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1 Introduction

The saddlepath stability characterisation of rational expectations developed by Sargent and Wallace

(1973) represented a major breakthrough in economic theory in the way it encapsulated the disci-

pline rational expectations impose on the equilibrium dynamics of an economic model. In short,

the saddle path describes the combinations of predetermined and non-predetermined variables that

imply expectations consistent with the equilibrium dynamics of a model. The famous paper by Blan-

chard and Kahn (1980) then shows how the saddlepath representation can be obtained as a simple

eigenvalue-eigenvector decomposition of the state space representation of the linearised model. The

beauty of this is that the saddle path describes the evolution of rational expectations as an outcome

of the model, rather than expectations having their own free parameters.

The logical cohesion of rational expectations represents the gold standard against which re-

searchers interested in learning and bounded rationality should measure their efforts. It is a formi-

dable benchmark as departures from fully rational expectations inevitably lead into the ‘wilderness’

of Sargent (1993) where it is not obvious how discipline should be imposed on the beliefs of agents.

The problem is that agents can depart from rationality in an infinite number of ways. Attempts have

been made to impose discipline by requiring departures from rationality to be small in a loosely-

defined sense. For example, much of the adaptive learning literature follows Marcet and Sargent

(1989) and Evans and Honkapohja (2000) by requiring that departures from rationality should be

small enough so that in the long run the economy converges to rational expectations equilibrium.

In this paper we are inspired by the rational expectations literature to use the saddlepath rela-

tionship to impose discipline on boundedly rational learning. Our idea is that agents are rational

in the sense of being able to correctly identify the form of the saddle path, but depart from full

rationality by not knowing the precise coefficients of the saddle path. To give a concrete example,

if agents are saddlepath learning in the Ramsey model then they know they need to learn the coef-

ficients of the saddlepath relationship determining consumption as a function of the capital stock.

In the terminology of Evans and Honkapohja (2000), saddlepath learning equates to assuming that

agents learn adaptively using the saddlepath as their perceived law of motion for the economy.

Saddlepath learning is a refinement of the minimum state variable (MSV) approach developed

in a series of papers by McCallum (1983, 1998, 1999), which disciplines bounded rationality by

requiring agents to use the correct set of variables as the perceived law of motion of the economy.

The additional requirement we impose is that agents are correctly able to decompose endogenous

variables into states that are predetermined and states that are non-predetermined. Our refinement

offers two main advantages over the MSV approach. Firstly, it is closer to rational expectations

because from the outset it correctly imposes zeros on some of the coefficients of the standard learning

regression. In the MSV approach agents must learn those zeros over time. Secondly, it has greater
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mathematical tractability that gives additional insight into existing results and enables us to derive

new theoretical results.

The tractability of saddlepath learning allows us to derive new results on the relationship be-

tween e-stability and determinacy in linear rational expectations models when the current values of

endogenous variables are in the information set of agents. The biggest news is that we are able to

provide sufficient conditions for e-stability of saddlepath learning solutions when the rational expec-

tations equilibrium is indeterminate. We establish that indeterminacy implies existence of a unique

iteratively e-stable saddlepath learning solution. This result improves upon McCallum (2007), who

was unable to obtain general results for the relationship between e-stability and indeterminacy with

the MSV solution. For the case when the rational expectations equilibrium is determinate, we find it

is much simpler to prove that determinacy implies e-stability under saddlepath than MSV learning.

The tractability of the saddlepath learning framework also means we can extend this result and show

that determinacy implies that the saddlepath learning process is iteratively e-stable and unique.

The second contribution of the paper uses saddlepath learning as a way to frame the recent debate

on whether information delays, or more generally imperfect information, can overturn the result

that determinacy implies e-stability under MSV learning. An important paper in this literature is

Bullard and Eusepi (2009), who ask what economic assumptions drive the differences in necessary

and sufficient conditions for determinacy and e-stability. They conclude that informational delays

break equivalency connections. Such a result was anticipated by McCallum (2007):

“It should be stated clearly at the outset that all results presented here are based on the

assumption that current values of endogenous variables are included in individuals’ infor-

mation sets; if instead only lagged endogenous variables can be observed in the learning

process then different E-stability and learnability results would be relevant. Analysis of

a few particular problems in monetary economics involving the latter specification has

been conducted in a well-known paper by Bullard and Mitra (2002) while recent papers

by Adam (2003) and Adam et al (2006) have emphasized that differing assumptions about

information sets relevant for learning can lead to different conclusions.”

We argue that the emphasis of these papers on informational delays and information sets is

not sufficiently nuanced. What matters most is not the information set per se but the way that

agents use their information set to learn. In McCallum (2007) agents have information on the

current values of endogenous variables and learn using a perceived law of motion that nests the

saddlepath relationship. In Bullard and Eusepi (2009) agents only have information on the lagged

values of endogenous variables, and learn with a law of motion that does not nest the saddlepath. In

addition to the lagging of the information, we therefore see that Bullard and Eusepi (2009) change

from saddlepath to non-saddlepath learning. This is crucial to their finding that informational delays
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break the equivalency between determinacy and e-stability. We show this by proving that equivalence

returns once we assume that agents learn a saddlepath relationship under lagged information. Our

result is therefore that determinacy implies e-stability for a wider class of models than previously

suggested in the literature. It is only if agents are not learning the saddlepath that determinacy and

e-stability are disconnected.

The paper is organised as follows: In Section 2 we define saddlepath learning in full information

models where agents know the current values of endogenous variables. We derive propositions showing

the equivalence of determinacy and e-stability conditions, and provide sufficient conditions for e-

stability under indeterminacy. Section 3 shows how these results can be extended to models with

lagged information under appropriate assumptions. The most general case of saddlepath learning

under imperfect information is presented in Section 4. A final Section 5 concludes.

2 Learning with full information

In full information models the current values of endogenous variables are in the information set of

agents. We work with linearised versions of these models that can be written in the Blanchard and

Kahn (1980) form:
(

zt

Etxt+1

)

=

(
G11 G12

G21 G22

)(
zt−1

xt

)

+

(
H1

H2

)

εt, (1)

where Et denotes expectations formed using information available at time t, zt is a vector of predeter-

mined variables, xt is a vector of non-predetermined variables and εt is a vector of i.i.d. disturbances.

The matrices G11, G12,G21,G22 are conformable with the dimensions of zt and xt. McCallum (2007)

uses a slightly different formulation, but in Appendix A we show that it has an equivalent Blanchard

and Kahn (1980) form so there is no loss of generality in our results.

2.1 Solution under rational expectations

In rational expectation equilibrium, agents form rational expectations from the current values of

predetermined variables by using the saddlepath relationship:

Etxt+1 = −Nzt. (2)

The matrix N satisfies:
(
N I

)( G11 G12

G21 G22

)

= Λ
(
N I

)
, (3)

from the eigenvalue-eigenvector decomposition of theGmatrix, with Λ containing the unstable eigen-

values if the system is determinate. The matrix G11 −G12N represents the reduced-form dynamics

and contains the stable eigenvalues if the system is determinate.
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2.2 Saddlepath learning

In a learning setting, we move away from rational expectations and require agents to form expec-

tations on the basis of past experience. There are many ways to do this, so it is important that

deviations from rational expectations are small in the sense of not leading to large expectations er-

rors. Throughout this paper, we impose the required discipline by assuming that agents know the

form of the saddlepath relationship (2) but not the individual coefficients in the matrix N . The idea

is that agents are rational enough to identify the form of the saddlepath relationship, but still have

to learn its coefficients. All we require is that agents are able to decompose variables into those that

are predetermined and those that are non-predetermined. Saddlepath learning is then equivalent to

adaptive learning using the saddle path as the perceived law of motion of the economy.

The issue of learning under full information has only been pursued by a small number of authors,

e.g. McCallum (2007), Giannitsarou (2006) and Gaspar et al (2006). The key question is how agents

solve their joint estimation and optimisation problem as information is revealed within the current

period. For example, an agent deciding consumption needs to know how to react to newly-released

retail surveys or manufacturing output data. Gaspar et al (2006) suggest a way for agents to solve

the estimation problem. At the beginning of period t, agents estimate the saddlepath relationship:

Ẽtxt+1 = −Nt−1zt, (4)

using information up to and including period t−1. In other words, −Nt−1 is the ordinary least-squares

estimate of the linear regression of {xj} on {zj−1} for j = 2, . . . , t−1. Then, during period t, agents

use the estimated saddlepath relationship (4) to adjust expectations as information arrives about

the state of the economy. Under this timing protocol, agents update their model at the beginning of

each period and then apply their estimated model within the period. Gaspar et al (2006) motivate

this by arguing that “it takes more time to re-estimate a forecasting model than to apply an existing

model”. We agree and think that restricting learning to the beginning of each period is a natural way

of solving the estimation problem, without imposing the high computational costs that re-estimating

the model at each point during the period would entail.

How agents solve their decision problem is not explicitly addressed by the existing papers on

learning under full information. Rather, they implicitly assume that agents somehow make decisions

so that endogenous variables and expectations are consistent with the structural form (1) by the end of

the period.1 One possibility is that agents adjust their decisions during the period as new information

is revealed. Coupled with the Gaspar et al (2006) assumption that agents form expectations using the

estimated saddlepath (4), this means that expectations Ẽtxt, Ẽtzt, Ẽtxt+1 and endogenous variables

xt, zt all adjust within the period. Crucially, by the end of the period everything has adjusted so

1 This is of course equally true in rational expectations models with full information, which typically do not specify

the mechanism by which decisions and rational expectations become consistent with the model at each period.
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that endogenous variables and expectations are consistent with (i) structural form (1), (ii) estimated

saddlepath (4) and (iii) Ẽtzt being an unbiased predictor of zt. In full information models (iii) holds

trivially because agents directly observe the current values of aggregate variables.

2.3 Determinate models

The law of motion for non-predetermined variables under learning is obtained by using the estimated

saddlepath relationship (4) to substitute out for expectations in the structural form (1) and obtain:

xt = −(G22 +Nt−1G12)
−1[(G21 +Nt−1G11)zt−1 + (H2 +Nt−1H1)εt]. (5)

Using techniques from stochastic approximation theory, Evans and Honkapohja (2000) show that the

coefficient estimates Nt converge to their rational expectations values N under least-squares learning

if e-stability holds for the following differential equation:

dN

dk
= (G22 +NG12)

−1(G21 +NG11)−N , (6)

where k is ‘notional’ time. Local e-stability requires the eigenvalues of the Jacobian of (6) to have

negative real parts. The Jacobian is defined by examining deviations ∆vec(N) around the steady-

state value of N :

d∆vec(N)

dk
=






(G22 +NG12)−1 ⊗GT11

−(G22 +NG12)
−1 ⊗ (G21 +NG11)

T (G22 +NG12)
−TGT12

−I ⊗ I




∆vec(N).

In rational expectations equilibrium, the eigenvalue-eigenvector decomposition (3) implies that (G22+

NG12)
−1(G21 +NG11) = N and (G22 +NG12)

−1 = Λ−1, so the Jacobian simplifies to:

d∆vec(N)

dk
=
(
Λ−1 ⊗ (G11 −G12N)

T − I ⊗ I
)
∆vec(N). (7)

It follows that:

Proposition 1 If the Blanchard and Kahn (1980) conditions for determinacy are satisfied then the

saddlepath learning process for N is e-stable.

Proof. Determinacy requires that the number of stable eigenvalues of the G matrix in (1)

to be equal to the number of predetermined variables. If this is the case then the eigenvalues of

Λ−1⊗(G11−G12N)
T−I⊗I are of the form λi/λj−1, where λi is a stable eigenvalue from G11−G12N

and λj is an unstable eigenvalue from Λ. The real parts of λi/λj then satisfy real(λi/λj) ≤ |λi/λj | < 1

and the eigenvalues of the Jacobian have negative real parts. The process for learning N is e-stable.

Proposition 1 does not claim that the process for learning N is unique. The following Corollary

provides sufficient conditions for uniqueness:
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Corollary. If all the eigenvalues of Λ and G11 − G12N are real and positive then the rational

expectations value of N is uniquely e-stable.

Proof: Any other N would be associated with a switch of stable and unstable eigenvalues

between Λ and G11 −G12N , in which case some values of λi/λj would be greater than one and not

all eigenvalues of the Jacobian would have negative real parts.

The uniqueness corollary does not necessarily hold if eigenvalues are complex or if the eigenvalues

have a mixture of positive and negative real parts, although convergence to an N not associated

with the saddlepath would imply system instability and it is not clear that stochastic approximation

theorems would apply in this case. To obtain unambiguous results on uniqueness we therefore turn

to iterative e-stability. We think of iterative e-stability as freezing the estimated coefficients for a

long period of time, and only re-estimating them at the beginning of the next period. If we do this

many times we obtain discrete-time learning equations for Nk and ∆vec(Nk):

Nk+1 = (G22 +NkG12)
−1(G21 +NkG11), (8)

∆vec(Nk+1) =
(
Λ−1 ⊗ (G11 −G12N)

T
)
∆vec(Nk). (9)

This assumes there is convergence to Nk after a certain number of time periods, and when least

squares learning is started afresh there is convergence to Nk+1, and so on. The question is whether

this sequence converges.

Proposition 2 If the Blanchard and Kahn (1980) conditions for determinacy are satisfied then the

saddlepath learning process for N is iteratively e-stable and unique.

Proof. The ordinary difference equation (9) converges provided the eigenvalues of Λ−1⊗ (G11−

G12N)
T each have modulus less than unity. Since the system is determinate, the eigenvalues are of

the form λi/λj , where λi is a stable eigenvalue from G11 − G12N and λj is an unstable eigenvalue

from Λ. The eigenvalues λi/λj then satisfy |λi/λj| < 1 and the process for learning N is iteratively

e-stable. Uniqueness follows because any other N would be associated with a switch of stable and

unstable eigenvalues between Λ and G11 − G12N , in which case some values of |λi/λj | would be

greater than one.

The proofs of Propositions 1 and 2 are intuitive under saddlepath learning. As agents can correctly

differentiate between predetermined and non-predetermined variables, there is a natural correspon-

dence between the eigenvalue-eigenvector decomposition for rational expectations equilibrium (3) and

the Jacobian of the differential equation for learning (6). This correspondence is less apparent in the

general set-up of McCallum (2007). The advantages of saddlepath learning are then two-fold. Firstly,

saddlepath learning brings agents closer to rational expectations. In McCallum (2007), agents are
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less rational because they have to learn that lagged values of forward-looking variables are not use-

ful for forecasting. Agents therefore face a redundant regressor problem, so expectations errors are

larger and convergence to rational expectations is slower.2 Secondly, saddlepath learning has greater

transparency and is more amenable to mathematical analysis. In contrast, McCallum (2007) needs

singular value decomposition to obtain a counterpart to Proposition 1 in the general set-up .

2.4 Indeterminate models

If the equilibrium of the model is indeterminate then the rational expectations solution has more

stable eigenvalues than predetermined variables. This suggests an infinite number of possible stable

solution paths, each dependent on the initial expectations of non-predetermined variables. Fortu-

nately, in most cases only one of these paths survives the discipline imposed by saddlepath learning.

Proposition 3 If the Blanchard and Kahn (1980) conditions for determinacy are not satisfied such

that the system is indeterminate, then the saddlepath learning process for N is e-stable and unique

provided that all eigenvalues of the indeterminate system are real and positive. The saddle path is

associated with the largest eigenvalues of the system.

Proof. The indeterminate system still satisfies the eigenvalue-eigenvector decomposition (3),

although failure of the Blanchard and Kahn (1980) conditions means that some of the eigenvalues

{λj} in Λ are stable rather than unstable. The e-stability of saddlepath learning depends as before

on the eigenvalues of the Jacobian (7) having negative real parts, so the condition for e-stability

is real(λi/λj) ≤ |λi/λj| < 1 as in Proposition 1. If all the eigenvalues of the system are real and

positive, then this obtains uniquely when the saddle path is associated with the largest eigenvalues

of the system. Collecting the largest eigenvalues as {λj} into Λ means that λj > λi and |λi/λj | < 1

for all i, j and the eigenvalues of the Jacobian have negative real parts as required. Associating the

saddle path with any other eigenvalues would mean |λi/λj| > 1 for some i, j and the learning process

for N would not be e-stable.

The e-stability of the saddle path associated with the largest eigenvalues of the system is also a

feature of the minimum state variable (MSV) solution proposed by McCallum (2003) and McCallum

(2007). Indeed, the restriction in Proposition 3 that all eigenvalues are real and positive mirrors

the difficulty McCallum had in obtaining general results with the MSV solution. To derive general

results we therefore switch to iterative e-stability.

2 In empirical work, Slobodyan and Wouters (2009) avoid the redundant regressor problem by assuming that agents

are saddlepath learning as we suggest, although it is unclear how they arrived at such an interpretation of McCallum

(2007).
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Proposition 4 If the Blanchard and Kahn (1980) conditions for determinacy are not satisfied such

that the system is indeterminate, then the saddlepath learning process for N is iteratively e-stable

and unique. The saddle path is associated with the eigenvalues of the system that have the largest

modulus.

Proof. Iterative e-stability requires the modulus of the eigenvalues of Λ−1 ⊗ (G11 −G12N)T in

(9) to be less than unity as in the proof of Proposition 2. This is uniquely achieved by associating

the saddle path with the eigenvalues of largest modulus, in which case |λj| > |λi| and |λi/λj | < 1 for

all i, j and the iterative process (9) is stable. Associating the saddle path with any other eigenvalues

would mean |λi/λj | > 1 for some i, j and the learning process for N would not be iteratively e-stable.3

Propositions 3 and 4 abstract from the possibility of sunspots by focusing exclusively on learning

about the saddle path of the indeterminate system. To remedy this, suppose the system is indeter-

minate because one stable eigenvector λ́ is associated with the saddle path. In this case λ́ is the only

stable eigenvalue of Λ. If v is the eigenvector corresponding to λ́ then:

Λv = λ́v, (10)

to within a multiplicative constant. If we associate a univariate stationary sunspot process:

ηt = λ́ηt−1 + ζt,

to the stable eigenvector, with ζt i.i.d. Gaussian distributed4, then expectations in the indeterminate

rational expectations equilibrium satisfy:

Etxt+1 = −Nzt + vλ́ηt. (11)

Combining (10) and (11) with the structural form (1) and the eigenvalue-eigenvector decomposition

(3) gives:

xt +Nzt−1 +Λ
−1(H2 +NH1)εt = vηt. (12)

With saddlepath learning, agents use ordinary least squares to estimate a sunspots-augmented sad-

dlepath relationship between xt and zt−1, ηt. The result is a sequence of estimates {Nk, vk} that

converge in ‘notional’ time k if the sunspot system is e-stable. The characteristic equations for the

convergence of {Nk} are unchanged from (6) and (8) used in the absence of sunspots in Propositions

3 and 4, so the conditions for e-stability and iterative e-stability of the learning process for N are as

before. The characteristic equation for the convergence of {vk} is:

dv

dk
= (G22 +NG12)

−1λ́v − v. (13)

3 A minor caveat to this proof is that if there are two stable eigenvalues with identical modulus, and only one can be

associated with the saddle path, then there is non-uniqueness and there could be convergence to two different saddle

paths.
4 Evans and McGough (2005) discuss common factor representations of this type.
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In the limit (G22 + NG12)
−1 = Λ−1 and Λv = λ́v from (10) so dv/dk tends to 0 and v has a

well-defined limit. It follows that the learning process for v converges if the learning process for N

converges. We have:

Proposition 5 If the system described in Proposition 3 has a stationary sunspot process then the

augmented saddlepath learning process for N and v is also e-stable and unique. If the system described

in Propositions 4 has a stationary sunspot process then the augmented saddlepath learning process

for N and v is iteratively e-stable and unique.

2.5 Models with constants

The results in Sections 2.3 and 2.4 are derived assuming no constants in the structural form (1)

of the economy. If we allow for constants, and require agents to learn them, then the saddlepath

relationship estimated by agents becomes:

Ẽtxt+1 = −Nt−1zt + at−1,

instead of (4). E-stability and iterative e-stability conditions must then be satisfied for the learning

processes of both N and a. Our results replicate findings that are well-established in the literature

on learning in models with constants, for example see Woodford (1990). Full results appear in

Appendix B. Suffice to say here, for determinate models the learning process for a is always e-stable

and iteratively e-stable so Propositions 1 and 2 continue to hold. For indeterminate models, the

learning process for a is never e-stable when all the eigenvalues of the system are real and positive,

so Proposition 3 no longer applies. The learning process for a is similarly never iteratively e-stable

in indeterminate models and Proposition 4 fails in models with constants.

3 Learning with lagged information

The usual assumption in learning models is not that agents know the current values of endogenous

variables. Instead, agents are assumed to have lagged information only relating to the previous

period. This is sensible, but raises the question of how and when agents learn on the basis of

that lagged information. Our preferred answer is inspired by the timing protocol we adopted for

learning with full information. There, agents undertook learning at the beginning of period t using

information about period t − 1. By analogy, we suggest a timing protocol for lagged information

models in which agents also learn at the beginning of period t using information about period t− 1.

Agents hence continue to estimate a saddlepath relationship at the beginning of period t, which with

lagged information is between expected future values of non-predetermined variables and expected

current values of predetermined variables. Bullard and Eusepi (2009) make a different assumption
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by requiring agents to estimate a relationship between expected future values of non-predetermined

variables and the known lagged values of predetermined variables at the beginning of period t. As a

consequence, there is no mechanism to ensure that a saddlepath relationship analogous to equation

(4) holds under learning. Seen this way, it is not surprising that Bullard and Eusepi (2009) have

difficulty obtaining general results for the relationship between determinacy and e-stability conditions

in their models. They deviate from the full information benchmark twofold, first by restricting the

information available to agents and second by changing from saddlepath to non-saddlepath learning.

In what follows we show that restricting the information set of agents does not in itself overturn

our equivalence results. That Bullard and Eusepi (2009) find equivalence breaking down in their

models must then be due to their assumption that agents are not saddlepath learning. Information

delays per se are not enough. In this section we continue to work with models that can be written

in the same Blanchard and Kahn (1990) form as the full information case, but impose restrictions

on the parameters of the state space so our results are directly comparable to Bullard and Eusepi

(2009). Specifically, they assume that predetermined variables zt follow a purely exogenous process

with known coefficients. The relevant structural form is then:
(

zt

Etxt+1

)

=

(
G11 0

G21 G22

)(
zt−1

xt

)

+

(
H1

H2

)

εt, (14)

with agents knowing G11. The notation Et is retained for expectations formed using the (now lagged)

information available at time t. We return to the more general case where G12 is not necessarily zero

in Section 4.

3.1 Solution under rational expectations

The saddlepath relationship in rational expectations equilibrium with lagged information is a consis-

tency requirement on the expectations of future non-predetermined variables and the expectations

of current predetermined variables:

Etxt+1 = −NEtzt. (15)

The matrix N satisfies the eigenvalue-eigenvector decomposition:

(
N I

)( G11 0

G21 G22

)

= Λ
(
N I

)
(16)

Reduced-form equations describing how agents form rational expectations with lagged information

are obtained by substituting the saddlepath relationship (15) into the structure of the economy (14),
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taking expectations, and simplifying using the eigenvalue-eigenvector decomposition (16):

Etxt = −Nzt−1,

Etzt = G11zt−1,

Etxt+1 = (G21 −NG22)zt−1.

3.2 Saddlepath learning

Agents face a joint estimation and decision problem when learning with lagged information, as they

did when learning with full information. Indeed, the e-stability and determinacy conditions for

learning with lagged information are the same as those with full information if agents are saddlepath

learning. To see why, we proceed analogously to the full information case by assuming agents solve

their estimation problem by estimating a saddlepath relationship:

Ẽtxt+1 = −Nt−1Ẽtzt, (17)

at the beginning of period t. −Nt−1 is the ordinary least-squares estimate of the linear regression of

{xj} on {zj−1} for j = 2, . . . , t−1. It is subscript t−1 to stress that it is estimated using information

up to and including period t − 1 when information is lagged. Agents use the estimated saddlepath

relationship (17) to ensure that expectations remain consistent during period t.

The way agents solve their decision problem can also be taken from the full information case,

in that expectations Ẽtxt, Ẽtzt, Ẽtxt+1 and endogenous variables xt, zt are all assumed to adjust

within the period. As before, by the end of each period endogenous variables and expectations

are consistent with (i) structural form (14), (ii) estimated saddlepath (17) and (iii) Ẽtzt being an

unbiased predictor of zt. Condition (iii) is no longer trivial when information is lagged, but holds

because of the assumption that zt follows a known exogenous process. This means that agents have

unbiased expectations of the present - but not necessarily the future - when learning.

The structural form (14), saddlepath relationship (17), and the unbiasedness of Ẽtzt determine

the law of motion for non-predetermined variables with learning and lagged information as:

xt = −G
−1
22
[(G21 +Nt−1G11)zt−1 + (H2 +Nt−1H1)εt +Nt−1ηt], (18)

where ηt = Ẽtzt − zt is an error term with mean zero. It is obvious from a comparison of equation

(18) to equation (5) with G12 = 0 that the least-squares estimates of Nt−1 in the lagged information

case will follow a similar path to the least-squares estimates of Nt−1 in the full information case. The

e-stability and determinacy conditions are the same for both cases. We summarise this as follows:

Proposition 6 If the Blanchard and Kahn (1980) conditions for determinacy are satisfied then the

saddlepath learning process for N is e-stable and uniquely iteratively e-stable under both full and

lagged information.
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It is straightforward to confirm that Propositions 1 through 5 continue to hold for saddlepath

learning with lagged information. We do not report these calculations, but take the opportunity

to highlight that our earlier results on indeterminate models and sunspots also apply in the lagged

information case. The isomorphism between e-stability and determinacy is not therefore dependent

on whether agents have full or lagged information.

4 Learning with imperfect information

The equivalence of the full and lagged information results above is a portent of our most general

result, namely that the relationship between e-stability and determinacy conditions is independent of

the information set of agents. To prove this, we introduce a general model with imperfect information

where agents observe linear combinations of the endogenous variables xt and zt subject to possible

measurement errors. The model with imperfect information nests that with full information if agents

observe xt and zt without measurement error. It nests the model with lagged information once

lagged variables are included as observables amongst the predetermined variables zt. To analyse the

imperfect information case it is necessary to write the model in state space form. The structural

form (1) is unsuitable as it stands because there are measurements in zt on the left hand side and

xt on the right hand side. Instead, we expand the set of predetermined variables to kt = (ε
T
t zTt−1)

T

and write the model as:
(

kt+1

Etxt+1

)

=

(
A11 A12

A21 A22

)(
kt

xt

)

+

(
B1

0

)

εt+1, (19)

wt =
(
K1 K2

)( kt

xt

)

+ vt. (20)

Equation (19) is the state transition equation of the state space form. Equation (20) is the measure-

ment equation, with vt the measurement errors. Note that zt = G11zt−1 + G12xt + H1εt from the

structural form (1), so zt will be observable to agents for suitable choices of K1 and K2.

4.1 Solution under rational expectations

The saddlepath relationship in rational expectations equilibrium with imperfect information imposes

consistency on expectations of future non-predetermined variables xt+1 and our expanded set of

predetermined variables kt+1:

Etxt+1 = −NEtkt+1, (21)

13



which is a generalisation of the saddlepath relationships with full and lagged information. The matrix

N satisfies:
(
N I

)( A11 A12

A21 A22

)

= Λ
(
N I

)
, (22)

by an eigenvalue-eigenvector decomposition of the A matrix in (19). Λ is a square matrix contain-

ing the unstable eigenvalues if the system is determinate. In rational expectations equilibrium the

saddlepath also imposes the consistency requirement Etxt = −NEtkt on expectations of current

variables. The law of motion for non-predetermined variables is:

xt = −(A22 +NA12)
−1[(A21 +NA11)kt +NB1εt+1 +Nζt+1], (23)

where ζt+1 = Etkt+1 − kt+1 is a rational expectations error.5 Agents form rational expectations of

current predetermined variables by applying the Kalman filter:

Etkt = Et−1kt + J(wt − (K1 −K2N)Et−1kt), (24)

where the Kalman gain matrix J is defined by:

J = P (K1 −K2A
−1

22
A21)

T ((K1 −K2N)P (K1 −K2A
−1

22
A21)

T + V )−1, (25)

and V is the variance-covariance matrix of the measurement errors vt.6 The matrix P ≡ cov(kt −

Et−1kt) satisfies a Riccati equation:

P = (A11 −A12A
−1

22
A21)P (A11 −A12A

−1

22
A21)

T

−(A11 −A12A
−1
22
A21)P (K1 −K2A

−1
22
A21)

T

×((K1 −K2A
−1
22
A21)P (K1 −K2A

−1
22
A21)

T + V )−1

×P (K1 −K2A
−1

22
A21)(A11 −A12A

−1

22
A21)

T +B1cov(εt)B
T
1 . (26)

The rational expectation of future predetermined variables is a linear mapping:

Etkt+1 = (A11 −A12N)Etkt,

of the rational expectation of current predetermined variables. Note that the matrix P in the Riccati

equation is independent of the matrix N in the saddlepath relationship.

5ζ
t+1 is a hybrid term that includes rational expectations errors caused by unpredictable shocks εt+1 and by imperfect

inferences on the current state of the economy. The rational expectations errors caused by shocks are −B1εt+1, which

cancels the NB1εt+1 term in equation (23) and means there is correctly no role for t+ 1 shocks in determining xt.
6 See Appendix C and Pearlman et al. (1986) for a full derivation the Kalman gain matrix (25).

14



4.2 Saddlepath learning

Maintaining our analogy with the full information case, saddlepath learning with imperfect informa-

tion requires agents to estimate a relationship:

Ẽtxt+1 = −Nt−1Ẽtkt+1, (27)

at the beginning of period t. −Nt−1 is the ordinary least-squares estimate of the linear regression

of {Ejxj} on {Ejkj} for j = 1, . . . , t − 1. Expectations Ẽtxt, Ẽtkt, Ẽtxt+1, Ẽtkt+1 and endogenous

variables xt, zt adjust as decisions are made, and by the end of the period expectations and endogenous

variables are consistent with (i) structural form (19), (ii) estimated saddlepath (27) and (iii) Ẽtkt+1

being an unbiased predictor of kt+1. Once these conditions are satisfied, the law of motion for

non-predetermined variables with learning and imperfect information is:

xt = −(A22 +Nt−1A12)
−1[(A21 +Nt−1A11)kt +Nt−1B1εt+1 +Nt−1ηt+1], (28)

where ηt+1 = Ẽtkt+1−kt+1 is an error term with mean zero.7 Equation (28) has the same form as the

law of motion for non-predetermined variables with full information (5), so again the least squares

estimate of Nt−1 in the imperfect information case follows a similar path to the least squares estimate

of Nt−1 in the full information case. The e-stability and determinacy conditions must therefore be

the same in both cases:

Proposition 7 If the Blanchard and Kahn (1980) conditions for determinacy are satisfied then the

saddlepath learning process for N is e-stable and uniquely iteratively e-stable under any information

set.

Propositions 1-5 also hold for any information set when agents are saddlepath learning.

Condition (iii) that Ẽtkt+1 is an unbiased predictor of kt+1 requires further justification when

learning with imperfect information. Since kt+1 = (ε
T
t+1 z

T
t )
T , it implies that agents recognise εt+1

as a shock with mean zero, and are able to make unbiased inferences about the current state of

predetermined variables zt. Recognising εt+1 as a shock is satisfied by assumption, but making

unbiased inferences depends on how agents are assumed to infer the current state of the economy. In

rational expectations equilibrium agents use equation (24) to infer the current state, so one possibility

is to assume that agents have sufficient information to construct an unbiased Kalman filter with

which to make inferences. Whilst the information needed to do so is arguably large, the calculations

7 As with rational expectations, η
t+1 is a hybrid term that captures expectations errors caused by shocks εt+1 and

imperfect inferences about the current state of the economy. Agents understand that εt+1 is a shock with impact B1,

so η
t+1 = Ẽt(ε

T

t+1 z
T

t )
T
− (εTt+1 z

T

t )
T contains an element that cancels the Nt−1B1εt+1 term in equation (28) as before.

Fluctuations in xt are then driven purely by expectations errors Ẽtzt − zt and there is no dependence on t + 1 dated

shocks.
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required are completely distinct from those needed to solve the rational expectations model and

make decisions consistent with the saddlepath. As an extreme, it is not inconceivable that agents

know the structural form (19) but are unable to solve the model forward to obtain the saddlepath

relationship (21). Such agents can infer the current state of the economy but have to learn how to

form expectations of the future.8 Less extremely, agents could estimate the structure of the economy

whilst learning the saddlepath relationship. The estimates of the parameters in the structural form

converge by the properties of ordinary least squares estimators, and estimates Pt of the precision

matrix converge to the rational expectations value P as the Riccati equation (26) is independent of

N . This leaves the Kalman gain matrix Jt, which converges to the rational expectations value J as

Pt → P and Nt → N . We therefore conclude that Ẽtkt+1 is an unbiased predictor of kt+1, either

because agents have sufficient information to construct an unbiased Kalman filter or as the outcome

of a well-defined learning process.

5 Conclusions

The initial motivation for this paper was to discipline boundedly rational agents by requiring them

to learn through a saddlepath relationship. Doing so ensures deviations from rational expectations

are ‘small’, with agents able to correctly decompose endogenous variables into states that are prede-

termined and states that are non-predetermined. An unexpected by-product of saddlepath learning

is greater mathematical tractability and transparency. Many of the terms that appear in the eigen-

value condition for determinacy also appear in the eigenvalue condition for e-stability of saddlepath

learning. This is ultimately what gives us traction to clarify and improve upon existing results.

We show that the e-stability results of McCallum (2007) relate to learning about the saddlepath

relationship. Furthermore, his inclusion of all variables in the least-squares regression leads to greater

variability in the estimates and therefore slower convergence to rational expectations. For the inde-

terminacy case we have two new results. Firstly, there is convergence to a unique saddlepath under

iterative e-stability. The saddlepath is associated with the eigenvalues of the system that have the

largest modulus. Secondly, we show that the impact of sunspots on non-predetermined variables is

also learnable. Thus when a model is indeterminate we cannot ignore sunspots under rational expec-

tations or learning. All these results hold for any information set, be it full, lagged or imperfect, as

long as agents are saddlepath learning. This generality suggests a much closer connection between

determinacy and e-stability than found by Bullard and Eusepi (2009) for non-saddlepath learning.

8 The Bullard and Eusepi (2009) assumption that predetermined variables follow a known exogenous process meant

that agents were in exactly this position in the lagged information models of Section 3.
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A Conversion of McCallum form to Blanchard and Kahn form

We show that the setup used by McCallum (2007) and others, namely:

A0Etyt+1 +A1yt = A2yt−1 +Bεt, (A.1)

where A0 is not of full rank, can be rewritten in a state-space form suitable for applying the Blanchard-

Kahn conditions. We assume that it is possible to solve the system for Etyt+1 in terms of yt, yt−1
9

and write the conversion to state space form as an algorithm. yt is of dimension n.

1. Obtain the singular value decomposition for matrix A0: A0 = UDV T , where U, V are unitary

matrices. Assuming that only the first m values of the diagonal matrix D are non-zero, we can

rewrite this as A0 = U1D1V
T
1 , where U1 are the first m columns of U , D1 is the first m×m

block of D and V T1 are the first m rows of V T .

2. Multiply (A.1) by D−1
1
UT1 , which yields:

V T1 Etyt+1 +D−1
1
UT1 A1yt = D−1

1
UT1 A2yt−1 +D−1

1
UT1 Bεt. (A.2)

Now define xt = V T1 yt, st = V T2 yt, and use the fact that I = V V T = V1V
T
1 + V2V

T
2 to rewrite

this as:

Etxt+1 +D−1

1
UT1 A1(V1xt + V2st) = D−1

1
UT1 A2(V1xt−1 + V2st−1) +D−1

1
UT1 Bεt. (A.3)

3. Multiply (A.1) by UT2 , where U2 are the last n − m columns of U (with UT2 U1 = 0), which

yields:

UT2 A1yt = UT2 A2yt−1 + UT2 Buεt. (A.4)

This can be rewritten as:

UT2 A1(V1xt + V2st) = UT2 A2(V1xt−1 + V2st−1) + UT2 Bεt. (A.5)

4. UT2 A1V2 is invertible by Assumption 1, which means that we can rewrite (A.3) as:

st + (U
T
2 A1V1)

−1UT2 A1V1xt = (U
T
2 A1V1)

−1(UT2 A2(V1xt−1 + V2st−1) + UT2 Bεt), (A.6)

and hence the whole system as:





I 0 0

0 I 0

F 0 I











st

xt

xt+1,t




 =






G11 G12 −G13

0 0 I

G31 G32 −G33











st−1

xt−1

xt




+






H1

0

H3




 εt,

9 This rules out post-recursive expectations which are generated by systems of the form at = ρat−1+εt, bt = Etat+1.

The latter would be written for our purposes as at = ρat−1 + εt, bt = ρat.
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where:

G11 = (U
T
2 A1V1)

−1UT2 A2V2 G12 = (U
T
2 A1V1)

−1UT2 A2V1 G13 = (U
T
2 A1V1)

−1UT2 A1V2

G31 = D−1
1
UT1 A2V2 G32 = D−1

1
UT1 A2V1 G33 = D−1

1
UT1 A1V2

H1 = (U
T
2 A1V1)

−1UT2 B H3 = D−1
1
UT1 B F = D−1

1
UT1 A1V2

Multiplying (A.5) by the inverse of the far left matrix in (A.5) yields the required state-space

setup.

For the purist, this is not quite good enough, because the states st, xt are now linear combinations

of the underlying variables y1t, ..., ynt. Consider therefore the first terms of equations (A.3) and

(A.6), where the latter are expressed again in terms of yt. If the number of non-zero columns of

V T1 is equal to m then we can rewrite the forward-looking equation (A.3) purely in terms of those

m elements of yt that are multiplied by those non-zero columns. These elements of yt are then

the forward-looking looking variables. However, suppose the number of non-zero columns of V T1 is

greater than m e.g. a system like Ety1,t+1 + Ety2,t+1 = y1t, y1t − y2t = y2,t−1 + εt. In principle we

can advance (A.6) by one period, take expectations, and then solve for Etyt+1 in terms of yt, yt−1.

Then substitute some of these expectations into (A.3) so that one is left with only m forward-looking

variables. But which ones to substitute out, and can we be sure that such a representation exists?

The latter question is equivalent to asking whether there exists a set of m columns of V T1 and a set

of n−m columns of V T2 that are non-aligned with one another in Ψ = [V1 V2]
T , and which are each

of full rank. We prove this by contradiction. Denote the determinants of each such corresponding

set i by d1i and d2i. Suppose that for all such corresponding sets either or both of d1i and d2i is 0,

so that their product is 0. But the (non-zero) determinant of Ψ is the sum of all of these products

d1id2i weighted by either 1 or -1. Hence not all of these can be zero. Thus we deduce that there are

mutually exclusive subsets y1 and y2 of y such that Ety
1
t+1 = f1(yt, yt−1, εt), y

2
t = f2(y

1
t , yt−1, εt).

For the case of partial information the logic is identical, except that when we advance by one

period and take expectations of (A.6), we introduce terms in Etyt, so that the forward-looking

equations take the form Ety1t+1 = g1(yt, Etyt, yt−1, εt). This extension is covered for the rational

expectations solution in Pearlman et al (1986), and is a trivial extension to our analysis of learning

in the main text.

B Learning about constants

Here we summarize e-stability results on learning about the constants, which are well-known in the

literature e.g. Woodford (1990), but cast them in our general framework. In addition, we extend

the results to iterative e-stability. Suppose (1) has constants (c1 c2)T on the RHS, and assume

that expectations in (4) are augmented by the constants at−1. It then follows that there is an
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additional term (G22 + Nt−1G12)
−1(at−1 − Nt−1c1 − c2) on the RHS of (5) Recalling that under

rational expectations we have G22+NG12 = ΛU , it is easy to show that under updated least-squares

learning, at converges to its RE value provided that e-stability holds for:

da

dk
= (Λ−1U − I)a.

This is the case when there is determinacy; if the eigenvalues of ΛU are greater than 1, then their

inverses will have real part less than 1. When there is indeterminacy, some of the eigenvalues of

ΛU may be less than 1; if these are real, then e-stability only holds if they are negative. If they

are complex, then E-stability holds if the real part of their inverses are less than 1. For iterative

E-stability, the requirement is stability of:

ak+1 = Λ
−1

U ak.

This can only ever be the case when the system is determinate. For indeterminacy, at least one of

the eigenvalues of ΛU will have an inverse that lies outside the unit circle.

C Kalman gain matrix J with imperfect information

Assume that there is a saddlepath relationship:

Etxt+1 +NEtkt+1 = 0 where
(
N I

)( A11 A12

A21 A22

)

= Λ
(
N I

)
, (C.1)

and Λ is a square matrix with unstable eigenvalues only. It is clear that this is consistent with

Etxt+j +NEtkt+j = 0 for all j > 0. In addition, by taking expectations of the equations involving

kt+1 and Etxt+1 using information at time t, and applying the saddlepath relationship, this yields:

Etxt +NEtkt = 0. (C.2)

Now focus on the equation involving Etxt+1. Taking expectations of this equation using informa-

tion at time t and subtracting from the original equation yields:

A21(kt −Etkt) +A22(xt −Etxt) = 0. (C.3)

From (C.2) and (C.3) we deduce that:

xt = −A
−1
22
A21kt + (A

−1
22
A21 −N)Etkt. (C.4)

Now assume that the Kalman filtering update for Etkt is given by:

Etkt = Et−1kt + J(wt −MEt−1kt) where M = K1 −K2N . (C.5)
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It then follows that we can rewrite the measurement equation:

wt = K1kt+K2xt+vt = (K1−K2A
−1
22
A21)kt+K2(A

−1
22
A21−N)(Et−1kt+J(wt−MEt−1kt))+vt. (C.6)

Defining D = K1 −K2A
−1
22
A21 and the innovations process k̃t = kt −Et−1kt, (C.6) can be rewritten

as:

(I + (D −M)J)(wt −MEt−1kt) = Dk̃t + vt. (C.7)

Now define cov(k̃t) = P . Recalling that kt = k̃t + Et−1kt, it follows that we can use (C.7) to obtain

the best estimate of kt using the measurement wt, which implies that J = PDT (DPDT + V )−1(I +

(D −M)J) by comparing with (C.5), where V = cov(vt). Simple algebra then shows that:

J = PDT (MPDT + V )−1. (29)

Then taking expectations of the kt+1 equation gives the updating equation for Etkt+1 in terms of

Etkt, and subtracting this from the kt+1 equation yields an equation for k̃t+1 in terms of kt − Etkt

and xt − Etxt. Substituting for the latter from (C.3), for Etkt from (C.5), and for (wt −MEt−1kt)

from (C.7), it follows that the equation for k̃t is given by:

k̃t+1 = Ak̃t −APDT (DPDT + V )−1(Dk̃t + vt) +B1εt+1,

with covariance matrix P therefore given by:

P = APAT −APDT (DPDT + V )−1PDAT + U A = A11 −A12A
−1
22
A21 U = B1cov(εt)B

T
1 .

This is the Ricatti equation commonly used in Kalman filtering, and we note that it is independent

of the saddlepath matrix N .
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