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Abstract

In aggregation theory, the admissibility condition for clustering together compo-

nents to be aggregated is blockwise weak separability, which also is the condition

needed to separate out sectors of the economy. Although weak separability is

thereby of central importance in aggregation and index number theory and in

econometrics, prior attempts to produce statistical tests of weak separability

have performed poorly in Monte Carlo studies. This paper deals with semi-

nonparametric tests for weak separability. It introduces both a necessary and

su¢ cient test, and a fully stochastic procedure allowing to take into account

measurement error. Simulations show that the test performs well, even for

large measurement errors.



1 Introduction

This paper deals with semi-nonparametric testing procedures for models of the

form:

U(x�i ) = V
�
x
�(2)
i ; f(x

�(1)
i )

�
; i = 1; :::; T (1)

where:

U() is a utility function,

V () is a macro function,

f() is a micro function,

x�i is a vector of real commodities,

x
�(1)
i and x�(2)i are two partitions of x�i such that x

�(1)
i [ x�(2)i = x�i and x

�(1)
i \

x
�(2)
i = ?.

Moreover, the tests considered here also deal with the common situation

when x�i is not directly observed by the econometrician. Only xi is observed,

related to x�i by (2).

xi = g(pi) + i (2)

where:

x�i = g(pi); g(pi) is unknown,

 i is a vector of zero mean iid terms with unknown diagonal covariance matrix,

pi is a vector of prices.

Model (1) has been extensively studied, especially within the revealed pref-

erence framework. Varian (1983) has �rst proposed a fully nonparametric pro-

cedure based on the well-known Generalized Axiom of Revealed Preference

(GARP). Among others, Swo¤ord and Whitney (1987) have implemented such

an approach. Nevertheless, Barnett and Choi (1989) have cast some doubts on

the validity of the procedure. On simulated data they have showed that the test

was strongly biased toward rejection. Two factors are generally admitted to

explain this high rejection rate: i) The test is non-stochastic. Being constructed

as a three-step test of utility maximization, it uses each step the purely deter-

ministic GARP, therefore totally ignoring model (2). Thus, a single violation of

the axiom leads to reject the null of weak separability, even if caused by purely
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stochastic causes as measurement error. ii) The step three of the procedure re-

quires utility and price indices for the sub-utility to be computed by solving the

so-called Afriat inequalities. Nevertheless, as showed by Fleissig and Whitney

(2003), the way the inequalities are solved dramatically in�uences the power of

the test. Moreover, this leads to an only su¢ cient condition.

Three approaches have tried to correct the initial nonparametric approach.

Fleissig and Whitney (2003) have suggested a new algorithm to solve the Afriat

inequalities. They have moreover showed that their test performed well, even

if data were measured with small errors. Jones et al. (2005), based on Varian

(1985) and Swo¤ord and Whitney (1994) have introduced a modi�ed weak sep-

arability test that explicitly deals with (2) and incomplete adjustment models.

They have also suggested a necessary and su¢ cient test. At last, based on de

Peretti (2005), de Peretti (2007) has also introduced a stochastic weak sepa-

rability test. He has moreover suggested a necessary and su¢ cient test under

homotheticity, or uses the new algorithm of Fleissig and Whitney (2003) under

the more general case.

Nevertheless, these three approaches are not totally satisfactory. The �rst

approach clearly remains non-stochastic. It does not explicitly deal with mea-

surement error, i.e. not allowing to test the signi�cance of the violations of

GARP1 . The second one is extremely computationally burdensome, preventing

its use for large datasets. Moreover, it uses the Varian�s (1985) lower bound

test, leading to a quite unclear decision rule. At last, even if the de Peretti�s

(2007) approach allows to test the signi�cance of the deviation from weak sep-

arability, it remains within the Afriat inequalities framework under the general

non-homothetic case. It then produces an only su¢ cient condition.

The goal of this paper is to introduce a new class of weak separability tests.

With regard to the above works, the test we want to consider di¤ers in two

ways. First it is semi-nonparametric in the sense that it uses nonparametric

tests to check the maximization assumptions, but parametric ones to test the

weak separability condition. Nevertheless, it should be noted that the proce-

dure remains parametric �exible form free, in the sense that no estimation of
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g(pi) is required. Moreover, the test is de�ned beyond the Afriat inequalities

framework and produces a necessary and su¢ cient condition. Second, the whole

procedure is fully stochastic. Based on model (2), the violations of GARP are

tested for their signi�cance. Also, the separability condition we use allows for

measurement error or small optimization errors. Results from a small Monte

Monte Carlo simulations show that the procedure performs well, even for large

measurement errors.

This paper is structured as follows. Standard deterministic nonparametric

tests for separability are discussed in Section 2. In Section 3, we introduce an

alternative test for weak separability, replacing the standard Afriat inequalities

based condition by a necessary and su¢ cient one. Section 4 extends the ap-

proach to deal with measurement error. In Section 5, we perform a small Monte

Carlo simulations to analyze the power of the test. At last, Section 6 concludes.

2 Preliminaries

We �rst assume that  i = 0, i = 1; :::; T; meaning that the data are perfectly

observed. Let X(= X�
) be a (T � k) matrix of observed real quantities, where

T denotes the number of observations and k the number of goods. Let xi =

(xi1; xi2; :::; xik)
0 be the ith row of the matrix, i = 1; :::; T . Similarly, de�ne P

as a (T � k) matrix of corresponding prices, and let pi = (pi1; pi2; :::; pik)
0 be

the ith row of the matrix, i = 1; :::; T . Now consider two partitions of X, the

(T � a) X(1) matrix, a 2 f1; :::; k � 1g, with x(1)i = (xi1; xi2; :::; xia)
0, and the

(T�(k�a))X(2) matrix with x(2)i = (xi(a+1); xi(a+2); :::; xik)
0. LetP(1) and P(2)

be the corresponding associated price matrices, with p(1)i = (pi1; pi2; :::; pia)
0

and p(2)i = (pi(a+1); pi(a+2); :::; pik)
0. De�ne the weak separability of the �rst a

columns of X, that is of X(1), as follows:

De�nition 1: There is weak separability if there exists a utility function (3)
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rationalizing the data, and if this latter admits a rewriting (4).

Ui = U(xi) (3)

Ui = V
�
x
(2)
i ; f(x

(1)
i )
�
; i = 1; :::; T (4)

where:

U() is the overall utility function,

V () is a strictly increasing function, known as the macro-function,

f() is the sub-utility function, or the micro-function. It is also the aggregator

function if homothetic.

Following Deaton and Muellbauer (1980), note that the weak separability

implies that the marginal rate of substitution between any two goods of the

separable group is independent of the goods outside the group, i.e.:

@

0@ @U(xi)
@xij

@U(xi)
@xil

1A =@xim = 0; j; l = 1; :::; a; j 6= l;m = a+ 1; :::; k (5)

Varian (1983), based on Varian (1982), has developed a procedure in order

to test for weak separability that ignores the above condition (5). In order to

meet the weak separability criterion, three conditions must be ful�lled, that is

U(), f() and V () must exist. Testing for weak separability therefore reduces

to a three-step test of utility maximization. Each step uses the well-known

Generalized Axiom of Revealed Preference (GARP), introduced hereafter.

De�ne the three following binary relations: xi is said to be strictly directly

revealed preferred to xj if pi � xi > pi � xj ; written xiP 0xj ; xi is said to be

directly revealed preferred to xj if pi � xi � pi � xj ; written xiR0xj ; at last, xi
is said to be revealed preferred to xj if xiR

0xm,xmR
0xk; :::;xpR

0xj ; written

xiRxj , where R is the transitive closure of R0. Using the above de�nitions,

GARP is de�ned as follows:

De�nition 2 (GARP): For a couple of observations (i; j) i 2 f1; :::; Tg; j 2

f1; :::; Tg: xiRxj =) pj �xj � pj �xi (or xiRxj implies not pj �xj > pj �xi).
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Using GARP, Varian (1982) proved that:

Theorem 1 (Varian 1982): For a set fxi;pigTi=1, the three following condi-

tions are equivalent:

i) There exists a locally non-satiated utility function U() that rationalizes the

data,

ii) There exist strictly positive utility indices Ui and marginal income indices �i

that satisfy 8i�f1; :::; Tg 8j�f1; :::; Tg the Afriat inequalities (6),

Ui 6 Uj + �j(pj � xi � pj � xj) (6)

iii) The data satisfy GARP.

Testing for the weak separability of X(1) is now straightforward. It amounts

to checking if the three following conditions hold:

Condition 1: GARP holds for f(xi;pi)gTi=1, that is U() exists.

Condition 2: GARP holds for f(x(1)i ;p
(1)
i )gTi=1, that is f() exists.

Condition 3: GARP holds for f((x(2)i ; Ui); (p
(2)
i ; ��1i ))gTi=1, where Ui and �i

are strictly positive indices satisfying (6) for fx(1)i ;p
(1)
i gTi=1, that is X(1) is

weakly separable in U().

One will �nd in Swo¤ord and Whitney (1987) or in Fisher and Fleissig (1997)

implementations of such an approach.

There are clearly two major drawbacks with the above test. First, the above

condition 3 is an only su¢ cient one. Thus, if it does not hold, one can not be

sure that for an other set fUi; �igTi=1, GARP won�t be violated. Moreover the

power of the test dramatically depends on the way the indices are computed

(see Fleissig and Whitney 2003). Second, the whole procedure is clearly non-

stochastic, and a single violation of GARP leads to reject the null, even if caused

by measurement error, or other purely stochastic causes. We �rst deal with the

�rst point, by introducing a necessary and su¢ cient alternative condition 3, and

then introduce a stochastic extension.
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3 An alternative condition 3

To introduce the new test for weak separability, assume that the conditions 1

and 2 hold, that is the two sets fxi;pigTi=1 and fx
(1)
i ;p

(1)
i gTi=1 are consistent

with GARP. What we want, is to replace the above condition 3 by a necessary

and su¢ cient one. The one we want to consider is based on (5), that is on the

independence between the marginal rate of substitution between any two goods

of the separable group and the goods outside the group.

The di¢ culty with such an approach is that the form of the sub-utility, and

then of course the gradient matrix, are unknown. Nevertheless, even if unknown,

it is possible to directly compute the ratio of the �rst order derivatives at �rst

order conditions. Indeed, if GARP holds for the set f(x(1)i ;p
(1)
i )gTi=1 then, given

theorem (1) exists a sub-utility f(x(1)i ) rationalizing the data. Therefore the

following lemma can be applied:

Lemma 1 (Konyus and Byushgens): Suppose f() is di¤erentiable, and that

GARP holds for f(x(1)i ;p
(1)
i )gTi=1, that is each x

(1)
i is a solution of the program

maxxff(x) : p(1)i � x � p(1)i � x(1)i ;x � 0g then:

p
(1)0

i

p
(1)
i � x(1)i

=
rf(x(1)

0

i )

x
(1)
i � rf(x(1)i )

(7)

Dividing the jth row of the system (7) by the lth row, j; l = 1; :::; a, j 6= l,

returns the well-known condition:

p
(1)
ij

p
(1)
il

=

@f(x
(1)
i )

@x
(1)
ij

@f(x
(1)
i )

@x
(1)
il

(8)

At �rst order conditions, the marginal rate of substitution between two goods

equals the corresponding price ratio. Thus, in order to test for weak separability,

knowing the form of the �rst-order derivatives of the sub-utility is not neces-

sary, since we are able to directly compute the output of the marginal rates

of substitution. Therefore, testing for weak separability amounts to checking

the independence between all the unique price ratios of the goods inside the

possibly separable group, and the quantities outside the group. Let Y be a
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(T � �a�1i=1 (a � i)) matrix2 of the corresponding price ratios of the separable

group, de�ned as:

Y0 =

2666666666666666666664

�
log
�
p�1
p�2

��0
...�

log
�
p�1
p�a

��0�
log
�
p�2
p�3

��0
...�

log
�
p�2
p�a

��0
...�

log
�
p�(a�1)
p�a

��0

3777777777777777777775
where:

p�j = (p1j ; p2j ; :::; pTj) is the jth column of P(1), j = 1; :::; a.

De�ne the model (9) that can be re-written as (10).

Y = X(3)� +E (9)

Y = [1 log(X(1)) log(X(2))]

24 �(1)

�(2)

35+E (10)

where:

Y is a
�
T � �a�1i=1 (a� i)

�
matrix,

X(3) is a (T � (k + 1)) matrix de�ned as X(3) = [1 log(X)],

� is a
�
(k + 1)� �a�1i=1 (a� i)

�
of parameters,

E is a
�
T � �a�1i=1 (a� i)

�
matrix of residuals,

�(1) is a
�
(a+ 1)� �a�1i=1 (a� i)

�
matrix of parameters,

�(2) is a
�
(k � a)� �a�1i=1 (a� i)

�
matrix of parameters.

Then, clearly weak separability of the �rst a rows of X implies the nullity of

the coe¢ cients matrix �(2). Therefore, testing for the weak separability of X(1)

amounts to checking if the three following conditions hold:

Condition 4: GARP holds for f(xi;pi)gTi=1, that is U() exists.

7



Condition 5: GARP holds for f(x(1)i ;p
(1)
i )gTi=1, that is f() exists.

Condition 6: �(2) = 0 in (9), that is X(1) is weakly separable in U().

We now turn to a stochastic extension of the procedure3 .

4 A stochastic extension

We now relax the unrealistic assumption that data are perfectly observed and

assume that  i 6= 0, i = 1; :::; T .

Assumption 1: Under the null, X� is generated by a weakly separable utility

function, but is unobservable. Only X is observed. It relates to X� by the

additive relation:

xij = x�ij +  ij (11)

Assumption 2: The terms  ij are iid with zero mean and variance �
2
 j
; with

distribution function Fj(x). The distribution Fj(x) is max and min-stable.

Equation (11) has two major implications. First, it leads to take into account

that some violations of GARP when testing for conditions 1 and 2, might be

caused by purely stochastic factors. Hence the need for discriminating between

signi�cant and non signi�cant violations of the axiom. Second, if the violations

are non-signi�cant, and thus if the data are measured with errors, model (9) is

to be estimated by using particular estimators. We �rst focus on the way to test

the signi�cance of the violations of GARP when testing for weak separability.

The procedure we use is an extension of de Peretti (2005, 2007). It therefore

inherits a similar logical structure, consisting in:

i) Finding the minimal adjustment in order for the data to be consistent with

both conditions 1 and 2,

ii) Testing the signi�cance of this adjustment.

Concerning the former, computing the minimal adjustment is achieved by

8



solving over zij the quadratic program:

obj = min
zij

TX
i=1

kX
j=1

�
xij � zij

�2
(12)

Subject to : ��� 8i�f1; :::; Tg8j�f1; :::; Tg : ziRzj =) pj � zj � pj � zi (C.1)

���������
8i�f1; :::; Tg8j�f1; :::; Tg : z(1)i Rz

(1)
j =) p

(1)
j � z(1)j � p(1)j � z(1)i

where:

z
(1)
i = (zi1; zi2; :::; zia) and p

(1)
i = (pi1; pi2; :::; pia)

(C.2)

Let bZ be the matrix solution of the above program and de�ne b
 = X � bZ as
the matrix of residuals. b
 is the minimal adjustment in the data in order forbZ to satisfy both condition 1 (constraint C.1) and condition 2 (constraint C.2).
We will therefore refer to these residuals as theoretical residuals4 .

To test the signi�cance of the adjustment, that is to test whether or not

violations are due to measurement error, we compare the theoretical residu-

als with the true measurement error 	 = X � X�. For convenience, we will

�rst assume that 	 is known as well its distribution function. Since in (12)

only few bundles are adjusted, the idea is to build a test tracking excess ad-

justments in some goods, and in particular to test whether or not extremes

theoretical residuals are consistent with the perturbations induced by measure-

ment error5 . Statistically, we proceed as follows. For one good j, j = 1; :::; k

de�ne [Maxj = max(b!1j ; b!2j ; :::; b!Tj) and[Minj = min(b!1j ; b!2j ; :::; b!Tj), where
(b!1j ; b!2j ; :::; b!Tj) is the jth column of the (T � k) matrix b
. Similarly de-
�ne Maxj = max( 1j ;  2j ; :::;  Tj) and Minj = min( 1j ;  2j ; :::;  Tj). Since

Minj = min( 1j ;  2j ; :::;  Tj) = �max(� 1j ;� 2j ; :::;� Tj), and since rever-

sal of the sign of ( 1j ;  2j ; :::;  Tj) will produce results for the smallest extreme,

we will only focus on theoretical results concerning the largest extreme. Then,

under Assumption 2, there exists a set of constants aTj 2 R and bTj > 0 and

the following theorem holds:

Theorem 2 (Fisher-Tippett): For the iid sequence ( 1j ;  2j ; :::;  Tj); if

9



there exists norming constants aTj 2 R and bTj > 0 and some non-degenerate

distribution function G such that:

(Maxj � aTj)b�1Tj
L! G (13)

Then G belongs to the type of one of the following three laws:

Fréchet (type III) : G3(x) =

8<: 0;

exp(�x��j );

x � 0

x > 0
�j > 0: (14)

Weibull (type II) : G2(x) =

8<: exp (�(�x�j )) ;

1;

x � 0

x > 0
�j > 0: (15)

Gumbel (type I) : G1(x) = exp(� exp(�x)); x 2 R: (16)

With a prior knowledge of the true distribution of the errors, it is possible

to know the domain of attraction of the law of the extremes, and then choosing

(14), (15), or (16). Note that a post validation is always possible and desirable

using for instance probability plots or goodness-of-�t measures (see D�Agostino

and Stephens 1986). Under the general normality assumption of the true mea-

surement error, which is our framework here, it can be shown that the two

extremes belong to the domain of attraction of the type I Gumbel law. There-

fore, under this assumption, testing the signi�cance of the adjustments for good

j, for non-centered and non-reduced variables, is achieved by computing the two

p-values:

1�P [X � x] = 1�G1(x) = 1�exp
 
� exp

 
�
�
x� �j

�
�j

!!
; where x = [Maxj

(17)

for the maxima, and

1� P [X � x] = 1�G1(x) = 1� exp
 
� exp

 �
x� �j

�
�j

!!
; where x =[Minj

(18)

for the minima.

where �j is the location parameter, and �j the scale parameter, computed

using the distribution of 	.
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The two tests simply return the probability for the two extremes of the

theoretical residuals to belong to the distribution of the extremes of the true

measurement error. Hence, excess adjustments will lead to a rejection of the

null.

With no prior knowledge, the three laws can be expressed as the Generalized

Extreme Value distribution (GEV), also known as the Von Mises-Jenkinson type

distribution (19). See Hosking, Wallis and Wood (1985) and Hosking (1985) for

estimation methods for the parameters.

G(x) =

8>>><>>>:
exp

 
�
�
1 + �

(x��j)
�j

�� 1
�

!
;

exp

�
� exp

�
� (x��j)�j

��
;

1 + �
(x��j)
�j

> 0; � > 0;

� = 0:
(19)

Empirically, the realization 	 is seldom observable. We thus need an esti-

mate b	 of 	; as well as several realizations of the extremes in order to compute

the parameters �j and �j ; j = 1; :::; k. Interestingly, (11) can be seen as the

measurement equation of a time-invariant state space model. Indeed, assum-

ing a �rst order Markov transition process for the unobservable state variable,

returns the model (20) for good j.

xij = zij +  ij (20)

z(i+1)j = Fzij + aj + �ij

where:

zij is the estimated unobserved quantity,

 ij and �ij are two uncorrelated residuals, respectively with variance �
2
 j
and

�2�j ,

F , aj ; �2 j and �
2
�j
are the hyperparameters of the model. F being assumed to

be unity in most applications.

One will �nd in Harvey (1989) or more recently in Reinsel (1997) or Durbin

and Koopman (2001) comprehensive studies of such models. De�ne zijjT as the

smoothed estimates of the state space vector obtained via the Kalman �lter6 ,

and then b j = (b 1j ; b 2j ; :::; b Tj) = (x1j � z1jjT ; x2j � z2jjT ; ::; xTj � zTjjT )

11



and \Max j = max(b 1j ; b 2j ; :::; b Tj) and \Min j = min(b 1j ; b 2j ; :::; b Tj). In
order to have several realizations of the two extremes to compute the location

and scale parameters, we perform a parametric bootstrap. Following Sto¤er

and Wall (1991) de�ne for good j, z(i+1)jji as the best linear linear predictor of

z(i+1)j computed thanks to the Kalman �lter. Putting the Kalman �lter into

the innovation representation form returns equations (21) and (22).

z(i+1)jji = Fzijji�1 + FKij�ij (21)

xij = zijji�1 + �ij (22)

where :

�ij = xij � zijji�1, are the innovations,

Kij = Pijji�1�
�1
ij is the Kalman gain, with Pijji�1 the covariance matrix of

zij � zijji�1, and �ij = Pijji�1 + �
2
 j

Now, let � be the stacked vector of hyperparameters estimated, for instance

by maximum likelihood. Then the bootstrap procedure is as follows:

Step 1: Build the standardized residuals:

�ij(�) =�
�1=2
ij (�)�ij(�) (23)

Step 2: Sample f�ij(�)gTi=1 with replacement T times. Denote f�sij(�)g
T
i=1 the

new series.

Step 3: Replace in (21) �ij by �
1=2
ij (�)�

s
ij(�) and compute a bootstrap series

zs(i+1)jji(�). Replace in (22) �ij by �
1=2
ij (�)�

s
ij(�) and compute a boot-

strap series xsij using z
s
(i+1)jji(�), the initial conditions being unchanged.

Step4: Re-estimate the model using xsij . Compute b j = (b 1j ; b 2j ; :::; b Tj) and
\Max j = max(

b 1j ; b 2j ; :::; b Tj) and \Min j = min(
b 1j ; b 2j ; :::; b Tj):

Step 5: Repeat the operation a large number of times, storing at each iteration

\Max j and \Min j .

The above procedure returns two series of bootstrap maximums and min-

imums. Following Bell and Hillmer (1984) and Harvey and Koopman (1992),

12



it should be noted that even if b	 is an estimator of the true measurement er-

ror, it won�t inherit the iid property of 	. In particular, it can be shown thatb	 has a stationary ARMA structure. Nevertheless, following Rootzén (1986),

for stationary ARMA processes, the Fisher-Tippett theorem still applies, and

the correct law of the extremes is the Gumbel one. The scale and the location

parameters of the law are then easily computed using a suitable procedure as

maximum likelihood, probability-weighted moments, or simply moments7 , and

then the statistics (17) and (18).

If the data pass the above test, i.e. if the violations are caused by measure-

ment errors, testing for weak separability is achieved by estimating the auxiliary

model (9) with observed data by using an IV estimator8 . A natural choice for

the instruments being therefore given by the smoothed estimates of the state

vector. This allows to take into account the amount of measurement error in

the data. We next turn to a simulation study9 .

5 A small simulation study

We now turn to a small Monte-Carlo simulation study in order to investigate

the type I and II errors of the test under the stochastic case. Our general Data

Generating Process (DGP) is as follows.

Step1. Given four monthly observed prices for durables, non-durables, services

and food, and an income per capita for the United States over the pe-

riod 1989:01-2004:10, we solve a representative consumer maximization

program, whose utility is given by (24). Following Blackorby, Russel and

Primont (1998) and Fleissig and Whitney (2003), note that this utility

function is weakly separable over (x�i3; x
�
i4) but not over (x

�
i1; x

�
i2): It can

thus be re-written as (25).

Ui = U(x�i1; x
�
i2; x

�
i3; x

�
i4) = x

�(1=3)
i1 x

�(1=3)
i3 x

�(1=3)
i4 + x

�(1=2)
i2 x

�(1=4)
i3 x

�(1=4)
i4

(24)

Ui = V (x�i1; x
�
i2; f(x

�
i3; x

�
i4)) = x

�(1=3)
i1 vi + x

�(1=2)
i2 v

3=4
i (25)
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where:

vi = x
�(1=3)
i3 x

�(1=3)
i4 :

Step 2. Given model (11), we add to the computed quantities normally distrib-

uted iid terms. Three di¤erent measurement errors are used. De�ne the

signal-to-noise ratio as SNRj = �2�j=�
2
 j
, where �2�j is the variance of

the residuals of the transition equation, and �2 j is the variance of the

measurement error for good j; j = 1; :::; k (see equation (20)). The signal-

to-noise ratio measures the degree of corruption of the data. Here, we use

SNRj = 0:5; 1 and 1:5. The smallest value corresponding to the largest

measurement error (comparative to �2�j ). Let X be the quantities with

measurement error.

Step 3. We estimate the whole procedure type I error, that is the probability of

incorrectly rejecting the weak separability. For this, we run GARP on

f(xi;pi)gTi=1 and f(x
(1)
i ;p

(1)
i )gTi=1 where here x

(1)
i = (xi3; xi4). If viola-

tions appear, we run (12) and test the signi�cance of the violations by

using (17) and (18). For this, we estimate the model (20) by maximum

likelihood. We then bootstrap the Kalman �lter (100 replications) to get

two series of bootstrap extremes, estimate the parameters in (17) and (18),

and test the signi�cance. At a given threshold, if the data pass the test,

we estimate (26) by using IV estimators, thus following Hsiao (1997).

log

�
p�3
p�4

�
= � log(x�1) + � log(x�2) + 
 log(x�3) + � log(x�4) + c+ " (26)

where p�j is the jth column of P, and x�j is the jth column of X: Two

di¤erent kinds of instruments are used, i) The smoothed quantities com-

puted thanks to the Kalman �lter, ii) The smoothed quantities plus one

lagged value for the observed quantities. Clearly, in (26) the separability

of (xi3; xi4) implies � = � = 0. Let pw be the p-value of the restriction

test (Wald). The type I error is therefore de�ned as the probability to

have fmin((17); (18)) < thresholdg, or fmin((17); (18)) � threshold and

pw < thresholdg.

14



Step 4. We estimate the whole procedure type II error, that is the probability

of incorrectly accepting weak separability. For this, we run GARP on

f(xi;pi)gTi=1 and f(x
(1)
i ;p

(1)
i )gTi=1 where now x

(1)
i = (xi1; xi2). If viola-

tions appear, we run (12) and test the signi�cance of the violations by

using (17) and (18). As in step 3, we estimate the Kalman �lter, forcing

a local linear model. If the data pass the test, we estimate (27) by using

IV estimators, using the same two sets of instrumental variables.

log

�
p�1
p�2

�
= � log(x�1) + � log(x�2) + 
 log(x�3) + � log(x�4) + c+ " (27)

where p�j is the jth column of P, and x�j is the jth column of X: Clearly,

the non-separability of (xi1; xi2) implies 
 6= 0 and � 6= 0 in equation (27).

Let pw be the p-value of the test. The type II error is de�ned as the

probability to have fmin((17); (18)) � threshold and pw � thresholdg:

We repeat steps 2 to 4 1000 times. Tables (1) and (2) return the estimated

type I and II errors with two di¤erent sets of instruments. Clearly, for the

four considered thresholds, the type II error is set to zero, meaning that when

data are measured with errors, the test perfectly recognizes non separability.

Focusing on the type I error, at the standard 5 % threshold and for small mea-

surement error, it is about 0.055 (0.059) and for the largest measurement error,

0.089 (0.105). The type I error thus remains small and within an acceptable

range. Note that using only the smoothed estimates of the state vectors as

instruments returns slightly better results.

6 Conclusion and discussion

In this paper, we have introduced a semi-nonparametric procedure to test for

weak separability. With regard to the classical Varian�s (1983) test, the one

we have considered di¤ers in two points. First, the only su¢ cient separability

condition based on the Afriat inequalities is replaced by a necessary and su¢ -

cient one. This one uses the well known independence condition between the

15



Table 1: Type I & II errors for various signal-to-noise (SNR) ratios. Smoothed
quantities as instruments.

Type I error Type II error
SNR : SNR :

Threshold 0:5 1:0 1:5 0:5 1:0 1:5
0.01 0.025 0.024 0.016 0.000 0.000 0.000
0.05 0.089 0.084 0.055 0.000 0.000 0.000
0.10 0.151 0.132 0.114 0.000 0.000 0.000
0.15 0.216 0.178 0.161 0.000 0.000 0.000

Table 2: Type I & II errors for various signal-to-noise (SNR) ratios. Smoothed
quantities and one lagged observed quantities as instruments.

Type I error Type II error
SNR : SNR :

Threshold 0:5 1:0 1:5 0:5 1:0 1:5
0.01 0.032 0.025 0.021 0.000 0.000 0.000
0.05 0.105 0.079 0.059 0.000 0.000 0.000
0.01 0.189 0.137 0.115 0.000 0.000 0.000
0.15 0.257 0.188 0.183 0.000 0.000 0.000

marginal rates of substitution between the goods inside the group and the goods

outside. Second, the whole procedure is stochastic and deals with measurement

error in the analysis. On simulated data, the test appears to be quite powerful,

even for large random measurement errors.

At last, in this paper, to test the independence, we have used simple IV

estimators. Alternativally, one may also consider using FM-GIVE or FM-IV

estimators. This is let for future research.

Notes
1 It could be nevertheless possible to combine the results of Fleissig and Whitney (2003)

and Fleissig and Whitney (2005).
2Note that the matrix Y is not a (T � a(a � 1)) matrix since log

�
p�i
p�j

�
= � log

�p�j
p�i

�
,

and since such a matrix will not have full rank.
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3To avoid any confusions, note that equation (9) is only an independence test. Thus

the estimated parameters will not be estimates of the parameters of the marginal rate of

substitution. Exceptions are for instance for the cobb-douglas function.
4See Appendix 1 for computational details.
5On extreme values, see Embrecht, Klüppelberg and Mikosch (2003) and Guégan (2003).
6Note that such residuals are known as auxiliary residuals. They return an information

about outliers in the series.
7See Johnson, Kotz, and Balakrishnan (1994).
8 Interestingly, if the data are non stationary, a result of Hsiao (1997) states that classical

IV estimators, as well as classical associated wald tests are still valid, without modi�cations.

Kitamura and Phillips (1997) also suggest using FM-GIVE or FM-IV estimators. In empirical

work, it may be useful to look at the two di¤erent estimators.
9 In this section we have focused of the type I Gumbel distribution. An other solution, is a

nonparametric one. By increasing the number of replications of the bootstrap procedure, it is

possible to have an estimate of the two laws of the extremes. A standard quantile approach

can then be used. This can nevertheless be quite computationally burdensome.
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Solving the adjustment procedure (12)

Here we detail how the adjustment procedure (12) is solved, that is how we

minimize the quadratic form subject to transitive constraints. What we want is

to produce a set consistent with both:

i) The overall utility maximization program,

ii) The sub-utility maximization program, such that the distance with the ob-

served data is minimal.

Following de Peretti (2005, 2007), de�ne the following binary relation: xiV Rxj

if xiRxj and xjP 0xi or there if is exists a sequence between xi and xj such that

xiRxk and xkP 0xi, xkRxl and xlP 0xk, ...,xmRxj and xjP 0xm. Also de�ne

xiSRxk if S(i) = S(j), where S(i) = (
PT
j=1 rij) � 1, rij being the element at

the ith row and jth column of the transitive closure matrix. Given the two

above relations, the sequence we want to consider is as follows: i) First adjust

the quantities to produce data consistent with the sub-utility, ii) second adjust

the quantities to produce data consistent the overall utility, such that the data

must still be consistent with the sub-utility.

Concerning the sub-utility adjustment program, for a setD(1) = f(x(1)i ;p
(1)
i )gTi=1

violating GARP the iterative adjustment procedure is as follows:

Step 1.1: Test fx(1)i ;p
(1)
i gTi=1 for consistency with GARP, let R(1) be the transitive

closure matrix, and r(1)ij be an element at the ith row and jth column.

De�ne nvio as the number of violations:

if:

8<: nvio = 0 then stop the iterative procedure,

Otherwise go to step 1.2.

Step 2.1: Since x(1)i V Rx
(1)
j implies x(1)i SRx

(1)
j , build Bl set(s), l = 1; :::; n such that

every couple (x(1)i ;p
(1)
i ) and (x(1)j ;p

(1)
j ) belonging to Bl, 8l 2 f1; :::; ng

satisfy x(1)i SRx
(1)
k . Search for the one, B1, containing bundles violating

GARP being all the same highest place in the preference chain such that

(x
(1)
i ;p

(1)
i ) 2 B1 and (x(1)j ;p

(1)
j ) =2 B1 : S(i) > S(j). Go to step 3.1.

Step 3.1: In the set B1, search for all bundles related by x
(1)
i Rx

(1)
j and x(1)j P 0x

(1)
i ;

for the bundle that will be revealed preferred to the others. This is done
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by solving the program (28) and by selecting the bundle for which the

objective function is minimal. Let (bz(1)i ;p
(1)
i ) be the bundle solution,

where bz(1)i = (bz(1)i1 ; bz(1)i2 ; :::; bz(1)ia ): Replace in D(1) (x
(1)
i ;p

(1)
i ) by (bz(1)i ;p

(1)
i ).

Go to step 1.1.

obji = min
z
(1)
ij

aP
j=1

�
z
(1)
ij � x

(1)
ij

�2
(28)

Subject to:

p
(1)
i � x(1)i = p

(1)
i � z(1)i and p(1)j � x(1)j � p(1)j � z(1)i ; (C.1)

p(1)m � x(1)m � p(1)m � z(1)i for all x(1)m such that x(1)i V Rx(1)m , m 6= j:

p(1)q � x(1)q � p(1)q � z(1)i for all (x(1)q ; p(1)q ) =2 B1 such that r(1)iq = 1 (C.2)

The above sequence returns a set bD(1) = f(bz(1)i ;p
(1)
i )gTi=1 consistent with the

sub-utility maximization program, and a coherent transitive closure matrix bR(1).

To simplify, de�ne �i = (�i1; �i2; :::; �ia) = bz(1)i , and then bD(1) = f(�i;p
(1)
i )gTi=1:

At last build the set D = f(�i;x
(2)
i ); (p

(1)
i ;p

(2)
i )gTi=1:

The next step is now produce a set consistent with the overall utility, such

that the data remain consistent with the sub-utility. This is done by using a

similar iterative procedure, simply adding an additional constraint, such that

the date must remain consistent with the transitive closure matrix bR(1). The

procedure is as follows:

Step 2.1: Test D = f(�i;x
(2)
i ); (p

(1)
i ;p

(2)
i )gTi=1 for consistency with GARP, let R be

the transitive closure matrix, and rij be an element at the ith row and

jth column. De�ne nvio as the number of violations:

if:

8<: nvio = 0 then stop the iterative procedure,

Otherwise go to step 1.2.
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Step 2.2: Since (�i;x
(2)
i )V R(�

(1)
j ;x

(2)
j ) implies (�(1)i ;x

(2)
i )SR(�

(1)
j ;x

(2)
j ), build Bl

set(s), l = 1; :::; n such that every couple (�(1)i ;x
(2)
i ) and (�(1)j ;x

(2)
j ) be-

longing to Bl, 8l 2 f1; :::; ng satisfy (�(1)i ;x
(2)
i )SR(�

(1)
j ;x

(2)
j ). Search

for the one, B1, containing bundles violating GARP being all the same

highest place in the preference chain such that (�(1)i ;x
(2)
i ) 2 B1 and

(�
(1)
j ;x

(2)
j ) =2 B1 : S(i) > S(j). Go to step 3.1.

Step 2.3: In the set B1, search for all bundles related by (�
(1)
i ;x

(2)
i )R(�

(1)
j ;x

(2)
j )

and (�(1)j ;x
(2)
j )P 0(�

(1)
i ;x

(2)
i ); for the bundle that will be revealed pre-

ferred to the others. This is done by solving the program (29) and by

selecting the bundle for which the objective function is minimal. Let

(bz(1)i ;bz(2)i ); (p
(1)
i ;p

(2)
i ) be the bundle solution. Replace inD ((�(1)i ;x

(2)
i ); (p

(1)
i ;p

(2)
i ))

by ((bz(1)i ;bz(2)i ); (p
(1)
i ;p

(2)
i )). Go to step 3.1.

obji = min
z
(1)
ij ;z

(2)
ij

24 aX
j=1

�
z
(1)
ij � xij

�2
+

kX
j=a+1

�
z
(2)
i(j�a) � xij

�235 (29)

Subject to:

p
(1)
i � �i + p

(2)
i � x(2)i = p

(1)
i � z(1)i + p

(2)
i � z(2)i (C.1)

p
(1)
j � �j + p

(2)
j � x(2)j � p

(1)
j � z(1)i + p

(2)
j � z(2)i

and p(1)m � �m + p(2)m � x(2)m � p(1)m � z(1)i + p(2)m � z(2)i

for all observations : (�m;x
(2)
m ) satisfying (�i;x

(2)
i )V R(�m;x

(2)
m );m 6= j

where:

z
(1)
i = (z

(1)
i1 ; z

(1)
i2 ; :::; z

(1)
ia );

z
(2)
i = (z

(1)
i1 ; z

(1)
i2 ; :::; z

(1)
i(k�a)):

p(1)q � �q + p(2)q � x(2)q � p(1)q � z(1)i + p(2)q � z(2)i for all (�(1)q ;x(2)q ) (C.2)

such that : riq = 1:
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p
(1)
i � �i = p

(1)
i � z(1)i (C.3)

p(1)r � �r � p(1)r � z(1)i for all (�r;p
(1)
r ) (C.4)

such that : br(1)ir = 1

The above sequence returns a set D = f(bz(1)i ;bz(2)i ); (p
(1)
i ;p

(2)
i )gTi=1 consis-

tent with both the sub-utility maximization program and the overall utility

maximization program, such that the L2 norm with the observed quantities is

minimal.
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