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Seasonality, Forecast Extensions and Business Cycle

Uncertainty

Tommaso Proietti∗

Università di Roma “Tor Vergata”

Abstract

Seasonality is one of the most important features of economic time series. The possibility to

abstract from seasonality for the assessment of economic conditions is a widely debated issue.

In this paper we propose a strategy for assessing the role of seasonal adjustment on business

cycle measurement. In particular, we provide a method for quantifying the contribution to the

unreliability of the estimated cycles extracted by popular filters, such as Baxter and King and

Hodrick-Prescott. The main conclusion is that the contribution is larger around the turning points

of the series and at the extremes of the sample period; moreover, it much more sizeable for highpass

filters, like the Hodrick-Prescott filter, which retain to a great extent the high frequency fluctuations

in a time series, the latter being the ones that are more affected by seasonal adjustment. If a band-

pass component is considered, the effect has reduced size. Finally, we discuss the role of forecast

extensions and the prediction of the cycle. For the time series of industrial production considered

in the illustration, it is not possible to provide a reliable estimate of the cycle at the end of the

sample.

Keywords: Linear filters. Unobserved Components. Seasonal Adjustment. Reliability.

1 Introduction

Seasonality is a prominent characteristic of economic time series that are observed at the monthly

or quarterly frequency, such as production, sales and employment. Its adjustment serves a variety of

useful purposes and satisfies well established information requirements from the users. Indeed, most of

the literature on the business cycle (BC) relies on seasonally adjusted data. The latter simplify both

the specification and the estimation of the model for the analyst, who can concentrate directly on the

business cycle features of interest. Moreover, seasonality is often considered as a nuisance feature and

as the most predictable component of a time series.
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It is nowadays standard practice among statistical agencies to carry out seasonal adjustment (SA)

either using X-12-ARIMA (see Findley et al., 1998) and Tramo-Seats (see Maravall and Gomez, 1996,

and Caporello and Maravall, 2004). Another popular method is the structural approach popularized

by Harvey (1989) and West and Harrison (1997), which is also a model based method, but with the

important difference that the decomposition of the time series into unobserved components is specified

and estimated at the outset, rather than derived ex-post from an estimated reduced form.

As business cycle measurement and analysis are most often operated on seasonally adjusted series,

a fundamental issue is whether seasonal adjustment affects the main stylized facts concerning the

business cycle. This paper addresses the issue of its impact on the reliability of cycle estimates

obtained by ad-hoc filters.

The paper is organized as follows: section 2 reviews the cycle filters considered in this paper,

namely the Baxter and King (1999) filter and the Hodrick-Prescott (1997) filter, which are perhaps

the most popular filters, and defines the cycle estimator based on the seasonally adjusted series.

Section 3 derives the conditional mean square error of the cycle estimators and a relative measure

of its reliability. The evaluation of these quantities using conditional simulation, when a parametric

seasonal adjustment method is adopted, is the topic of section 4. Section 5 provides some empirical

illustrations. Forecast extensions are discussed in section 6 and in section 7 we draw our conclusions.

2 Cycle filters and Seasonality

The business cycle is often measured by applying an ad hoc filter to seasonally adjusted time series.

The aim of the paper is to assess the contribution of seasonal adjustment to the uncertainty of the

measurement. A well-known filter has been popularized by Baxter and King (1999): this is a band-

pass filter that aims at selecting the fluctuations with a specified range of periodicities, namely those

ranging from one and a half to eight years. Thus, if s is the number of observations in a year,

the fluctuations with periodicity between 1.5s and 8s are included. Given the two business cycle

frequencies, ωc1 = 2π/(8s) and ωc2 = 2π/(1.5s), the BK filter cycle filter is

wbp(L) =
ωc2 − ωc1

π
+

3s∑
j=1

sin(ωc2j)− sin(ωc1j)

πj
(Lj + L−j). (1)

up to a proportionality factor, which is [wbp(1)]
−1. In the above expression L denotes the lag operator,

such that Ljyt = yt−j .

Another important filter in macroeconomics is the Hodrick and Prescott (HP) filter. The HP trend

minimises the penalised least squares criterion:

PLS =
∑n

t=1(yt − µt)
2 + λ

∑n
t=3(∆

2µt)
2

= (y − µ)′(y − µ) + λµ′D2′D2µ,

where ∆ = I−L is the difference operator, y and µ are the n×1 vector with elements {yt, t = 1, . . . , n}
and {µt, t = 1, . . . , n}, respectively, and D2 is the n−2×n matrix corresponding to the 2nd differences
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filter, with dii = 1, di,i−1 = −2, di,i−2 = 1 and zero otherwise. Differentiating with respect to µ, the

first order conditions yield: µ̃ = (In + λD2′D2)−1y. The smoothness or roughness penalty parameter,

λ, governs the trade-off between fidelity and smoothness. HP purposively select the value λ = 1600 for

quarterly time series. Ravn and Uhlig (2002) discuss the choice of λ for any frequency s of observations.

It is well known that, assuming the availability of a doubly infinite sample, yt+j , j = −∞, . . . ,∞,

the above HP filter is equivalent to the Wiener-Kolmogorov optimal signal extraction filter for the

trend component µt of the following local linear trend model (King and Rebelo, 1993).

yt = µt + ϵt, t = 1, 2, . . . , n,

∆2µt = ζt, ζt ∼ NID(0, σ2
ζ ),

ϵt ∼ NID(0, λσ2
ζ ), E(ζt, ϵt−j) = 0,∀j,

(2)

The HP cycle is obtained as y − µ̃ and the corresponding filter weights are obtained from the rows of

the matrix λD2′(In + λD2D2′)−1D2. Given the availability of a doubly infinite sample (see Whittle,

1983):

ϵ̃t = wHP (L)yt, wHP (L) =
λ|1− L|4

1 + λ|1− L|4
, (3)

and we have posited |1 − L|2 = (1 − L)(1 − L−1). Kaiser and Maravall (2005) refer to this result as

the näıve model based interpretation of the HP filter. This is so since (2) is not usually a plausible

model of economic fluctuations (the cycle being a white noise process).

In the sequel we shall generically denote by wc(L) the cycle extraction filter under investigation.

We mention in passing that the filter may not be time invariant, as in the HP case, although we will

continue to use the same notation. The important point is that we are not able to observe yt, but

rather a contaminated version of it,

zt = yt + γt,

where γt is the seasonal component. Let us also assume that the components are orthogonal, so that

the pseudo-autocovariance generating function (ACGF) of zt decomposes as gz(L) = gy(L) + gγ(L),

where gy(L) and gγ(L) are ACGFs of the nonseasonal and the seasonal components, respectively,

which we assume to have a known parametric form. The minimum mean square linear estimator of

the nonseasonal component based on a doubly infinite sample is

ỹt =
gy(L)

gz(L)
zt.

We mention in passing that with little effort we could cover the case in which there are interactions

between the seasonal and the nonseasonal component, for which gz(L) = gy(L) + gγ(L) + gyγ(L) +

gγy(L), where gyγ(L) = gγy(L
−1) is the cross-covariance generating function of (yt, γt).

Business cycle analysis is customarily carried out by applying the filter wc(L) to the seasonally

adjusted series, ỹt = zt − E(γt|z), rather than yt, which is unobserved. Let

ct = wc(L)yt

3



denote the true cycle, which arises from applying the cycle filter to yt. The estimator wc(L)zt would

have very poor properties due to leakage from the seasonal frequencies; in particular, the fundamental

frequency (corresponding to a period of one year) lies very close to the business cycle frequency range

that characterizes the BK filter (1.5 years to 8 years), and the HP cycle is a high-pass filter that will

retain to great extent the spectral power at the seasonal frequencies.

We thus focus on the estimator of the cycle

c̃t = E(ct|z) = wc(L)ỹt, (4)

where z = (. . . , zt−1, zt, zt+1, . . .), and similarly y = (. . . , yt−1, yt, yt+1, . . .), ỹ = (. . . , ỹt−1, ỹt, ỹt+1, . . .).

This is not without consequences for business cycle analysis. In particular, the seasonal component is

estimated with nonzero estimation error variance, and this constitutes an additional source of variation

for the above estimator.

3 Seasonal Adjustment and the Reliability of the Cycle Estimates

It is important to illustrate how seasonal adjustment affects the reliability of the cycle measurement.

Orphanides and van Norden (2003) have stressed the relevance of the uncertainty assessment for the

estimation of the output gap, which is often measured by applying an ad hoc filter wc(L), such as BK

or HP to seasonally adjusted data. Hereto we are not aware of studies that aim at assessing the role

of seasonal adjustment on business cycle measurement. The subsequent analysis aims at bridging the

gap.

We shall be exclusively concerned with the variability due to estimation of the seasonally adjusted

series due to smoothing. We will leave aside the additional source arising from the specification and

the estimation of the seasonal model.

Let et = ct − c̃t denote the cycle estimation error. Then, et = wc(L)(yt − ỹt) and its ACGF is

ge(L) = |wc(L)|2
gy(L)gγ(L)

gz(L)
,

as gy(L)gγ(L)/gz(L) is the ACGF of yt − ỹt. Here we have written |wc(L)|2 = wc(L)wc(L
−1).

The estimator c̃t is (un)conditionally unbiased, since E(et|z) = 0, but the variance of c̃t is smaller

than Var(ct). Denoting by gy(ω), ω ∈ [0, π], the spectral generating function (SGF) of yt, and by

wc(ω) = |wc(e
−ıω)|2 the squared gain of the cycle filter, i.e. the squared modulus of the frequency

response function of the filter, with e−ıω = cos(ω) − ı sin(ω), the unconditional variance of the true

cycle is

Var(ct) =

∫ π

−π
wc(ω)gy(ω)dω.

Also, the SGF of ỹt is gỹ(ω) = [gy(ω)]
2/gz(ω), as the estimator of the SA series is ỹt = gy(ω)/gz(ω)zt.
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The variance of the cycle estimator is thus:

Var(c̃t) =
∫ π
−π wc(ω)gỹ(ω)dω

=
∫ π
−π wc(ω)

gy(ω)
gz(ω)

gy(ω)dω

≤ Var(ct)

The last inequality follows from the following basic identity:

Var(ct) = Var [E(ct|z)] + E [Var(ct|z)]
= Var(c̃t) + Var(et|z)

Var(et|z) = Var(ct|z) =
∫ π
0 wc(ω)

gy(ω)gγ(ω)
gz(ω)

dω

(5)

where the expectations are taken with respect to the distribution of y given z. A first conclusion is

that seasonal adjustment implies an underestimation of the cycle volatility, i.e. the amplitude of the

cycle estimate is lower than the true amplitude.

The components Var(ct) and Var(et|z) can be evaluated as a by-product of the SA modeling effort,

as it will be illustrated shortly. Hence, in the sequel, we will assume that a parametric unobserved

components model is available, postulating a decomposition zt = yt + γt.

In particular, Var(et|z) quantifies the uncertainty surrounding the measurement of the business

cycle that is due to the fact that yt, and thus ct, is unobserved, and has to be estimated.

4 Empirical Evaluation of the Reliability of the Cycle Estimates

The estimation error variance could be computed analytically; however, the analytic expressions are

valid for the cycle estimates in the middle of a long time series; analogous formulae could be de-

rived using optimal prediction theory (see e.g. Whittle, 1983), but are extremely cumbersome and

analytically intractable.

When the cycle filter admit a model-based representation we could assess the reliability of the

cycle estimates using the embedding strategy proposed by Kaiser and Maravall (2005). This requires,

however that the central symmetric filter, wc(L), admits a spectral factorization wc(L) = φ(L)φ(L−1),

which is not the case of the BK filter (see Proietti, 2009).

When a model-based decomposition of the series is available, we propose to evaluate the reliability

of the cycle estimates in finite samples via Monte Carlo methods, by setting up the following simulation

scheme.

1. Formulate the model zt = yt+ γt and estimate it by maximum likelihood, under the assumption

of Gaussianity. Obtain ỹ = E(y|z) using the Kalman filter and smoothing algorithm.

2. For i = 1, . . . ,M, run the following simulation smoother (Durbin and Koopman, 2004):

(a) Draw y(i), γ(i), from gy(L) and gγ(L), respectively. Obtain z(i) = y(i) + γ(i) ∼ gz(L).
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(b) Obtain the estimate of the nonseasonal component ỹ(i), i = 1, . . . ,M, (using the Kalman

filter and smoother as in step 1).

(c) Compute ẏ(i) = ỹ + (y(i) − ỹ(i)) ∼ y|z.
ẏ(i) is a draw from the conditional distribution of y given z. The latter is normal with mean

ỹ.

(d) Compute

ċ
(i)
t = wc(L)ẏ

(i)
t ∼ ct|z

(ċ(i) is a draw from the conditional distribution of ct given z).

3. Estimate Var(ct|z) using
V̂ar(ct|z) =

1

M

∑
i

(
ċ
(i)
t − c̃t

)2
The estimate of the conditional variance, V̂ar(ct|z), provides the assessment of the reliability required.

The actual implementation of this scheme entails a parametric model for the decomposition zt =

µt + γt. This is the case of ARIMA model based seasonal adjustment (see Hillmer and Tiao, 1982)

and structural time series models (Harvey, 1989).

5 Empirical illustration

We present an empirical illustration which deals with the extraction of the cycle by the BK filter and

the HP filter for three monthly industrial production series referring to Germany, France and Italy.

The series are taken from the Eurostat database EuroInd and are available for the sample 1990.1-

2009.4 (France and Italy) and 1991.1-2009.4 (Germany). We restrict our analysis to the period up to

2007.12.

We assume that zt follows a basic structural model:

zt = yt + γt,

yt = µt + ϵt,

γt = st + x′itδi,

where the nonseasonal component, yt is a local linear trend plus irregular,

µt = µt−1 + βt−1 + ηt, ηt ∼ NID(0, σ2
η)

βt = βt−1 + ζt, ζt ∼ NID(0, σ2
ζ )

(6)

and ϵt ∼ NID(0, σ2
ϵ ). The seasonal component is made up of a purely seasonal trigonometric cycle

plus the calendar component, which is obtained from the regression on suitable explanatory variables.

The component st arises from the combination of six stochastic cycles defined at the seasonal

frequencies λj = 2πj/12, j = 1, . . . , 6, λ1 representing the fundamental frequency (corresponding to

a period of 12 monthly observations) and the remaining being the five harmonics (corresponding to
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periods of 6 months, i.e. two cycles in a year, 4 months, i.e. three cycles in a year, 3 months, i.e. four

cycles in a year, 2.4, i.e. five cycles in a year, and 2 months):

st =

6∑
j=1

sjt,

[
sj,t

s∗j,t

]
=

[
cosλj sinλj

− sinλj cosλj

][
sj,t−1

s∗j,t−1

]
+

[
ωj,t

ω∗
j,t

]
, j = 1, . . . , 5, (7)

and s6,t = −s6t + ω6t. The disturbances ωjt and ω∗
jt are normally and independently distributed

with common variance σ2
ω for j = 1, . . . , 5, whereas Var(ω6t) = 0.5σ2

ω (see Proietti, 2000, for further

details). Calendar effects are accounted for by six trading day regressors, measuring the number of

days of type j, j = 1, . . . , 6, occurring in month t, in excess of the number of Sundays. One regressor

picks up the Easter effect, and an additional one captures the the length of month (LOM) effect. All

the disturbances in the model are mutually and serially uncorrelated.

The model is fitted to each of the time series by maximum likelihood. Conditional on the maximum

likelihood estimates, we compute the estimate of the cycle (4). To assess its reliability, we perform the

simulation scheme proposed in the previous section to get the estimated conditional variance of c̃t.

Figure 1 displays the 95% interval estimates of the seasonally adjusted series, the HP cycle, the BK

cycle, and the HP bandpass cycle. It should be noticed that the SA series displays a lot of variation at

the high frequencies. This is responsible for the high variability of the HP cycle estimates (see the top

right panel). The latter is obtained by adopting the value λ = 129600 for the smoothness parameter,

which, according to Ravn and Uhlig (2002), is the exact monthly analogue of the traditional HP with

λ = 1600 for quarterly time series. As a matter of fact, the HP cycle filter is a high-pass filter that

retains to a great extent the amplitude of the high frequency fluctuations. As a result a lot of high

frequency variation leaks from the SA series to the cycle estimates.

The reliability improves a lot when we consider cycle measures that suppress the high frequency

variation. The bottom left plot displays the point estimates of the BK cycle, along with their 95%

confidence bands. These estimates are little affected by the adjustment, being much more stable. It

should be noticed that the BK filter is two-sided and fails to produce the estimates at the beginning

and at the end of the sample. These limitations are overcome by the bandpass version of the HP filter,

which originates from the difference of two low-pass HP filters with cut-off periods equal to 18 months

(1.5 years) and 92 months (8 years), corresponding respectively to λ = 68.7 and 54535. The bottom

right plot confirms that in the middle of the sample seasonal adjustment does not contribute much to

the variability of the estimates. However, as it might be anticipated, the variance of the estimates is

much higher at the extremes of the sample period.

Figure 2 compares the 95% interval estimates of the HP bandpass cycle for Germany, Italy and

France. The German series is available starting from 1991. The plot reveals that the uncertainty is

about the same, the series behaving very similarly, and that the business cycles are very synchronized.
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Figure 1: France, Index of Industrial Production (Manuf. total, Source Eurostat). Interval estimates

of the seasonally adjusted series, the HP cycle with λ = 129600, the BK cycle, and the HP bandpass

cycle.
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Figure 2: Germany, France and Italy, Index of Industrial Production (Manuf. total, Source Eurostat).

Comparison of the estimates of the HP bandpass cycle.

1990 1995 2000 2005

−3

−2

−1

0

1

2

3

4
HP bandpass cycleHP bandpass cycleHP bandpass cycleHP bandpass cycle

Germany 
France 
Italy 

8



6 Forecast Extensions and Estimation in Real Time

The estimation of the cycle in real time is perhaps the most problematic aspect of business cycle

measurement. If, on the one hand, it is relatively straightforward to provide a solution to the problem

of band-pass filtering when the availability of a doubly infinite sample is assumed, the adaptation of

the optimal filter to a finite realization is indeed an issue (see Percival and Walden, 1993, Pollock,

2003). We have seen, for instance, that the BK filter does not handle estimation in real time (more

generally, for the last three years of the sample), but it makes feasible only the historical estimation of

the cycle, instead. Christiano and Fitzgerald (2003) provided a solution to this problem, which takes

into account the nature of the filtered series and its possible nonstationarity. Their proposal rests on

the idea of extending the series by optimal forecasts.

For both the highpass and bandpass HP filter we were able in the previous sections to provide

interval estimates also at the extremes of the sample, by means of Monte Carlo simulation. However,

the assessment of the reliability at the end of the sample refers to the asymmetric HP cycle filter

obtained either from the penalized least squares estimation criterion or, equivalently, from the Kalman

filter and smoothing algorithm adapted to the local linear trend model (2).

In particular, the end of sample weights are obtained from the last rows of the matrix λD2′(In +

λD2D2′)−1D2. The real time estimates of the cycle at time t, built upon the information available up

to and including that time, can be represented as follows,

c̃t|t =
θ2

θ(L)
∆2ỹt, (8)

and computed via the recursive formula

c̃t|t = −θ1c̃t−1|t−1 − θ2c̃t−2|t−2 + θ2∆
2ỹt, (9)

t = 3, . . . , n, with starting values c̃1|1 = c̃2|2 = 0. Here θ(L) = (1 + θ1L + θ2L
2) denotes the moving

average polynomial of the ARIMA(0,2,2) reduced form of the local linear trend model (2). The moving

average parameter θ2 is related to λ by

λ =
θ2(1 + θ2)

2

(1− θ2)4
,

whereas θ1 is obtained from θ2 as

θ1 =
−4θ2
1 + θ2

.

A proof of the recursion (9) is provided in the Appendix.

Hence, it must be remarked that the previous assessment of business cycle uncertainty at the end

of the sample referred to the direct asymmetric HP filter (8). This filter is one-sided and implies

a phase shift, i.e. turning points are displaced along the time axis. Since the model (2), for which

this asymmetric filter is optimal, can be considered as a näıve approximation to a sensible model

of economic fluctuations, it has been proposed to apply the filter to the series extended by optimal
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forecasts. The HP filter would then be applied to the seasonally adjusted series extended by its

forecasts. The benefits are twofold: a reduction of the effect of displacing turning points, a reduction

of the size of the cycle revision as new observations become available.

The issue that we address in this section deals with the reliability of a given symmetric cycle filter,

like BK or the central HP filter given in (4), when applied to the seasonally adjusted series extended

by forecasts. This analysis is more relevant than that carried out in the previous section for the

assessment of the business cycle in real time. For the BK cycle, it enables to obtain interval estimates

of the cycle for the last three years of the sample period; as far as HP is concerned, the analysis focuses

on the interval estimation of the cycle component as extracted by the fixed filter 4, interpreted as a

highpass filter. Hence, it deals with the second-order properties of the projection of ct = wc(L)yt onto

the available finite sample, z.

The expectation of the cycle conditional on the observed sample, i.e. the optimal estimator of the

cycle given the data is c̃t = wc(L)E(yt|z), and is computed on the seasonally adjusted series augmented

by its forecasts and backcasts, obtained from the maintained seasonal model. The reliability of the cycle

estimator, as measured by Var(ct|z) is evaluated by Monte Carlo simulation using the same algorithm

illustrated in section 4. The vector y now includes also the past and future values of the series. Their

conditional expectations given the observed series, z, are obtained from a simple modification of the

Kalman filter updating equations (see Durbin and Koopman, 2001). The algorithm enables to draw

repeated independent samples from y|z and thus from c|z. These samples are used to estimate the

mean square error of the cycle estimator.

In figure 3 we report the interval estimates of ct for the HP highpass filter (λ = 129600), the

BK filter and the HP bandpass filter, applied to the German Industrial Production series. In the

simulation experiment we have simulated sample from the predictive distribution of the seasonally

adjusted series up to ten years ahead. The plot also presents, in a different color, the 95% prediction

intervals of the cycle. A few important facts emerge.

• The estimation error variance grows very rapidly at the end of the sample.

• The estimation error variance is very large at the end of the sample, so that the cycle is not

significantly different from zero.

• For the HP cycle the estimation error variance at the extremes of the sample is larger than that

arising from the assessment of the reliability made in the previous section (e.g. compare with

the interval estimates reported in figure 2).

• The predicted values of the cycle converge to zero: for the BK filter they converge to zero

oscillating around it with decreasing amplitude (this phenomenon is related to impulse response

function of the filter).

• The prediction error variance of the cycle converges to the unconditional variance, Var(ct).
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Figure 4: Germany, Index of Industrial Production. Point estimates of the HP bandpass cycle using

forecast extensions and the direct asymmetric filter.
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The third result is interesting: extending the series by forecasts is useful for reducing the bias in

the assessment of the cycle, which here translates into the phase shift and the underestimation of the

amplitude that is produced by the one sided filter (8); however, this is at odds with the increase in

the estimation error variance.

Figure 4 compares the point estimates of ct using forecast extensions with those obtained in the

previous section by applying the direct HP asymmetric filter. Both the amplitude and phase effects

(especially with respect to the last turning point) can be appreciated from the graph.

7 Conclusions

Seasonality and the adjustment thereof contributes to the uncertainty of the business cycle in several

ways. The seasonally adjusted series is estimated and its estimation error has to be taken into account.

Moreover, seasonal adjustment is a source of data revision: as a new observation is added, the estimates

are revised to take into account the new information.

This paper has provided a way to assess the contribution of seasonal adjustment as an often ne-

glected source of unreliability of the cycle estimates. The main conclusion is that this contribution is

sizable for highpass filters, like the Hodrick-Prescott filter which are strongly affected by the high fre-

quency fluctuations in a time series. These are the one that are more affected by seasonal adjustment.

If a band-pass component is considered, the effect is much less sizable, although it is stronger at the

12



extremes of the sample period.

In general, the contribution of seasonal adjustment to the uncertainty of the cycle estimates will

depend on the extent to which the seasonal component γt contaminates the observations zt. A more

variable seasonal component will imply a larger estimation error for the seasonally adjusted series,

which in turn will yield a less reliable cycle estimate.

The extraction of the business cycle from the seasonally adjusted series neglects an important

source of unreliability, i.e. the fact that the series is estimated, rather than observed. The correct

assessment of the uncertainty can be made, within a model based framework, by working with the

original time series, and formulating a data coherent decomposition into a seasonal component and a

non-seasonal one. The latter component may as well be fully agnostic about the presence of the cycle.

In fact, the perspective considered here is that we do not model the cycle, which is extracted by a

fixed filter.

We have also considered the strategy of extending the seasonally adjusted series by its optimal

forecasts. We conclude that this offers the correct perspective, non only for reducing the revisions of

the cycle estimates and ameliorating the displacement of the turning points of the cycle, but also for

assessing the reliability of the cycle estimates at the end of the sample and for forecasting the cycle.

Unfortunately, it turns out that for the Industrial Production series considered in our illustrations the

estimation error variance at the end of the sample is so large, that we cannot reject the null that the

cycle equals zero.

Acknowledgements

I would like to thank Dominique Ladiray, Gianluigi Mazzi and James Mitchell for their comments on

a preliminary version of the paper.

Appendix: Derivation of the real time HP filter

Let us focus on the näıve model based interpretation of the HP filter, i.e. as the optimal signal

extraction filter for the local linear trend model (2); see King and Rebelo (1993). The model has an

ARIMA(0,2,2) reduced form

∆2yt = ξt + θ1ξt−1 + θ2ξt−2, ξt ∼ NID(0, σ2),

where NID denotes Gaussian white noise and ∆ = 1− L is the difference operator.

Let γ(k) denote the autocovariance of ∆2yt at lag k. Equating the lag 2 autocovariance of the

structural and reduced form yields: σ2
ϵ = λσ2

ζ = θ2σ
2, which is true for θ2 ≥ 0. Also, γ(1)+4γ(2) = 0,

which implies θ1 = −4θ2/(1 + θ2). Moreover, σ2
ζ = [θ(1)]2σ2, which in turn gives the noise to signal

ratio λ = σ2
ϵ /σ

2
ζ = θ2(1 + θ2)

2/(1− θ2)
4.
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Under the assumption that (2) is the true model, The joint distribution of ϵt and yt, given Yt−1 =

{ys, s ≤ t− 1} is

yt

ϵt

∣∣∣∣∣Yt−1 ∼ N

[(
2yt−1 − yt−2 + θ1ξt−1 + θ2ξt−2

0

)
,

(
σ2 σ2

ϵ

σ2
ϵ σ2

ϵ

)
,

]

where Cov(yt, ϵt|Yt−1) = σ2
ϵ can be seen on writing yt − E(yt|Yt−1) = µt − E(µt|Yt−1) + ϵt. Denoting

c̃t|t = E(ϵt|yt, Yt−1) = E(ϵt|Yt), using a standard lemma on conditioning for Gaussian random variables

we obtain:

c̃t|t =
σ2
ϵ

σ2
(yt − 2yt−1 + yt−2 − θ1ξt−1 − θ2ξt−2)

so that, replacing σ2
ϵ = θ2σ

2, and rearranging,

c̃t|t = θ2
[
∆2yt − (θ1L+ θ2L

2)ξt
]

= θ2[θ(L)]
−1∆2yt

which proves that the real time estimates of the cycle are obtained from the second order recursion:

c̃t|t = −θ1c̃t−1|t−1 − θ2c̃t−2|t−2 + θ2∆
2yt,

which for a finite sample can be started off at t = 3, with starting values c̃1|1 = c̃2|2 = 0.

Interestingly, the smoothed estimates can be computed by the same filter applied to the sequence

c̃t|t in reverse order, i.e. the recursive formula

c̃t = −θ1c̃t+1 − θ2c̃t+2 +∆2c̃t|t.

In finite samples the backwards recursion is run for t = n, . . . , 1, with starting values c̃n+1 = c̃n+2 = 0.

This remarkable result arises from the direct application of the Wiener-Kolmogorov filter for estimating

ϵt given the availability of a doubly infinite sample.
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