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Abstract

We propose a semi-parametric mode regression estimator for the case in

which the variate of interest is continuous and observable over its entire un-

bounded support. The estimator is semi-parametric in that the conditional

mode is specified as a parametric function, but only mild assumptions are

made about the nature of the conditional density of interest. We show that the

proposed estimator is consistent and has a tractable asymptotic distribution.

Simulation results and an empirical illustration are provided to highlight the

practicality and usefulness of the estimator.
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1. INTRODUCTION

The mode is a characterizing feature of any statistical distribution or data set.

Consequently, it is not surprising to find that the estimation of the mode has received

considerable attention in the statistics literature (early references include Parzen,

1962, Chernoff, 1964, and Dalenius, 1965). Likewise, non-parametric estimation of

the conditional mode is the subject of a large number of papers in statistical journ-

als (see, among many others, Collomb, Härdle and Hassani, 1987, Samanta, and

Thavaneswarn, 1990, Quintela-Del-Rio and Vieu, 1997, and Ziegler, 2003). However,

very little attention has been devoted to the case that is most likely to be useful in

econometric applications, that is, the semi-parametric case in which the conditional

mode is specified as a parametric function, but only mild assumptions are made about

the conditional distribution of interest.

In a pair of pathbreaking papers, Lee (1989, 1993) introduced semi-parametric

mode regression estimators motivating them by noting that, under certain condi-

tions, the conditional mode from the truncated data provides consistent estimates

of the conditional mean for the original non-truncated data. To be able to handle

truncation, the maximands considered by Lee (1989 and 1993) are based on kernels

with bounded support. As a consequence, these estimators are diffi cult to implement

and unattractive to practitioners, having seen little, if any, use in practice. However,

applications with truncated continuous dependent variables are relatively rare and,

therefore, tailoring mode regression to this kind of data unduly restricts its usefulness.

Although mode regression is appealing in the case of truncated data, its interest is

much broader. Indeed, for the positively skewed data found in many applications (e.g.,

wages, prices, energy intake, expenditures on certain types of goods and services), the

mode is generally located below the median and the mean. That is, the routinely used

measures of central tendency convey little or no information on the location of the

mode and on how it is affected by the regressors. Moreover, although in principle

quantile regression (Koenker and Bassett, 1978) can completely characterize the shape
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of the conditional distribution, the way it is used in practice generally fails to reveal

any information about the conditional mode. For example, it is easy to find examples

where the mean and all quantiles are increasing functions of a regressor, while the

mode decreases with the same regressor. Therefore, mode regression is a potentially

very useful but much neglected tool that can be used to complement the standard

mean and quantile regressions in the study of the features of conditional distributions.

In this paper we study the semi-parametric estimation of the conditional mode

(mode regression) for the case in which the variate of interest is unbounded, continu-

ous, and observable over its entire support.1 In doing this, we depart from Lee (1989,

1993) by using smooth unbounded kernels and by letting the smoothing parameter δ

pass to zero as the sample size increases. We show that in this case it is possible to

obtain a consistent mode regression estimator that does not depend on the restrictive

symmetry or independence assumptions required by Lee (1989, 1993). In addition,

the estimator has a tractable asymptotic distribution and it is simple to implement

using standard software. Furthermore, by using a Gaussian kernel with unbounded

support, we obtain a family of estimators which includes both the conditional mode

(when δ → 0+) and the conditional mean (when δ →∞) as limiting cases.

The reminder of the paper is organized as follows. Section 2 briefly reviews the

rectangular and quadratic mode regression estimators proposed by Lee (1989, 1993).

Section 3 details our approach to mode regression and presents the main asymptotic

results. Section 4 provides simulation evidence on the finite sample performance of

the proposed estimator, and Section 5 illustrates its application with a study of the

recent evolution of the body mass index in England. Section 6 contains concluding

remarks and discusses directions for further research. Finally, the proofs of the main

results are collected in a technical appendix.

1For the polar opposite case, the function npconmode() in the np package (Hayfield and Racine,

2008) implements nonparametric mode regression for a categorical dependent variable based on the

results of Hall, Racine and Li (2004).
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2. RECTANGULAR AND QUADRATIC MODE REGRESSION

Let Mode (y|x) denote the mode of the conditional distribution of y given x and

assume that Mode (y|x) = x′β0. Lee (1989) introduced the (rectangular) mode re-

gression estimator based on a well-known loss function that can be written as

LR (y, x) = 1− 2KR

(
y − x′β

δ

)
, (1)

where KR (u) = 1 [|u| < 1] /2 denotes the rectangular or uniform kernel often used

in density estimation (Silverman, 1986), with 1 [A] being the indicator function for

event A, and δ > 0 the bandwidth parameter.

The expectation of LR (y, x) is minimized when x′β is the midpoint of the interval

of length 2δ that has the highest probability of containing y (see Manski, 1991). If

the conditional density of y, fY |X (y|x), is strictly unimodal, the minimizer of this

function approaches Mode (y|x) as δ approaches zero. Moreover, for fixed δ, the

minimizer of LR (y, x) is Mode (y|x) if fY |X (y|x) is strictly unimodal and symmetric

about Mode (y|x) up to ±δ.2 For fixed δ, Manski (1991) terms the minimizer of (1)

the δ-mode.

The estimator proposed by Lee (1989) can be obtained by minimizing the sample

analog of the expectation of (1). In particular, for a sample of size n, this is equivalent

to maximizing

QR
n (β) = n−1

n∑
i=1

δ−1KR

(
yi − x′iβ

δ

)
,

which can be recognized as a kernel estimation of the density of yi at x′iβ.

Despite its elegance, Lee’s (1989) rectangular mode regression estimator is of little

practical use because, due to the nature of the objective function, its distribution is

intractable (Kim and Pollard, 1990). In order to overcome this unappealing feature,

Lee (1993) introduced the quadratic mode regression estimator β̂Q, which can be

2It is also interesting to notice that the minimizer of LR (y, x) is parallel to mode (y|x) if x only

affects the location of fY |X (y|x) (see Lee, 1989, 1993). However, this situation is not particularly

interesting and consequently it will not be emphasized in what follows.
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obtained by replacing the uniform kernel in (1) with the quadratic or Epanechnikov

kernel (Silverman, 1986), defined as KQ (u) = 1 [|u| < 1] 3
4
{1− u2}.

Lee (1993) shows that, under the assumed regularity conditions, for fixed δ, β̂Q

is
√
n-consistent and asymptotically normal. As in the case of the rectangular ker-

nel, consistency of β̂Q requires fY |X (y|x) to be unimodal and symmetric about the

mode up to ±δ. Besides the enormous advantage of having a tractable asymptotic

distribution, the quadratic mode estimator is also more appealing than the estimator

based on the rectangular kernel in that maximizing its objective function is easier

than maximizing QR
n (β). Still, because the objective function based on KQ (u) is

non-differentiable, relatively non-standard algorithms, like the two-step procedure

proposed by Lee and Kim (1998), are needed to find β̂Q.

3. MODE REGRESSION FOR UNBOUNDED DATA

3.1. Motivation

In this section, we consider mode regression for a fully observed unbounded con-

tinuous variate, with a strictly unimodal conditional density. Given the nature of the

data being considered, smooth unbounded kernels can be used in the construction of

the objective function defining the mode regression estimator. This greatly facilitates

the practical implementation of the estimator and the derivation of its asymptotic

properties.

As noted before, for a fixed bandwidth, consistent estimation of the mode is only

possible when the conditional distribution has some degree of symmetry, or when the

regressors only affect the location of fY |X (y|x). However, not only are these assump-

tions unlikely to hold in many interesting situations, but also, when they do, mode

regression is likely to be less attractive. In particular, with a fixed bandwidth and

an unbounded kernel, consistent estimation of the conditional mode is only possible

when it coincides with, or is parallel to, the conditional mean and median. In these
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cases, the same slope parameters can be estimated, possibly more effi ciently, by mean

or quantile regression.

To widen the range of situations where mode regression is interesting and useful,

we let the bandwidth parameter δ go to zero as the sample size passes to infinity. In

this case it is possible to prove consistency of the proposed mode regression estimator,

even for asymmetric conditional distributions with higher order moments that depend

on the regressors. Of course, the fact that consistency is possible under much more

general conditions has a cost. In particular, as in other cases where the objective

function depends on a vanishing bandwidth (see, e.g., Parzen, 1962, Horowitz, 1992,

and Seo and Linton, 2007), the estimator will not converge at the usual
√
n rate.

Nevertheless, as we will illustrate in Sections 4 and 5, the proposed mode regression

estimator can still be useful in many empirical applications.

3.2. Model Framework

We consider a regression model of the form

yi = x′iβ0 + εi (i = 1, 2, . . . , n), (2)

where xi takes values in Rp for some finite p, β0 is an unknown element of the para-

meter space B, which is a known subset of Rp, and the conditional density of εi given

xi has a strict global maximum at εi = 0 so that the conditional mode of yi given

xi is equal x′iβ0 (and is unique).
3 As in Lee (1989, 1993), our starting point is a

loss function which can be written as one minus a (scaled) kernel. In particular, we

consider a loss function of the form

Ln (y, x) = 1− γK
(
y − x′β
δn

)
, (3)

where γ = K(0)−1 > 0 is a scaling constant such that Ln (y, x) = 0 when y = x′β, δn is

a non-stochastic strictly positive bandwidth that vanishes with n, and K (u) denotes

3Strictly speaking, the conditional density is not uniquely defined: we just require that there is

a version of the conditional density with this property.
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a smooth kernel function with finite third derivatives and unbounded support, such

that
∫∞
−∞K (u) du = 1. Many smooth kernels are available, but throughout we focus

on the popular choiceK (u) = φ (u), where φ (u) denotes the standard normal density.

This choice has the advantage of generating a loss function which has both the mode

and the mean as minimizers in limiting cases.

Minimizing the sample analog of the expectation of (3) is equivalent to maximizing

Qn(β) = n−1
n∑
i=1

δ−1n K

(
yi − x′iβ
δn

)
, (4)

which, for a given value of δn, can be done, for example, using a Newton-type al-

gorithm (further discussion of estimation algorithms is provided in Subsection 3.4).

The maximizer ofQn(β), denoted β̂n, is a regression version of Parzen’s (1962) mode

estimator and it is possible to show that, under a set of mild regularity conditions to

be detailed below, this estimator is consistent for β0 and has a tractable asymptotic

distribution.

For a fixed δn, the asymptotic distribution of β̂n can be obtained using standard

techniques (see, e.g., Amemiya, 1985). However, it was already noted that for a fixed

δn this mode regression estimator is not particularly interesting. Therefore, in the

next subsection, we drive the asymptotic distribution of β̂n when δn is allowed to

vanish as n passes to infinity.

3.3. Asymptotic Results

The basic model we consider is given by (2) and the estimator of interest is:

β̂n ≡ arg max
β

Qn(β), (5)

where Qn(β) is defined as in (4).

For any given value β ∈ B, Qn(β) is a kernel-based estimator of the density function

of the residuals, ηi(β) ≡ yi − x′iβ, at 0. This identifies the parameters of interest

because fηi(β)(0) = E[fY |X(x′iβ|xi)], which is clearly maximized at β = β0 provided

that fY |X(x′iβ|xi) ≤ fY |X(x′iβ0|xi) for all x and β ∈ B, with a strict inequality when

β 6= β0, on a set of x with positive probability.
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Provided that the kernel is continuous and the bandwidth is finite and strictly

positive, then the objective function is continuous in β for any realized data. If,

in addition, the data have a well-defined joint distribution, then the value of the

objective function at any fixed value of β is clearly a random variable. Then, if the

parameter space B is a compact subset of a finite dimensional Euclidean space, it

follows that our estimator is well-defined in that there exists a random variable β̂n

which satisfies Equation (5), except possibly on a set of probability zero.

Below we present the main results on the asymptotic properties of β̂n as a set of

three theorems whose proofs are provided in the Appendix. Before the theorems are

presented, we give details on the assumptions under which they are valid.

3.3.1. Consistency

In order to prove consistency, we make the following assumptions.

A1 Data Generation Process

{(εi, xi)}∞i=1 is an iid sequence, where εi takes values in R and xi takes values

in Rp for some finite p.

A2 Parameter Space and Parameter Value: I

B is a compact subset of Rp and β0 ∈ B.

A3 Distribution of x: I

(i) E{|xi|} <∞, where |a| denotes the Euclidean norm of a for any scalar or

finite-dimensional vector a.

(ii) Pr{x′iλ = 0} < 1 for all fixed λ 6= 0.

A4 Conditional Density of ε Given x: I

There exists a version of the conditional density of ε given x, denoted fε|X(·|·) :

R×Rp → R, such that:

(i) supε∈R, x∈Rp fε|X(ε|x) = L0 <∞.
(ii) fε|X(ε|x) is continuous in ε for all ε and x.
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(iii) fε|X(ε|x) ≤ fε|X(0|x) for all ε and x. In addition, there exists a set A ⊆ Rp

such that Pr{xi ∈ A} = 1 and fε|X(ε|x) < fε|X(0|x) for all ε 6= 0 and

x ∈ A.

A5 Kernel Function: I

K(·) : R→ R is a differentiable kernel function such that:

(i)
∫∞
−∞K(u)du = 1.

(ii) supu∈R |K(u)| = c0 <∞.
(iii) supu∈R |K ′(u)| = c1 <∞, where K ′(u) = dK(u)/du.

A6 Bandwidth Sequence: I

{δn}∞n=1 is a strictly positive bandwidth sequence such that:

(i) δn → 0.

(ii) nδ1+σn →∞ for some σ > 0.

We make Assumption A1 for convenience: the assumptions in the paper could be

modified to allow the {(εi, xi)}∞i=1 process to exhibit some dependence but this would

complicate the proofs quite substantially and there would be a trade-off between

allowing some dependence in the {(εi, xi)}∞i=1 process (captured, for example, by

mixing rates) and strengthening other assumptions (mostly on the moments of xi).

Assumptions A2 and A3 are standard. Parts (i) and (ii) of A4 are standard. Part

(iii) of A4 is specific to the context of mode regression. Assumption A5 is fairly

standard and is satisfied by many commonly used kernel functions though the required

continuity does rule out the use of the rectangular kernel which was adopted in

Lee’s (1989) original analysis of mode regression. Assumption A6 is a fairly standard

condition on the bandwidth sequence and specifies that the bandwidth goes to 0 at a

suitably rapid rate. It is required for the proof of consistency since, unlike Lee (1989,

1993), we do not assume the conditional density of the errors given the regressors is

symmetric on an interval around the mode.

Under these assumptions we can establish consistency.
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Theorem 1 Under Assumptions A1—A6, β̂n
p→ β0.

3.3.2. Asymptotic Normality

The proof of asymptotic normality requires the following additional assumptions.

B1 Distribution of x: II

E{|xi|5+ξ} <∞ for some ξ > 0.

B2 Parameter Space and Parameter Value: II

β0 belongs to the interior of B.

B3 Conditional Density of ε Given x: II

fε|X(ε|x) is three times differentiable with respect to ε for all x such that:

(i) f (j)ε|X(ε|x) = ∂jfε|X(ε|x)/∂εj is uniformly bounded for j = 1, 2, 3.

(ii) E
[
f
(2)
ε|X(0|xi)xix′i

]
is symmetric negative definite.

B4 Kernel Function: II

(i) K(·) is three times differentiable.
(ii)

∫∞
−∞ uK(u)du = 0.

(iii) limu→±∞K(u) = 0.

(iv)
∫∞
−∞ u

2|K(u)|du = M0 <∞.
(v)

∫∞
−∞ |K

′(u)|2 du = M1 <∞.
(vi) supu∈R |K ′′(u)| = M2 <∞.
(vii) supu∈R |K ′′′(u)| = M3 <∞.
(viii)

∫∞
−∞ |K

′′(u)|2du = M4 <∞.

B5 Bandwidth Sequence: II

(i) nδ7n = o(1).

(ii) nδ5+σn →∞, for some 0 < σ < 2.
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Unsurprisingly, each of these additional assumptions involves strengthening a cor-

responding earlier assumption used in establishing consistency. Of these, the most

interesting is Assumption B5 which pins down further the convergence rate used for

the bandwidth sequence, and is closely related to the bandwidth assumption made

by Parzen (1962) to establish consistency of the kernel mode estimator. In terms of

our notation, Parzen assumed that nδ6n →∞ while nδ5+2τn = o(1) for some 0 < τ < 1.

Since, like us, Parzen assumes that δn = o(1) then his assumptions only make sense

if 1/2 < τ < 1. Parzen’s bandwidth assumptions then imply that our bandwidth

assumptions hold with σ = 1, and thus our bandwidth assumptions are more general

than those used by Parzen. It should, however, be noted that this τ parameter is also

involved in Parzen’s assumptions on the smoothness of the density of the errors and

on the smoothness of the kernel.

We are now in position to obtain the asymptotic distribution of β̂n.

Theorem 2 Under Assumptions A1—A6 and B1—B5:

(nδ3n)1/2
[
β̂n − β0

]
D→ N [0,Ω0], (6)

where:

Ω0 = B−10 A0B
−1
0 , (7)

A0 = lim
n→∞

Var

[
(nδ3n)1/2

(
∂Qn(β)

∂β

∣∣∣∣
β0

)]
= M1E

[
fε|X(0|xi)xix′i

]
, (8)

B0 = lim
n→∞

E

(
∂2Qn(β)

∂β∂β′

∣∣∣∣
β0

)
= E

[
f
(2)
ε|X(0|xi)xix′i

]
. (9)

This theorem reveals that, given our bandwidth assumptions, the proposed mode

regression estimator converges to a normal distribution at a rate that can be made

arbitrarily close to n2/7. Moreover, we see that the variance of the asymptotic distri-

bution, Ω0, depends on the choice of kernel, throughM1, and on the interplay between

characteristics of the distributions of the regressors and error term. In particular, Ω0

depends both on how high and on how concave the conditional density of ε is at the

mode.
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The following theorem provides a way of obtaining a consistent estimator of Ω0.

Theorem 3 Under Assumptions A1—A6 and B1—B5:

Ω̂n
p→ Ω0 (10)

where:

Ω̂n = B̂−1n ÂnB̂
−1
n , (11)

Ân = n−1
n∑
i=1

δ−1n

[
K ′

(
yi − x′iβ̂n

δn

)]2
(xix

′
i), (12)

B̂n = n−1
n∑
i=1

δ−3n K ′′

(
yi − x′iβ̂n

δn

)
(xix

′
i). (13)

Here, B̂n is the conventional observed Hessian estimator, while Ân is an outer-

product of the gradient variance estimator rescaled by the factor δ3n. This rescaling

arises because the gradient needs to be multiplied by (nδ3n)1/2 rather than by n1/2 to

have a non-degenerate limiting distribution.

3.4. Implementation issues

Two issues are of paramount importance in the implementation of the proposed

mode regression estimator. One, of course, is the choice of the bandwidth parameter

to use in any particular application. The other is the choice of algorithm to use in the

maximization because the objective function may have multiple maxima, especially

for small values of δn, and therefore it is important to ensure that a global maximum

is found.

Our approach to both of these problems is based on the observation that, for

K (u) = φ (u),4 maximization of (4) can be seen as solving the following set of moment

conditions

E

[
exp

(
−(yi − x′iβ)2

2δ2n

)
(yi − x′iβ)x′i

]
= 0. (14)

4More generally, a similar result holds whenever the kernel used is a function of (yi − xiβ)2.
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Equation (14) makes clear that maximization of (4) is essentially a weighted least

squares problem that has as special cases mode regression, when δn passes to zero as

n → ∞, and mean regression, when δn → ∞. This equation also reveals the close

link between the mode regression estimator proposed here and the family of robust

M-estimators (Huber, 1973) that aim to “give a good fit to the bulk of the data

without being perturbed by a small proportion of outliers” (Maronna, Martin and

Yohai, 2006, p. 88). In particular, under certain conditions, M-estimators like the

one based on biweights (Beaton and Tukey, 1974), can also be interpreted as mode

regression estimators.5 The link between mode regression and robust M-estimators

was noted by Lee (1989, 1993) and is explored in Baldauf and Santos Silva (2009).

The most important feature of (14), however, is that it shows that (4) defines a

continuum of conditional measures of central tendency, of which the two polar cases

are of particular interest. Therefore, rather than just estimate the conditional mean

and mode, for a chosen value of δn, we can estimate the parameters of interest for a

wide range of values of δn and obtain a more detailed picture of how these parameters,

say β(δn), vary within this class of conditional measures of central tendency.

Of course, it is still necessary to define the limits for the sequence of values of δn

to be used in the estimation. However, because inference will not be based on a

single value of the smoothing parameter, this choice is less critical than the choice

of an optimal value of δn to estimate the mode. In the application in Section 5, we

estimate β(δn) for 100 values of δn between 50mad and 0.5madn−0.143, where mad

denotes the median of the absolute deviation from the median OLS residual, i.e.,

denoting by b the OLS estimates of β, mad = med
i

{∣∣∣∣(yi − x′ib)−med
j

(
yj − x′jb

)∣∣∣∣}.6
From a computational point of view, this strategy is attractive because OLS

provides a natural set of starting values for the estimation of β(δn) when δn is large

5These estimators are impelemented in popular software packages such as Stata (StataCorp.,

2007), SAS (SAS Institute Inc., 2008), Matlab (Mathworks, 2008), and R and S-PLUS (Venables

and Ripley, 2002, and Heiberger and Becker, 1992).
6For comparison, we note that rreg in Stata uses a smoothing parameter (for a triweight kernel)

equal to 7mad. This would correspond to a bandwidth of 2.33mad with a Gaussian kernel.
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enough. Subsequently, the new estimation results can be used as starting values for

the estimation with a smaller value of the smoothing parameter. Of course, there is

no guarantee that the estimates obtained in this way will correspond to the global

maxima of the objective function for each value of δn. Therefore, it is recommended

that, at least for an interesting value of the smoothing parameter, additional checks

are performed to try to ensure that a global maximum is indeed found.

To better interpret the estimates obtained with the different values of the smoothing

parameter, it is interesting to compute an auxiliary estimation result. For large values

of δn, the weights in (14) are approximately equal to one for every observation. That

is, the weights sum to n. As δn passes to zero, the value of the weights will vary from

observation to observation, being often much smaller than one. We suggest that,

for each value of δn, the sum of suitably normalized weights (SNW)7 is saved and

used as an heuristic indication of the number of observations “effectively”used in the

estimation.

4. SIMULATION EVIDENCE

This section presents the results of a small simulation study illustrating the finite

sample performance of the proposed mode regression estimator. In these experiments

data are generated by the simple linear model

yi = β0 + β1xi + (1 + vxi)εi (i = 1, 2, . . . , n),

where xi is a random regressor, εi is a random disturbance that is statistically inde-

pendent of the regressor, and v is the parameter that controls the degree of hetero-

skedasticity. Throughout, we set β0 = 0 and β1 = 1.

To avoid overly optimistic results, xi is generated from a skewed distribution.8 In

particular, for each replication of the simulations, the regressor is newly generated as

7Because the estimation results are obviously invariant to a rescaling of the weights, these should

be normalized so that their maximum is equal to one.
8See Chesher and Peters (1994) and Chesher (1995).
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independent draws from the χ2(3) distribution, and scaled to have variance equal to

one.

To complete the design of the experiments it is necessary to define how εi is gen-

erated. In the present context, it is important to generate εi using a distribution

that meets the following criteria: 1) is unimodal, 2) has unbounded support, 3) is

capable of exhibiting varying degrees of skewness, 4) is such that the mode and the

first three moments are easy to parametrize, and 5) is easy to simulate. To satisfy all

these requirements, we generate εi as independent draws from a re-scaled log-gamma

random variable

εi = −λ ln (Zi) , λ > 0,

where Zi has a gamma distribution with mean α/κ and variance α/κ2, for α, κ > 0.

It is possible to show that the mode of εi is given by λ ln (κ/α), and therefore we set

κ = α to ensure that εi has zero mode. For this choice of parameters, εi will have pos-

itive expectation defined by µε = λ [ln (κ)− ψ0(α)], where ψ0(·) denotes the digamma

function. The variance of εi is given by λ2ψ1(α), where ψ1(·) is the trigamma function,

and in our experiments the value of λ is set so that the unconditional variance of the

error (1 + vxi)εi is equal to one.9 Finally, εi is positively skewed, with coeffi cient of

skewness −ψ2(α)ψ1(α)−3/2, where ψ2(·) is the quadrigamma function. Having fixed

κ and λ, α can be used to control the degree of skewness of the distribution.

We perform experiments with α ∈ {0.05, 5.00},10 v ∈ {0, 1, 2} and n ∈

{250, 1000, 4000, 16000}. For each replication of the experiments, we estimate the

conditional mean and the conditional mode of yi, which are both linear functions of

xi. Specifically, with this design, Mode (yi|xi) = xi and E (yi|xi) = µε + (1 + vµε)xi,

which show that for the homoskedastic cases (v = 0) the conditional mean and the

conditional mode have the same slope parameter. The mode regression estimator was

9Specifically, λ =
[(
1 + 2E (xi) v + E

(
x2i
)
v2
)
ψ1(α)

]−0.5
.

10For α = 5.00 the coeffi cient of skewness of εi is approximately 0.5, being approximately 2.0 for

α = 0.05.
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implemented using the iterative weighted least squares estimator described in Subsec-

tion 3.4, for smoothing parameters defined as δn = kmadn−0.143, with k ∈ {0.6, 1.2}.

Table 1 summarises the main simulation results obtained with 10000 replications of

the simulation procedure. Specifically, for the 24 cases considered, the table displays

the mean and standard error of the estimated intercepts and slopes for the three

estimators included in these experiments: OLS, mode regression with k = 1.2, labelled

Mode 1.2, and mode regression with k = 0.6, labelled Mode 0.6.

The OLS results are not surprising in any way and illustrate the well-known prop-

erties of this estimator. In particular, because OLS is unbiased and converges at the

usual
√
n rate, the mean of the OLS estimates is almost invariant to the sample size,

but its standard errors are roughly halved each time the sample size increases by a

factor of 4. These results, therefore, provide an interesting benchmark against which

the performance of the mode regression estimators can be evaluated.

As for the results obtained with Mode 1.2 and Mode 0.6, perhaps the most remark-

able finding is the fact that the intercept picks-up most of the bias, with the mean

of the estimates of the slope being always close to one. Not surprisingly, the biases

shrink with the sample size, but the rate at which the biases vanish depends on the

degree of both skewness and heteroskedasticity of the errors. Like the biases, the

standard errors of the mode estimators also shrink with the sample size and again

the rate at which this happens depends on the characteristics of the conditional dis-

tribution. Generally speaking, as expected, Mode 1.2 has smaller standard errors but

larger biases than Mode 0.6. The effi ciency penalty of Mode 0.6 is especially severe

for less skewed and less heteroskedastic errors.

As noted above, the OLS and the mode regression identify the same slope when

v = 0. Therefore, for these cases, it is meaningful to compare the results of the

mode estimators with those of the OLS. In particular, it is interesting to notice that

for α = 5.00 the slopes are estimated with much better precision by OLS, but for

α = 0.05 the mode estimators are strong competitors, with Mode 1.2 outperforming
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Table 1: Simulations results

Intercept Slope

α v n = 250 1000 4000 16000 250 1000 4000 16000

5.00 0 OLS 0.220
(0.101)

0.220
(0.050)

0.220
(0.025)

0.220
(0.013)

0.999
(0.064)

1.000
(0.032)

1.000
(0.016)

1.000
(0.008)

Mode 1.2 0.035
(0.252)

0.021
(0.164)

0.014
(0.106)

0.010
(0.068)

1.005
(0.158)

1.003
(0.102)

1.002
(0.066)

1.000
(0.043)

Mode 0.6 0.028
(0.396)

0.012
(0.277)

0.005
(0.199)

0.005
(0.142)

1.007
(0.246)

1.005
(0.166)

1.004
(0.114)

1.001
(0.081)

1 OLS 0.090
(0.113)

0.090
(0.057)

0.090
(0.028)

0.090
(0.014)

1.089
(0.112)

1.090
(0.056)

1.090
(0.029)

1.090
(0.014)

Mode 1.2 0.037
(0.134)

0.029
(0.083)

0.020
(0.053)

0.015
(0.034)

1.000
(0.215)

0.995
(0.145)

0.996
(0.099)

0.996
(0.067)

Mode 0.6 0.022
(0.213)

0.014
(0.144)

0.007
(0.098)

0.005
(0.066)

1.005
(0.292)

1.000
(0.208)

1.002
(0.149)

1.000
(0.106)

2 OLS 0.055
(0.119)

0.055
(0.061)

0.055
(0.031)

0.055
(0.015)

1.109
(0.123)

1.110
(0.062)

1.110
(0.031)

1.110
(0.016)

Mode 1.2 0.036
(0.099)

0.029
(0.059)

0.022
(0.037)

0.017
(0.023)

0.999
(0.207)

0.992
(0.138)

0.993
(0.094)

0.993
(0.063)

Mode 0.6 0.017
(0.142)

0.013
(0.090)

0.007
(0.059)

0.005
(0.039)

1.009
(0.274)

1.000
(0.190)

1.000
(0.137)

0.999
(0.096)

0.05 0 OLS 0.872
(0.101)

0.874
(0.050)

0.874
(0.025)

0.873
(0.012)

1.000
(0.064)

1.000
(0.032)

1.000
(0.016)

1.000
(0.008)

Mode 1.2 0.313
(0.072)

0.261
(0.035)

0.222
(0.017)

0.183
(0.009)

1.005
(0.049)

1.001
(0.023)

1.001
(0.011)

1.000
(0.006)

Mode 0.6 0.168
(0.094)

0.131
(0.042)

0.103
(0.022)

0.079
(0.012)

1.013
(0.068)

1.005
(0.023)

1.001
(0.015)

1.001
(0.008)

1 OLS 0.358
(0.111)

0.359
(0.057)

0.358
(0.029)

0.358
(0.014)

1.357
(0.110)

1.358
(0.057)

1.358
(0.029)

1.358
(0.014)

Mode 1.2 0.220
(0.076)

0.195
(0.028)

0.170
(0.014)

0.146
(0.007)

1.035
(0.071)

1.015
(0.034)

1.005
(0.017)

0.998
(0.009)

Mode 0.6 0.130
(0.061)

0.110
(0.031)

0.092
(0.016)

0.075
(0.009)

1.022
(0.088)

1.002
(0.046)

0.993
(0.025)

0.990
(0.014)

2 OLS 0.219
(0.117)

0.220
(0.061)

0.219
(0.031)

0.219
(0.015)

1.437
(0.120)

1.438
(0.063)

1.438
(0.031)

1.438
(0.016)

Mode 1.2 0.181
(0.050)

0.164
(0.024)

0.146
(0.012)

0.128
(0.006)

1.048
(0.072)

1.025
(0.036)

1.011
(0.018)

1.002
(0.009)

Mode 0.6 0.113
(0.049)

0.098
(0.025)

0.084
(0.013)

0.070
(0.007)

1.026
(0.086)

1.004
(0.046)

0.994
(0.025)

0.989
(0.014)
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OLS for all sample sizes considered in these exercises. The competitiveness of the

mode regression in this case is, of course, a reflex of the well-known fact that OLS

can be outperformed by “robust”estimators when the distribution of the errors has

high skewness and/or kurtosis (see, e.g., Maronna et al., 2006).

Overall, the results of these experiments are quite encouraging in that they show

that the proposed mode estimator is likely to have a reasonable performance in

samples of a realistic size. Naturally, the conditional mode is often estimated with

much less precision than the conditional mean, but in most cases this comparison has

little meaning as the two location functions generally provide very different informa-

tion about the conditional distribution of interest.

5. AN EMPIRICAL ILLUSTRATION - THE RECENT EVOLUTION

OF BMI IN ENGLAND

The economic effects of obesity have attracted substantial interest in recent years

(see, for example, Averett and Korenman, 1996, Cawley, 2004, and Morris, 2006 and

2007), and are at the centre of attention for many policy makers in western countries

(e.g., U.S. Department of Health and Human Services, 2001, and Department of

Health, 2004). Therefore, the study of the trends in obesity is likely to be of interest

to a wide audience (see Mills, 2009, for a recent example of a study of this kind for

England).

In this section we illustrate the use of mode regression by studying the recent

evolution of the body mass index (BMI)11 in England. In particular, we use individual

data from the Health Survey for England12 to study the evolution over the period

1997-2006 of different location measures for the conditional distribution of the BMI,

11The body mass index of an individual is defined as his body weight, measured in kilograms,

divided by the square of his height, measured in meters.
12The Health Survey for England is a set of cross-sectional surveys commissioned by the Depart-

ment of Health and annually carried out since 1991.
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for males and non-pregnant females, aged between 18 and 65 at the time of the

interview, for whom a valid BMI measurement could be obtained.

It must be emphasized that the purpose of this study is not to attempt to explain

the causes of the observed trends (as done for example by Cutler, Glaeser and Sha-

piro, 2003, and Chou, Grossman and Saffer, 2004), but simply to describe how the

conditional distribution of the BMI has changed over time. Therefore, although the

Health Survey for England contains detailed information on many behavioural risk

factors, like eating and drinking habits, here we condition only on covariates charac-

terizing the composition of the population. Specifically, besides gender and the year

of the survey (Year), we condition only on the age of the respondent (Age) and on

an indicator of whether or not the individual is white (Non-white).

Table 2 presents the estimation results obtained with the traditional mean and

quantile regressions. Separate models are estimated for males and females and, in

both cases, the regressors Year and Age are transformed so that the intercept

corresponds to the BMI for a forty years old white individual in the year 2000.

The results for males indicate that Year has a positive and statistically significant

effect, both on the mean and on the estimated quantiles. Moreover, the impact of

Year is much stronger on the upper-tail of the distribution, indicating that over time

the distribution is becoming more spread-out and positively skewed.

The results for females are not much different, although the effect of Year is less

pronounced, and in this case it is not statistically significant for the lower estimated

quantile (θ = 0.1).

Although our interest is focused on the effect of Year, it is nonetheless noteworthy

that the effect of the dummy Non-white on the mean and median regressions has

different signs for males and females, but for the extreme quantiles the sign of this

effect is the same for the two samples.

Turning now to the mode regression, Figure 1 displays the estimated coeffi cient on

Year against the SNW (effective sample size) for a range of values of δn, for the

samples of males and females. This picture was obtained by maximizing (4) for 100
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values of δn between 50mad and 0.5madn−0.143. For each value of δn, several sets of

starting values were used to try to ensure that a global maximum of the objective

function was found. For values of δn smaller than 0.5madn−0.143, the objective func-

tions have multiple, almost identical, maxima and consequently the estimates become

unstable.

Table 2: Estimation results for mean and quantile regressions

Mean Quantile Regression

Regressors Regression θ = 0.1 θ = 0.5 θ = 0.9

Males, n = 38125

Year 0.097 (0.008) 0.028 (0.010) 0.083 (0.009) 0.181 (0.018)

Non-white −0.729 (0.080) −0.565 (0.097) −0.702 (0.102) −0.962 (0.201)

ln (Age) 2.392 (0.130) 2.529 (0.153) 2.458 (0.136) 1.953 (0.321)

[ln (Age)]2 −3.199 (0.271) −2.547 (0.410) −3.025 (0.317) −3.676 (0.551)

[ln (Age)]3 0.733 (0.520) 1.127 (0.700) 1.525 (0.567) 1.261 (1.247)

Intercept 27.344 (0.035) 22.519 (0.047) 26.875 (0.039) 32.649 (0.076)

Females, n = 44651

Year 0.064 (0.009) 0.007 (0.008) 0.051 (0.009) 0.154 (0.026)

Non-white 0.074 (0.094) −0.158 (0.081) 0.428 (0.097) −0.238 (0.217)

ln (Age) 3.051 (0.154) 2.522 (0.140) 3.554 (0.145) 2.342 (0.435)

[ln (Age)]2 −0.342 (0.323) 0.166 (0.284) 0.566 (0.348) −1.661 (0.871)

[ln (Age)]3 0.733 (0.630) 0.038 (0.566) 0.828 (0.589) 3.087 (1.640)

Intercept 26.610 (0.041) 21.008 (0.035) 25.380 (0.042) 33.940 (0.123)

For both samples, it is clear that for large values of SNW (large δn) the estimated

coeffi cient on Year is identical to the one obtained by OLS. For males, as δn passes

to zero, the estimates of the parameter of interest smoothly decline to about 0.06, be-

coming reasonably stable except for the smaller values of SNW. These results suggest

that the location of the mode of the conditional distribution is also drifting up with

time, but not as quickly as the location of the conditional mean and median. For
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females, the results are much more striking. Indeed, the estimates of the coeffi cient of

interest decline almost monotonically and, in sharp contrast to what was found with

mean and quantile regression, become negative for values of the smoothing parameter

smaller than about δn = 1.75madn−0.143.

Males Females

0.06

0.02

0.02

0.06

0.1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
0.06

0.02

0.02

0.06

0.1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Fig. 1 —Mode regression results: estimated coeffi cient on Year versus the sum of
normalized weights for different values of δn, for the samples of males and females

In view of the results in Figure 1, and consistently with the simulation results

presented before, we focus on the mode regression estimator obtained with δn =

kmadn−0.143, k ∈ {0.6, 1.2}, whose results are displayed in Table 3.

For males, as expected, the mode regression results lead to an estimated intercept

that is smaller than those obtained by mean or median regression. More interestingly,

we find that the coeffi cient of Year is also somewhat smaller than those obtained

with other conditional measures of central tendency, and it is only significant for

k = 1.2.

For females we again find that the estimated intercept in the mode regression is

smaller than those obtained by mean or median regression. However, the most notable

feature of the mode regression results for females is that, as Figure 1 revealed, we

find that Year has a negative effect on the conditional mode, albeit not statistically

significant at the usual levels.

Therefore, for females, we find that although the mean and most (if not all)

quantiles of the distribution of interest are increasing functions of Year, the same

does not seem to happen for the conditional mode. Moreover, in contradistinction
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with what was found for the mean and median regressions, in the mode regressions

the dummy Non-white has a negative effect both for males and females, and it is

only statistically significant for males. Interestingly, the mode regression results for

the coeffi cients on the powers of ln (Age) are not much different, both in size and in

statistical significance at conventional levels, from those obtained by mean regression.

It is also worth noting that, as could be expected for this kind of data and for

samples of this size, mode regression parameters are estimated with less precision

than the corresponding ones obtained by mean or median regressions. However,

this just reflects the fact that we have more information about some features of the

conditional distribution than about others. In spite of its larger variance, the mode

regression estimator proved to be useful in this particular application by revealing

that, in contrast with what is happening with the mean and median, the mode of the

conditional distribution of the BMI for females does not seem to be increasing over

time, and may actually be decreasing. Overall, these results illustrate that the mode

regression can provide information on how the regressors affect the location and shape

of the conditional distribution that cannot be easily elicited using the more standard

mean and quantile regressions.

Table 3: Estimation results for mode regressions

Males, n = 38125 Females, n = 44651

Regressors k = 1.2 k = 0.6 k = 1.2 k = 0.6

Year 0.064 (0.027) 0.029 (0.037) −0.018 (0.028) −0.051 (0.061)

Non-white −1.162 (0.196) −1.588 (0.447) −0.079 (0.444) −0.536 (0.351)

ln (Age) 2.690 (0.490) 2.448 (0.601) 3.904 (0.474) 3.828 (0.750)

[ln (Age)]2 −2.416 (1.019) −3.730 (1.089) 0.968 (1.066) −1.219 (1.482)

[ln (Age)]3 3.037 (1.617) 2.650 (1.655) −0.828 (1.798) −3.090 (2.441)

Intercept 26.179 (0.169) 26.477 (0.176) 23.753 (0.153) 23.942 (0.304)

SNW 7987.334 4125.910 10282.773 5321.951

δn 0.76991 0.38496 0.97590 0.48795
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6. CONCLUDING REMARKS

In this paper we provide the asymptotic results needed for valid inference about

the conditional mode when estimation is based on unbounded smooth kernel and the

bandwidth parameter is allowed to pass to zero as the sample size increases. The es-

timator is very easy to implement and it is valid under mild conditions. In particular,

its asymptotic properties do not depend on the symmetry and homoskedasticity of

the conditional distribution of interest. The main drawback of this estimator is that

it converges at a rate much smaller that the usual
√
n. In spite of this, the simulation

results presented in Section 4 and illustrative application in Section 5 suggest that

the mode regression estimator can be a useful tool in many applications.

There are, of course, many aspects of mode regression that deserve further invest-

igation. In particular, it would be interesting to define a goodness-of-fit criterion for

mode regression and to use it to develop a cross-validation procedure to optimally

select the bandwidth parameter.

APPENDIX

Throughout, | · | denotes the Euclidean norm so that |a| = abs(a) for any scalar

a, |a| = (a′a)1/2 for any finite-dimensional vector, and |A| = [tr(A′A)]1/2 for any

finite-dimensional matrix A. Also, integrals are taken over their entire range unless

explicitly indicated otherwise, so
∫
a(u) du =

∫
R
a(u) du, when a(·) is a scalar valued

function,
∫
a(x) dFX(x) =

∫
Rs
a(x) dFX(x), when a(·) is an s-dimensional vector

valued function and FX(·) is a cdf on Rs (for finite s), and so on. In addition, we use

an ∼ bn to denote that both an/bn and bn/an are O(1).

A.1 Proof of Theorem 1

There are two main parts to the proof of this theorem. First, in Lemma 1, below,

we establish that Q0(β) exists and that it is continuous in β ∈ B with a unique global
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maximum at β = β0. Second, in Lemma 2 below, we establish that

sup
β∈B
|Qn(β)−Q0(β)| = op(1), (15)

i.e., Qn(β) satisfies a uniform law of large numbers. Since B is compact, then the

result of the theorem follows by application of Theorem 2.1 of Newey and McFadden

(1994).

Lemma 1 Under Assumptions A1—A6, Q0 = limn→∞ E[Qn(β)] exists, is continuous

in β ∈ B, and has a unique global maximum at β = β0.

Proof. First, observe that, since {(εi, xi)}∞i=1 are iid by Assumption A1, then:

E[Qn(β)] = E

[
δ−1n K

(
yi − x′iβ
δn

)]
=

∫
δ−1n K

(
ε− x′(β − β0)

δn

)
fε|X(ε|x) dε dFX(x)

=

∫
K(u)fY |X(x′(β − β0) + δnu|x) du dFX(x),

where FX(·) is the distribution function of x. By Assumptions A4(i) and A4(ii) we

have that fε|X(ε|x) is continuous in ε for all ε and x, and is uniformly bounded

from above. By Assumptions A5(i) and A5(ii) we have that
∫
|K(u)| du dFX(x) =∫

|K(u)| du <∞ and that
∫
K(u) du = 1. Combining these with Assumption A6(i),

it follows by dominated convergence that:

lim
n→∞

E[Qn(β)] =

∫
K(u)fε|X(x′(β − β0)|x) du dFX(x)

=

∫
K(u) du · E[fε|X(x′i(β − β0)|xi)]

= E[fε|X(x′i(β − β0)|xi)] = Q0(β),

which establishes the existence of Q0(β).

Second, since fε|X(ε|x) is continuous in ε for all ε and x, and is uniformly bounded

from above by Assumptions A4(i) and A4(ii), it then follows by dominated conver-

gence that E[fε|X(x′i(β − β0)|xi)] is continuous in β ∈ B.
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Third, since Pr(x′iλ = 0) < 1 for all fixed λ 6= 0 by Assumptions A3(ii), and

fε|X(ε|x) achieves a strict global maximum at ε = 0 for every x in a set of probability

1 by Assumption A4(iii), it follows that E[fε|X(x′i(β− β0)|xi)] achieves a strict global

maximum at β = β0.

Lemma 2 Under Assumptions A1—A6:

sup
β∈B
|Qn(β)−Q0(β)| = op(1). (16)

Proof. The proof follows lines somewhat similar to those of the proof of Theorem

1 from Hansen (1996). First, let N(k) = 2pk for k = 1, 2, . . . . Then, since B is

a compact subset of Rp by Assumption A2, there exists a constant G1 and a set

B∞ = {βs}∞s=1 ⊂ B such that:

sup
β∈B

{
min

1≤s≤N(k)
|β − βs|

}
≤ G1

2k
(k = 1, 2, . . . ). (17)

Next, for each k = 1, 2, . . . , define Bk = {βs}N(k)s=1 and let β̄k(·) : B → Bk be a function

which satisfies |β − β̄k| ≤ G1/2
k for all β ∈ B (clearly such a function exists for each

k = 1, 2, . . . ). Then, select {kn}∞n=1 to be a sequence of positive integers such that

2kn ∼ δ
−(2+τ)
n as n→∞ for some 0 < τ <∞. We can now express:

[Qn(β)−Q0(β)] = [Qn(β)−Qn(β̄kn(β))] + [Qn(β̄kn(β))−Qe
n(β̄kn(β))]

+ [Qe
n(β̄kn(β))−Qe

n(β)] + [Qe
n(β)−Q0(β)]

= A1n(β) + A2n(β̄kn(β)) + A3n(β) + A4n(β),

where Qe
n(β) = E[Qn(β)].

Second, we have that:

|A1n(β)| ≤ n−1
n∑
i=1

δ−1n

∣∣∣∣K (yi − x′iβδn

)
−K

(
yi − x′iβ̄kn

δn

)∣∣∣∣
≤ c1n

−1
n∑
i=1

δ−2n |x′i(β − β̄kn)| ≤ c1

[
n−1

n∑
i=1

|xi|
]
δ−2n |β − β̄kn|,

and hence:

sup
β∈B
|A1n(β)| ≤

[
n−1

n∑
i=1

|xi|
](

c1G1
δ2n2kn

)
= A∗1n. (18)
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Now n−1
∑n

i=1 |xi| = Op(1) since xi are iid and E{|xi|} <∞ by Assumptions A1 and

A3(i). But since 2kn ∼ δ
−(2+τ)
n as n → ∞ for some 0 < τ < ∞, then δ2n2kn ∼ δ−τn as

n → ∞. Since δn → 0 as n → ∞ by Assumption A6(i), then δ−τn → ∞ as n → ∞.

Hence A∗1n = op(1) and so supβ∈B |A1n(β)| = op(1).

Third, define:

m(β, δ) =

∫
K(u)fε|x(x

′
i(β − β0) + δu|xi) dε dFX(x),

so for any δ 6= 0:

m(β, δ) =

∫
δ−1K

(
ε− x′i(β − β0)

δ

)
fε|x(ε|xi) dε dFX(x)

= E

[
δ−1K

(
yi − x′iβ

δ

)]
,

and thus:

A2n(β) = n−1
n∑
i=1

[
δ−1n K

(
yi − x′iβ
δn

)
−m(β, δn)

]
. (19)

From Assumption A5(ii) it follows that:∣∣∣∣δ−1n K

(
yi − x′iβ
δn

)
−m(β, δn)

∣∣∣∣ ≤ 2δ−1n c0,

while:

Var

[
δ−1n K

(
yi − x′iβ
δn

)
−m(β, δn)

]
≤ E

[
δ−2n K

(
yi − x′iβ
δn

)2]

=

∫
δ−2n K

(
ε− x′(β − β0)

δn

)2
fε|X(ε|x) dε dFX(x)

=

∫
δ−1n K(u)2fε|X(x′(β − β0) + δnu|x) du dFX(x)

≤ δ−1n · L0 · c2,

where c2 =
∫
K(u)2du, which is clearly finite and strictly positive since |K(·)| is

uniformly bounded from above and
∫
K(u)du exists and equals 1 by Assumptions

A5(i) and A5(ii).

Thus A2n(β) = n−1
∑n

i=1win(β) where for any fixed β ∈ B, the win(β) are inde-

pendently distributed mean zero random variables, which are uniformly bounded from
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above in absolute value by bn = 2δ−1n c0, and whose variances are uniformly bounded

from above by ν2n = δ−1n L0c2. Hence, by Bernstein’s inequality (see Hoeffding, 1963),

it follows that for all η > 0:

Pr {|A21n(β)| ≥ η} ≤ 2 exp

{
−
(
nη

bn

)
h

(
bnη

ν2n

)}
= 2 exp

{
−(nδn)

(
3η2

6L0c2 + 4c0η

)}
, (20)

where h(s) = 3s/(6 + 2s) for all s > 0. Since:

sup
β∈B
|A2n(β̄kn(β))| = sup

β∈Bkn
|A2n(β)|,

then it follows that:

Pr

{
sup
β∈B

∣∣A2n(β̄kn(β))
∣∣ ≥ η

}
= Pr

{
sup
β∈Bkn

|A2n(β)|
}

≤
N(kn)∑
s=1

Pr {|A2n(βs)| ≥ η} ≤ 2pkn+1 exp

{
−(nδn)

(
3η2

6L0c2 + 4c0η

)}
.

Assumption A6(ii) specifies that nδ1+σn → ∞ as n → ∞ for some 0 < σ < ∞,

and thus it follows that nδn tends to infinity at a faster rate than δ−σn . By choice,

2kn ∼ δ
−(2+τ)
n as n→∞ for some 0 < τ <∞, so 2pkn+1 tends to infinity at the same

rate as some positive power of δ−σn . Together these imply that:

lim
n→∞

2pkn+1 exp

{
−(nδn)

(
3η2

6L0c2 + 4c0η

)}
= 0,

for all η > 0, which thus implies that supβ∈B |A2n(β̄kn(β))| = op(1).

Fourth, we have that:

sup
β∈B
|A3n(β)| = sup

β∈B

∣∣E[Qn(β̄kn)]− E[Qn(β)]
∣∣

≤ E

{
sup
β∈B

∣∣Qn(β̄kn)−Qn(β)
∣∣} = E

{
sup
β∈B
|A1n(β)|

}
.

But from Equation (18) we have that supβ∈B |A1n(β)| ≤ A∗1n and E[A∗1n] =

E{|xi|}
(
c1G1
δ2n2

kn

)
. But, as argued above, δ2n2kn → ∞ as n → ∞, and hence it fol-

lows that supβ∈B |A3n(β)| = o(1).
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Fifth, observe that:

A4n(β) = m(β, δn)−Q0(β) = m(β, δn)−m(β, 0).

But by the line of argument used in the proof of Lemma 1, it follows that m(β, δ) is

continuous in (β, δ). Since δn → 0 as n→∞ and B is compact, it then follows that

supβ∈B |A4n(β)| = o(1).

Putting all of these properties together, it follows that supβ∈B |Qn(β) − Q0(β)| =

op(1) as desired.

A.2 Proof of Theorem 2

The proof of asymptotic normality involves more stages than the proof of con-

sistency. First, since β̂n is consistent by Theorem 1 and K(·) is twice continuously

differentiable, then with probability tending to 1:

0 =

(
∂Qn

∂β

∣∣∣∣
β̂n

)
=

(
∂Qn

∂β

∣∣∣∣
β0

)
+

(
∂2Qn

∂β∂β′

∣∣∣∣
β̂∗n

)(
β̂n − β0

)
,

where β̂∗n lies on the line segment joining β̂n and β0 (as usual we may need to evaluate

each row of the second-derivative matrix at different values of β̂∗n). Hence, with

probability tending to 1, it follows that:(
β̂n − β0

)
= −

(
∂2Qn

∂β∂β′

∣∣∣∣
β̂∗n

)−1(
∂Qn

∂β

∣∣∣∣
β0

)
.

Second, we show in Lemma 3 below that (nδ3n)1/2
(

∂Qn
∂β

∣∣∣
β0

)
converges in distribution

to a normal with mean 0 and variance A0. Note that under the assumptions required

for this theorem (nδ7n) = o(1). Third, we show in Lemma 4 below that
(

∂2Qn
∂β∂β′

∣∣∣
β̂∗n

)
converges in probability to B0. Putting these properties together gives us the desired

result.

Lemma 3 Under Assumptions A1—A6 and B1—B5:

(nδ3n)1/2

(
∂Qn

∂β

∣∣∣∣
β0

)
D→ N [0, A0],

where A0 = M1 · E
[
fε|X(0|xi)(xix′i)

]
is positive definite.

28



Proof. Observe that:

(nδ3n)1/2

(
∂Qn

∂β

∣∣∣∣
β0

)
= −

n∑
i=1

gin = −ngen −
n∑
i=1

[gin − gen]

where gin = n−1/2δ
−1/2
n K ′

(
εi
δn

)
xi and gen = E[gin]. The proof is based on establishing

that limn→∞ ng
e
n = 0 and that

∑n
i=1 [gin − gen] satisfies the conditions of the Liapunov

Central Limit Theorem (CLT); see, for example, Theorem 2.4.2 from Bierens (1994).

First, observe that:

ngen =

∫
n1/2δ−1/2n K ′

(
ε

δn

)
xfε|X(ε|x) dε dFX(x).

So, applying integration by parts, we obtain:

ngen =

∫ [
n1/2δ1/2n K

(
ε

δn

)
fε|X(ε|x)

]∞
−∞

x dFX(x)

−
∫
n1/2δ1/2n K

(
ε

δn

)
xf

(1)
ε|X(ε|x) dεdFX(x).

Now, Assumption B4(iii) states that limu→±∞K(u) = 0, and Assump-

tion A4(i) states that fε|X(ε|x) is uniformly bounded, so these imply that[
n1/2δ

1/2
n K

(
ε
δn

)
fε|X(ε|x)

]∞
−∞

= 0. Then, by defining u = ε/δn, we obtain:

ngen = −
∫
n1/2δ3/2n K(u)xf

(1)
ε|X(δnu|x) du dFX(x).

Since fε|X(ε|x) is three times continuously differentiable in ε for all x by Assumption

B3, then we can take a second-order Taylor series expansion of f (1)ε|X(δnu|x) around

u = 0 for given x:

f
(1)
ε|X(δnu|x) = f

(1)
ε|X(0|x) + (δnu)f

(2)
ε|X(0|x) +

1

2
(δnu)2f

(3)
ε|X(λδnu|x),

for some 0 ≤ λ ≤ 1 (which may vary with δn, u, and x). The continuous differenti-

ability of f (1)ε|X(ε|x) = 0 with respect to ε given x, combined with the property that

fε|X(ε|x) has a maximum at ε = 0 by Assumption A4(iii), implies that f (1)ε|X(0|x) = 0

since fε|X(ε|x) has a maximum at ε = 0. By substituting this result into the Taylor
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series expansion we obtain:

ngen = −
∫
n1/2δ5/2n uK(u)xf

(2)
ε|X(0|x) du dFX(x)

−
(

1

2

)∫
n1/2δ7/2n u2K(u)xf

(3)
ε|X(λδnu|x) du dFX(x). (21)

Moreover:∫
n1/2δ5/2n uK(u)xf

(2)
ε|X(0|x) du dFX(x)

= (nδ5n)1/2
∫
uK(u)du ·

∫
xf

(2)
ε|X(0|x) dFX(x) = 0,

because
∫
uK(u)du = 0, by Assumption B4(ii), and because

∫
xf

(2)
ε|X(0|x) dFX(x) is

finite since f (2)ε|X(ε|x) is uniformly bounded, by Assumption B3(i), and E{|x|} < ∞,

by Assumption A3(i). In addition:∣∣∣∣∫ n1/2δ7/2n u2K(u)xf
(3)
ε|X(λδnu|x) du dFX(x)

∣∣∣∣
≤ (nδ7n)1/2

∫
u2|K(u)| · |x| ·

∣∣∣f (3)ε|X(λδnu|x)
∣∣∣ du dFX(x)

≤ (nδ7n)1/2
∫
u2|K(u)| du · E{|xi|} · sup

ε,x

∣∣∣f (3)ε|X(ε|x)
∣∣∣ = o(1),

since
∫
u2|K(u)| du = M0 <∞, by Assumption B4(iv), E{|xi|} <∞, by Assumption

A3(i), supε,x

∣∣∣f (3)ε|X(ε|x)
∣∣∣ < ∞, by Assumption B3(i), and nδ7n = o(1), by Assumption

B5(i). This establishes that ngen = O(nδ7n) = o(1).

Second, fix any λ ∈ Rp and set zin = [gin− gen]′λ. Clearly, by construction E(zin) =

0. This implies that:

n∑
i=1

E{|zin|2} = nE{|g′inλ|2} − n−1[(ngen)′λ]2,

and clearly n−1[(ngen)′λ]2 = o(1), since ngen = o(1) as established immediately above.

Now:

nE{|g′inλ|2} =

∫
δ−1n

[
K ′
(
ε

δn

)]2
(x′λ)2fε|X(ε|x) dε dFX(x)

=

∫
|K ′(u)|2(x′λ)2fε|X(δnu|x) du dFX(x),
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and since
∫
|K ′(u)|2 = M1 < ∞, by Assumption B4(v), δn → 0, by Assumption

A6(i), and fε|X(ε|x) is continuous and uniformly bounded, by Assumptions A4(i) and

A4(ii), it follows that:

lim
n→∞

n∑
i=1

E{|zin|2} =

∫
|K ′(u)|2du ·

∫
(x′λ)2fε|X(0|x) du dFX(x)

= M1 · λ′E
[
fε|X(0|xi)xix′i

]
λ = ω2 <∞. (22)

But Assumptions A3(ii) and B1 imply that E(xix
′
i) > 0 for all fixed λ 6= 0. This

combined with the properties that fε|X(0|xi) is uniformly bounded, by Assumption

A4(i), and is strictly positive on a set of xi with probability one, by Assumption

A4(iii), implies that E
[
fε|X(0|xi) (x′iλ)2

]
= λ′E

[
fε|X(0|xi)xix′i

]
λ > 0 for all λ 6= 0.

Since
∫
K(u)du exists and is equal to 1, by Assumption A5(i), and K(·) is three

times differentiable with
∫
|K ′(u)|2du = M1 <∞, by Assumptions B4(i) and B4(v),

it follows that M1 must be strictly positive and hence that ω2 is finite and strictly

positive. Note that since the data is iid, by Assumption A1:

Var

[
(nδ3n)1/2

(
∂Qn(β)

∂β

∣∣∣∣
β0

)′
λ

]
= Var

[
n∑
i=1

g′inλ

]
=

n∑
i=1

E|zin|2,

so:

lim
n→∞

Var

[
(nδ3n)1/2

(
∂Qn(β)

∂β

∣∣∣∣
β0

)′
λ

]
= ω2,

and hence:

lim
n→∞

Var

[
(nδ3n)1/2

(
∂Qn(β)

∂β

∣∣∣∣
β0

)′]
= M1 · E

[
fε|X(0|xi)xixi

]
.

Third, observe that for any ρ > 0 such that E{|zin|2+ρ} <∞:
n∑
i=1

E{|zin|2+ρ} ≤ 21+ρn
[
E{|g′inλ|2+ρ}+ |(gen)′λ|2+ρ

]
. (23)

We obtain this by observing that for any value of r ≥ 1, |x|r is a convex function of x

and hence for any real x1 and x2 it follows that |(x1+x2)/2|r ≤ (1/2)|x1|r+(1/2)|x2|r

which implies that |x1+x2|r ≤ 2r−1(|x1|r+|x2|r). Equation (23) then follows by setting
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r = 2 + ρ, x1 = g′inλ, x2 = −(gen)′λ, and noting that the data is iid by Assumption

A1. But n|gen|2+ρ = n−(1+ρ)|ngen|2+ρ = o(1), since ngen = O(nδ7n) = o(1) as established

above, and in addition:

nE{|g′inλ|2+ρ} =

∫
(nδn)−ρ/2δ−1n

∣∣∣∣K ( ε

δn

)∣∣∣∣2+ρ |x′λ|2+ρfε|X(ε|x) dε dFX(x)

= (nδn)−ρ/2
∫
|K(u)|2+ρ|x′λ|2+ρfε|X(δnu|x) du dFX(x)

≤ (nδn)−ρ/2L0

∫
|K(u)|2+ρdu · E{|xi|2+ρ} → 0, (24)

since nδn →∞ as a consequence of Assumption A6(ii).

Together, Equations (22) and (24) imply that the conditions of the Liapunov CLT

are satisfied, see Theorem 2.4.2 from Bierens (1994), and thus
∑n

i=1 zin
D→ N [0, ω2],

where 0 < ω2 <∞. Since λ 6= 0 was arbitrary, this implies that (nδ3n)1/2
(

∂Qn
∂β

∣∣∣
β0

)
D→

N [0, A0], where:

A0 = lim
n→∞

Var

[
(nδ3n)1/2

(
∂Qn(β)

∂β

∣∣∣∣
β0

)′]
= M1 · E

[
fε|X(0|xi)(xix′i)

]
,

and is positive definite.

Lemma 4 Under Assumptions A1—A6 and B1—B5:(
∂2Qn

∂β∂β′

∣∣∣∣
β̂n

)
p→ B0,

where B0 =

(
∂2Q0
∂β∂β′

∣∣∣
β0

)
is negative definite.

Proof. The proof of this Lemma follows a similar approach to that of Lemma 2

but in addition makes use of a trimming argument. Fix any λ ∈ Rp and define:

Hn(β) = λ′

(
∂2Qn

∂β∂β′

∣∣∣∣
β

)
λ = n−1

n∑
i=1

δ−3n K ′′
(
yi − x′iβ
δn

)
(x′iλ)2,

noting that this exists by Assumption B4(i). In addition, provisionally define:

H0(β) = λ′

(
∂2Q0
∂β∂β′

∣∣∣∣
β

)
λ,

32



(we will establish that H0(β) is well-defined in the course of the proof). Also define

N(k), Bk, and β̄k(·) as in the proof of Lemma 2, but now let {kn} be a sequence of

monotonically increasing positive integers such that 2kn ∼ δ
−(4+τ)
n for some 0 < τ <

∞. Then:

[Hn(β)−H0(β)] = [Hn(β)−Hn(β̄kn(β))] + [Hn(β̄kn(β))−He
n(β̄kn(β))]

+ [He
n(β̄kn(β))−He

n(β)] + [He
n(β)−H0(β)]

= C1n(β) + C2n(β̄kn(β)) + C3n(β) + C4n(β).

First, observe that by Assumption B4(vii) and the mean value theorem:

|C1n(β)| ≤ n−1
n∑
i=1

δ−3n

∣∣∣∣K ′′(yi − x′iβδn

)
−K ′′

(
yi − x′iβ̄kn(β)

δn

)∣∣∣∣ (x′iλ)2

≤ δ−4n
∣∣β − β̄kn(β)

∣∣ · |λ|2M3 ·
[
n−1

n∑
i=1

|xi|3
]
,

which thus implies that:

sup
β∈B
|C1n(β)| ≤

(
G1M3|λ|2
δ4n2kn

)[
n−1

n∑
i=1

|xi|3
]
. (25)

Clearly, n−1
∑n

i=1 |xi|3 = Op(1), by Assumptions A1 and B1, and δ4n2kn → ∞ as

n→∞ since δ4n2kn ∼ δ−τn , with τ > 0 and δn → 0 as n→∞, by Assumption A6(i).

Together these then imply that supβ∈B |C1n(β)| = op(1).

Second, define:

hin,1(β) = δ−3n K ′′
(
yi − x′iβ
δn

)
(x′iλ)2 1[(x′iλ)2 ≤ δ−2n ],

hin,2(β) = δ−3n K ′′
(
yi − x′iβ
δn

)
(x′iλ)2 1[(x′iλ)2 > δ−2n ],

so Hn(β) = Hn,1(β) + Hn,2(β), where Hn,j(β) = n−1
∑n

i=1 hin,j(β) for j = 1, 2. Also

define hen,j(β) = E[hin,j(β)] and C2n,j(β) = Hn,j(β) − hen,j(β) for j = 1, 2. Now,

by construction, |hin,1(β)| ≤ δ−5n M2, where M2 = supu∈R |K ′′(u)| from Assumption

B4(vi). Hence |hen,1(β)| ≤ δ−5n M2 and so |hin,1(β)−hen,1(β)| ≤ b̄n, where b̄n = 2δ−5n M2.
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In addition:

Var[hin,1(β)] ≤ E[hin,1(β)2]

≤
∫
δ−6n

[
K ′′
(
ε− x′(β − β0)

δn

)]2
(x′iλ)4fε|x(ε|x) dε dFX(x)

=

∫
δ−5n [K ′′(u)]2(x′iλ)4fε|x(x

′(β − β0) + δnu|x) du dFX(x)

≤ δ−5n · L0 ·
∫

[K ′′(u)]2du · E[(x′iλ)4] = δ−5n d0 = ν̄2n, (26)

where d0 is a finite positive constant as a consequence of Assumptions A4(i), B1, and

B4(viii). Then, by Bernstein’s inequality, it follows that:

Pr {|C2n,1(β)| ≥ η} ≤ 2 exp

{
−
(
nη

b̄n

)
h

(
b̄nη

ν̄2n

)}
= 2 exp

{
−
(

3nδ5nη
2

6d0 + 4M2η

)}
,

where h(s) = 3s/(6 + 2s) for all s > 0, as in the proof of Lemma 2 above. But

supβ∈B |C2n,1(β̄kn(β))| = supβ∈Bkn |C1n(β)|, so it follows that:

Pr

{
sup
β∈B
|C2n,1(β̄kn(β))| ≥ η

}
≤

N(kn)∑
s=1

Pr {|C2n,1(βs)| ≥ η}

≤ 2pkn+1 exp

{
−
(

3nδ5nη
2

6d0 + 4M2η

)}
.

Now, nδ5+σn → ∞ for some σ > 0, by Assumption B5(ii), and thus nδ5n tends to

infinity more rapidly than δ−σn . Since 2kn ∼ δ
−(4+τ)
n and δn → 0 as n → ∞, by

Assumption A6(i), it follows that Pr
{

supβ∈B |C2n,1(β̄kn(β))| ≥ η
}
tends to zero as

n→∞ for any fixed value of η, and thus supβ∈B |C2n,1(β̄kn(β))| = op(1).

Next, observe that by Assumption B4(vi):

sup
β∈Bkn

|hin,2(β)| ≤ δ−3n M2(x
′
iλ)21[(x′iλ)2 > δ−2n ]

for all β. So:

sup
β∈Bkn

|C2n,2(β)| ≤ sup
β∈Bkn

∣∣hen,2(β)
∣∣+ δ−3n M2

(
n−1

n∑
i=1

(x′iλ)21[(x′iλ)2 > δ−2n ]

)
,

and hence:

E{ sup
β∈Bkn

|C2n,2(β)|} ≤ 2δ−3n M2E
{

(x′iλ)21[(x′iλ)2 > δ−2n ]
}
,
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noting that supβ∈Bkn

∣∣hen,2(β)
∣∣ = supβ∈Bkn |E[hin,2(β)]| ≤ E{supβ∈Bkn |hin,2(β)|}.

Now, r > 1 such that E{|Xi|2r} <∞ and then the Hölder inequality implies that:

E
{

(x′iλ)21[(x′iλ)2 > δ−2n ]
}
≤
[
E
{
|x′iλ|2r

}]1/r [
E
{
1
[
(x′iλ)2 > δ−2n

]s}]1/s
,

where s = r/(r − 1). But, since s > 0, then:

E
{
1
[
(x′iλ)2 > δ−2n

]s}
= E

{
1
[
(x′iλ)2 > δ−2n

]}
= Pr

{
(x′iλ)2 > δ−2n

}
= Pr

{
|x′iλ|2r > δ−2rn

}
≤ E {|x′iλ|2r}

δ−2rn

,

by the Markov inequality. Hence:

E
{

(x′iλ)21[(x′iλ)2 > δ−2n ]
}
≤
[
E
{
|x′iλ|2r

}]1/r [E {|x′iλ|2r}
δ−2rn

]1/s
= E

{
|x′iλ|2r

}
δ2r/sn ,

since (1/s) + (1/r) = 1. But then 2r/s = 2r × (r − 1)/r = 2(r − 1), so:

E
{

(x′iλ)21[(x′iλ)2 > δ−2n ]
}
≤ E{|x′iλ|2r}δ2(r−1)n ,

and thus E{supβ∈Bkn |Cin,2(β)|} = O(δ2r−5n ). Now, setting r = (5+ξ)/2, we have that

r > 1 and E{|xi|2r} < ∞ by Assumption B1, and hence E{supβ∈Bkn |Cin,2(β)|} =

O(δξn) = o(1) since ξ > 0 and δn = o(1), by Assumption A6(i). Hence

supβ∈Bkn |C2n,2(β)| = op(1). Since C2n(β) = C2n,1(β) + C2n,2(β), this implies that

supβ∈Bkn |C2n(β̄kn(β))| = op(1).

Third, observe that for any fixed β ∈ B, C3n(β) = −E[C1n(β)], and hence from

Equation (25) it follows that:

sup
β∈B
|C3n(β)| ≤ E{sup

β∈B
|C1n(β)|} ≤

(
G1M3|λ|2
δ4n2kn

)
E

[
n−1

n∑
i=1

|xi|3
]

= O(δ−4n 2−kn) = o(1).

Finally, observe that by repeated application of integration by parts, it follows that:

He
n(β) =

∫
δ−3n K ′′

(
ε− x′(β − β0)

δn

)
(x′iλ)2 fε|X(ε|x) dε dFX(x)

=

∫
δ−1n K

(
ε− x′(β − β0)

δn

)
(x′iλ)2 f

(2)
ε|X(ε|x) dε dFX(x)

=

∫
K(u)(x′iλ)2 f

(2)
ε|X(x′(β − β0) + δnu|x) du dFX(x).
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Since f (2)ε|X(ε|x) is uniformly bounded from above and continuous in ε for all x, by

Assumption B3(i), then He
n(β) converges to H0(β) uniformly over β ∈ B, where:

H0(β) = E
[
f
(2)
ε|X(x′i(β − β0)|xi)(x′iλ)2

]
= λ′E

[
f
(2)
ε|X(x′i(β − β0)|xi)xix′i

]
λ.

But since E(xix
′
i) is finite, by Assumption B1, and f

(j)
ε|X(ε|x) is continuous in ε and

uniformly bounded from above for j = 0, 1, 2, 3, by Assumptions A4(i) and B3(i),

then we can interchange the order of taking derivatives with respect to β and taking

expectations with respect to xi to establish that:

E
[
f
(2)
ε|X(x′i(β − β0)|xi)xix′i

]
=

∂2

∂β∂β′
E
[
fε|X(x′i(β − β0)|xi)

]
,

and hence that H0(β) = λ′
(
∂2Q0(β)
∂β∂β′

)
λ as stated at the start of the proof.

Putting all of these results together, we have that:

sup
β∈B
|Hn(β)−H0(β)| = op(1),

and since λ 6= 0 was set at an arbitrary value it follows that:

sup
β∈B

∣∣∣∣(∂2Qn(β)

∂β∂β′

)
−
(
∂2Q0(β)

∂β∂β′

)∣∣∣∣ = op(1),

as desired.

A.3 Proof of Theorem 3

It is suffi cient to establish that Ân converges in probability to A0 and that B̂n

converges in probability to B0. Define:

Ãn(β) = n−1
n∑
i=1

δ−1n

[
K ′
(
yi − x′iβ
δn

)]2
(xix

′
i),

B̃n(β) = n−1
n∑
i=1

δ−3n K ′′
(
yi − x′iβ
δn

)
(xix

′
i) =

∂2Qn(β)

∂β∂β′
,

and note that Ân = Ãn(β̂n) and B̂n = B̃n(β̂n). From Lemma 4 it follows that B̂n

converges in probability to B0.
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To establish that Ân converges in probability to A0 we use an approach similar to

that used in the proofs of Lemmas 2 and 4 above. Fix any p-vector λ 6= 0 and define

Sn(β) = λ′Ãn(β)λ, Sen(β) = E[Sn(β)], and S0(β) = limn→∞ S
e
n(β); note that we will

establish the existence of the relevant expectations and limits in the course of this

proof. In addition, define N(k), Bk, β̄k(·), and {kn} as in the proof of Lemma 4.

Then we have that:

Sn(β)− S0(β) =
[
Sn(β)− Sn(β̄kn(β))

]
+
[
Sn(β̄kn(β))− Sen(β̄kn(β))

]
+
[
Sen(β̄kn(β))− Sen(β)

]
+ [Sen(β)− S0(β)]

= D1n(β) +D2n(β̄kn(β)) +D3n(β) +D4n(β).

First, observe that by Assumptions A5(iii) and B(vi) together with the mean value

theorem:

|D1n(β)| ≤ n−1
n∑
i=1

δ−1n

∣∣∣∣∣
{
K ′
(
yi − x′iβ
δn

)}2
−
{
K ′
(
yi − x′iβ̄kn

δn

)}2∣∣∣∣∣ (x′iλ)2

≤ 2c1M2n
−1

n∑
i=1

δ−2n |x′i(β − β̄kn)|(x′iλ)2

≤ 2c1M2|β − β̄kn| · |λ|2n−1
n∑
i=1

δ−2n |xi|3, (27)

and hence:

sup
β∈B
|D1n(β)| ≤

[
n−1

n∑
i=1

|xi|3
](

c31G1|λ|2
δ2n2kn

)
= op(1),

since E{|xi|3} < ∞, by Assumption B1, and δ2n2kn ∼ δ
−(2+τ)
n for some 0 < τ < ∞

with δn = o(1), by Assumption A6(i).

Second, define:

sin,1(β) = δ−1n

[
K ′
(
yi − x′iβ
δn

)]2
(x′iλ)21[(x′iλ)2 ≤ δ−2n ],

sin,2(β) = δ−1n

[
K ′
(
yi − x′iβ
δn

)]2
(x′iλ)21[(x′iλ)2 > δ−2n ],

so Sn(β) = Sn,1(β) + Sn,2(β), where Sn,j(β) = n−1
∑n

i=1 sin,j(β) for j = 1, 2. Also

define sen,j(β) = E[sin,j(β)] and D2n,j(β) = Sn,j(β) − sen,j(β). Then |sin,1(β)| ≤ δ−3n c21
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by Assumption A5(iii); hence |sen,1(β)| ≤ δ−3n c21 and so |sin,1(β) − sen,1(β)| ≤ b̃n =

2δ−3n c21. In addition, by Assumptions A4, A5(iii), and B1:

Var[sin,1(β)] ≤ E[sin,1(β)2]

≤
∫
δ−2n

[
K ′
(
ε− x′(β − β0)

δn

)]4
(x′iλ)4fε|X(ε|x) dε dFX(x)

≤ δ−1n · L0 ·
∫

[K ′(u)]4 du · E[(x′iλ)4] = δ−1n d1 = ν̃2,

where d1 is a finite positive constant. By Bernstein’s inequality it follows that:

Pr {|D2n,1(β)| ≥ η} ≤ 2 exp

{
−
(
nη

b̃n

)
h

(
b̃nη

ν̃2n

)}
≤ 2 exp

{
−
(
nδ3nηh0

2c21

)}
,

where h0 = h
(
2c21ηδ

−2
0 d−11

)
and δ0 = supm≥1 δn. Since supβ∈B |D2n,1(β̄kn(β))| =

supβ∈Bkn |D1n(β)|, it follows that:

Pr

{
sup
β∈B
|D2n,1(β̄kn(β))| ≥ η

}
≤

N(kn)∑
s=1

Pr {|D2n,1(β
s)| ≥ η}

≤ 2pkn+1 exp

{
−
(
nδ3nηh0

2c21

)}
.

Now nδ5+σn → ∞ for some σ > 0, by Assumption B5(ii), and thus nδ3n tends to

infinity more rapidly than δ−(2+σ)n . Since 2kn tends to infinity at the same rate as

some negative power of δn, it then follows that Pr
{

supβ∈B |D2n,1(β̄kn(β))| ≥ η
}
tends

to zero as n→∞ for any fixed value of η and thus supβ∈B |D2n,1(β̄kn(β))| = op(1).

Third, observe that by Assumption A5(iii):

sup
β∈Bkn

|sin,2(β)| ≤ c21δ
−1
n (x′iλ)21[(x′iλ)2 > δ−2n ],

for all β, so:

sup
β∈Bkn

|D2n,2(β)| ≤ sup
β∈Bkn

∣∣sen,2(β)
∣∣+ c21δ

−1
n

(
n−1

n∑
i=1

(x′iλ)21[(x′iλ)2 > δ−2n ]

)
,

and hence:

E{ sup
β∈Bkn

|D2n,2(β)|} ≤ 2c21δ
−1
n E

{
(x′iλ)21[(x′iλ)2 > δ−2n ]

}
,

38



noting that supβ∈Bkn

∣∣sen,2(β)
∣∣ = supβ∈Bkn |E[sin,2(β)]| ≤ E{supβ∈Bkn |sin,2(β)|}. But

as established in the proof of Lemma 4, E {(x′iλ)21[(x′iλ)2 > δ−2n ]} = O(δ
2(r−1)
n ) for

any r > 1 such that E{|xi|2r} <∞. Setting r = (5 + ξ)/2, as in the proof of Lemma

4, it follows that E{supβ∈Bkn |Din,2(β)|} = O(δ2r−3n ) = O(δ2+ξn ) = o(1) since ξ > 0

and δn = o(1) by Assumption A6(i). It then follows from the Markov inequality that

supβ∈Bkn |D2n,2(β)| = op(1) and thus supβ∈Bkn |D2n(β̄kn(β))| = op(1) since D2n(β) =

D2n,1(β) +D2n,2(β) and supβ∈Bkn |D1n,2(β)| = op(1), as established above.

Fourth, observe that, for any fixed β ∈ B, D3n(β) = −E[D1n(β)] and hence:

sup
β∈B
|D3n(β)| ≤ E{sup

β∈B
|D1n(β)|} ≤

(
c31G1|λ|2
δ2n2kn

)
E

[
n−1

n∑
i=1

|xi|3
]

= O(δ−2n 2−kn) = o(1),

by Assumptions A5(iii), A6(i), and B1.

Fifth, observe that:

Sen(β) =

∫
δ−1n

[
K ′
(
ε− x′(β − β0)

δn

)]2
(x′iλ)2fε|X(ε|x) dε dFX(x)

=

∫
[K ′(u)]2(x′iλ)2fε|X(x′(β − β0) + δnu|x) du dFX(x).

But B is compact, by Assumption A2,
∫

[K ′(u)]2 du < ∞, by Assumption B4(v),

δn → 0, by Assumption A6(i), E{|x|2} < ∞, by Assumption B1, and fε|X(ε|x)

is uniformly bounded from above and continuous in ε for all x, by Assumptions

A4(i) and A4(ii). Hence it follows by dominated convergence that Sen(β) converges

uniformly over B to:

S0(β) =

∫
[K ′(u)]2 du · λ′E

[
fε|X(x′(β − β0)|x)(xx′)

]
λ,

as n → ∞ so supβ∈B |Sn(β) − S0(β)| = o(1). But β̂n converges in probability to β0,

by Theorem 1, so it follows that Sn(β̂n) converges in probability to S0(β0), where:

S0(β0) =

∫
[K ′(u)]2 du · λ′E

[
fε|X(x′(0|x)(xx′)

]
λ = λ′A0λ.

Since λ 6= 0 was fixed at an arbitrary value this implies that Ân converges in probab-

ility to A0.

39



REFERENCES

Amemiya, T. (1985). Advanced Econometrics, Cambridge (MA): Harvard University

Press.

Averett, S. and Korenman, S. (1996). “The Economic Reality of the Beauty Myth,”

The Journal of Human Resources, 31, 304-330.

Baldauf, M. and Santos Silva, J.M.C. (2009), On the Use of Robust Regression in

Econometrics, Department of Economics, University of Essex, Discussion Paper

No 664.

Beaton, A.E. and Tukey, J.W. (1974). “The Fitting of Power Series, Meaning Poly-

nomials, Illustrated on Band-Spectroscopic Data,”Technometrics, 16, 146-185.

Bierens, H.J. (1994). Topics in Advanced Econometrics, Cambridge: Cambridge

University Press.

Cawley, J. (2004). “The Impact of Obesity on Wages,”Journal of Human Resources,

39, 451-474.

Chernoff, H. (1964).“Estimation of the Mode,”Annals of the Institute of Statistical

Mathematics, 16, 31-41.

Chesher, A. (1995). “A Mirror Image Invariance for M-Estimators,”Econometrica,

63, 207-11.

Chesher, A. and Peters, S. (1994). “Symmetry, Regression Design, and Sampling

Distributions,”Econometric Theory, 10, 116-129.

Chou, S.-Y., Grossman, M. and Saffer, H. (2004). “An Economic Analysis of Adult

Obesity: Results from the Behavioral Risk Factor Surveillance System,”Journal

of Health Economics, 23, 565-587.

Collomb, G., Härdle, W. and Hassani, S. (1987). “A note on prediction via estim-

ation of the conditional mode function,” Journal of Statistical Planning and

Inference, 15, 227-236.

40



Cutler, D., Glaeser, E. and Shapiro, J. (2003). “Why have Americans Become more

Obese?”, Journal of Economic Perspectives, 17, 93-118.

Dalenius, T. (1965).“The Mode—A Neglected Statistical Parameter,”Journal of the

Royal Statistical Society, Series A, 128, 110-117.

Department of Health (2004). Choosing Health: Making Healthy Choices Easier,

London: The Stationery Offi ce.

Hall, P., Racine, J.S. and Li, Q. (2004), “Cross-Validation and the Estimation of

Conditional Probability Densities,”Journal of the American Statistical Associ-

ation, 99, 1015-1026.

Hansen, B.E. (1996), “Stochastic Equicontinuity for Unbounded Dependent Hetero-

geneous Arrays,”Econometric Thoery, 12, 347-349.

Hayfield, T. and Racine, J.S. (2008). “Nonparametric Econometrics: The

np Package,” Journal of Statistical Software 27(5). Available at:

http://www.jstatsoft.org/v27/i05/.

Heiberger, R.M. and Becker, R.A. (1992). “Design of an S Function for Robust

Regression Using Iteratively Reweighted Least Squares,”Journal of Computa-

tional and Graphical Statistics, 1, 181-196.

Hoeffding, W. (1963). “Probability Inequalities for Sums of Bounded Random Vari-

ables,”Journal of the American Statistical Association, 58, 13—30.

Horowitz, J.L. (1992). “A Smoothed Maximum Score Estimator for the Binary

Response Model,”Econometrica, 60, 505—531.

Huber, P.J. (1973). “Robust Regression: Asymptotics, Conjectures and Monte

Carlo.”Annals of Statistics, 1, 799-821.

Kim, J.K. and Pollard, D. (1990).“Cube-Root Asymptotics,”Annals of Statistics,

18, 191-219.

Koenker, R. and Bassett Jr., G.S. (1978). “Regression Quantiles,”Econometrica,

46, 33-50.

41



Lee, M.J. (1989).“Mode Regression,”Journal of Econometrics, 42, 337-349.

Lee, M.J. (1993).“Quadratic Mode Regression,”Journal of Econometrics, 57, 1-19.

Lee, M.J. and Kim, H.J. (1998).“Semiparametric Econometric Estimators for a Trun-

cated Regression Model: A review with an extension,”Statistica Neerlandica,

52, 200-225.

Manski, C.F. (1991). “Regression,”Journal of Economic Literature, 29, 34-50.

Maronna, R.A., Martin R.D. and Yohai, V.J. (2006). Robust Statistics: Theory and

Methods, Chichester (UK): John Wiley & Sons.

Mathworks. (2008). Statistics Toolbox User’s Guide, Version 7. Natick (MA): The

Mathworks Inc.

McFadden, D.L. and Newy, W.K. (1994). “Large Sample Estimation and Hypo-

thesis Testing ,”Ch 36 in R.F. Engle and D.L. McFadden, (eds.) Handbook of

Econometrics, Vol. 4, 2111-2245, North Holland: Amsterdam.

Mills, T.C. (2009). “Forecasting Obesity Trends in England,”Journal of The Royal

Statistical Society Series A, 172, 107-117.

Morris, S. (2006). “Body Mass Index and Occupational Attainment,” Journal of

Health Economics, 25, 347-364.

Morris, S. (2007). “The Impact of Obesity on Employment,”Labour Economics, 14,

413-433.

Parzen, E. (1962).“On Estimation of a Probability Density Function and Mode,”

The Annals of Mathematical Statistics, 33, 1065-1076.

Quintela-Del-Rio, A. and Vieu, Ph. (1997). “A nonparametric conditional mode

estimate,”Journal of Nonparametric Statistics, 8, 253-266.

Samanta, M. and Thavaneswarn, A. (1990). “Non-parametric estimation of the

conditional mode.”Communications in Statistics —Theory and Methods, 19,

4515-4524.

SAS Institute Inc. (2008). SAS/STAT 9.2 User’s Guide, Cary (NC): SAS Institute

Inc.

42



Seo, M.H. and Linton, O. (2007). “A Smoothed Least Squares Estimator for

Threshold Regression Models.”Journal of Econometrics, 141, 704-735.

Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis, Lon-

don: Chapman & Hall.

StataCorp. (2007). Statistical Software: Release 10.0. College Station (TX): Stata

Corporation

U.S. Department of Health and Human Services (2001). The Surgeon General’s Call

to Action to Prevent and Decrease Overweight and Obesity, Rockville (MD):

U.S. Department of Health and Human Services, Public Health Service, Offi ce

of the Surgeon General.

Venables, W.N. and Ripley, B.D. (2002). Modern Applied Statistics with S, 4th ed.,

New York (NY): Springer.

Ziegler, K. (2003). “On the asymptotic normality of kernel regression estimators

of the mode in the random design model.”Journal of Statistical Planning and

Inference, 115, 123-144.

43


	dp686cov
	SLee_10e
	1. Introduction
	2. Rectangular and quadratic mode regression
	3. Mode regression for unbounded data
	3.1. Motivation
	3.2. Model Framework
	3.3. Asymptotic Results
	3.4. Implementation issues

	4. Simulation evidence
	5. An empirical illustration - The recent evolution of BMI in England
	6. Concluding remarks
	Appendix
	A.1 Proof of Theorem ??
	A.2 Proof of Theorem ??
	A.3 Proof of Theorem ??

	References


