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QML ESTIMATION OF A CLASS OF MULTIVARIATE GARCH

MODELS WITHOUT MOMENT CONDITIONS ON THE

OBSERVED PROCESS

By Christian Francq

University Lille 3, EQUIPPE-GREMARS

and

By Jean-Michel Zakoïan

CREST and University Lille 3

We establish the strong consistency and asymptotic normality of the

quasi-maximum likelihood estimator of the parameters of a class of multi-

variate GARCH processes. The conditions are mild and coincide with the

minimal ones in the univariate case. In particular, contrary to the current

literature on the estimation of multivariate GARCH models, no moment

assumption is made on the observed process. Instead, we require strict sta-

tionarity, for which a necessary and sufficient condition is established.

1. Introduction. Since the inception of the univariate ARCH and GARCH

models by Engle (1982) and Bollerslev (1990), a wide variety of multivariate ex-

tensions have been proposed. Recent reviews on the rapidly changing literature on

multivariate GARCH models are Bauwens, Laurent and Rombouts (2006), Silven-

noinen and Teräsvirta (2009).

Although the asymptotic theory for multivariate GARCH has been less investi-

gated than for univariate models, several papers have established asymptotic results

for different specifications. Jeantheau (1998) gave general conditions for the strong

consistency of the QMLE for multivariate GARCH models. Comte and Lieberman

(2003) showed the consistency and the asymptotic normality of the Quasi Maximum

Likelihood Estimator (QMLE) for the BEKK formulation. Asymptotic results were
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established by Ling and McAleer (2003) for the CCC formulation of an ARMA-

GARCH, by Hafner and Preminger (2009a) for the Vec model.

In all these references, moment assumptions are made on the observed process.

Given that the existence of such moments is doubtful for many financial series,

such conditions can be restrictive. To our knowledge, consistency and asymptotic

normality results for multivariate GARCH without moments restriction have only

been established by Hafner and Preminger (2009b), for a factor model of the form

FF-GARCH. However, their model is a first-order model (it reduces to the stan-

dard GARCH(1,1) when the dimension is one). For univariate GARCH(p, q), it

took almost twenty years to reach minimal assumptions for the strong consistency

(SC) and the asymptotic normality (AN) of the QMLE. The most significant break-

through in this direction was the paper by Berkes, Horváth and Kokoszka (2003),

although slightly weaker conditions can be found in Francq and Zakoian (2004).

The main contribution of this article is to provide asymptotic results for the Con-

stant Conditional Correlation (CCC) GARCH(p, q) under conditions which parallel

those used in the univariate setting. The CCC-GARCH(p, q), introduced by Boller-

slev (1990) and generalized by Jeantheau (1998), is undoubtedly one of the most

popular multivariate GARCH models. The attractiveness of this class follows from

its tractability: i) the number of unknown coefficients is less than in other specifica-

tions; ii) the conditions ensuring definite positiveness of the conditional variance are

simple and explicit. Moreover, as we will see, the conditions ensuring the existence

of strictly stationary solutions are explicit. Of course, more sophisticated classes of

models can be seen as more realistic. This is in particular the case of the Dynamic

Conditional Correlation (DCC) model introduced by Engle (2002), and studied by

Engle and Sheppard (2001) and Nakatani and Teräsvirta (2009), among others. For

such models, however, establishing a sound asymptotic theory of estimation seems

a formidable task. We view the results of this paper as a first step in this direction.

An outline of the paper can be given as follows. In Section 2, we discuss the

model assumptions and establish the strict stationarity condition. In Section 3 our
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main results concerning the asymptotic properties of the QMLE are stated. Proofs

are relegated to Section 4,

2. Model and strict stationarity condition. Let (εt) denote a vector pro-

cess with dimension m × 1. The process (εt) is called a CCC-GARCH(p, q) if it

verifies

εt = H
1/2
t ηt,

Ht = DtRDt, D2
t = diag(ht)

ht = ω +
q∑

i=1

Aiεt−i +
p∑

j=1

Bjht−j , εt =
(
ε21t, · · · , ε2mt

)′
(2.1)

where R is a correlation matrix, ω is a vector of size m × 1 with strictly positive

coefficients, the Ai and Bj are matrices of size m×m with positive coefficients, and

(ηt) is an iid sequence of centered variables on Rm with identity covariance matrix.

The CCC model was introduced by Bollerslev (1990) in a simplest version, assum-

ing that the matrices Ai and Bj are diagonal. By contrast, in (2.1) the conditional

variance hkk,t of the k-th component of εt depends not only on its past values but

also on the past values of the other components. For this reason, Model (2.1) is

referred to as the Extended CCC model by He and Teräsvirta (2004).

In the latter reference, a sufficient condition for second-order and strict stationar-

ity of a CCC-GARCH(1,1) is given. A sufficient condition for strict stationarity and

the existence of fourth-order moments of the CCC-GARCH(p, q) is established in

Aue, Hörmann, Horváth, and Reimherr (2009). Our first result provides a necessary

and sufficient strict stationarity condition for the same model.

Write

εt = Dtη̃t, where η̃t = R1/2ηt (2.2)
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is a centered vector with covariance matrix R. Thus

εt = Υtht, where Υt =



η̃2
1t 0 . . . 0

0
. . .

...
. . .

0 . . . η̃2
mt


.

Let the (p + q)m× (p + q)m matrix

Ct =



ΥtA1 · · · ΥtAq ΥtB1 · · · ΥtBp

Im 0 · · · 0 0 · · · 0

0 Im · · · 0 0 · · · 0

...
. . . . . .

...
...

. . . . . .
...

0 . . . Im 0 0 . . . 0 0

A1 · · · Aq B1 · · · Bp

0 · · · 0 Im 0 · · · 0

0 · · · 0 0 Im · · · 0

...
. . . . . .

...
...

. . . . . .
...

0 . . . 0 0 0 . . . Im 0



(2.3)

We are now in a position to state the following result.

Theorem 2.1. A necessary and sufficient condition for the existence of a

strictly stationary and non anticipative solution process to Model (2.1) is γ(C0) < 0,

where γ(C0) is the top Lyapunov exponent of the sequence C0 = {Ct, t ∈ Z}

defined in (2.3). This stationary and non anticipative solution, when γ(C0) < 0,

is unique and ergodic.

The following result provides a necessary strict stationarity condition which is

simple to check. Denote by det(A) or |A| the determinant of a square matrix A.
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Corollary 2.1. Let the matrix polynomial defined by: B(z) = Im−zB1− . . .−

zpBp, z ∈ C. Let

B =



B1 B2 · · · Bp

Im 0 · · · 0

0 Im · · · 0
...

. . . . . .
...

0 · · · Im 0


.

Then, if γ(C0) < 0 the following equivalent properties hold:

1. The roots of detB(z) are outside the unit disk,

2. ρ(B) < 1.

The following result will be extremely useful to prove the CAN of the QMLE

under minimal conditions.

Corollary 2.2. Suppose γ(C0) < 0. Let εt be the strictly stationary and non

anticipative solution of Model (2.1). There exists s > 0 such that E‖ht‖s < ∞ and

E‖εt‖2s < ∞.

3. QML estimation. The parameters consist of the coefficients of the matri-

ces ω,Ai and Bj , and the coefficients of the lower triangular part (excluding the

diagonal) of the correlation matrix R = (ρij). The number of unknown parameters

is thus

s0 = m + m2(p + q) +
m(m− 1)

2
.

The parameter vector is denoted

θ = (θ1, . . . , θs0)
′ = (ω′, α′1, . . . , α

′
q, β

′
1, . . . , β

′
p, ρ

′)′ := (ω′, α′, β′, ρ′)′,

where ρ′ = (ρ21, . . . , ρm1, ρ32, . . . , ρm2, . . . , ρm,m−1), αi= vec(Ai), i = 1, . . . , q, and

βj= vec(Bj), j = 1, . . . , p. The parameter space is a sub-space Θ of

]0,+∞[m×[0,∞[m
2(p+q)×]− 1, 1[m(m−1)/2.
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The true parameter valued is denoted

θ0 = (ω′0, α
′
01, . . . , α

′
0q, β

′
01, . . . , β

′
0p, ρ

′
0)
′ = (ω′0, α

′
0, β

′
0, ρ

′
0)
′.

Before detailing the estimation procedure and its properties, we discuss condi-

tions to impose on the matrices Ai and Bj in order to ensure the uniqueness of the

parameterization.

3.1. Identifiability Conditions. Let Aθ(z) =
∑q

i=1 Aiz
i and Bθ(z) = Im −∑p

j=1 Bjz
j . By convention, Aθ(z) = 0 if q = 0 and Bθ(z) = Im if p = 0.

If the roots of det(Bθ(z)) = 0 are outside the unit disk, we deduce from

Bθ(B)ht = ω +Aθ(B)εt the representation

ht = Bθ(1)−1ω + Bθ(B)−1Aθ(B)εt. (3.1)

In the vector case, assuming that the polynomials Aθ0 and Bθ0 have no common

root does not suffice to ensure that there exists no other pair (Aθ,Bθ), with the

same degrees (p, q), such that

Bθ(B)−1Aθ(B) = Bθ0(B)−1Aθ0(B). (3.2)

This condition is equivalent to the existence of an operator U(B) such that

Aθ(B) = U(B)Aθ0(B) and Bθ(B) = U(B)Bθ0(B),

this common factor vanishing in Bθ(B)−1Aθ(B)

The polynomial U(B) is called unimodular if det{U(B)} is a non-zero constant.

When the only common factors of the polynomials P (B) and Q(B) are unimodular,

that is when

P (B) = U(B)P1(B), Q(B) = U(B)Q1(B) =⇒ det{U(B)} = cst ,

P (B) and Q(B) are called left coprime.

The following example shows that, in the vector case, assuming that Aθ0(B) and

Bθ0(B) are left coprime is not sufficient to ensure that (3.2) has no solution θ 6= θ0
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(in the univariate case this is sufficient because the condition Bθ(0) = Bθ0(0) = 1

imposes U(B) = U(0) = 1).

Example 3.1 (Non identifiable bivariate model). For m = 2, let

Aθ0 (B) =

(
a11(B) a12(B)

a21(B) a22(B)

)
, Bθ0 (B) =

(
b11(B) b12(B)

b21(B) b22(B)

)
,

U(B) =

(
1 0

B 1

)
with deg(a21) = deg(a22) = q, deg(a11) < q, deg(a12) < q and deg(b21) = deg(b22) =

p, deg(b11) < p, deg(b12) < p. The polynomial A(B) = U(B)Aθ0 (B) has the same degree q

as Aθ0 (B), and B(B) = U(B)Bθ0 (B) is a polynomial of the same degree p as Bθ0 (B). On the

other hand, U(B) has a non-zero determinant which is independent of B, hence is it unimodular.

Moreover B(0) = Bθ0 (0) = Im and A(0) = Aθ0 (0) = 0. It is thus possible to find θ such that

B(B) = Bθ(B),A(B) = Aθ(B) and ω = U(1)ω0. The model is thus non identifiable, θ and θ0

corresponding to the same representation (3.1).

Identifiability can be insured by several types of conditions (see for instance

Reinsel, 1997, p. 37-40). To obtain a mild condition define, for any column i of

the matrix operators Aθ(B) and Bθ(B), the maximal degrees qi(θ) and pi(θ), re-

spectively. Suppose that these maximal values are imposed for these orders, that

is

∀θ ∈ Θ, ∀i = 1, . . . ,m, qi(θ) ≤ qi and pi(θ) ≤ pi (3.3)

where qi ≤ q and pi ≤ p are fixed integers. Denote by aqi
(i) (resp. bpi

(i)) the

column vector of the coefficients of Bqi (resp. Bpi) in the ith column of Aθ0(B)

(resp. Bθ0(B)).

Example 3.2 (Illustration of the notations on an example). For

Aθ0 (B) =

(
1 + a11B2 a12B

a21B2 + a∗21B 1 + a22B

)
, Bθ0 (B) =

(
1 + b11B4 b12B

b21B4 1 + b22B

)
,

with a11a21a12a22b11b21b12b22 6= 0, we have

q1(θ0) = 2, q2(θ0) = 1, p1(θ0) = 4, p2(θ0) = 1
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and

a2(1) =

(
a11

a21

)
, a1(2) =

(
a12

a22

)
, b4(1) =

(
b11

b21

)
, b1(2) =

(
b12

b22

)
.

Proposition 3.1 (A simple identifiability condition). If the matrix

M(Aθ0 ,Bθ0) = [aq1(1) · · · aqm
(m) bp1(1) · · · bpm

(m)] (3.4)

has full rank m, the parameters α0 and β0 are identified by the constraints (3.3)

with qi = qi(θ0) and pi = pi(θ0) for any value of i.

Proof. Indeed, let U(B) = U0 + U1B + . . . + UkBk. Since the term of highest

degree (column by column) of Aθ0(B) is [aq1(1)Bq1 · · · aqm
(m)Bqm ], the ith column

of Aθ(B) = U(B)Aθ0(B) is a polynomial in B of degree less than qi if and only if

Ujaqi
(i) = 0, for j = 1, . . . , k. Similarly we must have Ujbpi

(i) = 0, for j = 1, . . . , k

and i = 1, . . . m. It follows that UjM(Aθ0 ,Bθ0) = 0, which implies Uj = 0 for

j = 1, . . . , k thanks to Condition (3.4). Consequently U(B) = U0 and, since for all

θ Bθ(0) = Im, we have U(B) = Im. �

Example 3.3 (Illustration of the identifiability condition). In example 3.1,

M(Aθ0 ,Bθ0 ) = [aq(1)aq(2)bp(1)bp(2)] =

[
0 0 0 0

× × × ×

]
is not a full-rank matrix. Hence, the identifiability condition of Proposition 3.1 is not satisfied.

Indeed, the model is not identifiable.

A simpler, but more restrictive, condition is obtained by imposing that

M1(Aθ0 ,Bθ0) = [Aq Bp]

has full rank m. This entails uniqueness under the constraint that the degrees of

Aθ and Bθ are less than p and q, respectively.

Example 3.4 (Another illustration of the identifiability condition). Turning

again to Example 3.2 with a12b21 = a22b11 and, for instance, a21 = 0 and a22 6= 0, observe
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that the matrix

M1(Aθ0 ,Bθ0 ) =

[
0 a12 b11 0

0 a22 b21 0

]
does not have full rank, but the matrix

M(Aθ0 ,Bθ0 ) =

[
a11 a12 b11 b12

0 a22 b21 b22

]
has full rank.

3.2. Asymptotic Properties of the QML Estimator of the CCC-GARCH. Let

(ε1, . . . , εn) be an observation of length n of the unique non anticipative and strictly

stationary solution (εt) of Model (2.1). Conditionally to nonnegative initial values

ε0, . . . , ε1−q, h̃0, . . . , h̃1−p, the Gaussian quasi-likelihood writes

Ln(θ) = Ln(θ; ε1, . . . , εn) =
n∏

t=1

1
(2π)m/2|H̃t|1/2

exp
(
−1

2
ε′tH̃

−1
t εt

)
,

where the H̃t are recursively defined, for t ≥ 1, by
H̃t = D̃tRD̃t, D̃t = {diag(h̃t)}1/2

h̃t = h̃t(θ) = ω +
q∑

i=1

Aiεt−i +
p∑

j=1

Bj h̃t−j

A QML estimator of θ is defined as any measurable solution θ̂n of

θ̂n = arg max
θ∈Θ

Ln(θ) = arg min
θ∈Θ

l̃n(θ). (3.5)

where

l̃n(θ) = n−1
n∑

t=1

˜̀
t, et ˜̀

t = ˜̀
t(θ) = ε′tH̃

−1
t εt + log |H̃t|.

The following assumptions will be used to establish the strong consistency of the

QML estimator.

A1: θ0 ∈ Θ and Θ is compact.

A2: γ(C0) < 0 and ∀θ ∈ Θ, |Bθ(z)| = 0 ⇒ |z| > 1.

A3: The components of ηt are independent and their squares have non degen-

erate distributions.
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A4: If p > 0, Aθ0(z) and Bθ0(z) are left coprime and M1(Aθ0 ,Bθ0) has full rank

m.

A5: R is a positive-definite correlation matrix for all θ ∈ Θ.

If the space Θ is constrained by (3.3), that is if maximal orders are imposed for

each component of εt and ht in each equation, Assumption A4 can be replaced by

the more general condition:

A4’: If p > 0, Aθ0(z) and Bθ0(z) are left coprime and M(Aθ0 ,Bθ0) has full

rank m.

It will be useful to approximate the sequence (˜̀t(θ)) by an ergodic and station-

ary sequence. Assumption A2 implies that there exists a strictly stationary, non

anticipative and ergodic solution (ht)t = {ht(θ)}t of

ht = ω +
q∑

i=1

Aiεt−i +
p∑

j=1

Bjht−j , ∀t. (3.6)

Now, letting Dt = {diag(ht)}1/2 and Ht = DtRDt, we define

ln(θ) = ln(θ; εn, εn−1 . . . , ) = n−1
n∑

t=1

`t, `t = `t(θ) = ε′tH
−1
t εt + log |Ht|.

We are now in a position to state the following consistency theorem.

Theorem 3.1 (Strong consistency). Let (θ̂n) a sequence of QML estimators

satisfying (3.5). Then, under A1-A5 (or A1-A4’-A5),

θ̂n → θ0, almost surely when n →∞.

To establish the asymptotic normality we require the following additional as-

sumptions.

A6: θ0 ∈
◦
Θ, where

◦
Θ is the interior of Θ.

A7: E‖ηtη
′
t‖2 < ∞.
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Theorem 3.2 (Asymptotic normality). Under the assumptions of Theorem 3.1

and A6-A7
√

n(θ̂n − θ0) converges in distribution to N (0, J−1IJ−1), where J is a

positive-definite matrix and I is a semi positive-definite matrix, defined by

I = E

(
∂`t(θ0)

∂θ

∂`t(θ0)
∂θ′

)
, J = E

(
∂2`t(θ0)
∂θ∂θ′

)
.

It is worth noting that the conditions ensuring the CAN are mild. When m = 1, they

reduce to the minimal ones in the univariate setting. In particular, no assumption

is made concerning the existence of moments of the observed process.

4. Proofs.

4.1. Proof of Theorem 2.1. The proof is similar to that given by Bougerol and

Picard (1992) for univariate GARCH(p, q) models. The variables ηt admitting a

variance, the condition E log+ ‖Ct‖ < ∞ is satisfied.

It follows that when γ(C0) < 0 the series

z̃t = bt +
∞∑

n=0

CtCt−1 . . . Ct−nbt−n−1 (4.1)

converges almost surely for all t. A strictly stationary solution to model (2.1) is

obtained as εt = {diag(z̃q+1,t)}1/2R1/2ηt where z̃q+1,t denotes the (q + 1)th sub-

vector of size m of z̃t. This solution is thus non anticipative and ergodic. The proof

of the uniqueness is exactly the same as in the univariate case.

The proof of the necessary part can also be easily adapted. From Bougerol and

Picard (1992) Lemma 3.4, it is sufficient to prove that limt→∞ ‖C0 . . . C−t‖ = 0. It

suffices to show that, for 1 ≤ i ≤ p + q

lim
t→∞

C0 . . . C−tei = 0, a.s. (4.2)

where ei = ei⊗Im and ei is the ith element of the canonical base of Rp+q, since any

vector x of Rm(p+q) can be decomposed, in a unique way, as x =
∑p+q

i=1 eixi where

xi ∈ Rm. As in the univariate case, the existence of a strictly stationary solution
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implies that C0 . . . C−kb−k−1 tends to 0, almost surely, as k → ∞. It follows that,

using the relation b−k−1 = e1Υ−k−1ω + eq+1ω, we have

lim
k→∞

C0 . . . C−ke1Υ−k−1ω = 0, lim
k→∞

C0 . . . C−keq+1ω = 0, a.s. (4.3)

Since the components of ω are strictly positive, (4.2) thus holds for i = q +1. Using

C−keq+i = Υ−kBie1 + Bieq+1 + eq+i+1, i = 1, . . . , p (4.4)

with by convention ep+q+1 = 0, for i = 1 we obtain

0 = lim
t→∞

C0 . . . C−keq+1 ≥ lim
k→∞

C0 . . . C−k+1eq+2 ≥ 0,

where the inequalities are taken componentwise. Therefore, (4.2) holds true for

i = q + 2, and by induction, for i = q + j, j = 1, . . . , p in view of (4.4). Moreover,

since C−keq = Υ−kAqe1 +Aqeq+1, (4.2) holds for i = q. We conclude for the other

values of i using an ascendent recursion, as in the univariate case. �

4.2. Proof of Corollary 2.1. Because all the entries of the matrices Ct are posi-

tive, it is clear that γ(C0) is larger than the top Lyapunov exponent of the sequence

(C∗
t ) obtained by replacing the matrices Ai by 0 in Ct. It is easily seen that the top

Lyapunov coefficient of (C∗
t ) coincides with that of the constant sequence equal to

B, that is with ρ(B). It follows that γ(C0) ≥ log ρ(B). Hence γ(C0) < 0 entails that

all the eigenvalues of B are outside the unit disk. Finally, the equivalence between

the two properties follows from

det(B− λImp) = (−1)mp det
{
λpIm − λp−1B1 − · · · − λBp−1 −Bp

}
= (−λ)mp detB(

1
λ

), λ 6= 0.

�

4.3. Proof of Corollary 2.2. It follows from the proof of Lemma 2.3 in Berkes,

Horváth and Kokoszka (2003), that the strictly stationary solution defined by (4.1)
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satisfies E‖z̃t‖s < ∞ for some s > 0. The conclusion follows from: ‖εt‖ ≤ ‖z̃t‖ and

‖ht‖ ≤ ‖z̃t‖. �

4.4. Proof of the Consistency and the Asymptotic Normality of the QML. The

proof follows the lines of that of Theorems 2.1 and 2.2 in Francq and Zakoian (2004)

for the univariate case.

We shall use the multiplicative norm defined by:

‖A‖ := sup
‖x‖≤1

‖Ax‖ = ρ1/2(A′A), (4.5)

where A is a d1 × d2 matrix, ‖x‖ is the euclidian norm of vector x ∈ Rd2 , and ρ(·)

denotes the spectral radius. This norm verifies, for any d2 × d1 matrix B,

‖A‖2 ≤
∑
i,j

a2
i,j = Tr(A′A) ≤ d2‖A‖2, |A′A| ≤ ‖A‖2d2 , (4.6)

|Tr(AB)| ≤

∑
i,j

a2
i,j

1/2∑
i,j

b2
i,j

1/2

≤ {d2d1}1/2‖A‖‖B‖. (4.7)

4.4.1. Proof of Theorem 3.1. Rewrite (3.6) in matrix form as

Ht = ct + BHt−1 (4.8)

where B is defined in Corollary 2.1 and

Ht =



ht

ht−1

...

ht−p+1


, ct =



ω +
q∑

i=1

Aiεt−i

0
...

0


. (4.9)

We will establish the following intermediate results.

i) limn→∞ supθ∈Θ |ln(θ)− l̃n(θ)| = 0, a.s.

ii) (∃t ∈ Z such that ht(θ) = ht(θ0) Pθ0 a.s. and R(θ) = R(θ0))

=⇒ θ = θ0,
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iii) Eθ0 |`t(θ0)| < ∞, and if θ 6= θ0, Eθ0`t(θ) > Eθ0`t(θ0),

iv) for any θ 6= θ0 there exists a neighborhood V (θ) such that

lim inf
n→∞

inf
θ∗∈V (θ)

l̃n(θ∗) > Eθ0`1(θ0), a.s.

Proof of i). In view of Assumption A2 and Corollary 2.1, we have ρ(B) < 1. By

the compactness of Θ we even have

sup
θ∈Θ

ρ(B) < 1. (4.10)

Using iteratively Equation (4.8), we deduce that, almost surely

sup
θ∈Θ

‖Ht − H̃t‖ ≤ Kρt, ∀t, (4.11)

where H̃t denotes the vector obtained by replacing the variables ht−i by h̃t−i in Ht.

Observe that K is a random variable which depends on the past values {εt, t ≤ 0}.

Since K does not depend on n, it can be considered as a constant, such as ρ. From

(4.11) we deduce that, almost surely,

sup
θ∈Θ

‖Ht − H̃t‖ ≤ Kρt, ∀t. (4.12)

Noting that ‖R−1‖ is the inverse of the eigenvalue of smaller module of R, and that

‖D̃−1
t ‖ = {mini(hii,t)}−1, we have

sup
θ∈Θ

‖H̃−1
t ‖ ≤ sup

θ∈Θ
‖D̃−1

t ‖2‖R−1‖ ≤ sup
θ∈Θ

{min
i

ω(i)}−2‖R−1‖ ≤ K, (4.13)

using A5, the compactness of Θ and the strict positivity of the components of ω.

Similarly we have

sup
θ∈Θ

‖H−1
t ‖ ≤ K. (4.14)

Now

sup
θ∈Θ

|ln(θ)− l̃n(θ)| ≤ n−1
n∑

t=1

sup
θ∈Θ

∣∣∣ε′t(H−1
t − H̃−1

t )εt

∣∣∣ (4.15)

+n−1
n∑

t=1

sup
θ∈Θ

∣∣∣log |Ht| − log |H̃t|
∣∣∣ .
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The first sum can be written as

n−1
n∑

t=1

sup
θ∈Θ

∣∣∣ε′tH̃−1
t (Ht − H̃t)H−1

t εt

∣∣∣
= n−1

n∑
t=1

sup
θ∈Θ

∣∣∣ Tr {ε′tH̃−1
t (Ht − H̃t)H−1

t εt}
∣∣∣

= n−1
n∑

t=1

sup
θ∈Θ

∣∣∣ Tr {H̃−1
t (Ht − H̃t)H−1

t εtε
′
t}
∣∣∣

≤ Kn−1
n∑

t=1

sup
θ∈Θ

‖H̃−1
t ‖‖Ht − H̃t‖‖H−1

t ‖‖εtε
′
t‖

≤ Kn−1
n∑

t=1

ρt‖εtε
′
t‖ → 0

as n → ∞, using (4.7), (4.12), (4.13), (4.14), the Cesàro lemma and the fact that

ρt‖εtε
′
t‖ = ρtε′tεt → 0 a.s. The latter statement can be shown by using the Borel-

Cantelli lemma, the Markov inequality and by applying Corollary 2.2:
∞∑

t=1

P(ρtε′tεt > ε) ≤
∞∑

t=1

ρstE(ε′tεt)s

εs
=

∞∑
t=1

ρstE‖εt‖2s

εs
< ∞.

Now, using (4.6), the triangle inequality and, for x ≥ −1, log(1 + x) ≤ x, we have

log |Ht| − log |H̃t| = log |Im + (Ht − H̃t)H̃−1
t |

≤ m log ‖Im + (Ht − H̃t)H̃−1
t ‖

≤ m log(‖Im‖+ ‖(Ht − H̃t)H̃−1
t ‖)

≤ m log(1 + ‖(Ht − H̃t)H̃−1
t ‖)

≤ m‖Ht − H̃t‖‖H̃−1
t ‖,

and, by symmetry,

log |H̃t| − log |Ht| ≤ m‖Ht − H̃t‖‖H−1
t ‖.

Using again (4.12), (4.13) and (4.14) we deduce that, in (4.15), the second sum

tends to 0. We thus have shown i).

Proof of ii). Suppose that for some θ 6= θ0, the following holds

ht(θ) = ht(θ0), Pθ0-a.s. and R(θ) = R(θ0).
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Then, it readily follows that ρ = ρ0 and, using the invertibility of the polynomial

Bθ(B) under Assumption A2, by (3.1)

Bθ(1)−1ω + Bθ(B)−1Aθ(B)εt = Bθ0(1)−1ω0 + Bθ0(B)−1Aθ0(B)εt

that is

Bθ(1)−1ω − Bθ0(1)−1ω0 = {Bθ0(B)−1Aθ0(B)− Bθ(B)−1Aθ(B)}εt

:= P(B)εt a.s. ∀t.

Write P(B) =
∑∞

i=0 PiB
i. Noting that P0 = P(0) = 0 and isolating the terms

functions of the components of ηt−1, we obtain

P1(h11,t−1η
2
1,t−1, . . . , hmm,t−1η

2
m,t−1)

′ = Zt−2, a.s.

where Zt−2 belongs to the σ-field generated by {ηt−2, ηt−3, . . .}.Since ηt−1 is

independent from this σ-field, the latter equality contradicts A3 unless if, for

i, j = 1, . . . ,m, pijhjj,t = 0, a.s., where the pij are the entries of P1. Because

hjj,t > 0 for all j, we thus have P1 = 0. Similarly, we show that P(B) = 0 by

successively considering the past values of ηt−1. Therefore, in view of A4 (or A4’),

we have α = α0 and β = β0 (see Section 3.1). It readily follows that ω = ω0. Hence

θ = θ0. We thus have established ii).

Proof of iii). We first show that Eθ0`t(θ) is well defined in R ∪ {+∞} for all θ,

and in R for θ = θ0. We have

Eθ0`
−
t (θ) ≤ Eθ0 log− |Ht| ≤ max{0,− log(|R|mini ω(i)m)} < ∞.

At θ0, Jensen’s inequality, the second inequality in (4.6) and Corollary 2.2 entail

Eθ0 log |Ht(θ0)| = Eθ0

m

s
log |Ht(θ0)|s/m

≤ m

s
log Eθ0‖Ht(θ0)‖s ≤ m

s
log Eθ0‖R‖s‖Dt(θ0)‖2s (Pb?)

≤ K +
m

s
log Eθ0‖Dt(θ0)‖2s = K +

m

s
log Eθ0(max

i
hii,t(θ0))s

≤ K +
m

s
log Eθ0

{∑
i

h2
ii,t(θ0)

}s/2

= K +
m

s
log Eθ0‖ht(θ0)‖s < ∞.
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It follows that

Eθ0`t(θ0) = Eθ0

{
η′tHt(θ0)1/2′Ht(θ0)−1Ht(θ0)1/2ηt + log |Ht(θ0)|

}
= m + Eθ0 log |Ht(θ0)| < ∞.

Because Eθ0`
−
t (θ0) < ∞, the existence of Eθ0`t(θ0) in R holds. It is thus not restric-

tive to study the minimum of Eθ0`t(θ) for the values of θ such that Eθ0 |`t(θ)| < ∞.

Denoting by λi,t, the positive eigenvalues of Ht(θ0)H−1
t (θ), we have

Eθ0`t(θ)− Eθ0`t(θ0)

= Eθ0 log
|Ht(θ)|
|Ht(θ0)|

+ Eθ0

{
η′t[H

1/2
t (θ0)′H−1

t (θ)H1/2
t (θ0)− Im]ηt

}
= Eθ0 log{|Ht(θ)H−1

t (θ0)|}

+ Tr
(
Eθ0

{
[H1/2

t (θ0)′H−1
t (θ)H1/2

t (θ0)− Im]
}

E(ηtη
′
t)
)

= Eθ0 log{|Ht(θ)H−1
t (θ0)|}+ Eθ0

(
Tr
{
[Ht(θ0)H−1

t (θ)− Im]
})

= Eθ0

{
m∑

i=1

(λit − 1− log λit)

}
≥ 0

because log x ≤ x−1, ∀x > 0. Since log x = x−1 if and only if x = 1, the inequality

is strict unless if, for all i, λit = 1 Pθ0-a.s. , that is if Ht(θ) = Ht(θ0), Pθ0-a.s. . This

equality is equivalent to

ht(θ) = ht(θ0), Pθ0-a.s. and R(θ) = R(θ0)

and thus to θ = θ0, from ii).

Proof of iv). The last part of the proof of the consistency uses the compactness

of Θ and the ergodicity of (`t(θ)), as in the univariate case. Therefore is it omitted.

Theorem 3.1 is thus established. �

4.4.2. Proof of Theorem 3.2. We start by stating a few elementary results on

the differentiation of expressions involving matrices. If f(A) is a real valued function

of a matrix A whose entries aij are functions of some variable x, the chain rule for
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differentiation of composed functions entails

∂f(A)
∂x

=
∑
i,j

∂f(A)
∂aij

∂aij

∂x
= Tr

{
∂f(A)
∂A′

∂A

∂x

}
. (4.16)

Moreover, for A invertible we have

∂c′Ac

∂A′
= cc′ (4.17)

∂Tr(CA′BA′)
∂A′

= C ′AB′ + B′AC ′ (4.18)

∂ log |det(A)|
∂A′

= A−1 (4.19)

∂A−1

∂x
= −A−1 ∂A

∂x
A−1 (4.20)

∂Tr(CA−1B)
∂A′

= −A−1BCA−1 (4.21)

∂Tr(CAB)
∂A′

= BC (4.22)

The proof is divided into several steps.

a) First derivative of the criterion. Applying (4.16) and (4.17), then (4.18),

(4.19) and (4.20), we obtain

∂`t(θ)
∂θi

= Tr
(

εtε
′
t

∂D−1
t R−1D−1

t

∂θi

)
+ 2

∂ log |detDt|
∂θi

= −Tr
{(

εtε
′
tD

−1
t R−1 + R−1D−1

t εtε
′
t

)
D−1

t

∂Dt

∂θi
D−1

t

}
+2Tr

(
D−1

t

∂Dt

∂θi

)
(4.23)

for i = 1, . . . , s1 = m + (p + q)m2, and using (4.21)

∂`t(θ)
∂θi

= −Tr
(

R−1D−1
t εtε

′
tD

−1
t R−1 ∂R

∂θi

)
+ Tr

(
R−1 ∂R

∂θi

)
(4.24)

for i = s1 + 1, . . . , s0. Letting D0t = Dt(θ0), R0 = R(θ0),

D
(i)
0t =

∂Dt

∂θi
(θ0), R

(i)
0 =

∂R

∂θi
(θ0), D

(i,j)
0t =

∂2Dt

∂θi∂θj
(θ0) R

(i,j)
0 =

∂2R

∂θi∂θj
(θ0),

and η̃t = R1/2ηt, the score vector writes

∂`t(θ0)
∂θi

= Tr
{(

Im −R−1
0 η̃tη̃

′
t

)
D

(i)
0t D−1

0t (4.25)

+
(
Im − η̃tη̃

′
tR

−1
0

)
D−1

0t D
(i)
0t

}
,
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for i = 1, . . . , s1, and

∂`t(θ0)
∂θi

= Tr
{(

Im −R−1
0 η̃tη̃

′
t

)
R−1

0 R
(i)
0

}
, (4.26)

for i = s1 + 1, . . . , s0.

b) Existence of moments at any order for the score. In view of (4.7) and

the Cauchy-Schwarz inequality, we obtain

E

∣∣∣∣∂`t(θ0)
∂θi

∂`t(θ0)
∂θj

∣∣∣∣ ≤ K

{
E
∥∥∥D−1

0t D
(i)
0t

∥∥∥2

E
∥∥∥D−1

0t D
(j)
0t

∥∥∥2
}1/2

,

for i, j = 1, . . . , s1,

E

∣∣∣∣∂`t(θ0)
∂θi

∂`t(θ0)
∂θj

∣∣∣∣ < KE
∥∥∥D−1

0t D
(i)
0t

∥∥∥ ,

for i = 1, . . . , s1 and j = s1 + 1, . . . , s0, and E
∣∣∣∂`t(θ0)

∂θi

∂`t(θ0)
∂θj

∣∣∣ < K for i, j =

s1 + 1, . . . , s0. Note also that

D
(i)
0t =

1
2
D−1

0t diag
{

∂ht

∂θi
(θ0)

}
.

To show that the score admits a second-order moment, it is thus sufficient to prove

that

E

∣∣∣∣ 1
ht(i1)

∂ht(i1)
∂θi

(θ0)
∣∣∣∣r0

< ∞

for all i1 = 1, . . . ,m, all i = 1, . . . , s1 and r0 = 2. By (4.8) and (4.10),

sup
θ∈Θ

∥∥∥∥∂Ht

∂θi

∥∥∥∥ < ∞, i = 1, . . . ,m

and, setting s2 = m + qm2,∥∥∥∥∂Ht

∂θi

∥∥∥∥ ≤ ε2t−j(i) inf
m<k≤s2

θk, i = m + 1, . . . , s2, (???)

where j(i) ∈ {1, . . . , q}. On the other hand we have

∂Ht

∂θi
=

∞∑
k=1


k∑

j=1

Bj−1B(i)Bk−j

 ct−k, i = s2 + 1, . . . , s1,

where B(i) = ∂B/∂θi is a matrix whose entries are all 0, apart from a 1 located at

the same place as θi in B. By abuse of notation, we denote by Ht(i1) and h0t(i1)
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the ith1 components of Ht and ht(θ0). With arguments similar to those used in the

univariate case, that is the inequality x/(1 + x) ≤ xs for all x ≥ 0 and s ∈ [0, 1],

and the inequalities

θi
∂Ht

∂θi
≤

∞∑
k=1

kBkct−k, θi
∂Ht(i1)

∂θi
≤

∞∑
k=1

k
m∑

j1=1

Bk(i1, j1)ct−k(j1)

and, setting ω = inf1≤i≤m ω(i),

Ht(i1) ≥ ω +
m∑

j1=1

Bk(i1, j1)ct−k(j1), ∀k,

we obtain

θi

Ht(i1)
∂Ht(i1)

∂θi
≤

m∑
j1=1

∞∑
k=1

k

{
Bk(i1, j1)ct−k(j1)

ω

} s
r0

≤ K
m∑

j1=1

∞∑
k=1

kρk
j1c

s/r0
t−k (j1),

where the constants ρj1 (which also depend of i1, s and r0) belong to the interval

[0, 1). Noting that these inequalities are uniform on a neighborhood of θ0 ∈
◦
Θ, that

they can be extended to higher-order derivatives, as in the univariate case, and

that Corollary 2.2 implies ‖ct‖s < ∞, we can show a stronger result than the one

announced: for all i1 = 1, . . . ,m, all i, j, k = 1, . . . , s1 and all r0 ≥ 0, there exists a

neighborhood V(θ0) of θ0 such that

E sup
θ∈V(θ0)

∣∣∣∣ 1
ht(i1)

∂ht(i1)
∂θi

(θ)
∣∣∣∣r0

< ∞, (4.27)

E sup
θ∈V(θ0)

∣∣∣∣ 1
ht(i1)

∂2ht(i1)
∂θi∂θj

(θ)
∣∣∣∣r0

< ∞ (4.28)

and

E sup
θ∈V(θ0)

∣∣∣∣ 1
ht(i1)

∂3ht(i1)
∂θi∂θj∂θk

(θ)
∣∣∣∣r0

< ∞. (4.29)

c) Asymptotic normality of the score vector. Clearly, {∂`t(θ0)/∂θ}t is sta-

tionary and ∂`t(θ0)/∂θ is measurable with respect to the σ-field Ft generated by

{ηu, u ≤ t}. From (4.25) and (4.26) we have E {∂`t(θ0)/∂θ | Ft−1} = 0. The prop-

erty b), and in particular (4.27), ensures the existence of the matrix I in Theorem

3.2. It follows that ∀λ ∈ Rp+q+1, the sequence
{
λ′ ∂

∂θ `t(θ0),Ft

}
t

is an ergodic, sta-

tionary and square integrable martingale difference. The central limit theorem of
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Billingsley (1961) entails

n−1/2
n∑

t=1

∂

∂θ
`t(θ0)

L→ N (0, I) .

d) Higher-order derivatives of the criterion. Starting from a) and applying

several times (4.16) and (4.21), as well as (4.22), we obtain

∂`2t (θ)
∂θi∂θj

= Tr (c1 + c2 + c3) , i, j = 1, . . . , s1,

where

c1 = D−1
t R−1D−1

t

∂Dt

∂θi
D−1

t εtε
′
tD

−1
t

∂Dt

∂θj
+ D−1

t

∂Dt

∂θi
D−1

t εtε
′
tD

−1
t R−1D−1

t

∂Dt

∂θj

+D−1
t εtε

′
tD

−1
t R−1D−1

t

∂Dt

∂θi
D−1

t

∂Dt

∂θj
−D−1

t εtε
′
tD

−1
t R−1D−1

t

∂2Dt

∂θi∂θj
,

c2 = −2D−1
t

∂Dt

∂θi
D−1

t

∂Dt

∂θj
+ 2D−1

t

∂2Dt

∂θi∂θj
,

and c3 is obtained by permuting εtε
′
t and R−1 in c1. We also obtain

∂`2t (θ)
∂θi∂θj

= Tr (c4 + c5) , i = 1, . . . , s1, j = s1 + 1, . . . , s0

∂`2t (θ)
∂θi∂θj

= Tr (c6) , i, j = s1 + 1, . . . , s0

where

c4 = R−1D−1
t

∂Dt

∂θi
D−1

t εtε
′
tD

−1
t R−1 ∂R

∂θj

c6 = R−1D−1
t εtε

′
tD

−1
t R−1 ∂R

∂θi
R−1 ∂R

∂θj
+ R−1 ∂R

∂θi
R−1D−1

t εtε
′
tD

−1
t R−1 ∂R

∂θj

−R−1D−1
t εtε

′
tD

−1
t R−1 ∂2R

∂θi∂θj
−R−1 ∂2R

∂θi∂θj
−R−1 ∂R

∂θi
R−1 ∂R

∂θj
,

and c5 is obtained by permuting εtε
′
t and ∂Dt/∂θi in c4. Results (4.27) and (4.28)

ensure the existence of the matrix J = E∂2`t(θ0)/∂θ∂θ′, which is invertible, as will

be shown in e) below. Note that with our parameterization, ∂2R/∂θi∂θj = 0.

Continuing the differentiations, it is seen that ∂`3t (θ)/∂θi∂θj∂θk is also the trace

of a sum of products of matrices similar to the ci’s. The integrable matrix εtε
′
t

appears at most one time in each of these products. The other terms are, on the
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one hand, the bounded matrices R−1, ∂R/∂θi and D−1
t and, on the other hand, the

matrices D−1
t ∂Dt/∂θi, D−1

t ∂2Dt/∂θi∂θj and D−1
t ∂3Dt/∂θi∂θj∂θk. From (4.27)-

(4.29), the norms of these last 3 matrices admit moments at any orders in the

neighborhood of θ0. This shows that

E sup
θ∈V(θ0)

∣∣∣∣ ∂3`t(θ)
∂θi∂θj∂θk

∣∣∣∣ < ∞.

e) Invertibility of the matrix J . The expression for J obtained in d), as a func-

tion of the partial derivatives of Dt and R, is not convenient to show its invertibility.

Instead, we follow the approach of Comte and Lieberman (2003) p.77-78. We start

by writing J as a function of Ht and of its derivatives. Starting from

`t(θ) = ε′tH
−1
t εt + log |Ht|,

the differentiation formulas (4.16), (4.19) and (4.21) give

∂`t

∂θi
= Tr

{(
H−1

t −H−1
t εtε

′
tH

−1
t

) ∂Ht

∂θi

}
,

and then, using (4.20) and (4.22),

∂2`t

∂θi∂θj
= Tr

(
H−1

t

∂2Ht

∂θi∂θj

)
− Tr

(
H−1

t

∂Ht

∂θj
H−1

t

∂Ht

∂θi

)
Tr
(

H−1
t εtε

′
tH

−1
t

∂Ht

∂θi
H−1

t

∂Ht

∂θj

)
+ Tr

(
H−1

t

∂Ht

∂θi
H−1

t εtε
′
tH

−1
t

∂Ht

∂θj

)
−Tr

(
H−1

t εtε
′
tH

−1
t

∂2Ht

∂θi∂θj

)
.

Using the relation Tr(A′B) = (vecA)′vecB, we deduce

E

(
∂2`t(θ0)
∂θi∂θj

| Ft−1

)
= Tr

(
H−1

0t H
(i)
0t H−1

0t H
(j)
0t

)
= h′ihj ,

where, in view of vec(ABC) = (C ′ ⊗A)vecB,

hi = vec
(
H
−1/2
0t H

(i)
0t H

−1/2
0t

)
=
(
H
−1/2
0t ⊗H

−1/2
0t

)
di, di = vec

(
H

(i)
0t

)
.

Introducing the matrices m2 × s0

h = (h1 | · · · | hs0) and d = (d1 | · · · | ds0),
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we have h = Hd with H = H
−1/2
0t ⊗H

−1/2
0t . Now suppose that J = Eh′h is singular.

Then, there exists a non-zero vector c ∈ Rs0 , such that c′Jc = Ec′h′hc = 0. Since

c′h′hc ≥ 0 almost surely, it means that

c′h′hc = c′d′H2dc = 0 a.s. (4.30)

Because H2 is a positive-definite matrix, with probability 1, this entails dc = 0m2

with probability 1. Decompose c under form c = (c′1, c
′
2)
′ with c1 ∈ Rs1 and

c2 ∈ Rs3 , where s3 = s0 − s1 = m(m − 1)/2. The rows 1,m + 1, . . . ,m2 of the

equations

dc =
s0∑

i=1

ci
∂

∂θi
vecH0t =

s0∑
i=1

ci
∂

∂θi
(D0t ⊗D0t) vecR0 = 0m2 , a.s. (4.31)

give
s1∑

i=1

ci
∂

∂θi
ht(θ0) = 0m, a.s. (4.32)

Differentiating Equation (3.6) yields

s1∑
i=1

ci
∂

∂θi
ht = ω∗ +

q∑
j=1

A∗
j εt−j +

p∑
j=1

B∗
jht−j +

p∑
j=1

Bj

s1∑
i=1

ci
∂

∂θi
ht−j

where

ω∗ =
s1∑

i=1

ci
∂

∂θi
ω, A∗

j =
s1∑

i=1

ci
∂

∂θi
Aj , B∗

j =
s1∑

i=1

ci
∂

∂θi
Bj .

Because (4.32) is satisfied for all t, we have

ω∗0 +
q∑

j=1

A∗
0jεt−j +

p∑
j=1

B∗
0jht−j(θ0) = 0,

where quantities evaluated at θ = θ0 are indexed by 0. This entails

ht(θ0) = ω0 − ω∗0 +
q∑

j=1

(
A0j −A∗

0j

)
εt−j +

p∑
j=1

(
B0j −B∗

0j

)
ht−j(θ0),

and finally, introducing a vector θ1 whose first s1 components are

vec
(
ω0 − ω∗0 | A01 −A∗

01 | · · · | B0p −B∗
0p

)
,

ht(θ0) = ht(θ1)
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by choosing c1 small enough so that θ1 ∈ Θ. If c1 is not equal to zero then θ1 6= θ0.

This is in contradiction with the identifiability of the parameter, hence c1 = 0.

Equations (4.31) thus become

(D0t ⊗D0t)
s0∑

i=s1+1

ci
∂

∂θi
vecR0 = 0m2 , a.s.

Therefore,
s0∑

i=s1+1

ci
∂

∂θi
vecR0 = 0m2 .

Because the vectors ∂vecR/∂θi, i = s1 + 1, . . . , s0, are linearly independent, the

vector c2 = (cs1+1, . . . , cs0)
′ is nul, and thus c = 0. This is in contradiction with

(4.30), and shows that the assumption that J is singular is absurd.

f) Forgetting of the initial values. First remark that (4.11) and the arguments

used to show (4.13) and (4.14) entail

sup
θ∈Θ

‖Dt − D̃t‖ ≤ Kρt, sup
θ∈Θ

‖D̃−1
t ‖ ≤ K, sup

θ∈Θ
‖D−1

t ‖ ≤ K, (4.33)

and thus

sup
θ∈Θ

‖D1/2
t − D̃

1/2
t ‖ ≤ Kρt, sup

θ∈Θ
‖D̃−1/2

t ‖ ≤ K, sup
θ∈Θ

‖D−1/2
t ‖ ≤ K,

sup
θ∈Θ

‖D1/2
t D̃

−1/2
t ‖ ≤ K(1 + ρt) sup

θ∈Θ
‖D̃1/2

t D
−1/2
t ‖ ≤ K(1 + ρt). (4.34)

From (4.8), we have

Ht =
t−r−1∑
k=0

Bkct−k + Bt−rHr, H̃t =
t−r−1∑
k=0

Bk c̃t−k + Bt−rH̃r

where r = max{p, q} and the tilde means that initial values are taken into account.

Since c̃t = ct for all t > r, we have Ht − H̃t = Bt−r
(
Hr − H̃r

)
and

∂

∂θi

(
Ht − H̃t

)
= Bt−r ∂

∂θi

(
Hr − H̃r

)
+

t−r∑
j=1

Bj−1B(i)Bt−r−j
(
Hr − H̃r

)
.

Thus (4.10) entails

sup
θ∈Θ

∥∥∥∥ ∂

∂θi

(
Dt − D̃t

)∥∥∥∥ ≤ Kρt. (4.35)
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Because

D−1
t − D̃−1

t = D−1
t

(
D̃t −Dt

)
D̃−1

t ,

we thus have (4.33), implying

sup
θ∈Θ

∥∥∥(D−1
t − D̃−1

t

)∥∥∥ ≤ Kρt, sup
θ∈Θ

∥∥∥(D−1/2
t − D̃

−1/2
t

)∥∥∥ ≤ Kρt. (4.36)

Denoting by h0t(i1) the ith1 component of ht(θ0),

h0t(i1) = c0 +
∞∑

k=0

m∑
j1=1

m∑
j2=1

q∑
i=1

A0i(j1, j2)Bk
0(i1, j1)ε2j2,t−k−i

where c0 is a strictly positive constant and, with the usual convention, the index 0

corresponding to quantities evaluated at θ = θ0. For a sufficiently small neighbor-

hood V(θ0) of θ0, we have

sup
θ∈V(θ0)

A0i(j1, j2)
Ai(j1, j2)

< K, sup
θ∈V(θ0)

Bk
0(i1, j1)

Bk(i1, j1)
< (1 + δ)

for all i1, j1, j2 ∈ {1, . . . ,m} and all δ > 0. Moreover, in ht(i1), the coefficient of

Bk(i1, j1)ε2j2,t−k−i is bounded below by a constant c > 0 uniformly on θ ∈ V(θ0).

We thus have

h0t(i1)
ht(i1)

≤ K + K
∞∑

k=0

m∑
j1=1

m∑
j2=1

q∑
i=1

(1 + δ)kBk(i1, j1)ε2j2,t−k−i

ω + cBk(i1, j1)ε2j2,t−k−i

≤ K + K

m∑
j2=1

q∑
i=1

∞∑
k=0

(1 + δ)kρksε2s
j2,t−k−i,

for some ρ ∈ [0, 1), all δ > 0 and all s ∈ [0, 1]. Corollary 2.2 then implies that, for

all r0 ≥ 0,

E sup
θ∈V(θ0)

∣∣∣∣h0t(i1)
ht(i1)

∣∣∣∣r0

< ∞.

From this we deduce

E sup
θ∈V(θ0)

‖D−1/2
t εt‖2 = E sup

θ∈V(θ0)

‖D−1/2
t D

1/2
0t η̃t‖2 < ∞, (4.37)

sup
θ∈V(θ0)

‖D̃−1/2
t εt‖ ≤ (1 + Kρt) sup

θ∈V(θ0)

‖D−1/2
t εt‖. (4.38)



26 C. FRANCQ AND J-M. ZAKOÏAN

The last inequality follows from (4.33) because

D̃
−1/2
t εt = D̃

−1/2
t

(
D̃

1/2
t −D

1/2
t

)
D
−1/2
t εt −D

−1/2
t εt.

By (4.23) and (4.24)

∂`t(θ)
∂θi

− ∂ ˜̀
t(θ)

∂θi
= Tr(c1 + c2 + c3)

where

c1 = −D
−1/2
t εtε

′
tD̃

−1
t R−1

(
D−1

t − D̃−1
t

)
D

1/2
t D

−1/2
t

∂Dt

∂θi
D
−1/2
t ,

c2 = −D
−1/2
t εtε

′
tD̃

−1
t R−1D̃−1

t

(
∂Dt

∂θi
− ∂D̃t

∂θi

)
D
−1/2
t

and c3 contains terms which can be handled as c1 and c2. Using (4.33)–(4.38), the

Cauchy-Schwarz inequality, and

E sup
θ∈V(θ0)

∥∥∥∥D−1/2
t

∂Dt

∂θi
D
−1/2
t

∥∥∥∥2

< ∞,

which follows from (4.27), we obtain

sup
θ∈V(θ0)

∣∣∣∣∣∂`t(θ)
∂θi

− ∂ ˜̀
t(θ)

∂θi

∣∣∣∣∣ ≤ Kρtut,

where ut is an integrable variable. From the Markov inequality, n−1/2
∑n

t=1 ρtut =

oP (1), which implies∥∥∥∥∥n−1/2
n∑

t=1

{
∂`t(θ0)

∂θ
− ∂ ˜̀

t(θ0)
∂θ

}∥∥∥∥∥ = oP (1).

We have in fact shown that this convergence is uniform on a neighborhood of θ0,

but this is not directly useful for what follows. By exactly the same arguments,

sup
θ∈V(θ0)

∣∣∣∣∣∂2`t(θ)
∂θi∂θj

− ∂2 ˜̀
t(θ)

∂θi∂θj

∣∣∣∣∣ ≤ Kρtu∗t ,

where u∗t is an integrable random variable, which entails

n−1/2
n∑

t=1

sup
θ∈V(θ0)

∥∥∥∥∥∂2`t(θ)
∂θ∂θ′

− ∂ ˜̀2
t (θ)

∂θ∂θ′

∥∥∥∥∥ = OP (n−1) = oP (1).

It now suffices to observe that the analogous of the steps a)-f) in Section have

been verified, which allows to conclude.
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