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Abstract: The Inequality Process (IP) is a stochastic particle system in which particles are randomly 

paired for wealth exchange. A coin toss determines which particle loses wealth to the other in a randomly 

paired encounter. The loser gives up a fixed share of its wealth, a positive quantity. That share is its 

parameter, ωψ, in the ψth equivalence class of particles. The IP was derived from verbal social science 

theory that designates the empirical referent of (1-ωψ) as worker productivity, operationalized as worker 

education. Consequently, the stationary distribution of wealth of the IP in which particles can have 

different values of ω (like workers with different educations) is obliged to fit the distribution of labor 

income conditioned on education. The hypothesis is that when a) the stationary distribution of wealth in 

the ψth equivalence class of particles is fitted to the distribution of labor income of workers at the ψth level 

of education, and b) the fraction of particles in the ψth equivalence class equals the fraction of workers at 

the ψth level of education, then c) the model's stationary distributions fit the corresponding empirical 

distributions, and d) estimated (1-ωψ) increases with level of education. The Saved Wealth Model (SW) 

was proposed as a modification of the particle system model of the Kinetic Theory of Gases (KTG). The SW 

is isomorphic to the IP up to the stochastic driver of wealth exchange between particles. The present 

paper shows that 1) the stationary distributions of both particle systems pass test c): they fit the 

distribution of U.S. annual wage and salary income conditioned on education over four decades, 2) the 

parameter estimates of the fits differ by particle system, 3) both particle systems pass test d), but 4) the 

IP's overall fits are better than the SW's because 5) the IP's stationary distribution conditioned on larger 

(1-ωψ) has a heavier tail than the SW's fitting the distribution of wage income of the more educated 

better, and 6) since the level of education in the U.S. labor force rose, the IP's fit advantage increased 

over time.  
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1. Introduction 
 The Inequality Process (IP) [1-14] and the Saved Wealth Model (SW) [15-17 ], previously 

compared in [18-22], are two stochastic binary interacting particle systems whose stationary 

distributions have been fitted to income distributions. The two particle systems are isomorphic to each 

other up to their stochastic drivers of exchange between particles and a consequence of that 

difference. The IP, derived from an old verbal theory in economic anthropology, was published in 

1983. The IP has been used to discover stable empirical patterns in income and wealth. The IP has 

been shown to quantitatively explain: 

1. The universal pairing (all times, all places, all cultures, all races) of the appearance of social 

inequality and the concentration of wealth with the appearance of a storeable food surplus among 
hunter/gatherers. [2,3] 

2. Why the gamma family of probability density functions (pdfs) is a useful approximation to wage 

income distributions conditioned on education and why the unconditional distribution of wage 
income has a right tail whose heaviness approximates that of a Pareto pdf; [2,3,6,8,9,11,12] 

3. How the unconditional distribution of personal income appears to be gamma distributed at the 

national level and in successively smaller regions although the gamma distribution is not closed 
under mixture, i.e., aggregation by area;  [6] 

4. The shapes of the distribution of wage incomes of workers by level of education, why this 

sequence of shapes changes little over decades, and why it is similar to the sequence of shapes of 
the unconditional distribution of wage income over the course of techno-cultural evolution; 
[2,3,8,9,11,12] 

5. The dynamics of the distribution of wage income conditioned on education as a function of the 

unconditional mean of wage income and the distribution of education in the labor force; [9,12] 

6. Why the distribution of wage income is different from the distribution of income from tangible 

assets; [7] 

7. Why the IP’s parameters estimated from certain statistics of the wage incomes of individual 

workers in longitudinal data on annual wage incomes are ordered as predicted by the IP’s meta-
theory and approximate estimates of the same parameters from the fit of the IP’s stationary 
distribution to the distribution of wage income conditioned on education; [8] 

8. The Kuznets pattern in the Gini concentration ratio of earned income during the industrialization 

of an agrarian economy; [14] 

9. In an elaboration of the basic IP: if a particle in a coalition of particles has a probability different 
from 50% of winning a competitive encounter with a particle not in the coalition, this modified IP 

can reproduce features of the joint distribution of income to African-Americans and other 
Americans: 
              a) the % minority effect on discrimination (the larger the minority, the more severe  
discrimination on a per capita basis); 
              b) the relationships among: 
                         i) % of a U.S. state’s population that is non-white;  
                        ii) median non-African-American male earnings in a U.S. state;  

                       iii) the Gini concentration of non-African-American male earnings in a U.S. state; 
and  
                       iv) the ratio of African-American male to non-African-American male median 
earnings in a U.S. state. [5] 

 The SW, published in 2000, is a generalization of the Kinetic Theory of Gases (KTG) stochastic 

particle system model [23]. It has not been as extensively tested against data, prompting the 

question of which particle system fits data better. The IP has a social science meta-theory that assigns 



 3 
 

empirical referents to its parameters and sets consistency tests.  The SW does not, prompting the 

question of whether the SW passes the same tests that the IP must pass and has passed. Verbal 

description of the difference between the IP and the SW may seem deceptively insignificant. This 

paper addresses the question whether the IP and SW are, if not mathematically, equivalent for all 

practical purposes  in empirical work. Data collected by the U.S. Bureau of the Census over four 

decades are used in this comparison. 

 

1.1 The SW, an Elaboration of the Kinetic Theory of Gases (KTG) 

The stochastic particle system model of the Kinetic Theory of Gases (KTG) randomly pairs particles 

for random exchanges of a positive quantity modeling the exchange of kinetic energy between the 

molecules of a dilute gas in collision. The equations of the exchange are [23]:  
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In the KTG the sum of kinetic energy of particles i and j after a collision equals the sum before. Given 

that the population of particles is isolated in a reflecting container, the sum of kinetic energy over all 

particles does not change. The stationary distribution of particle kinetic energy in the KTG is a 

negative exponential distribution. Dragulescu and Yakovenko [24] re-label the KTG. Re-labeled, its 

particles represent people instead of gas molecules, the positive quantity exchanged by particles 

becomes wealth rather than kinetic energy.  Dragulescu and Yakovenko [24] have to argue that the 

stationary distribution of kinetic energy in the KTG, the negative exponential, is also that of the 

distribution of income. They perceive a fit between the negative exponential distribution and the 

distribution of adjusted gross income reported by the U.S. Internal Revenue Service. It is not a close 

fit and in later work they propose a model that sutures a heavier than exponential right tail 

(Dragulescu and Yakovenko, [25]) to the negative exponential left tail. The present paper shows that 

a negative exponential distribution is not a good model of the distribution of labor income of workers 

with post-secondary educations. 

 

1.2 The Saved Wealth Model (SW) 
Chakraborti and Chakrabarti [15] re-label the KTG as Dragulescu and Yakovenko [24] do, but 

Chakraborti and Chakrabarti also modify the mathematics of the KTG. They introduce a parameter λ, 

the proportion of a particle’s wealth not at risk of loss in any one transaction with another particle. 

When λ = 0, the Chakraborti and Chakrabarti model is equivalent to the KTG. Chakraborti and 

Chakrabarti call λ “savings”. The justification given for thinking the model relevant to income 

distribution is an image of market transactions between agents in which λ represents an agent’s 
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“savings”. The label is not apt. λ is not the share of a gain that is saved, but rather the fraction of a 

particle’s wealth not at risk of loss in any one encounter with another particle. λ is like a tax 

exemption rather than a  partially saved profit. In fact, asset income is distributed differently from 

labor income [7].  The development of the SW is chronicled in Yakovenko [22]. The equations of the 

exchange of wealth between two particles in the Chakraborti and Chakrabarti model, the Saved 

Wealth Model (SW), are: 
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Other features of the KTG particle system remain in place, such as random binary matching of 

particles for exchanges, the sum of the wealth of two paired particles before an encounter equaling 

the sum after, and the isolation of the population of particles and their immortality. Patriarca, 

Chakraborti, and Kaski [17] report that the stationary distribution of the SW is a gamma probability 

density function (pdf):  
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where, x > 0; x is interpreted as income; α is the shape parameter and β  is the scale parameter. (3) 

is denoted GAM(α,β). Patriarca et al. [17] find the shape parameter, α, of the gamma pdf of the 

stationary distribution of (2a,b) to be: 

 
λ
λα

−
+=

1

21
                                                                                                            (4) 

In their model all particles have an equal value of λ. Since mean particle wealth is pre-determined in 

the model, and the expression for the mean of GAM(α,β) is α/β, (3)'s parameters can be expressed in 

terms of λ and mean particle wealth.  

 
1.3 The Inequality Process (IP) 

The Inequality Process was abstracted from the Surplus Theory of Social Stratification, 

economic anthropology’s explanation of an invariant: the pairing of the earliest evidence of extreme 

economic inequality in the same archeological strata as the earliest evidence of abundant storeable 

food [2,3]. This verbal theory asserts that: 

 a)  people compete for surplus, storeable food, a form of wealth, 
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 b)  competition distributes wealth and concentrates it,  

and, 

c) when wealth in the form of storeable food appears among people, usually via the 

acquisition of agriculture, its concentration overwhelms the apparent egalitarianism of  

subsisting without much stored food.  

The society that emerges out of a hunter/gatherer population when it acquires a storeable food 

surplus is called a “chiefdom” by anthropologists, who view it as the most inegalitarian societal form.   

 

The Surplus Theory has a prominent flaw: no answer to the question of why inequality of 

wealth decreases over the course of techno-cultural evolution beyond the chiefdom when more wealth 

is produced per capita than in the chiefdom. Gerhard Lenski [26] addressed this flaw with a  

speculative explanation for why inequality of wealth, defined as concentration of wealth, decreased 

over the course of techno-cultural evolution. The speculation is that the production of more wealth per 

capita requires workers who are more skilled and that a more skilled worker retains a larger fraction of 

the wealth that worker produces. The Inequality Process (IP) operationalizes and tests this hypothesis. 

Wherever verbal theory offers no help in specifying a mathematical model, the principle of parsimony 

was used in the specification of the IP. [4] notes in 1990 that the IP is a particle system similar to the 

KTG. 

 

1.3.1 The One Parameter Inequality Process (OPIP) 
A two parameter version of the IP appeared in Angle [2,3]. This model was later simplified 

where one parameter is adequate to explain income and wealth phenomena. The one parameter 

Inequality Process (OPIP) is isomorphic to the SW as defined in (2a,b) up to the stochastic driver of 

wealth exchange and a consequent difference in the intervals on which the parameters of the two 

particle systems are defined. 

 The IP’s meta-theory makes (1 – ω), where ω is the fraction of wealth lost by a particle in an 

encounter with another particle, a measure of worker skill, a semi-permanent trait. A particle’s ω is 

only apparent when it loses an encounter. A coin toss determines which of two particles randomly 

paired for competition loses. The share of wealth a loser transfers to a winner, its ω, is pre-

determined and to some degree permanent (like a worker's skills), its parameter. Winning and losing 

are asymmetric. The equations for the exchange of wealth between two particles in the OPIP are: 
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All particles are randomly paired at each time-step. There are no particle deaths, births, or migration 

in or out of the population. The number of particles is an even number. (5a,b) can be re-expressed to 

resemble (2a,b): 
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 The OPIP maps into the SW, (2a,b), if (1-λ) is substituted for ω and a continuous [0,1] 

uniform random variate, εt, is substituted for the discrete (0,1) uniform random variable, dt. The latter 

substitution may seem subtle and unimportant, but, as this paper shows, this substitution gives the 

OPIP, defined by (5a,b), properties substantially different from those of (2a,b) although the SW is 

isomorphic to the IP up to that substitution. The substitution requires a different interval on which the 

model's parameter is defined. The SW’s particle parameter, λ, can be mapped into the complement of 

the parameter of the IP, (1-ω), one-to-one, except for λ = 0 (the KTG). The IP is not ergodic at ω = 

1.0 .  

 
1.3.1.1 Implications of the Different Stochastic Drivers of Wealth Exchange in the OPIP and SW 

 The difference between the OPIP of (5c,d) and the one parameter SW of (2a,b) is clear in 

(5e,f), the OPIP expressed in terms of SW notation: 
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                                                                                                                                                                   (5e,f)  

where (εt > .5) equals 1.0 if the condition is true, 0.0 otherwise. (5e,f) shows that the one parameter 

Inequality Process (OPIP), expressed in SW notation, is the SW particle system (2a,b) with gains and 

losses maximally exaggerated. The OPIP is the SW with εt rounded up to 1.0 or down to 0.0, which 

can be expressed by the logical term (εt > .5). The other difference between the OPIP and the SW, the 

difference at the endpoint of the intervals on which the particle parameters are defined, follows from 

the difference in the stochastic driver of wealth: the OPIP is not ergodic at ω = (1-λ) = 1.0 whereas 

the SW is ergodic where λ = 0.0 . 
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 The OPIP of (5e,f) reduces to: 
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                                                                                                                                                                (5g,h) 

In SW notation and (5e,f) and (5g,h), if  (εt > .5) is not true (equals 0.0), particle i of the OPIP always 

loses a (1-λ) fraction of its wealth. However, in the SW (2a,b),  εt > .5 merely means a greater than 

even probability of gain for particle i ceteris paribus. Particle i actually gains wealth in the SW (2a,b) 

when εt > .5 if: 
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                                                                                                                                                                     (6)  

i.e., the question of whether there is a gain or loss experienced by particle i, a general particle, in the 

SW (2a,b) depends on three variables: εt, , xj(t-1), and , xi(t-1), its own wealth. The magnitude of 

particle i's gain in the SW (2a,b), if particle i has a gain, depends on three variables and the 

parameter: 
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In the SW (2a,b), particle i loses wealth if the inequalities of (6) are reversed. The magnitude of 

particle i's loss in the SW (2a,b), if particle i has a loss, is (7) with the inequalities reversed, i.e., also 

dependent on three variables and the parameter.    

 In the OPIP, (5e,f) and (5g,h) in SW notation, particle i experiences a gain if εt > .5, a loss 

otherwise,  i.e., gain or loss depends on a single variable, εt. If particle i gains wealth that amount is, 

in SW notation, (1-λ) xj(t-1); the gain depends on the parameter and one variable. From particle i's 

point of view the wealth of its competitors, i.e., xj(t-1), is a random variable. If particle i loses wealth 

that amount is (1-λ) xi(t-1), i.e., dependent on the parameter and one variable. From particle i's point 

of view, however, the loss is just dependent on the parameter since, if it is like a person, it knows its 

own wealth. Fewer variables in the OPIP determine whether a particle wins or loses and the amount 

won or lost than in the SW. From the losing particle's point of view, the magnitude of a loss, in the 

OPIP is entirely determined by the parameter. Not only is gain and loss dependent on fewer variables 

in the OPIP, there is an asymmetry between gain and loss from the point of view of the general 

particle, say particle i. Gains are random from the point of view of particle i whereas losses from the 

point of view of particle i are determined by the parameter and its wealth going into the encounter 

with another particle: (1-λ) xi(t-1).  
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1.3.1.2 Information on the Parameter in the OPIP 

 A vector containing a particle's wealth at each time step in both the SW and the OPIP, (2a,b) 

and (5a,b), contains information about the parameter of the process. This information is clearer in the 

OPIP than the SW because of the exaggeration of gain and loss in the OPIP, (5a,b). In the OPIP a 

particle's parameter is so clear that it can be calculated without error from the first instance of a 

decrease in any particle's wealth. The clarity of the OPIP is such that the direction of time itself, were 

it unknown, can be inferred from a vector of a single particle's wealth amounts: time flows in the 

direction of the first two equal proportional decreases from an adjacent wealth amount in the 

sequence.  It takes two such decreases, given one of the two hypotheses about which way the vector 

of particle wealth is oriented in time, because the first such decrease might be an increase if the 

hypothesis is wrong. Such an inference from the SW (2a,b) is not similarly deterministic. It requires 

many vectors of particle wealth histories with the number of such vectors needed for an estimate of a 

given precision dependent on λ.  

 

1.3.1.3 An Approximation to the Stationary Distribution of the OPIP 

Angle [8, 11] uses the run-like (generalized runs) character of the solution of the OPIP to 

specify, via the relationship of the gamma pdf to the negative binomial pf, a shape parameter of a 

gamma pdf , α, (3), approximating the OPIP’s stationary distribution.  It is: 

ω
ωα −≈ 1

                                                                                                 (8a) 

(4) is the expression for the shape parameter of the gamma pdf  approximating the stationary 

distribution of the SW [17]. [17] gives (4) in terms of  OPIP notation. Thus translated [17]'s 

expression for shape parameter of the gamma pdf  approximating the stationary distribution of the 

SW is on the RHS of (8b). The OPIP analogue, (8a), is on the LHS of (8b): 

ω
ω

ω
ω 231 −≠−

                                                                                                        (8b) 

The LHS and RHS of (8b) are not equal. (8b) suggests that equivalent parameters in the SW and OPIP 

yield different stationary distributions. 

 

 Angle [8,11] makes no claim that the OPIP has an exactly gamma stationary distribution. He 

gives a proof that no conservative particle system scattering a positive quantity via binary particle 

interactions, a class that includes the OPIP and the SW, has an exactly gamma stationary distribution. 

Patriarca, Chakraborti, and Kaski's [17] finding that the SW’s stationary distribution is a gamma pdf is 

a numerical finding, unable to distinguish among an exactly gamma stationary distribution, an 

asymptotically gamma stationary distribution, or a gammoidal distribution. 

 

1.3.1.4  A Mis-statement of the OPIP 

 The OPIP (or any other published version of the IP) is mis-stated in Patriarca, Heinsalu, and 

Chakraborti [20] as: 
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where εt is an i.i.d. [0,1] continuous uniform random variable and dt is 1 with probability p if xi > xj, , 

0 otherwise, and 0 < ω < 1 .  

 
1.4 Models of the Distribution of Earned Income Conditioned on Education: The Inequality 
Process With Distributed Omega  (IPDO) and Its SW Analogue, An SWDO 
 The Inequality Process (IP) must explain the distribution of wage income conditioned on 

education since it is derived from verbal theory that asserts that more skilled workers lose less in the 

competition for wealth, identifying (1-ω) as a measure of worker skill. Education is a measure of 

worker skill available in large surveys and is often used as a proxy for worker skill level in economics. 

Such a fit requires identifying the stationary distribution of the wealth of particles in the ωψ 

equivalence class with the distribution of wage income at the ψth level of education. The fraction that 

the ωψ equivalence class of particles forms of the whole population of particles is set equal to the 

fraction that workers at the ψth level of education are in the labor force. The Inequality Process with 

distributed omega (IPDO) [8,11] has the following equations for the exchange of wealth between 

particles i and j:            
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The IPDO is isomorphic to (5a,b) except that particle i is in the ψth ω equivalence class (all particles 

whose parameter is ωψ), while particle j is in the θth ω equivalence class. Particles i and j are distinct 

although they may be drawn from the same equivalence class, i.e. it is possible that ωψ = ωθ. The 

stationary distribution of wealth in each IPDO ωψ equivalence class is not in general equal to that of 

the OPIP with equal ωψ unless the ωψ equivalence class includes the entire particle population, in 

which case the IPDO is identical to the OPIP.  

 

1.4.1 The Saved Wealth Model Analogue of the IPDO, the SWDO 
No publication has appeared in the literature with the Saved Wealth Model (SW) analogue of 

the IPDO, because there is no SW meta-theory that would lead one to assert that λ or in IP notation 

(1-ω), is a semi-permanent particle trait and hence a particle parameter. To compare the IPDO to its 

SW analogue, a Saved Wealth Model with distributed omega (SWDO) has to be specified. Since the 

difference between the IP and SW is well defined, it is easy to specify the SW analogue of the IPDO.  

The equations for the exchange of wealth between particles of the SW analogue of the IPDO, the 

Saved Wealth  Model with Distributed Omega (SWDO), expressed in the IPDO’s notation, are:  
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where ε t is an i.i.d. [0,1] continuous uniform random variate and 0 < ω ≤ 1.  
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The SWDO should not be confused with the model in the Saved Wealth (SW) literature by 

Chatterjee, Chakrabarti, and Manna [16] whose equations for the exchange of wealth between two 

particles are: 
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where εt is an i.i.d. [0,1] continuous uniform random variate, and ωψt is an i.i.d. (0,1] continuous 

uniform random variate, as is ωθt. This SW model violates the Inequality Process’ (IP’s) meta-theory 

that asserts that a particle’s ω is semi-permanent in the same way that a person’s education or  a 

worker's skill level is semi-permanent, i.e., in (10a,b) the particle’s parameter, ωψ, is not a random 

variate at each time step. As with all SW models (12a,b) is the result of numerical tinkering. It is 

intended to yield a stationary distribution that has a gammoidal left tail and a heavier than 

exponential right tail. Angle [6,9] shows that the unconditional distribution of wealth in the IPDO, with 

ωψ's estimated from the distribution of earned income conditioned on education and ωψ equivalence 

classes forming the same fraction of the population of IPDO particles as groups of workers with the 

corresponding level of education, has a heavier than exponential right tail, one heavy enough to 

account for aggregate labor income in the U.S.' National Income and Product Accounts. 

 

2. Does the Saved Wealth Model with Distributed Omega (SWDO) 
Pass The Tests Set by The IP's Meta-Theory? 
 The social science meta-theory of the Inequality Process (IP) requires the stationary 

distribution of particle wealth in the Inequality Process with Distributed Omega (IPDO) to have certain 

properties. This meta-theory designates the empirical referent of (1-ωψ) as worker productivity, 

operationalized as worker education. Consequently, the stationary distribution of wealth of the IPDO, 

the IP in which particles can have different values of ω (like workers with different educations) is 

obliged to fit the distribution of labor income conditioned on education. The hypothesis is that when a) 

the stationary distribution of wealth in the ψth equivalence class of particles is fitted to the distribution 

of labor income of workers at the ψth level of education, and b) the fraction of particles in the ψth 

equivalence class equals the fraction of workers at the ψth level of education, then c) the model's 

stationary distributions fit the corresponding empirical distributions, d) estimated (1-ωψ) increases 

with level of education, and, subsidarily, e) mean IPDO wealth, µψ, of particles in each ωψ equivalence 

class scales from low to high with (1-ωψ).   

 It is unlikely that the permutation of ωψ's predicted by the IP’s meta-theory would occur if all 

permutations were equally likely, since the predicted permutation is one out of  6! = 720 in the fit of 

the IPDO to the distribution of annual wage and salary income conditioned on education in a single 

year. With 43 years of data and 36 independent fits per year, the permutation of ωψ’s in all 43 years 

predicted by the IP’s meta-theory is one out of 43 x  36 x 6! =  1,114,560 permutations.  
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2.1 Fitting the IPDO to the Distribution of U.S. Annual Wage and Salary Income Conditioned 
on Education in 1986 
 The present paper fits the IPDO's stationary distribution of wealth conditioned on ωψ to the 

distribution of annual wage and salary income of workers at each level of education. To illustrate the  

procedure, fits to a single year's data are discussed before fits to the whole pooled cross-sectional 

time-series of survey data on annual wage and salary income in 43 years.  1986 data on annual wage 

and income by level of education are from the 1987 March Current Population Survey (CPS) of the 

U.S. civilian population conducted by the U.S. Bureau of the Census [27]. After data from1986 are 

examined, the whole data set is examined. The CPS  asks for wage and salary income in the previous 

calendar year, for age and education at the time of the survey.   

2.1.1 Ordering Categories of Education 

 Testing the IPDO requires an ordered set of education categories. The order of a set of 

education categories is clear if education level is coarsely categorized. The U.S. Bureau of the Census 

changed its education categories in 1990. A single set of education categories for the period 1962-

2004 has to be sufficiently coarse to be insensitive to the change of Census Bureau detailed categories 

in 1990. Another consideration is the amount of information in a set of ordered categories. The 

amount of information is at a maximum if, subject to the coarseness requirement to assure order and 

insensitivity to the change in Census Bureau categories in 1990, the number of categories is as large 

as possible and the distribution of observations falling into the categories uniform. It is conventional in 

U.S. labor economics to restrict the age range of workers to 25 to 65 when examining the relationship 

of education to earned income. A minimum age of 25 allows workers to complete advanced 

educations. In an ordered set of categories, the high and low categories are "open end" and 

vulnerable to "definition creep" in the period 1962-2004 during which the level of education of the 

U.S. labor force rose. Table 1 has a categorization of U.S. workers 1962-2004 by level of education 

that takes these constraints into consideration. 

Table 1.  Ordered Set of Education Categories 

eight years or fewer years of primary education (including illiteracy); open end category 

some high school education  

high school graduate (completion of four years of secondary education 

some college (some post-secondary education) 

college graduate (completion of four years of post-secondary education) 

at least some post-graduate education (including academic and professional degree programs); open 
end category 

 

2.1.2 Estimating the Vector of IPDO ωψ’s that Minimizes the Sum of Weighted Squared Errors 

 The IPDO’s stationary distribution is fitted to the distribution of wage income in 1986 

conditioned on education (the six categories of table 1) by a) the current optimum vector of six ωψ's, 

b) simulating the IPDO each time the current optimal  parameter vector is perturbed until its 

distribution of wealth converges to its stationary distribution, c) fitting the IPDO's stationary 

distribution of wealth conditioned on ωψ  to the distribution of wage income of workers at the ψth  level 

of education, d) calculating the closeness of the fit, and then e) updating the current optimum 
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parameter vector, if the sum of squared errors weighted by the fraction of workers at each level of 

education is less the current optimum parameter vector.  

 

 There are constraints on this search. A perturbed value of ωψ smaller than .001 is replaced by 

.001. Similarly, a perturbed value of ωψ greater than .999 is replaced by .999. The start vector of ωψ’s 

is six .5’s, the midpoint of the interval on which the ωψ’s are defined. The number of particles in each 

ωψ equivalence class is round(wψt x 1,000) where wψt is the relative frequency of workers at the ψth 

level of education in year  t. Each IPDO simulation is run for 300 iterations before sampling. Then at 

the 301st the wealth of each particle is recorded. Each particle's membership in the ωψ equivalence 

class is known. The simulation runs for another twenty-five iterations. At the 326th simulation, the 

wealth of each particle is recorded again, and so on to the 401st iteration, at which point there are 5 

observations on the wealth of each of 1,000 particles for 5,000 observations altogether.  Particle 

wealth in each IPDO ωψ equivalence class is adjusted via (13) so that mean wealth in each ωψ 

equivalence class equals mean annual wage and salary income of workers with a given level of 

education. Particle wealth is then aggregated into ten relative frequency bins, i.e., $1 to $10,000, 

$10,001 to $20,000, etc. up to $90,001 to $100,000, the same bins empirical incomes are aggregated 

into.  The relative frequencies of the IPDO’s stationary distribution in the ωψ equivalence class are 

fitted to the empirical relative frequencies of workers at the ψth level of education. The differences 

between the fitted relative frequencies (those of the stationary distribution in the ωψ equivalence 

class) and the empirical relative frequencies are squared. These squared errors are weighted by the 

fraction of the sample at each level of education and summed over the six levels of education. Thus 

ends the first iteration of the fitting algorithm to one year's data.   

 

 The fits are done year by year. The estimates of the ωψ in each year are denoted tψω̂ . If the 

perturbed vector fits better than the optimum parameter vector, the mean of the two is taken, and it 

becomes the current optimum parameter vector. The current optimum parameter vector is 

successively and independently perturbed seven more times, each an independent simulation of the 

IPDO, whose stationary distribution is then fitted to the data. The current optimum parameter vector 

may be replaced at any time. In each of the seven iterations the vector of perturbation factors is 

multiplied by .5 raised to successively higher powers with each iteration, damping the perturbations to 

the current optimal estimates of the parameters. The damping factor is re-set to 1.0 after the eight 

iterations have been performed. There are 100 iterations of the 8 successively damped perturbations 

of the parameter vector regardless of how closely the fitted relative frequencies approximate the 

empirical relative frequencies. Thus ends the first fitting of the IPDO’s stationary distribution in each 

ωψ equivalence class to each partial distribution of earned income at the ψth level of education in a 

particular year. This fitting of the IPDO is independently performed 36 times for each year’s data. The 

fitting procedure for the SWDO is identical. 

    Figure 1 here. 
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2.1.3 IPDO Fits in 1986  

 The fitting procedure described in section 2.1.2 fits the IPDO’s stationary distribution 

conditioned on the particle parameter, ωψ, to the distribution of U.S. annual wage and salary income 

conditioned on education. The fits achieved in a particular year, 1986, are shown in figure 1. 

The IPDO relative frequencies fitted in figure 1 are the mean of the 36 sets of estimated relative 

frequencies, each set independently fitted to the 1986 data. The 36 tψω̂ vectors estimated in the fit to 

1986 data are all ordered as predicted by the IP’s meta-theory. All 36 1986 IPDO estimated parameter 

vectors are ordered as predicted. Out of the 43 x 36 = 1,548 fits of the IPDO to the distribution of 

annual wage and salary income conditioned on education, 1961-2003, with 36 independent fits per 

year, in only 31 instances ( 2%) did the tψω̂ vector fail to be ordered exactly as the IP’s meta-theory 

predicts. There are 36 weighted sums of squared errors produced by the 36 fits of the IPDO to the 

1986 data. The weights are the fraction of the sample in each education category.  The mean of the 

36 sums of weighted squared errors for 1986 is 0.0040189. Their standard deviation is 0.0001495 . 

The IPDO tψω̂ ’s and the tψµ̂ ’s shown in table 2 are the mean of the estimates of the 36 IPDO fits. 

 

Nothing in the fitting and estimation procedure forces the tψω̂ 's to scale inversely with level of 

education or the tψµ̂ ’s to scale with education, the orders predicted by the IP’s meta-theory.  

For numerical reasons, all IPDO simulations have an unconditional mean of particle wealth of 1.0. The 

tψµ̂ 's in table 2 are estimated as the mean of the 36 IPDO estimates. Their standard errors of 

estimate are in table 2, column 4. The small standard errors of the tψω̂ 's and the tψµ̂ 's show the 

unlikelihood of a different ordering of each. The estimate of mean 1986 annual wage and salary 

income at each level of education, its txψ
ˆ (in constant 2003 dollars), is estimated as: 

t
t

t x

x
x ψ

ψ

ψ
ψ µ̂

ˆ
ˆ

)50(

)50(














=  

                                                                                                                                    (13) 

Table 2. Estimated Particle Parameters tψω̂ and the Estimated Mean of Wealth, tψµ̂ , in Each IPDO ωψ Equivalence 

Class Based on 31 Fits of the IPDO to the Distribution of Wage Income Conditioned on Education in U.S. in 1986 

education estimated tψω̂  mean standard error 

of estimate of tψω̂ in 

36 replications of fit 
to 1986 data 

estimated tψµ̂ where 

µ = 1.0 (mean of 36 
independent 
replications of fit to 
1986 data) 

mean standard error 

of estimate of tψµ̂ in 

36 replications of fit 
to 1986 data 

eight years or less .4733 .0200 0.6571 .0280 

some high school .4261 .0173 0.7826 .0273 

high school graduate .3674 .0096 0.8602 .0130 

some college .3162 .0104 1.0046 .0234 

college graduate .2528 .0090 1.2568 .0353 

some post-graduate 
education or more 

.1940 .0078 1.6152 .0402 
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where, 

 tx ψ)50(ˆ         =       median annual wage and salary income of workers at ψth level of education,                                                                                           

    in constant 2003 dollars, estimated from data; 

            ψ)50(x        =       median wealth of particles in the IPDO’s ωψt equivalence class; 

             tψµ̂           =       mean wealth of particles in the IPDO’s ωψt equivalence class. 

With the txψ
ˆ ’s in hand, the unconditional mean of annual wage and salary income in 1986 of people 

aged 25 to 65, tx̂ , is estimated as: 

∑=
ψ

ψψ ttt xwx ˆˆ  

where, 

 wψt         =        fraction of sample at the ψth level of education .  

The 1986 IPDO estimate of the unconditional mean of annual wage and salary income, 1986x̂ , is 

calculated as the mean of its estimates in the 36 independent fits of the IPDO to the empirical 

distribution: $31,043 in 2003 constant dollars. The standard error of this estimate of 1986x̂ is the mean 

of the 36 estimates, $234. 

 

2.3 SWDO Fits in 1986 

 The computer program fitting the SWDO to the distribution of annual wage and salary income 

conditioned on education in the U.S. in 1986 differs from that of the IPDO in only one line of code, 

that generating the 0,1 discrete uniform random variate that drives the exchange of wealth between 

each paired particle in (10a,b). Instead, the SWDO program generates a [0,1] continuous  uniform 

random variate, as in (11a,b), the equations of wealth exchange in the SWDO. Figure 2 displays the fit 

of the mean of the 36 SWDO expected relative frequencies to the empirical 1986 relative frequencies. 

SWDO fits are similar to those of the IPDO. Both the SWDO and the IPDO fit the annual wage income 

distribution of the least well educated groups well.  

    Figure 2 here. 

 

 The SWDO relative frequencies fit in figure 2 are the mean of the 36 sets of relative 

frequencies estimated in the 36 fits of the SWDO’s stationary distribution to 1986 data. 34 out of the 

36 SWDO tψω̂  vectors estimated in this fit to 1986 data are ordered as predicted by the IP’s meta-

theory. Out of the 43 x 36 = 1,548 fits of the SWDO to the 43 years of data on the distribution of 

annual wage and salary income conditioned on education with 36 independent fits per year, there are 

87 instances of the ωψ vector failing to be ordered exactly as the IP’s meta-theory predicts (about 

5.6%). The IPDO had 31 such failures out of its 1,548 fits (2%). 
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 Each SWDO fit has a weighted sum of squared errors. The mean of the 36 SWDO sums is 

0.0057261,  42% larger than that of the IPDO. The standard deviation of the SWDO sums of squared 

errors is much greater than that of the IPDO. The SWDO’s standard deviation, .00159842, is over ten 

times that of the IPDO. The SWDO fits the six empirical partial distributions but not as well as the 

IPDO nor as reliably. 

 However, table 3 shows that the SWDO passes the tests set by IPDO meta-theory, that is, its 

estimated vector of ωψt‘s, its tψω̂ , (where tt ψψ λω ˆ1ˆ −= ) varies inversely with level of education and 

its estimated vector of µψt’s, its tψµ̂ .  Estimates of the parameters of the fitted stationary distributions 

of the SWDO and IPDO do not approximate each other: compare the SWDO’s tψω̂ 's (data column 1 of 

table 3) to those of the IPDO (data column 1 of table 2). The SWDO’s tψω̂ ‘s are over twice those of 

the IPDO. The standard error of estimate of the SWDO's tψω̂  are larger than the IPDO’s particularly for 

the more educated. The SWDO’s estimate of the unconditional mean of annual wage and salary 

income approximates the IPDO’s. The SWDO’s estimate is $30,921 in 2003 dollars whereas the IPDO’s 

is $31,043.  The s.e.e. of the IPDO's estimate of the unconditional mean of annual wage and salary 

income in 1986 is $234 while the SWDO’s is $286. 

    Figure 3 here. 

 

 Figure 3 displays the IPDO (solid curves) and SWDO (dashed curves) partial stationary 

distributions fitted to the partial distribution of 1986 annual wage and salary income of people with an 

elementary education or less (red curves), to the partial distribution of people with some college 

(green curves), and to the partial distribution of people with a post-graduate educations (purple 

curves). The fitted IPDO partial stationary distributions transition from more leptokurtic than the 

SWDO’s in the case of the least educated to more platykurtic than the SWDO’s in the case of the most 

educated The IPDO partial stationary fitted to the annual wage and salary income distributions of 

people with at least some college have heavier tails than the fitted SWDO partial stationary 

Table 3. Estimated Particle Parameter Vector, tψω̂ , and the Estimated Mean of Wealth, tψµ̂ , in Each SWDO ωψ 

Equivalence Class Based on 36 Fits of SWDO to Distribution of Wage Income Conditioned on Education in U.S. in 
1986 

education estimated tψω̂  standard error of 

tψω̂ (estimated from 

36 replications of fit 
to 1986 data) 

tψµ̂ estimated 

where µt = 1.0 
(mean of 36 
independent 
replications of fit to 
1986 data) 

standard error of  

tψµ̂  (estimated from 

36 replications of fit 
to 1986 data) 

eight years or less .9697 .0221 0.6811 0.0269 

some high school .9055 .0350 0.7426 0.0248 

high school graduate .8006 .0214 0.8517 0.0121 

some college .6928 .0298 0.9837 0.0328 

college graduate .5346 .0252 1.2786 0.0406 

some post-graduate 
education or more 

.4138 .0191 1.6425 0.0406 
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distributions. The comparisons of fitted partial stationary distributions not shown in figure 3 are 

intermediate between the comparisons that are. 

    Figure 4 here. 

 

3. Comparing IPDO and  SWDO Fits 
 The findings of in the previous section of the paper about IPDO and SWDO fits to 1986 data  

generalize to March CPS data from 1961 through 2003. In each year the IPDO and the SWDO are 

fitted in the same way as in 1986. In each year of the 43 years of data, each model is independently 

fitted 36 times. In not a single year is the mean IPDO fit (the mean of 36 independent IPDO fits) 

poorer than the mean SWDO fit. See figure 4 which graphs the weighted sum of squared errors of the 

six partial distributions fitted 36 times independently in each year. Both models fit the empirical 

distributions well, but the IPDO fits better on average in every year. Figure 4 shows at a glance that it 

is redundant to do 43 two sample difference of means tests. The two samples of independent fits in 

each year hardly overlap and the difference between their means is as large or larger than the range 

of the 36 IPDO and SWDO fits. The standard deviation of the 36 IPDO fits in most years is smaller 

than that of the 36 SWDO fits. The IPDO grand total of  the 36 sums of weighted squared errors in 

each of 43 years, 1,548 fits altogether, is 6.4559; the SWDO's is 8.9676. The sum of IPDO weighted 

squared errors is 72% of that of  the SWDO. The IPDO's advantage in fit over the SWDO increases 

over the decades. 

    Figure 5 here. 

 

3.1 Why the IPDO Fits the Data Better Than the SWDO  

 Figure 5 shows the ratio of the IPDO weighted sum of squared errors to the SWDO weighted 

sum of squared errors at each level of worker education in each year. The IPDO is often a better fit 

than the SWDO to the annual wage and salary income distributions of the two least educated groups, 

but its superiority is not uniform over time. However, among workers with at least some college 

education, the IPDO provides a distinctly superior fit to annual wage and salary income distribution, a 

superiority that grows over the decades.  The education level of the U.S. labor force steadily rose, so 

the IPDO's advantage grew overtime. See figure 6. 

    Figure 6 here. 

4. Conclusions 

 The Inequality Process (IP) and the Saved Wealth Model (SW) are stochastic binary interacting 

systems. Both models randomly pair particles for interaction. In both models the population of 

particles is isolated and the positive quantity exchanged between particles when they are paired and 

interact is neither created nor destroyed. Since the populations of particles in both models are 

isolated, the sum of the positive quantity, called “wealth”, does not vary over time.  The IP was 

abstracted in the early 1980's from an old theory of economic anthropology about the origin of 

substantial economic inequality in competition for stored food, as speculatively extended by a 

sociologist to account for decreasing inequality, in the sense of concentration, over the course of 
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techno-cultural evolution. The extension is that more skilled workers retain a larger share of the 

wealth they create. This verbal meta-theory assigns an empirical referent to the IP's parameter, a 

characteristic of particles. This parameter is denoted ω, 0.0 < ω < 1.0 , and is the share of its wealth 

a particle loses when it loses to another particle. This meta-theory designates the empirical referent of 

(1-ωψ) as worker productivity, operationalized as the ψth level of worker education.  

 

 Consequently, the stationary distribution of wealth of the Inequality Process with Distributed 

Omega (IPDO), the IP in which particles can have different values of ω (as workers can have different 

educations), is obliged to fit the distribution of labor income conditioned on education. This obligation 

is tested by showing that when a) the stationary distribution of wealth in the ψth equivalence class of 

particles is fitted to the distribution of labor income of workers at the ψth level of education, and b) the 

fraction of particles in the ψth equivalence class equals the fraction of workers at the ψth level of 

education, then c) the model's stationary distributions fit the corresponding empirical distributions, d) 

estimated (1-ωψ) increases with level of education, and, subsidarily, e) mean IPDO wealth, µψ, of 

particles in each ωψ equivalence class scales from low to high with (1-ωψ).  The IPDO passed these 

tests [1-14] repeated in this paper for comparison to the SWDO. 

 

4.1 Does The Saved Wealth Model (SW) Pass the Tests the IPDO Passed? 

 The Saved Wealth Model (SW) results from tinkering with the Kinetic Theory of Gases (KTG) 

particle system. The SW has not been as extensively tested empirically as the IP because a) it 

appeared 17 years later, and b) it was not abstracted from a social science meta-theory assigning an 

interpretation to its parameter and setting tests that it must pass.  Despite the difference in 

provenance, the SW is isomorphic to the IP up to the stochastic driver of wealth exchange between 

particles and the end point of the interval on which its parameter is defined. The IP’s driver of wealth 

exchange is a 0,1 discrete random variate; the SW’s is a continuous [0,1] uniform random variate. 

The IP’s particle parameter, ω, is the fraction of wealth a particle loses to another particle; the SW's 

parameter, denoted λ, is the complement of  ω, λ = 1 – ω, with an exception at the end point of the 

interval on which the parameters are defined. The SW’s particle parameter, λ, can be mapped into the 

complement (1-ω) of the IP’s parameter, ω, one to one, except for λ = 0 (the special case of the KTG) 

because the IP with ω = 1.0 is not ergodic.  

 

 While there is no published SW analogue of the IPDO, an SWDO, it is clear how to define an 

SW version that is isomorphic to the IPDO (the Inequality Process with Distributed Omega) up to the 

difference in definition between the OPIP and the SW. The SWDO passes tests posed by the IP's social 

science meta-theory that the IPDO passed although with different parameters and stationary 

distributions. Specifically, 1) although the two particle systems have different stationary distributions, 

both models' stationary distributions provide a good fit to the distribution of U.S. annual wage and 

salary income conditioned on education over four decades, 2) the parameter estimates of the fits 

differ by particle system, although 3) both particle systems have estimated (1-ωψ)'s that increase with 
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the mean wealth, µψ, of particles in each ωψ equivalence class and scale from low to high with worker 

education. However, 4) the IPDO's fits are better than the SWDO's because 5) the IPDO's stationary 

distribution has a heavier tail than the SWDO, fitting the distribution of wage income of the more 

educated better, and 6) since the level of education in the U.S. labor force rose, the IPDO's fit 

advantage increased over time.  
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