. Second, the
given structure makes it very hard to type-check logical formulas, i.e., to �nd out whether
their literals correspond to existing object classes; moreover, the notation leaves the
possibly complicated mapping from external names to OIDs open.

To overcome these problem, we introduce two axioms for every (class) object P (p; c;m; d) 2
OB. The �rst one de�nes a dedicated predicate In:p(o) which is true if o is an instance
of p. The second one is true if y is the destination of an attribute instantiated from
attribute class p:

8 o In(o; p)) In:p(o)

8 o; x; l; y P (o; x; l; y) ^ In(o; p)) A:p(x; y)

As a consequence, we get a multitude of predicates for class membership of objects and
attributes of objects. A formula generated from Telos frames is rewritten with these
new predicates according the following rules:

� A predicate In(x; c) with constant c is rewritten to In:c(x).

� A predicate A(x;m; y) is rewritten to A:p(x; y) where P (p; c;m; d) 2 OB is the
unique attribute guaranteed by axiom 17 for the class c of x (which is known since
variables in frame formulas are bound to classes).

In our example, the concerned class of A(d; head; t) e.g. is the attribute class #head of
#Department and the concerned class of In(t;#Manager) is #Manager. As a result we
can rewrite the bossrule by replacing the literals A and In by specializations derived
from their concerned classes.

8e; t In:#Employee(e)^ In:#Manager(t) ^

9d In:#Department(d) ^A:#dept(e; d) ^A:#head(d; t) _

9m In:#Manager(m) ^A:#boss(e;m) ^ A:#boss(m; t)

) A:#boss(e; t)

The same can be done for the query class de�ned in the previous section:

8e; c In:#Employee(e)^ In:#Employee(c) ^

9s; t In:#Integer(s) ^ In:#Integer(t)^ A:#salary(e; s)^ A:#salary(c; t)^

(s > t) ^ :9m In:#Manager(m) ^ A:#boss(e;m)

) IndEmp(e; c)
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By using axiom 14 and generalizing it to deductive rules it can be shown that a pred-
icate A:p(x; y) implies both In:c(x) and In:d(y). This typing lemma [JEUS92] further
simpli�es formulas since it allows the elimination of many class membership predicates.
The two formulas above shrink to:

8 e; t 9 d A:#dept(e; d) ^A:#head(d; t) _

9 m A:#boss(e;m) ^A:#boss(m; t)

) A:#boss(e; t)

8 e; c 9 s; t A:#salary(e; s) ^A:#salary(c; t)^

(s > t) ^ :9 mA:#boss(e;m)

) IndEmp(e; c)

There are two cases where the rewriting fails. The �rst one are type errors in predicates
which should lead to a rejection of the insertion of these predicates. For example,
a predicate A(d; dept; e) where d is bound to #Department cannot be assigned to a
concerned class since #Department has no attribute labeled head.

The second case are meta formulas which contain predicates like In(x; c) where c is
a variable. Since c is bound to a class such formulas make statements about objects
two (or more) instantiation levels below the class of c. A subset of these formulas can
be partially evaluated whenever a new class is entered into the database [JJ91]. An
example is the necessary or required category de�ned in many semantic data models. It
can be de�ned as an integrity constraint of a meta class #Necessary:

8 p; c;m; d; x In:#Necessary(p) ^ In(x; c) ^ P (p; c;m; d))

9 y In(y; d) ^A(x;m; y)

By partially evaluating the predicates In:#Necessary(p) one gets a version of this con-
straint for each instance of #Necessary. Let us assume that the #head attribute of class
#Department is such an instance. Together with the typing lemma optimization, we
obtain:

8 x In:#Department(x)) 9 y A:#head(x; y)

The examples show that the "internal" representation of formulas has several advantages
that distinguish O-Telos from relational-style deductive databases:

� The predicates have a �ner granularity since single attributes opposed to whole
tuples are supported. For example, updates on attributes of an object which don't
occur in a formula won't trigger integrity checking.

� The assignment of predicates to classes makes it possible to store the simpli�ed
form of integrity constraints and deductive rules as attributes of the concerned
class. The simpli�ed forms are only evaluated for the instances of this class.
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� The multitude of predicates allow to use a "normal" strati�cation test for negation
in deductive rules, rather than the ine�cient test for local strati�cation.

� The predicate A:p(x; y) saves the access to P (p; c;m; d) which was needed in the
original form A(x;m; y).

� The typing of variables induces a typing of predicates which can be used for elim-
ination of class membership predicates and thus unnecessary view maintenance
operations.

� The meta classes of O-Telos �nd their natural counterpart in the meta formulas.
Often, partial evaluation of these yields e�cient representations not o�ered by
other systems.

3 The ConceptBase Server

The ConceptBase implementation is organized in a client-server architecture. The server
supports the generic operations TELL (updating an O-Telos database) and ASK (query-
ing an O-Telos database) through transformation and storage services. Transformation
servcies are implemented in BIM-Prolog, storage services in C++. Clients, implemented
in C or Prolog, provide user interfaces for the various syntax variations of O-Telos, but
users can also add their own clients.

The implementation of the server reects the observations made about O-Telos. On the
one hand, it reuses only slightly adapted variations of well-known query and integrity
processing algorithms for transformation. On the other hand, it maps these to an
object algebra tailored to the O-Telos object structure, taking into account its great
exibility with respect to schema evolution { classes are normal objects, attributes can
have attributes, etc. Therefore, a fully decomposed storage structure with sophisticated
single-column and join indexing is used as a target instead of the usual frame-oriented
structures of OODB.

3.1 Overview

In the development of the ConceptBase server, it was recognized that the tasks of query
and rule evaluation, integrity enforcement, updates and view maintenance are strongly
related. This is reected in the server architecture by a small number of functional
components which are reused for di�erent purposes.

The modules involved in updating and querying the knowledge base are presented in �g.
2 along with their dependencies due to data and control ow. The architecture is sepa-
rated horizontally in two layers. The upper layer deals with transforming representation
forms noted in section 2.1 and the compilation of declarative expressions described in
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Figure 2: The Architecture of the ConceptBase Server

section 3.2.3. The lower layer works directly on the object base when computing query
results. The architecture is vertically divided by the main operations TELL and ASK.

Let us step through �g. 2 clockwise starting from the module UpdateInterface. This
module takes object descriptions from the client programs and passes the information
as fully instantiated predicates A, In and IsA to the module Abduction which gen-
erates the base data predicates P representing the objects. A declarative description,
e.g. a query or a rule, is passed to the module Q/R Compiler which generates algebraic
expressions necessary for the computation of the query result. This compilation phase
involves rewriting steps such as the supplementary magic set method. Both, the object
and the algebra expressions, are placed into a storage management system represented
by the box at the bottom right in �g. 2. As new informations are collected in a tempo-
rary storage, they trigger the module ViewMonitor. The ViewMonitor propagates all
changes in an event/ condition/action manner; it consults the module QueryEvaluator
for evaluating the conditions which are realized by ASK statements.

The QueryEvaluator �rst fetches the corresponding algebra expressions directly from
the storage system. Then it applies a semi-naive �xpoint procedure involving the mod-
ules BasicOperations and BasicAccess. The module BasicOperations evaluates al-
gebra operations like union, intersection or transitiveclosure by accessing the storage
system according to its set implementation. Correspondingly, the module BasicAccess
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realizes the access to the base data dependent on the index representation. These two
modules guarantee the independence of the algebra evaluation and the object storage
representation. The evaluation of stored queries is not only initiated by the ViewMonitor
but also directly from client programs through the QueryInterface. The following sub-
sections describe the modules of �g. 2 in more detail.

3.2 TELLing Objects and Rules

3.2.1 Abductive Update Processing

Since all the surface notations are derived notations in O-Telos, all updates have in
principle to be treated as view updates. Therefore, it has been natural to add more
sophisticated view update facilities (e.g., updates on rule conclusions) to the system,
along the lines of abductive reasoning proposed by [KM90].In other words, ConceptBase
takes a declarative rather than an imperative approach to updates. Below, we describe
the simple case; the general view update case in presented in [SNJ93].

Updates are pushed from the client program into the ConceptBase server in Telos frame
notation using the operation TELL. The update process transforms this representation
into the base predicates P and places them in the storage system.

The transformation is divided in two main steps provided by the modules:

1. UpdateInterface: The Telos frame notation is transformed into a literal form as
described in section 2.1. Object names are replaced by object identi�ers using the
restrictions of O-Telos axioms A2-A4 (see Appendix).

2. Abduction: The literal representation is compiled into base predicates P .

For example, the client program updates information about the manager Mary using the
operation

TELL ( Mary in Manager with
dept

currentdept:R&D;
advises:PR

salary
earns:50000

end )

The UpdateInterface analyses this Telos frame and generates one In literal for each
instantiation description, one Isa for each specialization description and an A0 literal
for each attribute in the frame:

In(#Mary;#Manager);
A0(#Mary; currentdept; dept;#PR);
A0(#Mary; advises; dept;#R&D);
A0(#Mary; earns; salary; 50000)
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The literal A0 is an extended version of the literal A which retains additionally the
user-de�ned attribute label.

The literals are now forwarded to the module Abduction to generate base predicates
P . The main problem is to determine the optimal realization of the update if a set
of plausible explanations arises. A detailed description of the abduction algorithm is
presented in [SNJ93]. This algorithm does not only accept the literals In, Isa and A
but also query literal terms. The elimination of di�erent explanations is reached by
de�ning a priority order [FUV83], e.g. preferring the elimination of attribute relations
to elimination of instantiation relationships.

In our example, the base data can be easily generated because there are no rules involved:

P (#Mary;#Mary;Mary;#Mary);
P (#in1;#Mary; in;#Manager);
P (#a1;#Mary; advises;#PR);

P (#ai1;#a1; in;#dept);
P (#a2;#Mary; currentdept;#R&D);

P (#ai2;#a2; in;#dept);
P (#a4;#Mary; earns; 50000);
P (#ai4;#a4; in;#salary)

The literals A0 are transformed into two predicates P , one to describe the attribute itself
and another one to attach this attribute to its category.

3.2.2 E�cient Access to Objects by Indexed Storage

The O-Telos literals suggest a special index structure for the storage system. [GALL90].
It is designed especially to support the QueryEvaluator and generalizes to inverted
indices [CARD75] and join indices [VALD87]. The goals for the design of the indexes
are the following:

1. Fast access to objects via their identi�ers

2. Fast access to instances/classes of an object

3. Fast access to specializations/generalizations of an object

4. Fast access to the attributes and attribute values

5. Support for computation of algebra operations

As shown in section 2.1 the extensional object base OB can be seen as a set of tuples
P (o; x; l; y) . To ful�ll the �rst requirement we associate the identi�er o of type TOID
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Figure 3: Graphically visualization for a storage record of type TOBJ

with a reference to a small piece of the storage of type TOBJ containing the components
x, y, l and further indexing informations. The indexes are de�ned by sets of TOIDs
called type TOIDSET and can be implemented as classes in C++ [STRO92], as shown
in �gure 3. The components src, lab and dst correspond to the components x, y
and l in the predicate P (o; s; l; d), while the record components iof i(o), iof o(o),
isa i(o), isa o(o), atr i(o) and atr o(o) are the indexes according to the object
base structure. These indexes are de�ned to ful�ll the requirements 2, 3 and 4. Their
semantics can be described by:

iof i(o) = foi j P (oi; s; in; o) 2 OBg

iof o(o) = foi j P (oi; o; in; d) 2 OBg

isa i(o) = foi j P (oi; s; isa; o) 2 OBg

isa o(o) = foi j P (oi; o; isa; d) 2 OBg

atr i(o) = foi j P (oi; s; l; o) 2 OB ^ l =2 fin; isag g

atr o(o) = foi j P (oi; o; l; d) 2 OB ^ l =2 fin; isag g

In the version of the storage system described here, we make the design decision that
everything is an object, so instantiation links are objects, too. This means that the sets
iof i resp. iof o do not contain the identi�ers of the objects which are the instances,
but the identi�ers of the instantiation links itself.

The sets contain only objects that are stored in the object base which means the instan-
tiation relations explicitly known. Inherited instantiation information is accessible by
combinations of access operations.

Summarizing, this data structure has two major advantages. The O-Telos frame syntax
is easily reconstructed at the storage level, and an inverted index structure records the
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Figure 4: Indexed storing of objects in the semantic net

appearance of any object o as the source or destination object of a relation to an other
object p. Portions of the storage structure for our example is shown in �g. 4.

Finally, requirement 5 is ful�lled both by the indexing of the object structures and the
implementation of the sets. These sets are realized as B-trees [BBDG90] which makes the
processing of basic set operations like union or intersection very fast. The evaluation of
set operations like union, difference and intersection is encapsulated in the module
BasicOperations. While BasicAccess directly retrieves data from the structure shown
in �g. 3, BasicOperations also considers information derived according to the basic
O-Telos axioms:

instances: delivers all instances of an object, including those deducible through sub-
class inheritance (see axiom 13 in appendix).

classes: delivers all classes of an object. As for instances the inheritance through
superclasses is considered, too.
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void apply_access( void *accessOperation(); TOIDSET& towhat )

{ TOID x;

TOIDSET result, help;

forall( x, towhat ) // this is a macro for scanning a set

{ help.clear(); // reinitialize the buffer help

accessOperation( x, help ); // get stored data from the object structure

result |= help; } // add the buffer help to collect the result

towhat.clear(); // empty the input because

towhat |= result; } // the result is given back in the parameter

void closure_objects( void *op(); TOIDSET delta; TOIDSET& result )

{ while( ! delta.empty() ) // while we have information that

{ result |= delta; // add the delta from the last step

apply_access( op, delta ); // compute the desired operation on delta

delta -= result; // we only want the new information,

} } // so remove what already exists

void instances( TOID c; TOIDSET& result )

{ TOIDSET start;

start.add( c ); // add c to initialize the first delta

// compute all specialized classes

closure_objects( stored_subclasses, start, result );

// compute all instances of the classes

apply_access( stored_instances, result ); }

Figure 5: Operations to evaluate basic equations

specializations: delivers all subclasses of a given class considering inheritance (closed
under axioms 10-12).

generalizations: delivers all superclasses of a given class considering inheritance.

attributes: delivers all attributes of an object. Note that this is di�erent to attribute-
Values.

attributeValues: delivers all attribute values of an object, namely the destination
components of the attributes.

attributeValueOf: delivers all objects o having the given object as an attribute Value.

This encapsulation ensures the independence from the other modules so that the storage
system can be seen as an abstract data type; indeed, we have experimented with several
di�erent storage managers.

As an example of such an implementation, �g. 5 shows some pieces of C++ code for
the computation of instances. To compute all instances of an input object, �rst all
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specialized classes have to be computed by the routine closure objects; the union of
all instances of these classes forms the result.

The use of functions as parameters makes them more general leading to higher-order
programming [SOKO91]. For instance, the routine closure objects takes a function
describing the "closure-direction" for the semantic net navigation and as a second argu-
ment a set of starting objects. Then it computes the closure according to the direction
operation using a semi-naive method [ULLM88, AGJA90]. In our example, the func-
tions to be applied are stored subclasses and stored instances which are simply
built on ISA I and sour resp. IOF I and sour. The routine apply access applies the
access function provided as the �rst parameter to all elements of the set given as the
second parameter. The result is placed in the set to which the access function was
applied. This simple routine shows how the basic operations can be realized easily and
fast, provided fast implementation of the basic set operations [LEA91].

3.2.3 From Rules to Algebraic Expressions

In section 2.1 we showed how query classes can be transformed into deductive rules
concluding speci�c query literals. The module Q/R-Compiler implements these trans-
formation steps �nally leading to sets of algebraic equations.

We continue our employee example by demonstrating the di�erent stages with the recur-
sive bossrule and the query class IndEmp. The semantically optimized rules described
in section 2.3 are compiled to plain Datalog: utilizing the algorithm proposed for general
logic programs in [LT84].

A:#boss(e; t) : � A:#dept(e; d); A:#head(d; t)

A:#boss(e; t) : � A:#boss(e;m); A:#boss(m; t)

IndEmp(e; c) : � A:#salary(e; s); A:#salary(c; t); s > t;:IE1(e)

IE1(e) : � A:#boss(e;m)

The last Datalog: rule is an auxiliary rule concluding a new literal IE1. It results from
resolving the negated existential quanti�cation. Among the standard deductive opti-
mization techniques, we chose the supplementary magic-set rewriting method ([BR87])
because of its closeness to the idea of parameterized query classes.

An application of a bottom-up �xpoint procedure for evaluation purposes to magic
rule sets guarantees to make only intensional information explicit which is relevant for
a given query. The magic-set rewriting always takes place with respect to di�erent
instantiation patterns of queries denoted by b for bound and f for free arguments.
The so-called adorned form of the query literal, e.g. IndEmp, with a concrete second
argument is IndEmpfb(e; c). A rewriting of the four rules above concerning this query
and a subsequent partial predicate elimination following [ULLM89] results in the rule
set shown in �g. 6.
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A:#bossbf (e; t) : � q A:#bossbf (e); sup1;1(e; d); A:#head
bf (d; t):

sup1;1(e; d) : � q A:#bossbf (e); A:#deptbf (e; d):

q A:#deptbf (e) : � q A:#bossbf (e):

q A:#headbf (d) : � sup1;1(e; d):

A:#bossbf (e; t) : � q A:#bossbf (e); sup2;1(e;m); A:#bossbf (m; t):

sup2;1(e;m) : � q A:#bossbf (e); A:#bossbf (e;m)

q A:#bossbf (m) : � sup2;1(e;m):

IndEmpfb(e; c) : � q IndEmpfb(c); sup3;2(c; e);:IE1(e):

sup3;1(c; e; s) : � q IndEmpfb(c); A:#salaryff (e; s):

sup3;2(c; e) : � sup3;1(c; e; s); A:#salary
bf (c; t); s > t:

q A:#salaryff () : � q IndEmpfb(c):

q A:#salarybf (c) : � sup3;1(c; e; s):

q IEb
1
(e) : � sup3;2(c; e):

IEb
1
(t) : � q IEb

1
(t); A:#bossbf (t;m):

q A:#bossbf (t) : � q IEb
1
(t):

Figure 6: Magic-set rules generated for the example.

The next step translates the generated magic-set rules into equations of the COBRA
object algebra [THOE92]. COBRA is based on the relational algebra and adopts con-
cepts from other object-oriented algebras (as e.g. [SZ90],[VD91],[VW91]), tailored to
the storage structure for objects. One advantage of this approach is a clear separation
of algebraic equations generated from user-de�ned rules and queries, and so-called basic
equations allowing the access to the stored extensional data. Note that only the latter
directly use operations from the BasicAccessmodule introduced in section 3.2.2. Thus,
alternative storage can easily be integrated.

Compiling our example rules into COBRA equations (compare �g. 7) we get subset
relationships4 for the A-, magic (pre�x q) and query literals and equations for the unique
de�ned supplementary relations (supi;j).

COBRA allows functions and predicates de�ned in a �-calculus like way within these op-
erations occurring as an extension of simple component selection functions and equality

4The evaluation process performs the union of all subset expressions with the same left hand side
[CGT90]. There could be other rules concluding e.g. solutions for the boss attribute of an employee,
especially algebraic expressions generated for other instantiation patterns.
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A:#boss �
Y

1;3
((q A:#bossbf 11=1 sup1;1) 12=1 A:#head) (1)

sup1;1 = q A:#bossbf 11=1 A:#dept (2)

q A:#deptbf � q A:#bossbf (3)

q A:#headbf �
Y

2

sup1;1 (4)

A:#boss �
Y

1;3
((q A:#bossbf 11=1 sup2;1) 12=1 A:#boss) (5)

sup2;1 = q A:#bossbf 11=1 A:#boss (6)

q A:#bossbf �
Y

2

sup2;1 (7)

IndEmp � (q IndEmpfb 11=1 sup3;2) n2=1 IE1 (8)

sup3;1 = q IndEmpfb �A:#salary (9)

sup3;2 =
Y

1;2
(sup3;1 12=1^3>2 A:#salary) (10)

q A:#salaryff �
Y

0

q IndEmpfb (11)

q IE
fb
1

�
Y

2

sup3;2 (12)

IE1 =
Y

1

(q IEb
1
11=1 A:#boss) (13)

q A:#bossbf � q IEb
1

(14)

Figure 7: COBRA equations compiled from the example rules.

tests, similar to [SZ90]. For example, in the de�nition of the
Q
-operator

Y
�v:<f1(v);:::;fn(v)>

(V ) = f< f1(v); :::; fn(v) > jv 2 V g)

where V is a set of objects or tuples of objects and the fi are functions, the
Q
is a general

apply operator for functions. In �gure 7 we use numbers for tuple component selection
functions and leave out variables as it is usually done in relational algebra5. In the
next section we show with a simple example the evaluation of the generated equations
by computing the relevant part of the �xpoint of all equations with respect to a given
query.

[THOE92] contains the description of a C++ data structure for COBRA-equations
which sets up a network between so called virtual classes corresponding to the relations
occurring within the equations. These classes are �lled with objects resp. tuples of
objects during the evaluation process and share the data structures (esp. for sets) of
the extensional object base.

For directly accessing the extensionally stored data, the QueryEvaluator employs base
equations in the same way as the equations above. The expressions (3), (4), (7), (11),

5Thus
Q

1
means a projection on the �rst tuple component whereas

Q
0
is just an emptiness test.
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(12) and (14) in �g. 7 insert new tuples into the magic relations on their left side in order
to trigger other rules. In equation (3), a query asking for the bosses of an employee John
(therefore #John is a member of the relation q A:#boss) leads to copying #John into
q A:#deptbf because for the next step (e.g. the join operation in (2)) all departments
d of #John are needed: either computed from further equations which have the magic
relation q A:#deptbf in their body or retrieved from the extensional object base. The
goal is to have all derivable (#John; d)-tuples in A:#dept. The base equation

A:#dept �
Y

�x:fxg�dests(instances(#dept)\attributes(x))
q A:#deptbf

retrieves all stored (John; d)-tuples by applying an e�cient intersection operation be-
tween the instances of the attribute class #dept and all attributes of objects in q A:#deptbf .

Due to the overhead it is obviously not desirable to actually have base equations of the
above kind for any attribute class in the object base. The system therefore provides
parameterized equations (not explained here). There are additional equations for the
In, Isa predicates, and for the possible parameter instantiations of the magic relations.

The algebra equations are stored in a dedicated code space within the storage subsystem
and serve as input of the module QueryEvaluator. This module implements a semi-
naive �xpoint procedure which is applied to all stored equations that are relevant for
evaluating a given query. Thus we can distinguish three stages of a query evaluation
process:

� An external ASK operation is interpreted by the module QueryInterface (com-
pare �g. 2). After performing all necessary compilation steps the QueryEvaluator
is initiated.

� From the internal network of algebraic equations the QueryEvaluator selects the
relevant set of equations and initializes the magic relations matching with the query
to be evaluated by inserting the constants given within the query description.

� The �xpoint procedure is started with respect to a previous partitioning of the
found equations into stratas in order to cope with negation.

The evaluation process results in a set of fully instantiated query literals corresponding
to the query. The QueryInterface provides suited answer formats from this internal
representation to satisfy the requirements of the external clients.

A query evaluation applied to the running example is listed in the appendix. It combines
the recursive boss rule with the parameterized query IndEmp.
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3.3 View Maintenance in ConceptBase

Views are answers to queries which have to be kept up-to-date with the database6. The
problem of view maintenance is trivially computable: a simple method is to evaluate
each query belonging to a view after any update. However, this would imply unnecessary
computations since updates are not likely to a�ect a change on all views concurrently.
A better solution is to evaluate only the di�erence implied by the update.

In ConceptBase, we have realized a view maintenance method that generalizes the sim-
pli�cation method developed for integrity checking proposed in [BDM88]. For the pur-
pose of this paper, we restrict ourselves to the case of deduction rules without negation
but the system also handles negation.

Consider the deductive rule:

8 X A1(X1) ^ :::^ Ak(Xk)) Q(X)

The upper case arguments X;X1; ::: denote lists of variables or constants, resp. An
update to the extension of a predicate is a literal A(C) or :A(C) where the C is
a sequence of constants. Positive literals denote insert updates and negative deletion
updates. If A is a base predicate then we call the update base update.

If Q(D) is derivable in the new database (i.e., the database after performing a base
update) but not in the old database, then Q(D) is called a derived insert update on
Q. If it is derivable in the old but not in the new database then it is called a derived
delete update, denoted as :Q(D). The problem can now be reformulated as the e�cient
computation of derived updates from base updates.

Now, suppose a base update has led to a derived insert update Q(D). The substitution
[D=X] in the deductive rule implies substitutions [Ci=Xi] in the arguments of the con-
dition literals Ai(Xi). Since Q(D) is a new solution there must be an index j such that
A(Cj) is an (insert) update. This observation implies that Q(D) is in the extension of
the simpli�ed rule (without loss of generality j = 1):

8 X 0 A2(X
0
2) ^ ::: ^Ak(X

0
k)) Q1(X

00)

whereX 0
2; :::;X

0
k;X

00 are obtained by applying the substitution [C1=X1] to the arguments
of the literals.

In other words: the extension of Q1 (in the new database!) delivers a superset of the
insert updates on Q. If more than one Aj(Cj) is updated then we have to compute all
extensions of the corresponding Qj and build their union.

The case of delete updates :Aj(Cj) is similar to the above. Instead of the new database
the simpli�ed rule is evaluated against the old database. Once again, this method
delivers a superset of the actual updates on Q.

6A special case are integrity constraints represented as deductive rules with the 0-ary Inconsistent

as conclusion predicate. Then, maintaining integrity means to make sure that the view on Inconsistent

is empty through the lifespan of the database.
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View maintenance is implemented in the ViewMonitor module (see �g. 2). During a
transaction the updates to the object base are located at the Delta part of the object
store. The inserted (deleted) objects trigger the query evaluation of the simpli�ed rules
shown above. The obtained solutions are potential updates to the views. In case of
insertion the view monitor checks whether the new fact Q(D) is already in the view,
otherwise it is inserted. In case of deletion, the view monitor �rst veri�es that Q(D) is
not derivable from the new object base and then removes it from the view.

Due to the strong connection between classes and predicates (section 2.3) it is su�cient
to check only instantiations to classes for triggering (proof in [JEUS92]). The extinction
of unnecessary literals is especially bene�cial for view maintenance since it also avoids
unnecessary trigger evaluations due to updates on these literals.

3.4 Performance Issues

ConceptBase has been used in several con�gurations of algorithms and storage struc-
tures. Moreover, its typical applications are characterized by very many classes (hun-
dreds to thousands) but not that many instances in each class. For these reasons, giving
a table with typical performance benchmarks is not very meaningful. Nevertheless, a
few qualitative observations should be made here.

First, the transformation to internal object base form and the consequent semantic opti-
mizations have had a very substantial impact on performance: the internal form reduces
directly the search space, integrity checks are completely dropped for many updates and
made much more precise in others, and true extensibility of the language through meta
formulas is only made realistic through the partial evaluation techniques discussed in
section 2.3. In one medium-size application in software con�guration management, a
representative set of query classes and integrity checks improved by factors of 20-50.
Of course, we have to admit that some of these improvements just remove performance
problems we have created ourselves through the introduction of class as objects; but we
argue that the introduction of type checking is very useful for large databases, and that
it is important to see that this can be done statically, at formula update time.

A similar improvement over naive relation-like storage structures is achieved by the
storage structure introduced in section 3.2.2. However, here the improvement is a com-
plexity jump in terms database size. Essentially, certain important operations, such as
the construction of a frame or the computation of a simple join, obtain the complexity of
their actual result rather than of the cross-product of their operands. This corresponds
to experiences with a similar data structure for a relational database in [PT92].

Lastly, as in other deductive databases, our experiences with the magic set method
have been mixed. In the applications it was designed for, it proves very useful but a
naive implementation introduces substantial overhead; the actual context of algebraic
equations to be considered for evaluation must be carefully restricted. As a practical
short-term solution, the ConceptBase user has the option to turn o� the magic set
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Figure 8: Screendump of a sample session with the ConceptBase System

transformation. A solution, which considers special cases of recursion as well as a more
re�ned integration between query processing and view/integrity maintenance, is under
development.

4 The ConceptBase Usage Environment

The ConceptBase Usage Environment is a collection of tools working in a graphical
environment, namely the X Window System and the Andrew Toolkit [BORE90]. These
tools are invoked by the ConceptBase Toolbar:

Telos Editor: The Telos Editor deals with objects in the Telos frame notation. You
can insert or remove the information shown in textual form using the buttons
TELL or UNTELL. If the object in the editor is a query object, you can evaluate it
by pressing an ASK button.
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Display Instances: Lists all instances of a given object in a single-column table.

Display Queries: This tool is a specialization of Display Instances; it shows all in-
stances of the object QueryClass and o�ers the possibility to evaluate a selected
query with the ASK button.

Graph Browser: This tool shows the contents of the knowledge base in its semantic
net representation, and allows menu-based operations on both nodes and links
since links are �rst-class objects in O-Telos. For example, you can show all at-
tributes of a link. The graphical layout of the displayed objects is con�gurable as
you can associate object classes with graphical types for the nodes or links that
represent their instances (e.g., oval, rectangle, gray, blue, dotted) .

Hierarchical Browser: The Hierarchical Browser displays hierarchical relations be-
tween objects relative to a given set of start objects and given link types. The
speci�ed link label is followed not only by direct connected links but also in a tran-
sitive manner. A depth parameter speci�es how far the links should be followed
in the semantic net. The found objects are presented in a tabular form with the
possibility to further unfold the table dynamically.

Query: The query interface is used to specify the parameters for the evaluation of
a stored query class. The computed result is displayed in an answer window
containing all frames which are instances of the given query class and therefore
are the answers to the query.

Fig. 8 shows a screendump of a session using the example from the previous chapters.
At the top you can see a Hierarchical Browser starting from the object Class dis-
playing all instances for four levels. The table is unfolded at the object Manager. The
ConceptBase Toolbar is placed at the top right under some icons. On the right, there
are two windows from Display Instances, one containing the instances of Manager,
the other some available queries. The main part of the screen is consumed by a Graph

Browser that shows a part of the semantic net. The specialization link between Manager
and Employee is drawn as a bold arrow, instantiation links are dotted. The textual rep-
resentation of the object Mary and the query used in the previous section are shown in
two Telos Editors.

In addition to these basic interface tools of the ConceptBase system, users can de�ne
special tools for applications. Figure 9 shows the server as part of a more complex en-
vironment connected by a communication channel. The server o�ers the two operations
TELL & ASK to the environment. The numbers behind the tool names indicate that
more than one instance of a tool may participate in the environment, for instance, there
are two processes of class relDBMS in the environment. The communication protocol
uses standard interprocess communication (IPC). The reason for selecting IPC are its
large distribution (almost any UNIX implementation o�ers IPC) and its ability to hide
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Figure 9: Client-Server architecture of ConceptBase

details on where the communicating processes are located on the network. Thus, wide-
area (up to continent-spanning) distribution of ConceptBase is easily available and has
been used in several applications.

While interprocess communication solves the principal problem of exchanging data be-
tween distributed processes and calling remote procedures, it does not o�er semantic
control. ConceptBase therefore contains three builtin classes Tool, Operation, and
Object. An environment is abstractly modeled by enumerating the allowed tools, their
operations, and the object types processed by the operations. At runtime, the con�g-
uration of the environment is an instance of the abstract model represented as part of
ConceptBase's object base. As soon as a tool registers itself as an instance of its tool
class in ConceptBase, its operation become accessible to the rest of the environment.

Representing the environment as part of the object base makes it subject to the deduc-
tive abilities of ConceptBase. For example, access rights can be encoded as deductive
rules [SJ92]. Operations applicable to an object can be deduced from the object's class,
and then be passed to a tool supporting that operation. The most signi�cant advantage,
however, is that updates to the environment are mirrored as updates on their abstract
representation in the object base. The following query class computes applicable oper-
ations for any object:

QueryClass ApplicableOperation isA EnvOperation with
parameter

obj: Object
attribute

tool: EnvTool
constraint

whatOp: $ exists c/Class (obj in c) and (this input c) and
(this supported_by tool) $

end
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The class EnvOperation is an instance of class Operation and subsumes all operations
allowed in the environment. Given a selected object obj the formula expresses that
a solution this, i.e. an applicable operation, is computed by retrieving all operations
which specify the class c of obj as their input. The tools supporting the operation are
attached as attributes of the solutions.

5 Applications

As mentioned before, many users inside and outside our research group have made ex-
periments with the language. In these applications, the abstraction mechanisms o�ered
by O-Telos for structuring information turned out to be equally important as the de-
ductive database capabilities. Quite often, O-Telos models are being used to structure
complex information such that the system serves as a means of analyzing systems at
the requirements or meta data level. In such applications, non-computer scientist users
found the system superior to traditional simple modeling tools such as SADT diagrams
but also easier to understand than very complex object-oriented modeling formalisms. In
the following, we briey summarize experiences in two major application domains, soft-
ware information management and hypertext authoring. The �rst one has been DAIDA
[JARK93] where ConceptBase served as a global database covering the development
process from requirements models to database application programs.

Software information systems are an example of applications where heterogeneous
objects and tools have to be integrated with a particular task in mind. More speci�-
cally, a software repository is a system for managing evolving (software) objects where
dependencies between objects (like "A is compiled to B") have to be maintained. A
language for software repositories has to combine abstractional, assertional, and dy-
namic classifying features. The �rst requirement stems from the fact that software ob-
jects (speci�cations, documentation, designs, implementations) typically are dissimilar
in their instances and that the language should allow for easily describing common prop-
erties. The assertional feature is required for integrity constraints, e.g. each imported
property of a software module must be exported by another module.

QueryClass ReleasedProgram isA Program with
parameter

producer: Agent
constraint

is_released: (this in_state Released) and
(this owner producer)

end

The above example (taken from [RJM92]) shows a typical query class used for dy-
namic classi�cation of objects. ConceptBase allows to store such queries as perma-
nently just like any other class. Note that membership to this class is derived and
that updates to the software repository may change the membership of certain ob-
jects. The parameter in the query class is used to specialize the query. For example,
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ReleasedProgram[John/producer] denotes all released programs owned by an agent
with name John. A software repository o�ering these features has been implemented
with ConceptBase within the Canadian network of excellence program. Other appli-
cations within this domain include similarity-based component retrieval in software
reuse [CHE93], group support, prototyping, and traceability for requirements engineer-
ing [RD92], [RL93].

The O-Telos object base structures developed in these projects seem to be of interest
beyond the software engineering domain. Computer-integrated quality management is
the theme of a project that tackles the problem of communication gaps between iso-
lated quality assurance tools in industrial engineering. The project started with the
de�nition of a shared ontology which contains de�nitions for items like Product, Team,
ProductionProcess etc. and their relationship to the quality assurance tools. The
de�nitions are written using O-Telos classes and stored in ConceptBase. Currently, the
de�nitions contributed by the project partners are informally discussed and voted upon
via the CoAUTHOR mechanism described below.

CoAUTHOR is an extension of ConceptBase in which nodes can be multimedia ob-
jects, thus generating a knowledge-based hypertext environment [EJ91]. Additionally,
CoAUTHOR includes an O-Telos meta model which de�nes a real-time environment
for the development of hypertext documents by multiple authors. CoAUTHOR's doc-
ument model distinguishes between ideas (subsuming the issues to be covered by the
document), structures (enriched tables of contents), and hypermedia objects (constitut-
ing the �nal document, see also �g. 10).

CoAUTHOR uses the client/server architecture of ConceptBase to support multiple
authors developing a document. The descriptions at any of the three levels can be an-
notated by the authors via so-called voting links (Pro for accepting, Counter for denying,
and Alternative for proposing a variant). The deductive capabilities of ConceptBase
are used to classify the created objects on their voting. The following query de�nes
ideas which have both pro and counter votes.
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QueryClass Conflicting isA CoAUTHOR_Object with
constraint

conflicting: $ exists p/Pro c/Counter
(p target this) and (c target this) $

end

6 Conclusions

ConceptBase is a deductive object-oriented database which is particularly close to the
deductive database approach. Without leaving the Datalog (with negation) framework,
it makes object-oriented abstraction mechanisms available to the user, thus providing
signi�cant help for data structuring as compared with relational deductive databases.
By its semantic closeness to the relational approach, it di�ers from the many recent
attempts for a logical reconstruction of object-oriented database which, because they
tend to work with more complicated logics (e.g., F-Logic [KL89], COL [AG91]), typically
have to invent new implementation techniques rather than building on existing ones.
This simplicity may also have been one of the factors determining the relatively large
practical success of the system. The query language supported is similar to those o�ered
by other object-oriented databases [CD91] but, like in deductive databases, more directly
integrated with the rest of the data model; this has led to some useful ideas with many
applications, such as the parameterization of query classes [SNJ93].

The O-Telos data model also naturally supports a two-layered implementation tech-
nique for deductive object bases, discussed in [JJR89], which is currently widely used in
making active databases more declarative (STARBURST is a typical example [CW90]).
The surface layer of the language works with global assertions (rules, constraints, query
classes). These are then compiled to object-centered triggers which attach evaluations of
specialized forms to exactly those classes of objects where insertions or deletions neces-
sitate view maintenance. In ConceptBase, this approach is formally supported through
the notion of an internal deductive object base in which the triggers are embedded.
Experiments by ourselves and others [BM91], [RB90] show that the declarative form
is much more concise and less error-prone than directly implementing the triggers as
methods of object-oriented databases such as O2.

The overall system architecture has by now reached a "sandwich" structure where the
deductive, logic-centered part provides the "butter" between two pieces (the clients and
the storage structure) which are essentially object-oriented in nature. This seems to
exploit well the strength of the deductive approach in program transformation. We plan
to strengthen further this approach by two measures. First, by using the logic layer as a
tool of generating direct interoperability between client and storage structure, without
passing data through the logic layer. This is expected to increase performance for com-
plex object databases considerably, without making the logic much more complicated.
Second, by extending the idea of query classes to a full integration of our approach with
so-called concept logics in the style of KL-ONE [BS85] which allows for an automatic
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classi�cation of certain objects and thus for a further reduction of the search space in
many applications [BJNS93].
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7 Appendix

7.1 Complete List of O-Telos Axioms

� Axiom 1: Object identi�ers are unique.
8 o; x1; l1; y1; x2; l2; y2 P (o; x1; l1; y1) ^ P (o; x2; l2; y2))
(x1 = x2) ^ (l1 = l2) ^ (y1 = y2)

� Axiom 2: The name of individual objects is unique.
8 o1; o2; l P (o1; o1; l; o1) ^ P (o2; o2; l; o2)) (o1 = o2)

� Axiom 3: Names of attributes are unique in conjunction with the source object.
8 o1; x; l; y1; o2; y2 P (o1; x; l; y1) ^ P (o2; x; l; y2)) (o1 = o2) _ (l = in) _ (l = isa)

� Axiom 4: The name of instantiation and specialization objects (in, isa) is unique
in conjunction with source and destination objects.
8 o1; x; l; y; o2 P (o1; x; l; y)^ P (o2; x; l; y) ^ ((l = in) _ (l = isa))) (o1 = o2)

� Axioms 5,6,7,8: Solutions for the predicates In, Isa, and A are derived from the
object base.
8 o; x; c P (o; x; in; c)) In(x; c)
8 o; c; d P (o; c; isa; d)) Isa(c; d)
8 o; x; l; y; p; c;m; d P (o; x; l; y) ^ P (p; c;m; d) ^ In(o; p)) A0(x; l;m; y)
8 x; l;m; y A0(x; l;m; y)) A(x;m; y)

� Axiom 9: An object x may not neglect an attribute de�nition in one of its classes.
8 x; y; p; c;m; d In(x; c) ^A(x;m; y)^ P (p; c;m; d))
9 o; l P (o; x; l; y) ^ In(o; p)

� Axioms 10,11,12: The isa relation is a partial order on the object identi�ers.
8 c In(c;#Obj)) Isa(c; c)
8 c; d; e Isa(c; d) ^ Isa(d; e)) Isa(c; e)
8 c; d Isa(c; d) ^ Isa(d; c)) (c = d)

� Axiom 13: Class membership of objects is inherited upwardly to the superclasses.
8 p; x; c; d In(x; d) ^ P (p; d; isa; c)) In(x; c)

� Axiom 14: Attributes are "typed" by their attribute classes.
8 o; x; l; y; p P (o; x; l; y) ^ In(o; p)) 9 c;m; d P (p; c;m; d) ^ In(x; c) ^ In(y; d)

� Axiom 15: Subclasses which de�ne attributes with the same name as attributes
of their attributes must re�ne these attributes.
8 c; d; a1; a2;m; e; f
Isa(d; c) ^ P (a1; c;m; e) ^ P (a2; d;m; f)) Isa(f; e) ^ Isa(a2; a1)

� Axiom 16: If an attribute is a re�nement (subclass) of another attribute then it
must also re�ne the source and destination components.
8 c; d; a1; a2;m1;m2; e; f
Isa(a2; a1) ^ P (a1; c;m1; e) ^ P (a2; d;m2; f)) Isa(d; c) ^ Isa(f; e)
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� Axiom 17: For any object there is always a unique "smallest" attribute class with
a given label m.
8 x;m; y; c; d; a1; a2; e; f (In(x; c) ^ In(x; d) ^ P (a1; c;m; e)^ P (a2; d;m; f)
) 9 g; a3; h In(x; g) ^ P (a3; g;m; h) ^ Isa(g; c) ^ Isa(g; d))

� Axioms 18-22: Membership to the builtin classes is determined by the object's
format.
8 o; x; l; y (P (o; x; l; y), In(o;#Obj))
8 o; l (P (o; o; l; o), In(o;#Indiv))
8 o; x; c (P (o; x; in; c), In(o;#Inst))
8 o; c; d (P (o; c; isa; d), In(o;#Spec))
8 o; x; l; y (P (o; x; l; y) ^ (o 6= x) ^ (o 6= y) ^ (l 6= in) ^ (l 6= isa), In(o;#Attr))

� Axiom 23: Any object falls into one of the four categories.
8 o In(o;#Obj)) In(o;#Indiv) _ In(o;#Inst) _ In(o;#Spec) _ In(o;#Attr)

� Axioms 24-28: There are �ve builtin classes.
P (#Obj;#Obj;Object;#Obj)
P (#Indiv;#Indiv; Individual;#Indiv)
P (#Attr;#Obj; attribute;#Obj)
P (#Inst;#Obj; InstanceOf;#Obj)
P (#Spec;#Obj; IsA;#Obj)

� Axiom 29: Objects must be known before they are referenced. The operator � is
a (prede�ned) total order on the set of identi�ers.
8 o; x; l; y P (o; x; l; y)) (x � o) ^ (y � o)

� Axioms 30*: For any object P (p; c;m; d) in the extensional object base we have
two formulas for "rewriting" the In and A predicates.
8 o In(o; p)) In:p(o)
8 o; x; l; y P (o; x; l; y) ^ In(o; p)) A:p(x; y)

The objects Class, QueryClass, Tool etc. mentioned in the paper are not part of the
O-Telos axioms but prede�ned in ConceptBase. ConceptBase implements some of the
axioms as rules (e.g., axioms 13, 30*), others as integrity constraints.
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7.2 Example of a Query Evaluation

First, we complete our example object base with some additional objects and then
demonstrate the evaluation process for a query class that is based both on the bossrule
and on the query class IndEmp. In addition to the instances PR and R&D of Department
we assume a department Staff, declare Mary as head of R&D, a new manager Bill as
head of PR and introduce two other new employees John and Mike (see �g. 8).

Mike in Employee with John in Employee with
dept dept

belongs:Staff works:R&D
salary salary
earns:100000 sal:30000

end end

QueryClass JohnsBosses isA Employee with
constraint
bossOrInd: $ (John boss this) or

(this in IndEmp(John/lowersal)) $
end

The query interface receives a message to execute the operation ASK(JohnsBosses), i.e.
to retrieve all existing employees from the object base who are bosses of John or are
just independent employees but have a higher salary than John.

As in 3.2.3 this query class leads to several equations that are used for the evaluation.
E�ectively, the system has to evaluate two subqueries based on the example equations,
namely A:#boss(John; x) and IndEmp(x; John). Hence the relevant set of equations
selected by the QueryEvaluator is exactly the set displayed in �g. 7 completed with the
missing base equations. The magic relations triggering the forward chaining process for
computing both subqueries are initialized by inserting John into q A:#bossbf and into
q IndEmpfb. Due to the only negated occurrence of IE1 in equation (8) we can compute
the least �xpoint of all other equations and in a second iteration include equation (8).
Thus here the computation of strata is very simple. Fig. 11 shows the individual steps
in both iterations. For a relation r we denote the changes after each step with �r and
indicate the applied equation where (BE) stands for basic equations. The result from
this computation, namely the relations

� A:#boss = f(John;Mary); (Mary;Bill); (John;Bill)g and

� IndEmp = f(Mike; John)g

have to be joined to get the answer instances of the query class JohnsBosses: Mary,Bill
and Mike.
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Iteration 1

step 1 �q A:#bossbf = �q IndEmpfb = fJohng
step 2 �q A:#deptbf = fJohng (3)

�q A:#salaryff = TRUE a (11)
step 3 �A:#dept = f(John;RD)g (BE)

�A:#salary = f(John; 30000); (Mary; 50000); (Mike; 100000)g (BE)
step 4 �sup1;1 = f(John;R&D)g (2)

�sup3;1 = f(John; John; 30000); (John;Mary; 50000); (John;Mike; 100000)g (9)
step 5b �q A:#headbf = fR&Dg (4)

�sup3;2 = f(John;Mary); (John;Mike)g (10)
step 6 �A:#head = f(R&D;Mary)g (BE)

�q IE1 = fMary;Mikeg (12)
step 7 �A:#boss = f(John;Mary)g (1)

�q A:#bossbf = fMary;Mikeg (14)
step 8 �q A:#deptbf = fMary;Mikeg (3)

�sup2;1 = f(John;Mary)g (6)
step 9 �A:#dept = f(Mary;R&D); (Mary; PR); (Mike; Staff)g (BE)
step 10 �sup1;1 = f(Mary;R&D); (Mary; PR); (Mike; Staff)g (2)
step 11 �q A:#headbf = fPR; Staffg (4)
step 12 �A:#head = f(PR;Bill)g (BE)
step 13 �A:#boss = f(Mary;Bill) (1)
step 14 �A:#boss = f(John;Bill) (1)

�sup1;1 = f(Mary;Bill)g (6)
�IE1 = fMaryg (13)

step 15 �q A:#bossbf = fBillg (7)
step 16 �q A:#deptbf = fBillg (3)

Iteration 2

step 1 �IndEmp = f(Mike; John)g (8)

aWe write TRUE and FALSE to indicate (non)emptiness of 0-ary relations.
bPlease note that we don't evaluate (8).

Figure 11: An example �xpoint computation

References
[AG91] Abiteboul S., Grumbach S. "A rule-based language with functions and sets."

ACM Transactions on Database Systems 16, 1, March 1991, pp. 1{30.
[AGJA90] Agrawal R., Jagadish H.V., "Hybrid transitive closure algorithms", In Proc. 16th

International Conference on Very Large Data Bases, Brisbane, Australia 1990.
[ALU93] Abiteboul S., Lausen G., Upho� H., Waller E., "Methods and Rules", In Proc.

ACM SIGMOD, Washington, DC 1990, pp. 32{41.
[BBDG90] Bellosta M.J., Bessede A., Darrieumerlou C., Gruber O., Pucheral Ph., Thevenin

J.M., Ste�en H., "GEODE { concepts and facilities", INRIA - Rocquencourt
1990.

[BDM88] Bry F., Decker H., Manthey R., "A uniform approach to constraint satisfaction
and constraint satis�ability in deductive databases", In Proc. EDBT, pp. 488{
505.

[BJNS93] Buchheit M., Jeusfeld M., Nutt W., Staudt M., "Subsumption between Queries
to Object-Oriented Databases." In Proc. EDBT, Cambridge, UK, March 1994.

36



Also available as Aachener Informatik-Berichte 93-9, RWTH Aachen, Germany,
1993.

[BM91] Bouzeghoub M., M�etais E. "Semantic modeling of object oriented databases."
Proc. VLDB'91, Barcelona, Spanien, pp. 3{14.

[BMS84] Brodie M.L., Mylopoulos J., Schmidt J.W. (ed.), On Conceptual Modelling,
Springer-Verlag.

[BORE90] Borenstein N.S., Multimedia applications development with the Andrew Toolkit,
Prentice-Hall, N.J., 1990.

[BR87] Beeri C., Ramakrishnan R., "On the power of magic", In Proc. 6th ACM
SIGMOD-SIGACT Symp. on Principles of Database Systems.

[BS85] Brachman R.J., Schmolze J.G., "An overview of the KL-ONE knowledge repre-
sentation system." In Cognitive Science 9, 2, April 1985, pp. 171{216.

[CARD75] Cardenas A. F., "Analysis and performance of inverted data base structures", In
CACM, Vol. 18, No. 5, May 1987.

[CD91] Cluet S., Delobel C. "Towards a uni�cation of rewrite based optimization tech-
niques for object-oriented queries." In Proc. VII'eme journ�ees Bases de Donn�ees
Advanc�ees, Lyon, France.

[CGT90] Ceri S., Gottlob G., Tanca L., Logic programming and databases, Springer-Verlag.
[CHE93] Chen P.S., "On inference rules of logic-based information retrieval systems", To

appear in Intl. J. Information Processing & Management, 1993.
[CW90] Ceri S., Widom J. "Deriving production rules for constraint maintenance." In

Proc. 16th VLDB Conf., Brisbane, Australia, pp. 566{577.
[EJ91] Eherer S., Jarke M., "Knowledge-based support for hypertext co-authoring", In

Proc. 2nd Intl. Conf. Database and Expert Systems Applications (DEXA'91),
Berlin, Germany, Aug. 21-23, 1991, pp. 465{470.

[FUV83] Fagin R., Ullman J.D., Vardi M.Y., "On the semantics of updates in databases",
In Proc. of Second ACM SIGACT-SIGMOD, pp. 352{365.

[GALL90] Gallersd�orfer R., Realization of a deductive object base by abstract data types (in
German), Diploma thesis, Universit�at Passau, Germany 1990.

[JARK93] Jarke M. (ed.), Database application engineering with DAIDA, Springer-Verlag,
1993.

[JBR*93] Jarke M., Bubenko J., Rolland C., Sutcli�e A., Vassiliou Y., "Theories underlying
requirements engineering { an overview of NATURE at Genesis.", In Proc. 1st
Int. IEEE Symposium on Requirements Engineering, San Diego.

[JEUS92] Jeusfeld M., Update control in deductive object bases (in German), In�x-Verlag,
St.Augustin, Germany.

[JJ91] Jeusfeld M., Jarke M., "From relational to object-oriented integrity simpli�ca-
tion", In Proc. 2nd Int. Conf. on Deductive and Object-Oriented Databases, LNCS
566, Springer-Verlag, pp. 460{477.

[JJR89] Jarke M., Jeusfeld M., Rose T., "Software process modeling as a strategy for
KBMS implementation." In Proc. 1st Intl. Conf. Deductive and Object-Oriented
Databases, Kyoto, Japan, Dec. 1989.

[KL89] Kifer M., Lausen G., "F-Logic: a higher-order language for reasoning about ob-
jects, inheritance, and scheme." In Proc. ACM-SIGMOD Int. Conf. on Manage-
ment of Data, Portland, Oregon, 1989, pp. 134{146.

[KM90] Kakas A,C., Mancarella P., "Database updates through abduction." In Proc.
VLDB, Brisbane, Australia, 1990, pp. 650{661.

[KUEC91] K�uchenho� V., "On the e�cient computation of the di�erence between consec-
utive database states", In Proc. 2nd Intl. Conf. Deductive and Object-Oriented
Databases, M�unchen, Germany, Dec. 1991.

[LEA91] Lea D., User's Guide to the GNU C++ Library, 1991.
[LT84] Lloyd J.W., Topor R.W., "Making PROLOG more expressive", In Journal of

Logic Programming, pp. 225-240, March 1984.

37



[MBJK90] Mylopoulos J., Borgida A., Jarke M., Koubarakis M., "Telos { a language for
representing knowledge about information systems", In ACM Trans. Information
Systems 8(4), pp. 325{362.

[OLIV91] Oliv�e A., "Integrity constraints checking in deductive databases", In Proc.
VLDB'91, Barcelona, Spain, pp. 513{524.

[PT92] Pucheral P., Thevenin J.-M. "Pipelined query processing in the DBGraph storage
model." In Proc. EDBT'92, Vienna, Austria, March 1992, pp. 516{533.

[RB90] Rios-Zertuche D., Buchmannn A. Execution models for active databases { a com-
parison. Technical Report, GTE Laboratories, Waltham, MA, 1990.

[RD92] Ramesh B., Dhar V., "Process knowledge-based group support for requirements
engineering", In Jounal of Intelligent Information Systems 1,1.

[RJM92] Rose T., Jarke M., Mylopoulos J., "Organizing software repositories { model-
ing requirements and implementation experiences", In Proc. 16th Intl. Computer
Software & Applications Conf., Chicago, IL, Sept. 23-25, 1992.

[RL93] Ramesh B., Luqi "Process knowledge based rapid prototyping for requirements
engineering." In Proc. IEEE Intl. Symposium on Requirements Engineering
(RE'93), San Diego, CA, Jan. 1993, pp. 248-255.

[SIGA91] "Special Issue on Implemented Knowledge Representation and Reasoning Sys-
tems", SIGART Bulletin 2,3, June 1991.

[SJ92] Steinke G., Jarke M., "Support for security modeling in information systems
design", In Proc. IFIP 11.3 Working Conf. on Database Security, Vancouver,
Canada, August 19-22, 1992.

[SLT91] Scholl M., Laasch C., Tresch M. "Updatable views in object-oriented databases."
In Proc. 2nd Int. Conf. on Deductive and Object-Oriented Databases, LNCS 566,
Springer-Verlag, pp. 189{207.

[SOKO91] Sokolowski S., Applicative high order programming, Chapman and Hall Comput-
ing Series, 1991.

[SNJ93] Staudt M., Nissen H.W., Jeusfeld M.A., "Query by class, rule and concept." To
appear in Applied Intelligence, Special Issue on Knowledge Base Management.

[STAN86] Stanley M.T., CML { a knowledge representation language with application to
requirements modelling, M.S.thesis, University of Toronto, Ontario.

[STAU90] Staudt M., Query representation and evaluation in deductive object bases (in
German), Diploma thesis, Universit�at Passau, Germany.

[STRO92] Stroustrup B., The C++ programming language, Second Edition, Addison-
Wesley, 1992.

[SZ90] Shaw G.M., Zdonik S.B., "A query algebra for object-oriented databases", In
Proceedings of the 6th Int. Conf. on Data Engineering, pp. 154-162.

[THOE92] Th�onnissen H.J. Design and implementation of an object algebra for a deductive
object base system (in German), Diploma thesis, RWTH Aachen, Germany.

[TKDE90] Special Issue on Database Prototype Systems, IEEE Trans. on Knowledge and
Data Engineering 2, 1, March 1990.

[ULLM88] Ullman J.D., Principles of Database and Knowledge Base Systems, Vol. I., Com-
puter Science Press 1988.

[ULLM89] Ullman J.D., Principles of database and Knowledge Base Systems, Vol. II., Com-
puter Science Press 1989.

[VALD87] Valduriez P., "Join indices", In ACM TODS, Vol. 12, No. 2, June 1987.
[VD91] Vandenberg S.L., DeWitt D.J., "Algebraic support for complex objects with ar-

rays, identity and inheritance", In Proc. ACM-SIGMOD Int. Conf. on Manage-
ment of Data, pp. 158-167, 1991.

[VW91] Vossen G., Witt, K.-U., FASTFOOD: a formal algebra over sets and tuples for
the FOOD object-oriented data model, Report 91/03, University of Gie�en.

38


