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Regression Analysis for Simulation Practitioners 


JACK P. C. KLEIJNEN 

School of Economics, Social Sciences and Law, Tilburg University, Netherlands 


Some simple extensions of elementary regression analysis usef~~l  for analyzing simulation experiments 
are given. In simulation variance estimates (standard errors) are usually available but often do not 
satisfy the assumption of constant variance wl~ic l~  underlies elementary regression analysis. Two 
approaches are possible: either switch to Generalized (or Weighted) Least Squares or continue to use 
Ordinary Least Squares. The consequences of both approaches are surveyed. Testing the adequacy of 
the regression model is discussed in detail. A case-study illustrates the statistical techniques. Alterna; 
tives to Least Squares are briefly indicated. 

INTRODUCTION 

IN MOST practical and academic simulation studies the experimenter obtains an estimate 
J of the system response of interest (e.g. mean queuing time) plus the standard error s of 
this estimate. The standard errors si(i = i, . . . , N) of the responses for N different system 
configurations often show large differences, and hence the assumption of constant vari- 
ance obviously does not hold. For example, in a case-study s: ranged from 64 to 93,228. 
It has become more and more accepted to analyse the outputs of a simulation experi- 
ment by using techniques like Analysis of Variance (ANOVA) and regression analysis, 
ANOVA being just a special case of regression analysis.' However, in virtually all practi- 
cal applications constant variance is assumed. 

When conducting a simulation experiment, the investigator has in his mind a list of 
possibly important factors or variables. He starts out with a tentative regression model; 
this metamodel formalizes the effects of the factors on the simulation model's response. 
To estimate these effects a number of system variants specified by the factor combi- 
nations, is simulated. From the simulation responses y and the combinations of variables 
X the effects p are estimated, using either Ordinary of Generalized Least Squares (OLS, 
GLS). The resulting regression model is validated using a few additional simulation runs. 
For the validated regression model, the significance of the various effects is tested. The 
case-study shows that GLS results are more accuratc than OLS results. Readers inter- 
ested in technical details and additional references may write to the author for the 
original, unabridged version. 

LEAST SQUARES AND HETEROGENEOUS VARIANCES 

Ordinary Least Squares uses a strictly mathematical (i.e, non-statistical) criterion: mini- 
mize the sum of squared deviations. The resulting estimator is 

If the standard statistical assumptions of normally and independently distributed (NID) 
errors e with constant variance a2 and zero expectation, i.e. 

e - NID (0,a2)  (2) 

are introduced, then the OLS estimator is known to be the best linear unbiased estimator 
(BLUE), "best" meaning minimum variance. The covariance-matrix of is 
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In practice (3) is applied using standard software. Usually the common variance o 2  in (3) 
is estimated from the Mean Squared Residuals (MSR): 

Y 

MSR = 1(yl - ' (N  - q )  
1 

where y denotes the number of estimated parameters. The MSR has only (N - y) degrees 
of freedon (d.f.) whereas in simulation each run provides an  estimator s5with  di degrees 
of freedom when the total run i is divided into (di + 1) independent subruns. If a com- 
mon variance were assumed, the N runs could be combined to yield a pooled estimator 
of 02 with Zdi degrees of freedom. Hence the information about the standard errors 
could be used to give a more precise extimator of 02,  if a common variance is assumed. 

If the variances are not equal, then the OLS algorithm may still be used, but then (3) 
does not hold anymore. T o  derive the correct standard errors of the OLS estimators b, 
consider a vector of stochastic variables, say Y , ,  with covariance matrix R 1 . Next intro- 
duce a linear transformation of Y 1 : 

Y2 = A . Y 1 .  ( 5 )  

Then Y2's covariance matrix can be proven2 to be 

Applying this result'to (I), defining for convenience 

results in the covariance matrix of 6: 

where R denotes the covariance matrix of e (or equivalently J,). An estimator hi, can be 
easily computed by a computer program that reads the values of the independent vari- 
ables X and the estimator 1 fi.Obviously the OLS estimator remains unbiased. 

Summarizing so far, if the variances are not constant then (3) and (4) are replaced by 
(8) in which R is estimated from the N individual simulation runs, and fi becomes a 
diagonal matrix D with elements s!, each s? having tli degrees of freedom. 

Note that in simulatioll the observations 1. can indeed be made strictly independent 
through the use of difTerent raiido~il l l ~ ~ m b e r s  run (110 common or in each sirnulatioil 
antithetic random numbers). Hence R is reduced to the diagonal matrix D. In the 
simulation of steady-state behaviour, runs might be continued until each run yields the 
same estimciteii variance. In practice such an approach is not popular. 

If the standard assumptions in (2) d o  ilot hold, then a BLUE results when G L S  is 
applied : 

The covariance matrix of the G L S  estimator is 

For independent observations R reduces to the diagonal matrix D, and G L S  can be 
simplified to weighted least squares, the weight for observation J . ~being inversely propor- 
tional to its variance o!. However, in practice R or D is unknown and has to be 
estimated. Two options are available: 

(i) Use OLS even when the classical assumptions of (2) are violated and apply (8). 
(ii) Estimate R and substitute the estimator fi into (9). As Schmidt%shows, the result- 

ing estimator has the same asymptotic distribution as the regular G L S  estimator and 
remains unbiased (under mild technical co~iditions). Unfortunately. its exact snlall sample 
behaviour is unknown. Elsewhere4 a small Monte Carlo experiment is presented includ- 
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ing the following sampling results: 
--GLS with estimated covariance matrix 6 gives point estimators with smaller vari- 

ances than OLS estimators. This result is intuitively acceptable because OLS yields 
BLUE only if the variances a: are constant; the "estimated GLS" incorporates the 
informatioil sz on the actual variances oz. 

-For the "estimated GLS" estimators the standard errors might still be computed 
through (10). a formula--strictly speaking--valid for known !2 or for "large" samples. 
(Intuitively, replacing !2 by its estimator fi increases the variance compared to ( lo)!)  

The significance of an estimated regression parameter pj( j  = 1. . . . 11) call be tested by 
the Student t-test: 

Here /39 is the hypothesized value, usually zero. The denominator follows from the maill 
diagonal of!% The index d denotes the d.f. of t .  In simulation s ?  has so many d.f. that !.
the t-distribution can be replaced by the standard normal distribution. If the postulated 
value /39 is accepted, the regression model's remaining parameters jj ( j  # j) can be 
reestimated. 

VALIDATION O F  T H E  REGRESSION METAMODEL 

The metamodel should explain how the more complicated simulation model's output y 
reacts to changes in the simulation model's input factors x, through sk(k 3 1). The 
experimental design fixes xi, through .yik with i = 1 , . . . , N. The metamodel may further 
include interaction terms like x i l s ik ,  quadratic terms like s?,, etc. which are completely 
determined by the choice of the design.' Deciding which interactions to include in X 
specifies the form of the nletamodel which is linear ill its parameters p :  

If (12) is a good approximation, using estimators for its parameters p yields an  accurate 
predictor j l .  This predictor can be checked against the outcome of ail actual simulation 
run y. More precisely, let x,+, denote the columil vector of prespecified values of the 
independent variables in a new simulatioli run, i.e. this run was not used in computing 
the estimator b, ill other words x,+, is not iricluded in X. Hence the expected value of 
the simulation output is predicted by 

Using (6) yields 

var ();,+,) = x L + , . ! 2 i , . x ~ + ,  (14) 

where !2ji is given in (8) or (10). The simulation program reads x,+ , and yields the 
output jl,+, with its estimated variance s,$+,, based on I/,+, degrees of freedom. The 
model's validity can be tested through a Student t-statistic: 

where d (the d.f. of t )  may be set to the minimum of the d.f. of v i r  (j,+,) and v i r  (yAr+ ,). 
resulting in a conservative test, i.e. the actual type I error may be smaller than the 
nominal a-value.' 

If the constant-variance assumption holds, then an F-test for lack-of-fit is possible. 
This test compares the estimators s? to the Mean Squared Residuals of (4).Apart from its 
restrictive assumptions, its power (inverse of /3-error) is low, when its d.f. are small. Note 
that authors disagree about the sensitivity of the F-test to heterogeneity of variance and 
to nonnormality. 

37 
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After a validation run is accepted, it can be added to X and y so that P can be 
estimated more precisely. It seems wise to have x,,, correspond with the centre of the 
design (i.e. the quantitative factors satisfy .u = 0) to test quadratic effects. Some validation 
runs (N + 1, N + 2, . . . ) should correspond to s-values occuring in practice, because the 
use of experimental designs to specify X means that the s-values correspond to reason- 
able extreme conditions rather than to common conditions. A trick to obtain validation 
runs is to delete one run i from the N old observations, yielding y'j) and X") and to use 
y(') and X(') to compute @'I. The jj") can be used to predict j i .  

SIMULTANEOUS TESTS 

Regression analysis involves a number of tests, for the estimated regression model is 
checked against one or more validation runs and individual parameters / are tested. 
These multiple tests raise the problem of "experimentwise" error rates. 

In the case study reported in the next section, ten extra runs are available to test the 
adequacy of the regression (meta)model. By definition the a-error implies 

Hence even if the null-hypothesis of an adequate model holds, 10 validation runs are 
expected to result in one significant t-value if a traditional a of 10% is used. The simplest 
solution is to replace a in (16) by xltz where rz is the number of tests, i.e, J? = 10. Instead of 
this simple Bonferroni approach more complicated "multiple comparison procedures" 
are available. Note that protection of the 2-error increases the /-error, i.e. it becomes 
more difficult to detect an incorrect model specification. Therefore the experimentwise 
error rate is usually fixed at a high value such as 2096. 

Next, consider the evaluation of separate components of the model. As an illustration 
assume that the model incorporates k factors: 

Then the parameters pj  can be tested through the t-test of (11). Each factor is considered 
individually, i.e. the interpretation of the experiment does not hinge on the joint results of 
the tests. Therefore the familiar "per comparison" error rate of, say, a = 10% is rec-
ommended. Remember that in the validation phase the model is rejected if any validation 
run yields a significant t-value, i.e., the experimentwise error rate is then relevant. 

Consider another example, in which only two factors are studied, but a more compli- 
cated model is postulated: 

Suppose that the t-test of (1 1) shows that all p's are significant except for p1,. Remember, 
that D l ,  is an unbiased estimator of P1, ;  if the assumptions of (2) hold, then D l ,  is a 
BLUE. Strong reasons may exist to formulate a null-hypothesis. For instance, in (17) the 
parsimonious character of scientific models requires that instead of postulating that 
"everything depends on everything else", the observation J should be explained by as few 
factors as possible: HbJ':P, = 0 (j= 1 , . . . ,k). Equation (18), however, postulates that 
a quadratic polynomial in x, and s,. Hence a small, but non-zero, value of P I ,  should be 

is !% 

maintained rather than set to zero. 
A different question may arise: can (18) be replaced by a simpler model, namely a first 

degree polynomial in x1 and s 2 ?  This question can be answered in different ways:6 
(1) Formulate the co~npositehypothesis-

where A denotes the logical operator "and". The experimentwise error is controlled if a 
common variance is assumed and the appropriate ANOVA F-test is used, i.e. pool the 



sums of squares corresponding with B12, PI1  and Bz2  and divide by the sum of tlie 
corresponding d.f.; next compare this ratio to an independent estimate of pure error. 

(2) The hypothesis of (19) can also be tested by applying the individual t-tests of (1 1) 
with r replaced by x i3:  Bonferroni approach. 

(3) A cruder approach estimates the first-order polynomial 

and validates this model with runs not used in esttmating (20); see (15). This alternative is 
cruder. because if the simpler model of (20) is rcjected, it is unknown whether this 
rejection is caused by a large valuc for PI,. for / J l l  o r  for P,,. 

AN APPLICATION 

This section s~~minar izes  a case study presented in detail elsewhere7 (the previous publi- 
cation includes some erroneous Monte Carlo results.) Europe Container Terminus (ECT) 
in the Rotterdam harbour provides facilities for haildling and storing containers. A 
simulation model represents storage capacity as a function of yearly throughput (pro- 
duction). A given amount of annual productioil can 1-5 realized by many small ships or 
by a few big ships; hence define tlie mean ship-sizc s1and the arrival rate .u2. Four more 
factors are investigated, x, through s,. Every 8 simulated hours, the simulation gives a 
snapshot of the storage size. From this time series u,, ( t  = 1 , . . . , T) a f r e q ~ ~ e ~ l c y  diagram 
is formed. The frcque~icy diagram yields an average and a few selected q ~ ~ a n t i l e s  such as 
the 909; quailtile. Figure 1 is a simplified flowchart of the simulation model. The present 
summary concentrates on the average storage capacity J, (or \\. = C\c,jT in tlie above 
symbols). The other outputs such as the 90% q~laiitile are analyzed similarly, although 
more sophisticated multivariate analysis would be better. 

The complicated simulation model of Figure 1 defines a function f :  

y = f (x1,. . . , .Y,, r) (21) 

where r is the random number vector. The complicated function f is approximated (in 
thc area of experimentation) by a regression model linear in its parameters /3 but not 
~leccssarily linear in the variables s. Preliminary studies suggested that the response y 
reacts nonliiiearly to the interarrival time but linearly to the interarrival rate; therefore a 
simple transformation 1,'x simplifies the model. Quadratic effects (of the quantitative 
factors s1through x3) are assumcd to be zero. Interaction effects between factor 2 and 
the other factors are suspected to be important: introduce BIZ, / JZ3,  f124, f l z5  and PZ6 
Moreover, J13 may be important. So P compriscs one overall mean Po, six main effects 
/jl through P,. and six interactions, altogether ii = 13 parametcrs. The selection of an 
appropriate X is in the domain of experimental design the~ry. ' , "~~l ica t ion of this 
theory results in a 16 by 13 X-matrix. (Readers familiar with experimental design tecli- 
niques can construct X by using the generators 1 = 56 and 3 = 45.) So 3 degrees of 
freedom remain for a possible F-test for lack-of-fit. However, instead of this F-test the 
t-test of (15) is applied to ten extra runs executed in add i~ ion  to the above 16 runs. 

In Table 1 the standard errors for the G L S  estimates /3 and hence the corresponding 
t-values, are based on the asymptotic formula (10). In Table 2 viir (J.) can be computed 
after dividing each simulation run into nine subruns. Table 2 sho~vs  that the OLS 
rcgression model need not be rejected, since the maximum absolute value of the 10 
t-statistics is 1.67 whereas the significance level is 2.33 for u = 0.20j10 (cxperimeiitwise error 
of 20°',). For G L S  the validation runs need not be rejected either (not shown in tables). 

After accepting the regression model. the 10 validation runs are included in X and y, 
and f l  is reestimatcd. The effects p2, and Dl ,  remain very significant, namely r = 49 and 
5.5. respectively. Using GLS their significance further increases to t = 64 and 7.9. 

Note that the cxperimeiltal design matrix. say Z, consists of standardized variables 
(z= + 1 or z = - I ) .  whereas the actual design and the regressio~l model contains "user" 
variables x. e.g. s, is either 200 or 1000. The user variables have as significant regression 

39 
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TABLE2. MODEL\'ALIDATIOX (OLS) 

parameters D23  and Dl,, whereas the standardized variables would have significant par- 
ameters :,,, .j2, .j3, .j23, .j, and ?,,(in order of decreasing significance, where y denotes the 
parameters of the standardized variables z). 

Summarizing, some parameter estimates D were found to be insignificant, after validat- 
ing the first 16 runs using ten extra runs, and then reestimating P from all 26 runs. Next 
these insignificant parameters are set to zero, and the remaining P's, i.e. P2, and BIZ,  are 
again reestimated. 

In  general, one should examine the residuals y - j. to see whether they satisfy the 
classical assumptions of (2).$ Studying the responses (especially the residuals) and apply- 
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ing common sense to them, revealed certain patterns that suggest the importance of 
interactions until then ignored, namely P14 and PI,. Fortunately, incorporating these two 
new effects into X left X non-singular (see also next section). The resulting f still contains 
as significant parameters only 132, and PI,. 

Instead of backwards elimination of insignificant parameters, one might proceed from 
the other direction. In stepvise vey~.essior~ one new variable is introduced in each step, 
namely the (remaining) variable x showing maximum correlation with the dependent 
variable y. The qualitative results are similar to those obtained from backwards elimin- 
ation: first p2, is introduced, then PI, (and next P14, etc.) 

The above procedure is summarized in Figure 2. The discussion should make it 
obvious that the procedure cannot be used mechanically. The selection of variables in 
regression models is discussed from a statistical viewpoint by H ~ c k i n g . ~  However, speci- 
fying the regression model involves more than a bag of statistical tricks; it also requires 
intuition and prior knowledge based on relevant theories and empirical data. In the 
present case study the most significant parameter p12 was the one parameter suggested 
by a simplified analytical model. 

ALTERNATIVES T O  OLS A N D  GLS 

Both OLS and GLS use as their criterion the minimization of squared residuals. 
Simulation practitioners tend to focus on relatice absolute residuals J y- $ / y .  The 
absolute errors I J >  - $1 lead to a linear programming problem.1° Unfortunately, the 
properties of the latter estimators are unknown, whereas for OLS or GLS the estimators 
are known to be BLUE, and a battery of statistical tests is available. 

The choice of the criterion also affects the sensitivity of the resulting estimates to 
o~itliers,i.e. wild observations of y or x.Robust regression estimators are surveyed in the 
references.11,12 

If the X-matrix is ill-conditionecl, ridge estimation may be of interest, i.e. the estimators 
of f l  are no longer unbiased; however, their bias may be outweighted by a decrease in 
variance attained through a proper choice of the ridge algorithm parameter^.^ In simula- 
tion X might be made orthogonal but introducing unexpected parameters (such as P14 

and in the preceding section) can make X perfectly or nearly singular. 
Dempster et al.13 performed an extensive simulation experiment (160 data sets), 

examining 57 different regression estimators! 
Instead of selecting an appropriate estimation algorithm, a matrix of independent 

variables X can be selected so that the sensitivity of the estimates to outliers is mini- 
mized.14 

One more alternative is provided by the Bayesian decision-theoretic model: prior 
probabilities on parameters like f l  are postulated (Bayes approach), together with loss 
fi~nctions like E\vi (pj - Djl2. Instead of fixing the r-errors, the expected rr posteriori (after 
taking the sample) loss is minimized, or the maximum loss is minimized.13 

CONCLUSION 

T o  mitigate the ad hoc character of simulation, regression analysis can be used to pro- 
duce a metamodel. The metamodel aids in interpreting the simulation results. 

The regression analysis can use OLS or GLS. When applying OLS the experimenter 
should check for nonconstant variances 0;  (estimated from the individual simulation 
runs). When variances change from run to run. the formula for i2fi (the covariance matrix 
of the estimated parameters /3) is affected which changes the corresponding r-test for 
significance. A Monte Carlo experiment suggested that GLS with estimated i2 (covari-
ance matrix of the observations) results in a covariance matrix for the /?-estimators that 
can be approximated accurately by the asymptotic formula (10). 



The regression metamodel's validity can be tested statistically by applying a t-test. 
Multiple validation runs raise the issue of experimentwise error rates. This complicatioil 
may be solved by using the Bonferroni inequality. 

The form of the model and the values specified in nullhypotheses have to come from 
nonstatistical sources such as engineering and management science. Subjective elements 
remain in the selection of the x-values and in the evaluation of the statistical technique's 
sensitivity to assumptions like normality and constant variance. 
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