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1 Introduction

There is an old tradition in applied demand analysis which speci�es the demand equations
directly with no reference to any utility function. Under this approach, the demand for a
good i, xi, is speci�ed as a function of nominal income, y, and prices, p1; � � �; pn, where n is
the number of goods.
Consider, for example, the log-log demand system,

log xi = �i + �iy log y +

nX
j=1

�ij log pj, i = 1; � � �; n, (1)

where �i; �iy; and �ij are constant coe¢ cients. The coe¢ cient �iy is the income elasticity
of demand for good i, �iy = d log xi=d log y, and the coe¢ cient �ij is the uncompensated
(Cournot) cross-price elasticity of good i, �ij = d log xi=d log pj, including both the income
and substitution e¤ects of the changes in prices.
Another example of a demand system without reference to the utility function is Work-

ing�s (1943) model,
wi = �i + �i log y, i = 1; � � �; n, (2)

expressing the budget share of good i, wi = pixi=y, as a linear function of logged income,
log y. As equation (2) does not involve prices, it is applicable to cross sectional data that
o¤er limited variation in relative prices but substantial variation in income levels. To apply
equation (2) to time series data that o¤er substantial variation in relative prices but less
variation in income, the model has to be extended by adding a substitution term, as in
equation (1).
Unlike this traditional single equation approach to demand analysis, neoclassical con-

sumer theory assumes a representative economic agent with preferences over consumption
goods, captured by a utility function. The representative consumer maximizes utility subject
to a budget constraint and the solution to this problem is a unique demand system. This
system-wide approach to empirical demand analysis allows for the imposition and testing
of cross-equation restrictions (such as, for example, symmetry), unlike the traditional single
equation approach which ignores such restrictions. The modern, system-wide approach to
demand analysis has its origins in the work of Theil (1965) and the Rotterdam model, al-
though that model avoids the necessity of using a particular functional form for the utility
function.
This paper discusses the di¤erential approach to demand analysis and the Rotterdam

model. It is organized as follows. Section 2 reviews neoclassical consumption theory and
utility based demand analysis. Section 3 presents the di¤erential approach to applied demand
analysis and presents di¤erential demand systems in relative and absolute prices. In section
4, we consider the Rotterdam parameterization of di¤erential demand systems and derive the
relative and absolute price versions of the Rotterdam model, due to Theil (1965) and Barten
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(1966). In section 5, we address estimation issues, and in Section 6 we emphasize the need for
economic theory to inform econometric research, and point out that, unlike most parametric
and semi-nonparametric demand systems, the Rotterdam model is econometrically regular.
The �nal section concludes the paper.

2 Neoclassical Consumer Theory

Consider n consumption goods that can be selected by a consuming household. The house-
hold�s problem is

max
x
u(x) (3)

subject to
p0x = y, (4)

where x is the n � 1 vector of goods; p is the corresponding vector of prices; y is the
household�s total nominal income; and u(x) is the utility function.
The �rst order conditions for a maximum can be found by forming an auxiliary function,

known as the Lagrangian,
L = u(x) + � (y � p0x) ,

where � is the Lagrange multiplier. By di¤erentiating L with respect to xi, and using the
budget constraint, we obtain the (n+ 1) �rst order conditions

@u(x)

@xi
= �pi; i = 1; � � �; n; (5)

p0x = y, (6)

where @u(x)=@xi is the marginal utility of good i.
The �rst order conditions can be solved for the n optimal (i.e., equilibrium) values of xi

xi = xi(p; y); i = 1; � � �; n, (7)

and the optimal value of �,
� = �(p; y). (8)

System (7) is the demand system, giving the quantity demanded as a function of the prices
of all goods and money income.
Total di¤erentiation of the �rst order conditions for utility maximization, (5) and (6),

gives 24 U p

p0 0

3524 dx

�d�

35 =
24 0 �I

1 �x0

3524 dy
dp

35 , (9)
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where U is the n� n Hessian matrix of the utility function,

U =

2666664
@2u(x)

@x21
� � � @2u(x)

@x1@xn
...

. . .
...

@2u(x)

@xn@x1
� � � @2u(x)

@x2n

3777775 ;

the Hessian matrix is a symmetric and negative de�nite matrix. Also, total di¤erentiation
of the demand system (7) and (8), yields24 dx

�d�

35 =
24 xy Xp

��y ��0p

3524 dy
dp

35 , (10)

where

�p =

266664
@�

@p1
...
@�

@pn

377775 , xy =

266664
@x1
@y
...
@xn
@y

377775 , Xp =

266664
@x1
@p1

� � � @x1
@pn

...
. . .

...
@xn
@p1

� � � @xn
@pn

377775 ,
and �y = @�=@y.
Substitution of (10) into (9) leads to24 U p

p0 0

3524 xy Xp

��y ��0p

35 =
24 0 �I

1 �x0

35 . (11)

This equation is known as �Barten�s fundamental matrix equation�� see Barten (1964).
The solution to equation (11) can be written in the form24 xy Xp

��y ��0p

35 =
24 U p

p0 0

35�1 24 0 �I

1 �x0

35

=
1

p0U�1p

24 �p0U�1p
�
U�1 �U�1p

�
U�1p

�0
U�1p�

U�1p
�0 �1

3524 0 �I

1 �x0

35 ,
4



which implies [see Barten (1964), Phlips (1974), or Selvanathan and Selvanathan (2005) for
more details]

xy = �yU
�1p; (12)

Xp = �U
�1 � (�=�y)xyx0y � xyx0, (13)

where U�1 is the inverse of the Hessian matirx of the utility function and is symmetric
negative de�nite.
Equations (12) and (13) give the income and price derivatives of the demand functions.

Equation (13) is known as the �Slutsky equation.� It shows that the total e¤ect of a change
in pj on xi is made up of two terms � the �income e¤ect� of the price change, �xyx0,
and the �total substitution e¤ect,��U�1 � (�=�y)xyx0y, which gives the response of xi to a
change in pj with real income and all the other prices held constant. The total substitution
e¤ect consists of the �speci�c substitution e¤ect,��U�1, and the �general substitution e¤ect,�
�(�=�y)xyx0y, in the terminology of Houthakker (1960).
The Slutsky equation (13) can be written as

Xp =K � xyx0, (14)

where K = �U�1 � (�=�y) xy x0y is the �substitution matrix�(also known as the �Slutsky
matrix�) of income-compensated (equivalently, utility-held-constant) price changes and xyx0

is the �matrix of income e¤ects.�Writing equation (14) in scalar form we get

@xi
@pj

= kij �
@xi
@y
xj, i; j = 1; � � �; n,

where @xi=@pj is the total e¤ect of a price change on demand, kij (i.e., the i; j element of
K) is the substitution e¤ect of a compensated price change on demand, and � (@xi=@y)xj
is the income e¤ect, resulting from a change in price (not in income).
Substitution of (13) into (10) yields24 dx

�d�

35 =
24 xy K � xyx0

��y ��0p

3524 dy
dp

35
which implies, after solving for dx,

dx = xydy + (K � xyx0) dp. (15)
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3 The Di¤erential Approach to Demand Analysis

The di¤erential approach to demand analysis was introduced by Theil (1965) and Barten
(1966) and explored by Theil (1967, 1975, 1976, 1980). To brie�y review this modeling
approach, we write equation (15) in scalar form as

dxi =
@xi
@y
dy +

nX
j=1

@xi
@pj

dpj, i = 1; � � �; n. (16)

Multiplying both sides by pi=y and using the identity dz = zd log z, equation (16) can be
written in logarithmic di¤erentials as

wid log xi = �id log y +
nX
j=1

pipj
y

@xi
@pj

d log pj, i = 1; � � �; n, (17)

where wi = pixi=y is the budget share of the ith use of income and �i = wi�iy is the marginal
budget share of the ith use of money income (pi@xi=@y). The budget shares are always
positive and sum to unity,

Pn
i=1wi = 1. The marginal budget shares are not always positive

(for example, �i < 0 if good i is an inferior good) but like the budget shares sum to unity,Pn
i=1 �i = 1.
Writing equation (13) in scalar form as (for i; j = 1; � � �; n)

@xi=@pj = �uij �
�

�y

@xi
@y

@xj
@y

� @xi
@y
xj;

where uij is the (i; j)
th element of U�1, substituting in (17) to eliminate @xi=@pj, and

rearranging yields (for i = 1; � � �; n)

wid log xi = �i

 
d log y �

nX
j=1

wjd log pj

!
+

nX
j=1

�
�pipjuij
y

� �=y

@�=@y
�i�j

�
d log pj: (18)

In equation (18),
Pn

j=1wjd log pj is the budget share weighted average of the n logged
price changes and de�nes the Divisia (1925) price index, that is

d logP =

nX
j=1

wjd log pj. (19)

Moreover, the �rst term in parenthesis on the right of (18), which can now be written as
(d log y � d logP ), gives the Divisia quantity (volume) index. To see this, take the di¤erential
of the budget constraint (4) to obtain

nX
j=1

pjdxj +
nX
j=1

xjdpj = dy.
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Dividing both sides of the above by y and writing it in logarithmic di¤erential (using the
identity, dz=z = d log z) yields

nX
j=1

wjd log xj +
nX
j=1

wjd log pj = d log y, (20)

where the �rst term on the left of equation (20) is the Divisia quantity index, denoted here
as d logQ. That is,

d logQ =

nX
j=1

wjd log xj. (21)

Hence, equation (20) decomposes the change in income into a volume and price index.
Moreover, since d logQ = d log y � d logP , the Divisia price index, d logP , transforms the
change in money income into the change in real income.
To further simplify equation (18), we set �pipjuij=y = vij and (�=y)=@�=@y = � and

write it as

wid log xi = �id logQ+
nX
j=1

vijd log pj � ��i
nX
j=1

�jd log pj, i = 1; � � �; n. (22)

For later use, we can also de�ne the n� n matrix

[vij] =
�

y
P 0U�1P ,

where P is an n � n symmetric positive de�nite matrix with diagonal elements p1; � � �; pn
and o¤-diagonal elements of zero. Hence, [vij] is a symmetric negative de�nite n�n matrix.
Also, writing equation (12) in scalar form as

@xi
@y

=
@�

@y

nX
j=1

pjuij,

multiplying both sides of the above by pi, and rearranging, yields
nX
j=1

vij = ��i, i = 1; � � �; n. (23)

3.1 A Di¤erential Demand System in Relative Prices

In equation (22),
Pn

j=1 �jd log pj is the Frisch (1932) price index, denoted here as d logP
f .

That is,

d logP f =

nX
j=1

�jd log pj. (24)
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As can be seen, the Frisch price index (24) uses marginal shares as weights instead of budget
shares used by the Divisia price index (19). Using (23) and (24), equation (22) can be written
as

wid log xi = �id logQ+
nX
j=1

vij
�
d log pj � d logP f

�
, i = 1; � � �; n. (25)

Equation (25) is a di¤erential demand system in relative prices. In particular, the Frisch
price index, d logP f , transforms absolute prices into relative prices, by de�ating each price
change in the second term on the right of equation (25); we refer to

�
d log pj � d logP f

�
=

d log
�
pj=P

f
�
as the Frisch-de�ated price of good j.

In equation (25), �i gives the e¤ect of real income, d logQ (= d log y � d logP ), on the
demand for good i. In fact, since the Divisia price index, d logP , is a budget share weighted
price index, �i in equation (25) measures the income e¤ect of the n price changes on the
demand for good i. Also, vij is the coe¢ cient of the jth relative price, d log

�
pj=P

f
�
.

3.2 A Di¤erential Demand System in Absolute Prices

To express the demand system in terms of absolute prices, we express the substitution terms
in equation (25),

Pn
j=1 vij

�
d log pj � d logP f

�
, in absolute (or unde�ated) prices as follows1

nX
j=1

vij
�
d log pj � d logP f

�
=

nX
j=1

�ijd log pj,

where �ij = vij � ��i�j. Then equation (25) can be written as

wid log xi = �id logQ+
nX
j=1

�ijd log pj, i = 1; � � �; n. (26)

In equation (26), �ij (= vij � ��i�j) is the Slutsky (1915) coe¢ cient; it gives the total sub-
stitution e¤ect on the demand for good i of a change in the price of good j.

1In doing so, we use the de�nition of the Frisch price index, d logP f =
Pn

j=1 �jd log pj , to write the
substitution terms in equation (25) as

nX
j=1

vij
�
d log pj � d logP f

�
=

nX
j=1

vijd log pj �
nX
j=1

vijd logP
f =

nX
j=1

vijd log pj �
nX
j=1

vij

nX
j=1

�jd log pj

=
nX
j=1

0@vij � nX
j=1

vij�j

1A d log pj = nX
j=1

(vij � ��i�j) d log pj =
nX
j=1

�ijd log pj ,

where �ij = vij � ��i�j .
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The income elasticities, �iy, and the compensated price elasticities of good i with respect
to price j, ��ij, can be easily calculated as follows

�iy =
d log xi
d logQ

=
�i
wi
, i = 1; � � �; n; (27)

��ij =
d log xi
d log pj

=
�ij
wi
, i; j = 1; � � �; n. (28)

4 The Rotterdam Parameterization

Demand systems (25) and (26) have been formulated in in�nitesimal changes. Economic
data, however, are available in �nite time intervals such as, for example, monthly, quarterly,
or yearly. By converting the in�nitesimal changes in (25) and (26) to �nite-change form,
and assuming that the parameters are constant over the period of observation, we get the
Rotterdam model, due to Theil (1965) and Barten (1966). It is to be noted that the para-
meterization (the assumption regarding the constancy of the parameters) is an assumption
as important as the choice of a model. For example, the parameterization that �i is constant
implies linear Engel curves, which de�nes a particular model.

4.1 The Relative Price Version of the Rotterdam Model

When formulated in terms of �nite changes, equation (25) is written as

w�itDxit = �iDQt +
nX
j=1

vij

�
Dpjt �DP ft

�
, i = 1; � � �; n, (29)

where the subscript t indexes time, D is the log-change operator, Dzt = �(log zt) = log zt�
log zt�1 = log (zt=zt�1), and w�it is the ith good�s (arithmetic) average value share over two
successive time periods, t� 1 and t, that is,

w�it =
1

2
(wit + wi;t�1) .

In equation (29), DQt is a �nite-change version of the Divisia quantity index, known as the
Törnqvist-Theil Divisia quantity index, de�ned as

DQt =

nX
j=1

w�jtDxjt, (30)
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and DP ft is a �nite-change version of the Frisch price index, de�ned as

DP ft =
nX
j=1

�jDpjt. (31)

For later use notice that writing (20) in �nite-change form yields
nX
j=1

w�jtDxjt +
nX
j=1

w�jtDpjt = Dyt, (32)

where the �rst term on the left de�nes the Törnqvist-Theil Divisia quantity index (30) and
the second term de�nes the Törnqvist-Theil Divisia price index,

DPt =
nX
j=1

w�jtDpjt. (33)

Hence, equation (32), like equation 20, decomposes the change in income into a volume and
price index.
Under the assumption that the coe¢ cients �i and vij are constant, equation (29) is the

relative price version of the Rotterdam model � see Theil (1975, 1976). It uses real income
and price variables, since in equation (29), the income variable is de�ated by the Divisia
price index, de�ned in (33), and the price variables are de�ated by the Frisch price index,
de�ned in (31).
As noted earlier, the matrix [vij] is a symmetric and negative de�nite n � n matrix,

and restrictions (23) hold, implying that � is also constant. However, equation (29) is not
identi�ed, unless the vijs are restricted, as noted by Theil (1971, pp. 579-80). The reason
is the ordinality of utility under perfect certainty. Hence there exists an in�nite number
of utility functions, all monotonic transformations of each other, which are in the same
equivalence class producing the same preference preorderings. A normalization is necessary
to select one from the in�nite number of cardinal utility functions in the equivalence class.
One possible identifying restriction is preference independence. In that case, the consumer�s
utility function (3) is additive in the n goods, as follows

u(x) =

nX
i=1

ui(xi), (34)

implying that the marginal utility of good i is independent of the consumption of good j,
j 6= i. Under preference independence, the Hessian matrix U is an n � n diagonal matrix,
as uij = 0 for i 6= j. This also implies that vij = 0 for i 6= j and equation (23) reduces to
vii = ��i, so that the demand system (29) takes the form

w�itDxit = �iDQt + ��i

�
Dpjt �DP ft

�
, i = 1; � � �; n. (35)
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That is, under preference independence, only the own Frisch-de�ated price appears in each
demand equation, ruling out the possibility of either a speci�c substitute or a speci�c com-
plement; according to Houthakker (1960), goods i and j are speci�c substitutes if vij > 0
and they are speci�c complements if vij < 0. Moreover, under preference independence, for
the [vij] matrix to be a negative de�nite n� n diagonal matrix with elements ��1; � � �; ��n,
each marginal share, �i must be positive, thereby ruling out inferior goods.
As can be seen, preference independence identi�es the relative price version of the Rot-

terdam model and signi�cantly reduces the number of parameters to be estimated. For
example, the number of parameters in demand systems (25) and (26) is in the order of n2,
where n is the number of goods, whereas in the demand system (35) it is in the order of 2n.
It is, however, an extremely restrictive assumption and might be a reasonable maintained
hypothesis only if the commodities are broad commodity groups, such as, for example, �food,�
�clothing,��recreation,�and so on.
A weaker version of preference independence is block independence (also known as block

additivity). Under block independence, the additive speci�cation (34) is applied to groups
of goods and the utility function is written as

u(x) =
RX
r=1

ur(x
r),

where R < n is the number of groups and n the total number of goods. Under block
independent preferences, the demand equations for an aggregate group of goods (called
group or composite demand equations) can be derived as well as the demand equations for
goods within a group (called conditional demand equations). See Theil (1975, 1976) or
Selvanathan and Selvanathan (2005) for more details.
The discussion above follows imposition of an identifying restriction that cardinalizes

the utility function. It is very important, following the use of the relative price version
of the Rotterdam model, to reach only those conclusions that are invariant to monotonic
transformations of the utility function and are thereby ordinal. For example, the concepts
of speci�c complements and speci�c substitutes are cardinal, since they are conditional upon
the cardinalizing normalization and are not invariant to monotonic transformations of the
utility function. During the estimation procedure, the concepts can be used. But there
cannot be a conclusion of speci�c complements or speci�c substitutes at the completion of
the analysis. Similarly the concepts of block independence and block additivity are cardinal.
The ordinal version that can be a valid conclusion is called blockwise strong separability,
which is de�ned by the class of all utility functions that are monotonic transformations of a
block additive or block preference independent cardinal utility function.
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4.2 The Absolute Price Version of the Rotterdam Model

Writing equation (26) in terms of �nite changes yields

w�itDxit = �iDQt +

nX
j=1

�ijDpjt, i = 1; � � �; n, (36)

where (as before) �ij = vij � ��i�j is the Slutsky (1915) coe¢ cient and DQt is de�ned as in
(30). When the coe¢ cients �i and �ij are treated as constants, (36) is known as the absolute
price version of the Rotterdam model.
There are two sets of restrictions on the parameters of (36). The �rst set of �weak�

restrictions on consumer demand follows from the budget constraint (adding-up) and the
homogeneity of the demand equations:

� Adding-up requires
nX
i=1

�i = 1 and
nX
j=1

�ji = 0, for all i = 1; � � �; n. (37)

� Demand homogeneity follows from
Pn

j=1 vij = ��i and �ij = vij � ��i�j, and requires

nX
j=1

�ij = 0, for all i = 1; � � �; n. (38)

Under the standard assumptions of economic theory, if the household solves problem
(3)-(4), then the �i and �ij coe¢ cients in (36) must also satisfy the second set of �strong�
restrictions:

� Slutsky symmetry requires

�ij = �ji, i; j = 1; � � �; n. (39)

� Concavity requires that the Slutsky matrix, [�ij], is negative semi-de�nite n�n matrix
with rank n� 1.

It is to be noted, however, that the above restrictions are not independent. Typically,
adding-up, homogeneity, and symmetry are imposed in estimation, and the negative semi-
de�niteness of the [�ij] matrix is empirically con�rmed � see, for example, Fayyad (1986).
The income elasticities, �iy, and the compensated price elasticities of good i with respect to
price j, ��ij, are calculated using equations (27) and (28). In this case, however, since the
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parameters are assumed to be constant under the Rotterdam parameterization, the average
budget shares over the sample period are used.
The Rotterdam model in absolute prices, equation (36), is linear in the parameters, unlike

the Rotterdam model in relative prices, equation (29), which is nonlinear in the parameters.
This makes estimation of (36) and hypotheses testing straightforward. However, as the
number of goods, n, increases, the number of the �ij parameters in (36) increases rapidly.
In such cases, the relative price version of the Rotterdam model, equation (29) with suitable
restrictions on the vij parameters, might be more appealing. No cardinalizing normalization
of parameters is needed with the absolute price version, since all parameters of that version
of the Rotterdam model are invariant to monotonic transformations of the utility function.
Hence all of the model�s inferences are ordinal, unlike the relative price version, with which
it is important to use only the model�s noncardinal conclusions.

5 Estimation

The relative and absolute price versions of the Rotterdam model can be estimated in a
number of ways. In what follows we discuss a procedure for estimating the absolute price
version of the Rotterdam model, keeping in mind that the relative price version of the
model can be estimated in a similar manner. For more details regarding di¤erent estimation
procedures, see the recent survey article by Barnett and Serletis (2008).
In order to estimate the absolute price version of the Rotterdam model, equation (36), a

stochastic version is speci�ed as follows

w�itDxit = �iDQt +
nX
j=1

�ijDpjt + �it, i = 1; � � �; n; t = 1; � � �; T , (40)

where T is the number of observations. The disturbance term, �it, is assumed to capture the
random e¤ects of all variables other than those of DQt and Dpjt, j = 1; � � �; n.
Summing up both sides of (40) over i = 1; � � �; n we get

nX
i=1

w�itDxit =

nX
i=1

�iDQt +

nX
i=1

nX
j=1

�ijDpjt +

nX
i=1

�it.

Since DQt =
Pn

i=1w
�
itDxit, the adding up restrictions (37) imply that

nX
i=1

�it = 0, t = 1; � � �; T ,

meaning that the disturbances are not linearly independent and that the error covariance
matrix is singular. This suggests that one of the equations can be deleted. Barten (1969)
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has shown that any equation can be deleted; the parameter estimates of the deleted equation
can be recovered from the restrictions imposed. If we delete the last equation from (40), we
can then write it as

w�itDxit = �iDQt +
nX
j=1

�ijDpjt + �it, i = 1; � � �; n� 1; t = 1; � � �; T . (41)

It is usually assumed that � = (�1; � � �; �n�1)0 � N (0;

IT ) where 0 is the null vector,

 is the Kronecker product, 
 is the (n� 1) � (n� 1) symmetric positive de�nite error
variance-covariance matrix, and IT is a T � T identity matrix. This assumption permits
correlation among the disturbances at time t but rules out the possibility of autocorrelated
disturbances.
For notational convenience, equation (41) is written as

st = g(vt;#) + �t, (42)

where st =
�
w�1tDx1t; � � �; w�n�1;tDxn�1;t

�0
is the vector of the left-hand-side variables of (41),

vt = (DQt; Dp1t; � � �; Dpnt)0 is the vector of the right-hand-side variables of (41), g(v;#) =�
g1 (v;#) ; � � �; gn�1 (v;#)

�0
, # is the vector of parameters, �i and �ij, to be estimated, and

gi (v;#) is given by the right-hand side of the ith equation in (41).
Given the observed data on s and v, the log-likelihood function on # and 
 is given by

logL (#, 
 js, v ) = �(n� 1)T
2

log (2�) j
j

� 1
2

TX
t=1

�
(st � g(vt;#))0
�1 (st � g(vt;#))

�
.

This function is maximized with respect to the elements of the parameter vector, #, and the
elements of the variance-covariance matrix, 
.

5.1 An Example

As an example, let us consider the case of four goods, n = 4. In equation (41), let sit =
w�itDxit, x = DQt, and vjt = Dpjt. Equation (41) can then be written as (ignoring time
subscripts)

s1 = �1x+ �11v1 + �12v2 + �13v3 + �14v4 + �1;

s2 = �2x+ �21v1 + �22v2 + �23v3 + �24v4 + �2;

s3 = �3x+ �31v1 + �32v2 + �33v3 + �34v4 + �3;

s4 = �4x+ �41v1 + �42v2 + �43v3 + �44v4 + �4.
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This system has 20 parameters. In view of the fact that the disturbances are not linearly
independent and that one of the equations can be deleted, delete the 4th equation, to get

s1 = �1x+ �11v1 + �12v2 + �13v3 + �14v4 + �1;

s2 = �2x+ �21v1 + �22v2 + �23v3 + �24v4 + �2; (43)

s3 = �3x+ �31v1 + �32v2 + �33v3 + �34v4 + �3.

The homogeneity property (38) implies the following restrictions

�11 + �12 + �13 + �14 = 0;

�21 + �22 + �23 + �24 = 0; (44)

�31 + �32 + �33 + �34 = 0.

Moreover, symmetry (39) implies

�12 = �21; �13 = �31; �23 = �32. (45)

Combining the homogeneity and symmetry restrictions, (44) and (45) , yields �i4 = �
P3

j=1 �ij
(i = 1; 2; 3), or written out in full,

�14 = � (�11 + �12 + �13) ;
�24 = � (�12 + �22 + �23) ;
�34 = � (�13 + �23 + �33) .

Hence, the demand system (43) can now be written as

s1 = �1x+ �11v1 + �12v2 + �13v3 � (�11 + �12 + �13) v4 + �1;
s2 = �2x+ �12v1 + �22v2 + �23v3 � (�12 + �22 + �23) v4 + �2;
s3 = �3x+ �13v1 + �23v2 + �33v3 � (�13 + �23 + �33) v4 + �3,

which has 9 free parameters (that is, parameters estimated directly), �1; �2; �3; �11; �12; �13; �22; �23,
and �33.
As can be seen, by deleting the 4th equation, �4 and �4i (i = 1; � � �; 4) are no longer

parameters of the estimated system. Hence, none of the constraints
P4

i=1 �i = 1,
P4

j=1 �4j =
0, and �i4 = �4i are imposed for estimation purposes. These constraints are used to recover
the parameters of the deleted equation, �4; �41; �42; �43; and �44, as follows

�4 = 1� �1 � �2 � �3;
�41 (= �14) = ��11 � �12 � �13;
�42 (= �24) = ��12 � �22 � �23;
�43 (= �34) = ��13 � �23 � �33;

�44 = �11 + 2�12 + 2�13 + �22 + 2�23 + �33.
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6 Regularity

6.1 Theoretical Regularity

As already noted, adding-up, linear homogeneity, and symmetry are imposed in estimation,
and the negative semide�niteness of the [�ij] matrix is left unimposed, but is empirically
con�rmed. For example, with four goods (n = 4), negative semide�niteness of the [�ij]
matrix requires that:

� all four �ii are negative at each observation

� each of the six possible 2� 2 matrices�
�ii �ij
�ij �jj

�
for i; j = 1; 2; 3; 4 but i 6= j, has a positive determinant at every observation

� each of the four possible 3� 3 matrices24 �ii �ij �ik
�ij �jj �jk
�ik �jk �kk

35
for i; j; k = 1; 2; 3; 4 but i 6= j; i 6= k; j 6= k, has a negative determinant at every
observation, and

� the 4� 4 matrix consisting of all the �ij, i; j = 1; 2; 3; 4,2664
�11 �12 �13 �14
�12 �22 �23 �24
�13 �23 �33 �34
�14 �24 �34 �44

3775
has a determinant whose value is zero (or near zero).

If theoretical regularity (that is, negative semide�niteness of the [�ij] matrix ) is not
attained by luck, the model should be estimated by imposing regularity, as suggested by
Barnett (2002) and Barnett and Pasupathy (2003), thereby treating the curvature property
as maintained hypothesis. This can be accomplished using methods discussed in Barnett
and Serletis (2008); see also Barnett and Seck (2008) for a comparison of the Rotterdam
model with the Almost Ideal Demand System (AIDS).
It is to be noted that the �rst tests of the Rotterdam model by Barten (1967, 1969)

and Byron (1970) seemed to suggest rejection of the theoretical restrictions. Deaton (1972),

16



however, showed that these rejections were due to the inappropriate use of asymptotic test
criteria and after appropriate �nite sample correction the con�ict between theory and em-
pirical evidence was removed, except for the homogeneity restriction.
Finally, we should note that although the Rotterdam model avoids the necessity of using

a particular functional form for the utility function, the speci�ed demand equations may
imply the adoption of particular restrictions on preferences typical for a certain class of
utility functions. For example, it has been argued by Phlips (1974), based on earlier research
by McFadden (1964), that the Rotterdam model is globally exactly consistent with utility
maximization only if the utility function is linear logarithmic. As with the translog, the
Rotterdam model is globally exact only in the Cobb Douglas special case, but both are local
approximations of the same order to any demand system. Moreover Barnett (1979a, 1981)
has shown that the Rotterdam model has a uniquely rigorous connection with demand after
aggregation over consumers, based upon taking probability limits of Slutsky equations as the
number of consumers increases. No other model has been shown to have such an attractive
connection with theory after aggregation over consumers under weak assumptions.

6.2 Econometric Regularity

In most industrialized economies time series of prices and income are nonstationary and
as recently argued by Lewbel and Ng (2005), the vast majority of the existing utility based
empirical demand system studies, with either household- or aggregate-level data, has failed to
cope with the issue of nonstationary variables, mainly because standard methods for dealing
with nonstationarity in linear models cannot be used with nonstationary data and nonlinear
estimation in large demand systems. For these reasons, the problem of nonstationarity
has either been ignored (treating the data as if they were stationary) or dealt with using
cointegration methods that apply to linear models, as in Ogaki (1992) and Att�eld (1997).
See Barnett and Serletis (2008) for more details regarding this issue.
The Rotterdam model, however, is not subject to the substantive criticisms relating to

nonstationary variables, because it uses logarithmic �rst di¤erences of the variables, which
are typically stationary. In this regard, the Rotterdam model compares favorably against the
currently popular parametric demand systems based on locally �exible functional forms such
as the generalized Leontief [see Diewert (1974)], the translogs [see Christensen et al. (1975)],
the almost ideal demand system [see Deaton and Muellbauer (1980)], the min�ex Laurent [see
Barnett (1983)], the quadratic AIDS [see Banks et al. (1997)], and the normalized quadratic
[see Diewert and Wales (1988)]. It also compares favorably with the two semi-nonparametric
�exible functional forms: the Fourier, introduced by Gallant (1981), and the Asymptotically
Ideal Model (AIM), introduced by Barnett and Jonas (1983). In addition, systematic tests
of the properties of the error structure of the Rotterdam model have consistently re�ected
more favorably on the maintained hypotheses about the model�s error structure than about
any other consumer demand model�s error structure. See, for example, Barnett (1979b,
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appendix).

7 Conclusion

The Rotterdam model was the turning point in empirical demand analysis, o¤ering many
features not available in modeling e¤orts that had been used up to that time, such as
the double-log demand system and Working�s (1943) model, both brie�y discussed in the
introduction. In particular, the Rotterdam model is entirely based on consumer demand
theory, has the ability to model the whole substitution matrix, has parameters that can easily
be related to underlying theoretical restrictions, is linear in parameters and therefore easy
to econometrically estimate, and is econometrically regular. However, after the publication
of Diewert�s (1971) important paper, most of the demand modeling literature has taken the
approach of specifying the aggregator function with the utility function of the representative
consumer, despite the fact that theorists have shown that the representative consumer does
not exist under reasonable assumptions.
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