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Abstract

We show that for many classes of symmetric two-player games, the simple de-
cision rule “imitate-the-best” can hardly be beaten by any other decision rule. We
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“Whoever wants to set a good example must add a grain of foolishness to his

virtue: then others can imitate and yet at the same time surpass the one they

imitate - which human beings love to do.” Friedrich Nietzsche

1 Introduction

Psychologists and behavioral economists stress the role of simple heuristics or rules for

human decision making under limited computational capabilities (see Gigerenzer and

Selten, 2002). While such heuristics lead to successful decisions in some particular tasks,

they may be suboptimal in others. It is plausible that decision makers may cease to

adopt heuristics that do worse than others in relevant situations. If various heuristics are

pitted against each other in a contest, then in the long run the heuristic with the highest

payoff should survive.

One of the heuristics in the contest may be a rational, omniscient, and forward looking

decision rule. Even if such a rational rule is not currently among the contestants, there

can always be a “mutation”, i.e., an invention of a new rule, that enters the pool of rules.

A heuristic that does very badly against such a rational rule will not be around for long

as it will not belong to the top performers. Being subject to exploitation by the rational

opponent in strategic situations would be an evolutionary liability. Consequently, we

like to raise the following question: Is there a simple adaptive heuristic that can not be

beaten even by a rational, omniscient and forward looking maximizer in large classes of

economically relevant situations?

The idea for this paper emerged from a prior observation in experimental data. In

Duersch, Kolb, Oechssler, and Schipper (2010), subjects played against computers that

were programmed according to various learning algorithms in an Cournot duopoly. On

average, human subjects easily won against all of their computer opponents with one

exception: the computer following the rule “imitate-the-best”, the rule that simply pre-

scribes to mimic the action of the most successful player in the previous round. This

suggested to us that imitation may be hard to beat even by forward–looking players.

In this paper, we prove that this holds more generally. The decision heuristic “imitate-

the-best” is very hard to beat by any other decision rule in large classes of symmetric

two-player games that are highly relevant for economics and include games such as all

symmetric 2x2 games, Cournot duopoly, Bertrand duopoly, rent seeking, public goods

games, common pool resource games, minimum effort coordination games, synergistic

relationship, arms races, Diamond’s search, Nash demand bargaining, etc.
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We shall consider two notions of being “unbeatable”. We call imitation “essentially

unbeatable” if during the infinitely repeated game against the some opponent, the oppo-

nent cannot obtain, in total, over an infinite number of periods, a payoff difference that

is more than the maximal payoff difference for the one–period game. As a weaker notion

we consider the concept of being “not subject to a money pump”. We say imitation is

not subject to a money pump if there is a bound on the sum of payoff differences an

opponent can achieve in the infinitely repeated game.

It would be intractable to explicitly consider how all possible opponents – who may

have any arbitrary decision rule – would play against an imitator. That is why we

consider the toughest possible opponent against the imitator in order to obtain an upper

bound for how much an imitator can be beaten by any possible opponent. This toughest

possible opponent clearly is a dynamic relative payoff maximizer who maximizes the

sum of all future differences between her payoff and the imitator’s payoff. The relative

payoff maximizer is assumed to be infinitely patient and forward looking and never to

make a mistake. More importantly, the dynamic payoff maximizer is assumed to know

that she is matched against an imitator. That is, she knows exactly what her opponent,

the imitator, will do at all times, including the imitator’s starting value. Finally, the

dynamic payoff maximizer is enabled to commit to any strategy including any closed-

loop strategy. Although these assumptions are certainly extreme, they make sure that if

imitation cannot be beaten by this maximizer, then it cannot be beaten by any decision

rule including dynamic absolute payoff maximization or any decision rule that is more

myopic or less omniscient.

Our results are as follows. We present necessary and sufficient conditions for imitation

being subject to a money pump. The paradigmatic example for a money pump is playing

repeatedly the game rock–paper-scissors, in which, obviously, an imitator can be exploited

without bounds by the maximizer. The main result of this paper is that imitation is

subject to a money pump if and only if the relative payoff game in question contains a

generalized rock–paper-scissors game as a submatrix.

Since the existence of a rock–paper-scissors submatrix may be cumbersome to check

in some instances, we also provide a number of sufficient conditions for imitation not

to be subject to a money pump that are based on more familiar concepts like quasicon-

cavity, generalized ordinal potentials, or quasisubmodularity/quasisupermodularity and

aggregation of actions.

We also provide a number of sufficient conditions for imitation to be essentially un-

beatable like exact potentials, increasing/decreasing differences, or additive separability.
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One such condition is that the game is a symmetric 2x2 game. To gain some intuition

for this, consider the game of “chicken” presented in the following payoff matrix.

swerve straight
swerve
straight

(
3, 3 1, 4
4, 1 0, 0

)
Suppose that initially the imitator starts out with playing “swerve”. What should a

forward looking opponent do? If she decides to play “straight”, she will earn more than

the imitator today but will be copied by the imitator tomorrow. From then on, the

imitator will stay with “straight” forever. If she decides to play “swerve” today, then

she will earn the same as the imitator and the imitator will stay with “swerve” as long

as the opponent stays with “swerve”. Suppose the opponent is a dynamic relative payoff

maximizer. In that case, the dynamic relative payoff maximizer can beat the imitator

at most by the maximal one-period payoff differential of 3. Now suppose the opponent

maximizes the sum of her absolute payoffs. The best an absolute payoff maximizer can

do is to play swerve forever.1 In this case the imitator cannot be beaten at all as he

receives the same payoff as his opponent. In either case, imitation comes very close to

the top–performing heuristics and there is no need to abandon such an heuristic.

Imitate-the-best has been previously studied theoretically and experimentally mostly

in Cournot oligopolies. Vega-Redondo (1997) shows that in symmetric Cournot oligopoly

with imitators, the long run outcome converges to the competitive output if small mis-

takes are allowed. Huck, Normann, and Oechssler (1999), Offerman, Potters, and Son-

nemans (2002), and Apesteguia et al. (2007, 2010) provide some experimental evidence.

Vega-Redondo’s result has been generalized to aggregative quasisubmodular games by

Schipper (2003) and Alós-Ferrer and Ania (2005). For Cournot oligopoly with imitators

and myopic best reply players, Schipper (2009) shows that the imitators’ long run average

payoffs are strictly higher than the best reply players’ average payoffs.

The article is organized as follows. In the next section, we present the model and

provide formal definitions for being unbeatable. Our main result, which provides a nec-

essary and sufficient condition for a money pump, is contained in Section 3. Sufficient

conditions for imitation to be essentially unbeatable are given in Section 4. Section 5

provides sufficient conditions for imitation not being subject to a money pump. We finish

with Section 6, where we summarize and discuss the results.

1Payoffs are evaluated according to the over–taking criterion (see below).

3



2 Model

We consider a symmetric2 two–player game (X, π), in which both players are endowed

with the same (finite or infinite) set of pure actions X and the same bounded payoff

function π : X × X −→ R, where π(x, y) denotes the payoff to the player choosing the

first argument. We will frequently make use of the following definition.

Definition 1 (Relative payoff game) Given a symmetric two-player game (X, π), the

relative payoff game is (X,∆), where the relative payoff function ∆ : X × X −→ R is

defined by

∆(x, y) = π(x, y)− π(y, x).

Note that, by construction, every relative payoff game is a symmetric zero-sum game

since ∆(x, y) = −∆(y, x).

We introduce two types of players. The imitator follows the simple rule “imitate-

the-best”. To be precise, the imitator adopts the opponent’s action if and only if in

the previous round the opponent’s payoff was strictly higher than that of the imitator.

Formally, the action of the imitator yt in period t given the action of the other player

from the previous period xt−1 is

yt =

{
xt−1 if ∆(xt−1, yt−1) > 0
yt−1 else

(1)

for some initial action y0 ∈ X.

The second type we consider is a dynamic relative payoff maximizer. The dynamic

relative payoff maximizer, from now on call her the maximizer, maximizes the sum of all

future payoff differentials between her and the imitator,

D(T ) :=
T∑

t=0

∆(xt, yt), (2)

where yt is known to be given by (1).

Since this sum may become infinite for T → ∞, we assume that the maximizer

evaluates her strategies according to the overtaking-criterion (see e.g. Osborne and

Rubinstein, 1994, p. 139). Accordingly, a sequence of relative payoffs {∆(xt, yt)}∞t=0 is

strictly preferred to a sequence {∆(x′t, y
′
t)}∞t=0 if limT inf

∑T
t=0(∆(xt, yt)−∆(x′t, y

′
t)) > 0.3

2See for instance Weibull (1995, Definition 1.10).
3General results on the existence of optimal over-taking strategies are developed in Leizarowitz (1996)

and the literature cited therein. Here we can side-step the issue of existence because our proofs will be
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If we used time-averaging instead of the over-taking criterion, then the maximizer

would be indifferent between a sequence of zero relative payoffs and a sequence with

a finite number of strictly positive relative payoffs and zero thereafter. Yet, our aim

is to pit the imitator against a maximizer who cares even about a finite number of

payoff advantages. If we used time discounting instead the over-taking criterion, then the

maximizer may prefer a sequence with a large payoff at the beginning over a sequence

with an endless cycle of small but positive relative payoffs. However, we believe that

money pumps – even if small – are a feature of irrationality that a rational opponent

would take advantage of.

It is important to realize just how extreme our assumptions regarding the maximizer

are. The maximizer is infinitely patient and forward looking and never makes a mistake.

More importantly, she is assumed to know exactly what her opponent, the imitator,

will do at all times, including the imitator’s starting value. Although these assumptions

are certainly extreme, they make sure that if imitation cannot be beaten by this max-

imizer, then it can not beaten by any decision rule including dynamic absolute payoff

maximization or any decision rule that is more myopic or less omniscient.

Definition 2 (No money pump) We say that imitation is not subject to a money

pump if there exists a bound M ∈ R+ such that for any initial action of the imitator

y0 ∈ X,

lim
T→∞

sup
T∑

t=0

∆(xt, yt) ≤M, (3)

where yt is given by (1).

That is, imitation is not subject to a money pump if it can be beaten only by a finite

amount although the game between the imitator and the maximizer runs for an infinite

number of periods. In some cases we can show that imitation can in fact not be beaten

by more than the payoff differential from a single period.

Definition 3 (Essentially unbeatable) We say that imitation is essentially unbeat-

able if it can be beaten in total by at most the maximal one-period payoff differential, i.e.,

if M in inequality (3) is at most ∆̂ := maxx,y ∆(x, y).

constructive in the sense that (a) we construct strategies - no matter whether optimal or not - that beat
the imitator or (b) we show that no strategy can beat the imitator.
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As in previous studies of imitation (see e.g. Alós-Ferrer and Ania, 2005; Schipper,

2003; Vega-Redondo, 1997), the concept of a finite population evolutionary stable strat-

egy (Schaffer, 1988, 1989) plays a prominent role in our analysis.

Definition 4 (fESS) An action x∗ ∈ X is a finite population evolutionary stable strat-

egy (fESS) of the game (X, π) if

π(x∗, x) ≥ π(x, x∗) for all x ∈ X. (4)

In terms of the relative payoff game, inequality (4) is equivalent to

∆(x∗, x) ≥ 0 for all x ∈ X.

Already Schaffer (1988, 1989) observed that the fESS of the game (X, π) and the

symmetric pure Nash equilibria of the relative payoff game (X,∆) coincide.

3 A Necessary and Sufficient Condition for a Money

Pump

The game rock–paper-scissors is the paradigmatic example for how an imitator can be

exploited without bounds by the maximizer. In our terminology, imitation is subject to

a money pump.

Example 1 (Rock-Paper-Scissors) Consider the well known rock-paper-scissors game.4

R P S
R
P
S

 0 −1 1
1 0 −1
−1 1 0


Clearly, if the imitator starts for instance with R, then the dynamically optimal strategy

of the maximizer is the cycle P-S-R... In this way, the maximizer wins in every period

and the imitator loses in every period. Over time, the payoff difference will grow without

bound in favor of the maximizer.

We can generalize Example 1 by noting that the crucial feature of the example is

that the maximizer can find for each action of the imitator an action which yields her a

strictly positive relative payoff.

4In the following, we will represent symmetric payoff matrices by the matrix of the row player’s
payoffs only.
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Definition 5 (Generalized Rock-Paper-Scissors Matrix) A symmetric zero-sum game

(X, π) is called a generalized rock-paper-scissors matrix if for each column there exists a

row with a strictly positive payoff to player 1.

It should be fairly obvious that if a zero–sum game contains somewhere a submatrix

that is a generalized rock-paper-scissors matrix, then this is sufficient for a money pump

as the maximizer can make sure that the process cycles forever in this submatrix. What

is probably less obvious is that the existence of such a submatrix is also necessary for a

money pump.

Definition 6 (Generalized Rock-Paper-Scissors Game) A symmetric zero-sum game

(X, π) is called a generalized rock-paper-scissors game if it contains a submatrix (X̄, π̄)

with X̄ ⊆ X and π̄(x, y) = π(x, y) for all x, y ∈ X̄, and (X̄, π̄) is a generalized rock-

paper-scissors matrix.

This leads us to our main result.

Theorem 1 Imitation is subject to a money pump in the finite symmetric game (X, π)

if and only if its relative payoff game (X,∆) is a generalized rock-paper-scissors game.

Recall that according to Definition 2, imitation is subject to a money pump if there

exists some initial condition y0 ∈ X such that inequality (3) is violated. The proof of

the theorem follows directly from the following three lemmata. We use the following

preliminary observation repeatedly in the analysis.

Lemma 1 Consider a symmetric game (X, π) with its relative payoff game (X,∆). The

maximizer will never choose an action xt such that ∆(xt, yt) < 0.

Proof. Suppose to the contrary that the maximizer chooses an action xt such that

∆(xt, yt) < 0. Then in period t + 1, the imitator will not imitate her period t action.

But then, she could improve her relative payoff in t by setting the same action in t as

the imitator without influencing the actions of the imitator in period t+ 1 or any other

future period. �

Given a symmetric two-player game (X, π) and its relative payoff game (X,∆), a path

in the action space X ×X is a sequence of action profiles (x0, y0), (x1, y1), .... A path is

7



constant if (xt, yt) = (xt+1, yt+1) for all t = 0, 1, .... Otherwise, the path is called non–

constant. A non–constant finite path (x0, y0), ..., (xn, yn) is a cycle if (x0, y0) = (xn, yn).

A cycle is an imitation cycle if for all (xt, yt) and (xt+1, yt+1) on the path of the cycle

∆(xt, yt) > 0 and yt+1 = xt. Along an imitation cycle, one player always obtains a strictly

positive relative payoff and the other player mimics the action of the first player in the

previous round. Thus, an imitation cycle never contains an action profile on the diagonal

of the payoff matrix.

Lemma 2 For any finite symmetric game (X, π), imitation is subject to a money pump

if and only if there exists an imitation cycle.

Proof. Consider a finite symmetric game (X, π) and its relative payoff game (X,∆).

We show first that if imitation is subject to a money pump, then there is a imitation cycle.

Since the game is finite, there can not be infinitely many strictly positive relative payoff

improvements unless there is a cycle. To show that such a cycle implies an imitation

cycle, suppose by contradiction that there exists a period t such that ∆(xt, yt) ≤ 0.

W.l.o.g. assume that ∆(xt+1, yt+1) > 0. This is w.l.o.g. because we assumed a money

pump. By equation (1) the imitator will not imitate in t+ 1 the previous period’s action

of the maximizer, i.e., yt+1 = yt. But then the maximizer could strictly improve the sum

of her relative payoffs already in t by setting xt = xt+1. Thus, there must be a cycle with

∆(xt, yt) > 0 for all t. The decision rule of the imitator then requires that yt+1 = xt for

all t, which proves that such a cycle is an imitation cycle.

The converse is trivial. �

Lemma 3 Consider a finite symmetric game (X, π) with its relative payoff game (X,∆).

(X,∆) is a generalized rock-paper-scissors game if and only if there exists an imitation

cycle.

Proof. “⇐”: If there exists an imitation cycle in (X,∆), let X̄ be the orbit of the

cycle, i.e., all actions of X that are played along the imitation cycle. For each action

(i.e., column) y ∈ X̄, there exists an action (i.e., row) x ∈ X̄ such that ∆(x, y) > 0.

Hence, (X̄, ∆̄), where ∆̄ is defined by ∆̄(x, y) = ∆(x, y) for all x, y ∈ X̄, is a generalized

rock-paper-scissors submatrix. Thus, (X,∆) is a generalized rock-paper-scissors game.

“⇒”: If the relative payoff game (X,∆) is a generalized rock-paper-scissors game,

then it contains a generalized rock-paper-scissors submatrix (X̄, ∆̄). That is, for each

column of the matrix game (X̄, ∆̄) there exists a row with a strictly positive relative
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payoff to player 1. Let the initial action of the imitator y be contained in X̄. If the

maximizer selects such a row x ∈ X̄ for which she earns a strict positive relative payoff,

i.e., ∆(x, y) > 0, then she will be imitated by the imitator in the next period. Yet, at the

next round, when the imitator plays x, the maximizer has another action x′ ∈ X̄ with

a strictly positive relative payoff, i.e., ∆(x′, x) > 0. Thus the imitator will imitate her

in the following period. More generally, for each action y ∈ X̄ of the imitator, there is

another action x ∈ X̄, x 6= y of the maximizer that earns the latter a strictly positive

relative payoff. Since X̄ is finite, such a sequence of actions must contain a cycle. More-

over, we just argued that ∆(xt, yt) > 0 and yt+1 = xt for all t. Thus, it is an imitation

cycle. �

Theorem 1 is used to obtain an interesting necessary condition for imitation being

not subject to a money pump.

Proposition 1 Let (X, π) be a finite symmetric game with its relative payoff game

(X,∆). If (X,∆) has no pure saddle point, then imitation is subject to a money pump.

Proof. By Theorem 1 in Duersch, Oechssler, and Schipper (2010), (X,∆) has no

symmetric pure saddle point if and only if it is a generalized rock-paper-scissors matrix.

Thus, if (X,∆) has no symmetric pure saddle point, then it is a generalized rock-paper-

scissors game. Hence, by Theorem 1 imitation is subject to a money pump. �

Corollary 1 If the finite symmetric game (X, π) has no fESS, then imitation is subject

to a money pump.

In other words, the existence of a fESS is a necessary condition for imitation not being

subject to a money pump. The reason for the existence of a fESS not being sufficient is

that there could be a generalized rock-paper-scissors submatrix of the game (“disjoint”

from the fESS profile) that gives rise to an imitation cycle. If the initial action of the

imitator lies within the action set corresponding to this submatrix, then imitation is

subject to a money pump.

Since the relative payoff game of a symmetric zero-sum game is a generalized rock-

paper-scissors game if and only if the underlying symmetric zero-sum game is a general-

ized rock-paper-scissors game, we obtain from Theorem 1 the following corollary.

Corollary 2 Imitation is subject to a money pump in the finite symmetric zero-sum

game (X, π) if and only if (X, π) is a generalized rock-paper-scissors game.
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4 Sufficient Conditions for Essentially Unbeatable

4.1 Symmetric 2x2 games

In this section, we extend the “chicken” example of the introduction to all symmetric

2x2 games. Note that the relative payoff game of any symmetric 2x2 game cannot be a

generalized rock–paper–scissors matrix since latter must by a symmetric zero–sum game.

If one of the row player’s off-diagonal relative payoffs is a > 0, then the other must be

−a violating the definition of generalized rock-paper-scissors matrix. Thus Theorem 1

implies that for any symmetric 2x2 game imitation is not subject to a money pump. We

can strengthen the result to imitation being essentially unbeatable.

Proposition 2 In any symmetric 2x2 game, imitation is essentially unbeatable.

Proof. Let X = {x, x′}. Consider a period t in which the maximizer achieves a

strictly positive relative payoff, ∆(x, x′) > 0. (If no such period t in which the maximizer

achieves a strictly positive relative payoff exists, then trivially imitation is essentially

unbeatable.) By definition, ∆(x, x′) ≤ ∆̂. Since ∆(x, x′) > 0, the imitator imitates x in

period t + 1. For there to be another period in which the maximizer achieves a strictly

positive relative payoff, it must hold that ∆(x′, x) > 0, which because of symmetry yields

a contradiction as ∆(x′, x) = −∆(x, x′). Thus there can be at most one period in which

the maximizer achieves a strictly positive relative payoff. �

Note that “Matching pennies” is not a counter-example since it is not symmetric.

4.2 Additively Separable Relative Payoff Functions

Next, we consider relative payoff functions that are additively separable in the players’

actions. In this class of symmetric games, imitation is also essentially unbeatable. While

additive separability may appear to be restrictive, we will show below that there is a

fairly large number of important examples that fall into this class.

Definition 7 (Additive Separable) We say that a relative payoff function ∆ is addi-

tively separable if ∆(x, y) = f(x) + g(y) for some functions f, g : X −→ R.

Proposition 3 Let (X, π) be a symmetric game with its relative payoff game (X,∆). If

X is compact and the relative payoff function ∆ is upper semicontinuous and additively

separable, then imitation is essentially unbeatable.
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Proof. Since ∆ is separable, we have that for all x′′, x′, x ∈ X,

∆(x′′, x)−∆(x′, x) = ∆(x′′, x′)−∆(x′, x′),

which is equivalent to

∆(x′′, x) = ∆(x′′, x′) + ∆(x′, x) (5)

because ∆(x′, x′) = 0 since the relative payoff game is a symmetric zero–sum game.

By induction, equation (5) implies that one large step is just as profitable as any

number of steps. Suppose three steps were optimal for the maximizer. By equation (5)

the maximizer is no worse off by merging two of the three steps to one larger step.

Applying equation (5) again yields the claim.

Thus, if a fESS exist, then the maximizer cannot do better than jumping directly to

a fESS x∗ since for all x, y ∈ X,

∆(x∗, y) = ∆(x∗, x) + ∆(x, y) ≥ ∆(x, y),

where the equality follows from equation (5) and the inequality from the definition of

fESS. If the inequality is strict, then once the maximizer has chosen x∗, the imitator will

follow and remain there for ever. Otherwise, if the inequality holds with equality then

the maximizer can not improve further his relative payoff.

Finally, in Duersch, Oechssler, and Schipper (2010, Corollary 6), we show that if X

is compact and ∆ upper semicontinuous and additively separable, then a fESS of (X, π)

indeed exists. �

The following corollary follows directly from Proposition 3 and may be useful in

applications.

Corollary 3 Consider a game (X, π) with a compact action set X and a payoff function

that can be written as π(x, y) = f(x) + g(y) + a(x, y) for some continuous functions

f, g : X −→ R and a symmetric function a : X ×X −→ R (i.e., a(x, y) = a(y, x) for all

x, y ∈ X). Then imitation is essentially unbeatable.

Properties such as increasing or decreasing differences are often useful for proving the

existence of pure equilibria and convergence of learning processes.

Definition 8 Let X be a totally ordered set. A (relative) payoff function ∆ has decreas-

ing (resp. increasing) differences on X ×X if for all x′′, x′, y′′, y′ ∈ X with x′′ > x′ and
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y′′ > y′,

∆(x′′, y′′)−∆(x′, y′′) ≤ (≥)∆(x′′, y′)−∆(x′, y′). (6)

∆ is a valuation if it has both decreasing and increasing differences.

Our original intent was to study the consequences of ∆(x, y) having either increasing

or decreasing differences. However, in Duersch, Oechssler, and Schipper (2010, Lemma

1) we show that for all symmetric two-player zero-sum games, increasing differences is

equivalent to decreasing differences. By Topkis (1998, Theorem 2.6.4.), a function is

additively separable on a totally ordered set X if and only if it is a valuation. Hence, we

have the following corollary to Proposition 3.

Corollary 4 Let (X, π) be a finite symmetric game with its relative payoff game (X,∆).

If X is a totally ordered set and ∆ has increasing or decreasing differences or is a valu-

ation, then imitation is essentially unbeatable.

Brânzei, Mallozzi, and Tijs (2003, Theorem 1) show that a zero-sum game is an exact

potential game if and only if it is additively separable. Thus, Proposition 3 implies that

imitation is essentially unbeatable in exact potential games. The following notion is due

to Monderer and Shapley (1996).

Definition 9 (Exact potential games) The symmetric game (X, π) is an exact po-

tential game if there exists an exact potential function P : X ×X −→ R such that for all

y ∈ X and all x, x′ ∈ X,

π(x, y)− π(x′, y) = P (x, y)− P (x′, y),

π(x, y)− π(x′, y) = P (y, x)− P (y, x′).

Corollary 5 Let (X, π) be a finite symmetric game with its relative payoff game (X,∆).

If (X,∆) is an exact potential game, then imitation is essentially unbeatable.

All of the following examples follow from Proposition 3 or Corollary 3. They demon-

strate that the assumption of additively separable relative payoffs is not as restrictive as

may be thought at first glance.

Example 2 (Cournot Duopoly with Linear Demand) Consider a Cournot duopoly

given by the symmetric payoff function by π(x, y) = x(b−x− y)− c(x) with b > 0. Since

π(x, y) can be written as π(x, y) = bx−bx2−c(x)−xy, Corollary 3 applies, and imitation

is essentially unbeatable.
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The following example with strategic complementarities shows that the result is not

restricted to strategic substitutes.

Example 3 (Bertrand Duopoly with Product Differentiation) Consider a differ-

entiated duopoly with constant marginal costs, in which firms 1 and 2 set prices x and y,

respectively. Firm 1’s profit function is given by π(x, y) = (x− c)(a+ by− 1
2
x), for a > 0,

b ∈ [0, 1/2). Since π(x, y) can be written as π(x, y) = ax− ac + 1
2
cx− 1

2
x2 − bcy + bxy,

Corollary 3 applies, and imitation is essentially unbeatable.

Example 4 (Public Goods) Consider the class of symmetric public good games de-

fined by π(x, y) = g(x, y) − c(x) where g(x, y) is some symmetric monotone increasing

benefit function and c(x) is an increasing cost function. Usually, it is assumed that g is

an increasing function of the sum of provisions, that is the sum x+ y. Various assump-

tions on g have been studied in the literature such as increasing or decreasing returns. In

any case, Corollary 3 applies, and imitation is essentially unbeatable.

Example 5 (Common Pool Resources) Consider a common pool resource game with

two appropriators. Each appropriator has an endowment e > 0 that she can invest in

an outside activity with marginal payoff c > 0 or into the common pool resource. x ∈
X ⊆ [0, e] denotes the maximizer’s investment into the common pool resource (likewise y

denotes the imitator’s investment). The return from investment into the common pool re-

source is x
x+y

(a(x+y)−b(x+y)2), with a, b > 0. So the symmetric payoff function is given

by π(x, y) = c(e−x) + x
x+y

(a(x+y)− b(x+y)2) if x, y > 0 and ce otherwise (see Walker,

Gardner, and Ostrom, 1990). Since ∆(x, y) = (c(e−x)+ax−bx2)−(c(e−y)+ay−by2),

Proposition 3 implies that imitation is essentially unbeatable.

Example 6 (Minimum Effort Coordination) Consider the class of minimum effort

games given by the symmetric payoff function π(x, y) = min{x, y} − c(x) for some cost

function c (see Bryant, 1983 and Van Huyck, Battalio, and Beil, 1990). Corollary 3

implies that imitation is essentially unbeatable.

Example 7 (Synergistic Relationship) Consider a synergistic relationship among two

individuals. If both devote more effort to the relationship, then they are both better off,

but for any given effort of the opponent, the return of the player’s effort first increases

and then decreases. The symmetric payoff function is given by π(x, y) = x(c + y − x)

with c > 0 and x, y ∈ X ⊂ R+ with X compact (see Osborne, 2004, p. 39). Corollary 3

implies that imitation is essentially unbeatable.
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Example 8 (Arms Race) Consider two countries engaged in an arms race (see e.g.

Milgrom and Roberts, 1990, p. 1272). Each player chooses a level of arms in a compact

totally ordered set X. The symmetric payoff function is given by π(x, y) = h(x−y)−c(x)

where h is a concave function of the difference between both players’ level of arms, x− y,

satisfying h(x− y) = −h(y − x). By Proposition 3 imitation is essentially unbeatable.

Example 9 (Diamond’s Search) Consider two players who exert effort searching for

a trading partner. Any trader’s probability of finding another particular trader is pro-

portional to his own effort and the effort by the other. The payoff function is given

by π(x, y) = αxy − c(x) for α > 0 and c increasing (see Milgrom and Roberts, 1990,

p. 1270). The relative payoff game of this two-player game is additively separable. By

Proposition 3 imitation is essentially unbeatable.

A natural question is whether additive separability of relative payoffs is also necessary

for imitation to be essentially unbeatable. The following counter-example shows that this

is not the case.

Example 10 (Coordination game with outside option) Consider the following co-

ordination game with an outside option (C) for both players of not participating (left

matrix).

π =

A B C
A
B
C

 4 −1 0
2 3 0
0 0 0

 ∆ =

A B C
A
B
C

 0 −3 0
3 0 0
0 0 0


Note that the relative payoff game ∆ (right matrix) does not have constant differences.

E.g., ∆(A,B) − (B,B) = −3 6= ∆(A,C) − ∆(B,C) = 0. Thus, by Topkis (1998,

Theorem 2.6.4.), it is not additively separable. Yet, imitation is essentially unbeatable.

If the imitator’s initial action is A, the maximizer can earn at most a relative payoff

differential of 3 after which the imitator adjusts and both earn zero from there on. For

other initial actions of the imitator, the maximal payoff difference is at most 0.

5 Sufficient Conditions for No Money Pump

5.1 Relative Payoff Games with Potentials

Potential functions are often useful for obtaining results on convergence of learning al-

gorithms to equilibrium, existence of pure equilibrium, and equilibrium selection. In
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the previous section, we have shown that if the relative payoff game is an exact potential

game, then imitation is essentially unbeatable. It is natural to explore the implications of

more general notions of potentials. Besides exact potential games (see Definition 9), the

following notions of potential games were introduced by Monderer and Shapley (1996).

Definition 10 (Potential games) The symmetric game (X, π) is

(W) a weighted potential game if there exists a weighted potential function P : X×X −→
R and a weight w ∈ R+ such that for all y ∈ X and all x, x′ ∈ X,

π(x, y)− π(x′, y) = w(P (x, y)− P (x′, y)),

π(x, y)− π(x′, y) = w (P (y, x)− P (y, x′)) .

(O) an ordinal potential game if there exists an ordinal potential function P : X×X −→
R such that for all y ∈ X and all x, x′ ∈ X,

π(x, y)− π(x′, y) > 0 if and only if P (x, y)− P (x′, y) > 0,

π(x, y)− π(x′, y) > 0 if and only if P (y, x)− P (y, x′) > 0.

(G) a generalized ordinal potential game if there exists a generalized ordinal potential

function P : X ×X −→ R such that for all y ∈ X and all x, x′ ∈ X,

π(x, y)− π(x′, y) > 0 implies P (x, y)− P (x′, y) > 0,

π(x, y)− π(x′, y) > 0 implies P (y, x)− P (y, x′) > 0.

Note that every exact potential game is a weighted potential game, every weighted

potential game is an ordinal potential game, and every ordinal potential game is a gen-

eralized ordinal potential game. Monderer and Shapley (1996, Lemma 2.5 and the first

paragraph on p. 129) show that any finite strategic game admitting a generalized or-

dinal potential possesses a pure Nash equilibrium. Thus, if (X, π) is a finite symmetric

game with relative playoff game (X,∆) and the latter is an exact, weighted, ordinal or

generalized ordinal potential game, then (X, π) possesses a fESS.

A sequential path in the action space X×X is a sequence (x0, y0), (x1, y1), ... of profiles

(xt, yt) ∈ X ×X such that for all t = 0, 1, ..., the action profiles (xt, yt) and (xt+1, yt+1)

differ in exactly one player’s action. A sequential path is a strict improvement path if

for each t = 0, 1, ..., the player who switches her action at t strictly improves her payoff.

A finite sequential path (x0, y0), ..., (xm, ym) is a strict improvement cycle if it is a strict

improvement path and (x0, y0) = (xm, ym).
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Lemma 4 If (X,∆) does not contain a strict improvement cycle, then it does not contain

an imitation cycle.5

Proof. We prove the contrapositive. I.e., if (X,∆) contains an imitation cycle,

then it contains a strict improvement cycle. Let (x0, y0), ..., (xm, ym) be an imitation

cycle. From this imitation cycle, we construct a strict improvement cycle as follows: For

t = 0, ...,m − 1, we add the element (xt, yt+1) as successor to (xt, yt) and predecessor

to (xt+1, yt+1). That is, instead of simultaneous adjustments of actions at each round

as in an imitation cycle, we let players adjust actions sequentially by taking turns. The

imitator adjusts from (xt, yt) to (xt, yt+1) and the maximizer from (xt, yt+1) to (xt+1, yt+1)

for t = 0, ...,m− 1. This construction yields a sequential path.

We now show that it is a strict improvement cycle. First, for the imitator, whenever

she adjusts in t = 0, ...,m − 1, we claim ∆(yt, xt) < ∆(yt+1, xt) = 0. Note that by

symmetric zero-sum, ∆(yt, xt) = −∆(xt, yt) < 0 because (xt, yt) is an element of an

imitation cycle, i.e., ∆(xt, yt) > 0. ∆(yt+1, xt) = 0 because the imitator mimics the

action of the maximizer, yt+1 = xt. Thus ∆(yt+1, xt) = ∆(xt, xt) = 0 by symmetric

zero-sum.

Second, for the maximizer, whenever she adjusts in t = 1, ...,m, ∆(xt, yt) > ∆(xt−1, yt) =

0 because (xt, yt) is an element of an imitation cycle, so ∆(xt, yt) > 0. Moreover, the

imitator mimics the action of the maximizer, i.e., yt = xt−1, and thus ∆(xt−1, yt) =

∆(xt−1, xt−1) = 0. Hence (x0, y0), (x0, y1), (x1, y1), ..., (xm−1, ym), (xm, ym) is indeed a

strict improvement cycle. �

The converse is not true as the following counter-example shows.

Example 11 Consider the following relative payoff game.6

∆ =

a b c
a
b
c

 0 0 −1
0 0 1
1 −1 0


5Ania (2008, Proposition 3) presents a similar result according to which if all players are imitators

and imitation is payoff improving, then fESS implies Nash equilibrium action. This is different from
Lemma 4 as we consider one maximizer and one imitator and focus on the relationship between relative
payoff games that possess a generalized ordinal potential and imitation cycles.

6This example appears also in Ania (2008, Example 2), where it is used to demonstrate that the
class of games where imitation is payoff improving (when all players are imitators) is not a subclass of
generalized ordinal potential games.
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Clearly, this game is not a generalized rock-paper-scissors game. Thus, by Lemma 2 it

does not possess an imitation cycle. However, we can construct a strict improvement

cycle (b, a), (c, a), (c, c), (b, c) and (b, a).

Proposition 4 Let (X, π) be a finite symmetric game with its relative payoff game

(X,∆). If (X,∆) is a generalized ordinal potential game, then imitation is not subject

to a money pump.

Proof. Monderer and Shapley (1996, Lemma 2.5) show that a finite strategic game

has no strict improvement cycle (what they call the finite improvement property) if and

only if it is a generalized ordinal potential game. Since this result holds for any finite

strategic game, it holds also for any finite symmetric zero-sum game (X,∆).

Lemma 4 shows that if (X,∆) does not contain a strict improvement cycle, then it

does not contain an imitation cycle. Thus Lemma 2 implies that imitation is not subject

to a money pump. �

If the converse were true, then the class of generalized ordinal potential relative payoff

games and relative payoff games that are not generalized rock-paper-scissors games would

coincide. Yet, the converse is not true. This follows again from Example 11. It is not

a generalized rock-paper-scissors game but due to the existence of a strict improvement

cycle it does not possess a generalized ordinal potential by Monderer and Shapley (1996,

Lemma 2.5).

For an example of a game whose relative payoff game is a generalized ordinal potential

game see again the coordination game with an outside option presented in Example 10.

A generalized ordinal potential function is given by

G =

A B C
A
B
C

 −2 −1 −2
−1 0 0
−2 0 0


It is straightforward to check that exact, weighted, and ordinal potential games are

generalized ordinal potential games.

Corollary 6 Let (X, π) be a finite symmetric game with its relative payoff game (X,∆).

If (X,∆) is an exact potential game, a weighted potential game, or an ordinal potential

game, then imitation is not subject to a money pump.
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5.2 Quasiconcave Relative Payoff Games

Here we show that imitation is essentially unbeatable if the relative payoff game is “qua-

siconcave”. The following definition naturally extends the definition of quasi-concave

payoff function on convex real-valued spaces to the case of finite, symmetric games. It is

the notion of single-peakedness.

Definition 11 (Quasiconcave) A finite symmetric game (X, π) with symmetric m×m
payoff matrix π = (πxy) is quasiconcave (or single-peaked) if for each y ∈ X, there exists

a ky such that

π1y ≤ π2y ≤ . . . ≤ πkyy ≥ πky+1y ≥ . . . ≥ πmy.

That is, we say a symmetric game is quasiconcave if each column has a single peak.

In our companion paper, Duersch, Oechssler, and Schipper (2010, Corollary 4), we show

that if X is finite and ∆ is quasiconcave, then a fESS of (X, π) exists.

It is clear from the definition of quasiconcavity that if ∆ is quasiconcave then there

exists a total order on the action space. With some abuse of notation, we denote this

order also by ≤. If ∆ is quasiconcave, we say that x is between some x′ and x′′ if

x′ ≤ x ≤ x′′ or x′′ ≤ x ≤ x′.

Lemma 5 Let (X,∆) be the relative payoff game of the symmetric game (X, π). Suppose

∆ is quasiconcave.

1. If x is between some y and some fESS x∗, then

∆(x, y) = −∆(y, x) ≥ 0.

2. If x∗ and x∗∗ are fESS, then so are all x between x∗ and x∗∗.

Proof. (1) Let x be between y and x∗. By definition of the fESS, ∆(x∗, y) ≥ 0. By

symmetry of payoffs, ∆(y, y) = 0. Part (1) of the lemma follows then by quasiconcavity.

(2) Let x∗ and x∗∗ both be fESS. Thus, ∆(x∗, x∗∗) ≥ 0 and ∆(x∗∗, x∗) ≥ 0. Since

∆(x∗, x∗∗) = −∆(x∗∗, x∗), we must have ∆(x∗, x∗∗) = 0. By quasiconcavity, ∆(x′, x∗∗) ≥
0 and ∆(x′, x∗) ≥ 0 for all x′ between x∗ and x∗∗. By part (1) of the lemma, ∆(x′, x) ≥ 0,

for all x ∈ X. Hence, all x′ between x∗ and x∗∗ are fESS as well. �

Proposition 5 Let (X, π) be a finite symmetric game with its relative payoff game

(X,∆). If ∆ is quasiconcave, then imitation is not subject to a money pump.
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Proof. We will show that the imitator’s play must reach the set of fESS in finitely

many steps, which implies that imitation is not subject to a money pump.

We need the following notation. Let E denote the (finite) set of fESS of (X, π). By

Lemma 5 (2), if x∗ and x∗∗ are two fESS with x∗ ≤ x∗∗, then for any x with x∗ ≤ x ≤ x∗∗

also x is a fESS, where the total order ≤ is induced by quasiconcavity of ∆. Denote

x∗ := minE, x∗∗ := maxE the smallest and largest fESS, respectively, where again the

max and min are taken with respect to the total order induced by quasiconcavity of ∆.

We denote by < the strict part of ≤, i.e., x < x′ if and only if x ≤ x′ and not x′ ≤ x.

For any value y ∈ X, y > x∗∗, we define the following lower bound (which need not

always exist),

l(y) := max {x ∈ X : ∆(x, y) < 0, x < x∗} .

If y is larger than the largest fESS, then l(y) is the largest action lower than the lowest

fESS at which relative payoffs are strictly negative. Likewise, for y ∈ X, y < x∗, we

define the following upper bound (which need not always exist),

u(y) := min {x ∈ X : ∆(x, y) < 0, x > x∗∗} .

Without loss of generality, let y0 > x∗∗ be the starting value of the imitator. (The case

of y0 < x∗ follows analogously.). Let us consider all possible choices of the maximizer.

By Lemma 1, the maximizer will never choose an action x such that ∆(x, y0) < 0. If the

maximizer chooses any x such that ∆(x, y0) = 0, then the maximizer will not be imitated

and the situation in t = 1 will be identical to t = 0. Thus, from now on we can restrict

attention to x ∈ X such that ∆(x, y0) > 0.

We claim that ∆(x, y0) > 0 can occur only if x < y0 and l(y0) < x, where the second

requirement is empty should l(y0) not exist. To see that we can exclude x ≤ l(y0) note

that ∆(l(y0), y0) < 0 by definition. By quasiconcavity, ∆(x, y0) < 0 for all x ≤ l(y0). To

see that we can exclude x ≥ y0 note that ∆(y0, y0) = 0. By quasiconcavity, ∆(x, y0) ≤ 0,

for all x > y0. This proves the claim.

When the maximizer chooses any x such that l(y0) < x < y0, the imitator imitates

x and chooses y1 = x in the next period. Consider the case y1 < x∗. We claim that

u(y1) ≤ y0. To see this note that ∆(y1, y0) > 0 (otherwise the imitator would not have

imitated) and hence ∆(y0, y1) < 0. By quasiconcavity and the definition of fESS we have

∆(x′, y1) < 0 for all x′ ≥ y0. Hence, u(y1) ≤ y0. Next, consider the case that y1 > x∗∗. In

that case simply restart the procedure with the new starting value y1. Finally, consider

the case where the maximizer selects an element in E. Then no further relative payoff

improvements are possible.
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Thus, in this first step we have strictly narrowed down the range of the possible choice

y1 of the imitator in period t = 1 to l(y0) < y1 < y0. Since X is finite, when we repeat

this step, the imitator must reach the set of fESS in a finite number of steps. Once the

imitator has reached a fESS, he has reached a stationary state since then ∆(x, x∗) ≤ 0

for all x. The imitator will never leave x∗ and the maximizer will never again obtain a

positive relative payoff. Since there are only finitely many rounds in which ∆(xt, yt) > 0,

imitation is not subject to a money pump. �

The following corollary may be useful for applications. Let X ⊂ Rm be a finite

subset of a finite dimensional Euclidean space. A function f : X −→ R is convex (resp.

concave) if for any x, x′ ∈ X and for any λ ∈ [0, 1] such that λx + (1 − λ)x′ ∈ X,

f(λx+ (1− λ)x′) ≤ (≥)λf(x) + (1− λ)f(x′).

Corollary 7 Let (Rm, π) be a symmetric two-player game for which π(·, ·) is concave in

its first argument and convex in its second argument. If the players’ actions are restricted

to a finite subset X of the finite dimensional Euclidian space Rm, then imitation is not

subject to a money pump.

Bargaining is an economically relevant situation involving two players. Our results

imply that imitation is not subject to a money pump in bargaining as modeled in the

Nash Demand game.

Example 12 (Nash Demand Game) Consider the following version of the Nash De-

mand game (see Nash, 1953). Two players simultaneously demand an amount in R+.

If the sum is within a feasible set, i.e., x + y ≤ s for s > 0, then player 1 receives the

payoff π(x, y) = x. Otherwise π(x, y) = 0 (analogously for player 2). The relative pay-

off function is quasiconcave. If the players’ demands are restricted to a finite set, then

Proposition 5 implies that imitation is not subject to a money pump.

Example 13 Consider a symmetric two-player game with the payoff function given by

π(x, y) = x
y

with x, y ∈ X ⊂ [1, 2] with X being finite. This game’s relative payoff function

is quasiconcave. Thus our result implies that imitation is not subject to a money pump.

Moreover, the example demonstrates that not every quasiconcave relative payoff function

is additively separable.

Finally, we like to remark that Example 11 is an instance of a quasiconcave relative

payoff game but due to the strict improvement cycle it does not posses a generalized
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ordinal potential. Moreover, in Duersch, Oechssler, and Schipper (2010, Example 1) we

show that there are relative payoff games that are neither generalized rock-paper-scissors

games nor quasiconcave.

5.3 Aggregative Games

Many games relevant to economics possess a natural aggregate of all players actions.

For instance, in Cournot games the total market quantity or the price is an aggregate.

But also other games like rent-seeking games, common pool resource games, public good

games etc. can be viewed as games with an aggregate. The aggregation property has

been useful for the study of imitation and fESS in the literature (see Schipper, 2003, and

Alós-Ferrer and Ania, 2005). In this section, we will derive results for aggregative games

whose absolute payoff functions satisfy some second-order properties.7

We say that (X,Π) is an aggregative game if it satisfies the following properties.

(i) X is a totally ordered set of actions and Z is a totally ordered set.

(ii) There exists an aggregator a : X ×X −→ Z that is

– monotone increasing in its arguments, i.e. if (x′′, y′′) > (x′, y′), then a(x′′, y′′) >

a(x′, y′), and

– symmetric, i.e., a(x, y) = a(y, x) for all x, y ∈ X.

(iii) π is extendable to Π : X × Z −→ R with Π(x, a(x, y)) = π(x, y) for all x, y ∈ X.

We say that an aggregative game (X,Π) is quasisubmodular (resp. quasisupermodular)

if Π is quasisubmodular (resp. quasisupermodular) in (x, y) on X×Z, i.e., for all z′′ > z′,

x′′ > x′,

Π(x′′, z′′)− Π(x′, z′′) ≥ 0 ⇒ (⇐) Π(x′′, z′)− Π(x′, z′) ≥ 0, (7)

Π(x′′, z′′)− Π(x′, z′′) > 0 ⇒ (⇐) Π(x′′, z′)− Π(x′, z′) > 0. (8)

7At a first glance, the aggregation property may be less compelling in the context of two-player games.
However, the results we obtain in this section allows us to cover important examples that are not covered
by any of our other results.
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Quasisupermodularity (resp. quasisubmodularity) is sometimes also called the (dual)

single crossing property (e.g. Milgrom and Shannon, 1994).8

We say that an aggregative game (X,Π) is submodular (resp. supermodular) if Π has

decreasing (resp. increasing) differences in (x, z) on X × Z. I.e., for all z′′ > z′, x′′ > x′,

Π(x′′, z′′)− Π(x′, z′′) ≤ (≥)Π(x′′, z′)− Π(x′, z′). (9)

It is straight-forward to check that if an aggregative game (X,Π) is submodular (resp.

supermodular), then it is quasisubmodular (resp. quasisupermodular). The converse is

false.

A finite aggregative game is quasiconcave (or single-peaked) if for any x, x′, x′′ ∈ X
with x < x′ < x′′ and z ∈ Z,

Π(x′, z) ≥ min{Π(x, z),Π(x′′, z)}.

A finite aggregative game is quasiconvex if for any x, x′, x′′ ∈ X with x < x′ < x′′ and

z ∈ Z,

Π(x′, z) ≤ max{Π(x, z),Π(x′′, z)}.

It is strictly quasiconvex if the inequality holds strictly. An action x∗ ∈ X is a fESS of

the aggregative game (X,Π) if

Π(x∗, a(x∗, x)) ≥ Π(x, a(x∗, x)) for all x ∈ X.

The following lemma is the key insight for our result on quasiconcave quasisubmodular

aggregative games.

Lemma 6 Suppose (X,Π) is a quasiconcave quasisubmodular aggregative game. If x is

between some x′ and a fESS x∗, then

Π(x, a(x, x′)) ≥ Π(x′, a(x, x′)).

8It is important to realize that quasisubmodularity in (x, z) where z is the aggregate of all players’
actions is different from quasisubmodularity in (x, y) where y is the aggregate of all opponents’ actions.
For instance, Schipper (2009, Lemma 1) shows that quasisubmodularity in (x, z) where z is the aggregate
of all players’ actions is satisfied in a Cournot oligopoly if the inverse demand function is decreasing. No
assumptions on costs are required. It is known from Amir (1996, Theorem 2.1) that further assumptions
on costs are required if the Cournot oligopoly should be quasisubmodular in (x, y) where y is the aggregate
of all opponents’ actions.
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Proof. Suppose that x′ ≤ x ≤ x∗. The case x′ ≥ x ≥ x∗ can be dealt with analogously.

By the definition of a fESS

Π(x∗, a(x∗, x′))− Π(x′, a(x∗, x′)) ≥ 0.

By quasiconcavity,

Π(x, a(x∗, x′))− Π(x′, a(x∗, x′)) ≥ 0.

The result follows then by quasisubmodularity,

Π(x, a(x, x′))− Π(x′, a(x, x′)) ≥ 0,

since a(x∗, x′) ≤ a(x, x′). �

Proposition 6 If (X,Π) is a finite quasiconcave quasisubmodular aggregative game for

which a fESS exists, then imitation is not subject to a money pump.

Proof. We will show that from any initial action, any relative payoff improving

sequence of actions reaches a fESS in a finite number of steps. Once reached, there are

no further improvement possibilities for the maximizer by definition of the fESS.

Note that since the game is quasiconcave, if x∗ and x∗∗ are fESS, then so is any x ∈ X
with x∗ < x < x∗∗ or x∗∗ < x < x∗. We write E for the set of fESS.

Step 1 : Let y0 ∈ X be the starting action of the imitator. Assume that y0 < x∗ = minE

(the proof for y0 > x∗∗ = maxE works analogously). We claim that when the imitator

switches to a new action y1 6= y0, we must have that y1 > y0. Suppose by contradiction

that y1 < y0. By Lemma 1, the imitators would only choose y1 if in the previous period

the maximizer chose x = y1 and received a strictly higher payoff than the imitator,

∆(y1, y0) = Π (y1, a(y1, y0))− Π (y0, a(y1, y0)) > 0. (10)

But this contradicts Lemma 6 as y1 < y0 < x∗. Thus, y1 > y0.

• If y1 ∈ E, we are done.

• If y0 < y1 < x∗, then take y1 as the new starting action and repeat Step 1.

• Else, go to Step 2.
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Step 2 : We have that y1 > x∗∗. We claim that when the imitators switches to a new

action y2 6= y1, we must have that y2 < y1. Suppose by contradiction that y2 > y1. By

Lemma 1, the imitators would only choose y2 if in the previous period the maximizer

chose x = y2 and received a higher payoff, ∆(y2, y1) > 0. But this contradicts Lemma 6

as y2 > y1 > x∗∗. Thus y2 < y1.

• If y2 ∈ E, we are done.

• If y0 < y2 < x∗, then take y2 as the new starting action and repeat Step 1.

• If x∗∗ < y2 < y1, then take y2 as the new starting action and repeat Step 2.

We claim that y2 ≤ y0 can be ruled out. Since X is finite, the algorithm then stops

after finite periods. Thus the proof of the proposition is complete once we verify this last

claim.

Suppose to the contrary that y2 ≤ y0. By Lemma 1, the imitators would only choose

y2 if in the previous period the maximizer chose x = y2 and received a strictly higher

payoff than the imitator,

∆(y2, y1) = Π (y2, a(y2, y1))− Π (y1, a(y2, y1)) > 0.

By quasiconcavity, we have

Π (y0, a(y2, y1))− Π (y1, a(y2, y1)) ≥ 0.

Since a(y0, y1) ≥ a(y2, y1), we have by quasisubmodularity

Π (y0, a(y0, y1))− Π (y1, a(y0, y1)) ≥ 0.

But this contradicts inequality (10) and proves the claim. �

The following examples present applications of the previous result. The first exam-

ple extends the linear Cournot oligopoly of Example 2 to general symmetric Cournot

oligopoly.

Example 14 (Cournot Duopoly) Let the symmetric payoff function be π(x, y) = xp(x+

y)− c(x) and assume that π(x, y) is quasiconcave in x. Schipper (2009, Lemma 1) shows

that a symmetric Cournot duopoly with an arbitrary decreasing inverse demand function

p and arbitrary increasing cost function c is an aggregative quasisubmodular game. Thus,

Proposition 6 implies that imitation is not subject to a money pump in Cournot duopoly.
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Example 15 (Rent Seeking) Two contestants compete for a rent v > 0 by bidding

x, y ∈ X ⊆ R+. A player’s probability of winning is proportional to her bid, x
x+y

and zero

if both players bid zero. The cost of bidding equals the bid. The symmetric payoff function

is given by π(x, y) = x
x+y

v − x (see Tullock, 1980, and Hehenkamp, Leininger, and

Possajennikov, 2004). This game is an aggregative quasisubmodular game (see Schipper,

2003, Example 6, and Alós-Ferrer and Ania, 2005, Example 2) and π(x, y) is concave in

x. Thus Proposition 6 implies that imitation is not subject to a money pump.

For quasiconvex quasisupermodular aggregative games we can prove an analogous

result. We first observe that in a strictly quasiconvex quasisubmodular game a fESS

must be a “corner” solution if it exists. It follows that there can be at most two fESS.

Lemma 7 Let (X,Π) be a finite strictly quasiconvex quasisupermodular aggregative game.

If x∗ is a fESS, then x∗ = maxX or x∗ = minX.

Proof. Let x∗ be a fESS and suppose to the contrary that there exist x′, x′′ ∈ X such

that x′ < x∗ < x′′. We distinguish four cases:

Case 1: If

Π(x′′, a(x∗, x′′)) ≥ Π(x′, a(x∗, x′′)),

then by strict quasiconvexity

Π(x∗, a(x∗, x′′)) < Π(x′′, a(x∗, x′′)),

a contradiction to x∗ being a fESS.

Case 2: The case Π(x′, a(x∗, x′)) ≥ Π(x′′, a(x∗, x′)) is analogous to Case 1.

Case 3: If

Π(x′, a(x∗, x′′)) ≥ Π(x′′, a(x∗, x′′)),

then by strict quasiconvexity

Π(x∗, a(x∗, x′′)) < Π(x′, a(x∗, x′′)).

By quasisupermodularity,

Π(x∗, a(x∗, x′)) < Π(x′, a(x∗, x′)).

a contradiction to x∗ being a fESS.

Case 4: The case Π(x′′, a(x∗, x′)) ≥ Π(x′, a(x∗, x′)) is analogous to Case 3.

Thus, if x∗ is a fESS, then x∗ = maxX or x∗ = minX. �
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Proposition 7 If (X,Π) is a finite strictly quasiconvex quasisupermodular aggregative

game for which a fESS exists, then imitation is not subject to a money pump.

Proof. We show that a process of steps that strictly increase the sum of the maxi-

mizer’s relative payoffs must lead to a fESS. Note that only nontrivial steps, in which

the maximizer does not repeat her action, can improve the sum of her relative payoffs.

Consider a sequence of nontrivial steps x1, x2, x3 the maximizer may take. Suppose that

x2 < x1 (the case x2 > x1 is dealt with analogously). By Lemma 1 it must hold that

Π(x2, a(x2, x1)) ≥ Π(x1, a(x2, x1)). (11)

To show that the process moves to one of the corners, we need to show that either x3 > x1

or x3 < x2. Suppose to the contrary that x2 < x3 ≤ x1.
9 By Lemma 1 it must hold that

Π(x3, a(x3, x2)) ≥ Π(x2, a(x3, x2)).

Thus, by quasisupermodularity

Π(x3, a(x1, x2)) ≥ Π(x2, a(x1, x2)). (12)

From inequality (11) follows by strict quasiconvexity that

Π(x2, a(x2, x1)) ≥ Π(x3, a(x2, x1)), (13)

with equality only for x3 = x1. Thus for x3 < x1, inquality (13) yields a contradiction

to inequality (12). For x3 = x1 the sequence of steps has not improved the maximizer’s

sum of relative payoffs since both players obtained the same payoff throughout.

Thus we have shown that with every nontrivial step, the maximizer gets closer to

a corner. Since there are only finitely many actions, if the sequence of actions is non-

constant, then a corner must be reached in finitely many steps. If the corner is a fESS,

then no further changes of actions occur. Otherwise, the other corner may be reached in

one additional step. This must be a fESS by Lemma 7 since a fESS is assumed to exist.

Once it is reached, no further changes of actions occur. �

6 Summary and Discussion

In Table 1 we summarize our results.10 The only class of symmetric games in which

imitation can really be beaten is the class of games whose relative payoff function is a

9The case of x2 6= x3 is already excluded by the requirement of non-trivial steps.
10More results on the classes of games and their relationships are contained in our companion paper,

Duersch, Oechssler, and Schipper (2010).
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generalized rock–paper–scissors game. While this is a generic class of symmetric games,

so is its complement. More importantly, many economically relevant games are contained

in this complement. Thus it is fair to say that imitation seems very hard to beat in large

classes of economically relevant and generic games.

Table 1: Summary of Results

Class Result Reference Examples

Symmetric 2x2 games essentially unbeatable Prop. 2 Chicken, Prisoners’ Dilemma,
Stag Hunt

Additively separable relative essentially unbeatable Prop. 3 Linear Cournot duopoly
payoff function Heterogeneous Bertrand duopoly
or Public goods
Relative payoff functions essentially unbeatable Cor. 4 Common pool resources
with increasing or decreasing Minimum effort coordination
differences Synergistic relationship
or Arms race
Relative payoff games with essentially unbeatable Cor. 5 Diamond’s search
exact potential

Relative payoff games with no money pump Prop. 4 Example 10
generalized ordinal potential

Quasiconcave relative no money pump Prop. 5 Nash demand game
payoff games Example 11

Example 13

Quasiconcave quasisub- no money pump Prop. 6 Cournot games
modular aggregative games Rent seeking

Quasiconvex quasisuper- no money pump Prop. 7
modular aggregative games

No generalized no money pump Thm. 1 all of the above
Rock-Paper-Scissors games

However, one needs to be aware of the limitations of our analysis, primarily the re-

striction to two–player games. While a full treatment of the n–player case is beyond
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the scope of the current paper, we provide here an example that shows how imita-

tion can be beaten in a standard Cournot game when there are three players. Let the

inverse demand function be p(Q) = 100 − Q and the cost function be c(qi) = 10qi.

Now consider the case of two maximizers and one imitator. Writing a vector of quan-

tities as (qI , qM , qM), it is easy to check that the following sequence of action profiles

(0, 22.5, 22.5), (22.5, 0, 68), (0, 22.5, 22.5), (22.5, 68, 0), (0, 22.5, 22.5)... is an imitation cy-

cle. The two maximizers take turns in inducing the imitator to reduce his quantity to

zero by increasing quantity so much that price is below marginal cost. Since the other

maximizer has zero losses, she is imitated in the next period, which yields half of the

monopoly profit for both maximizers. Clearly, this requires coordination among the two

maximizers but this can be achieved in an infinitely repeated game by the use of a trigger

strategy. Thus, imitation is subject to a money pump. Recall, however, that we pitted

imitation against truly sophisticated opponents. Whether imitation can be beaten also

by less sophisticated (e.g. human) opponents remains to be seen in future experiments.

Furthermore, our analysis was based on the assumption that an imitator sticks to his

action in case of a tie in payoffs. To see what goes wrong with an alternative tie-braking

rule consider a homogenous Bertrand duopoly with constant marginal costs. Suppose

the imitator starts with a price equal to marginal cost. If the maximizer chooses a

price strictly above marginal cost, her profit is also zero. If nevertheless, the maximizer

were imitated, she could start the money pump by undercutting the imitator until they

reach again price equal to marginal cost and then start the cycle again. This example

shows that our results depend crucially on the details of the imitation heuristics. It

would be interesting to exactly characterize the class of simple decision heuristics that

are essentially unbeatable in large classes of economically relevant games. We leave this

for future work.
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