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Abstract 

This paper compares the different dynamics of the simple sum monetary aggregates and 
the Divisia monetary aggregate indexes over time, over the business cycle, and across 
high and low inflation and interest rate phases. Although traditional comparisons of the 
series sometimes suggest that simple sum and Divisia monetary aggregates share 
similar dynamics, there are important differences during certain periods, such as around 
turning points.  These differences cannot be evaluated by their average behavior.  We 
use a factor model with regime switching. The model separates out the common 
movements underlying the monetary aggregate indexes, summarized in the dynamic 
factor, from individual variations in each individual series, captured by the idiosyncratic 
terms.  The idiosyncratic terms and the measurement errors reveal where the monetary 
indexes differ. We find several new results.  In general, the idiosyncratic terms for both 
the simple sum aggregates and the Divisia indexes display a business cycle pattern, 
especially since 1980.  They generally rise around the end of high interest rate phases – 
a couple of quarters before the beginning of recessions – and fall during recessions to 
subsequently converge to their average in the beginning of expansions.   We find that 
the major differences between the simple sum aggregates and Divisia indexes occur 
around the beginnings and ends of economic recessions, and during some high interest 
rate phases.  We note the inferences’ policy relevance, which is particularly dramatic at 
the broadest (M3) level of aggregation.  Indeed, as Belongia (1996) has observed in this 
regard, “measurement matters.”  
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1. Introduction 
 There is a vast literature on the appropriateness of aggregating over monetary asset 

components using simple summation.  Linear aggregation can be based on Hickisian aggregation 

(Hicks 1946), but that theory only holds under the unreasonable assumption that the user-cost 

prices of the services of individual money assets do not change over time.  This condition implies 

that each asset is a perfect substitute for the others within the set of components.  Simple sum 

aggregation is an even more severe special case of that highly restrictive, linear aggregation, since 

simple summation requires that the coefficients of the linear aggregator function all be the same.  

This, in turn, implies that the constant user-cost prices among monetary assets be exactly equal to 

each other.   Not only must the assets be perfect substitutes, but must be perfect one-for-one 

substitutes --- i.e., must be indistinguishable assets, with one unit of each asset being a perfect 

substitute for exactly one unit of each of the other assets.   

In reality, financial assets provide different services, and each such asset yields its own 

particular rate of return.  As a result, the user costs, which measure foregone interest and thereby 

opportunity cost, are not constant and are not equal across financial assets.  The relative prices of 

U.S. monetary assets fluctuate considerably, and the interest rates paid on many monetary assets 

are not equal to the zero interest rate paid on currency.  These observations have motivated 

serious concerns about the reliability of the simple sum aggregation method, which has been 

disreputable in the literature on index number theory and aggregation theory for over a century.  

In addition, an increasing number of imperfect substitute short-term financial assets have 

emerged in recent decades.  Since monetary aggregates produced from simple summation do not 

accurately measure the quantities of monetary services chosen by optimizing agents, shifts in the 

series can be spurious, as those shifts do not necessarily reflect a change in the utility derived 

from money holdings. 

 Microeconomic aggregation theory offers an appealing alternative approach to the definition 

of money, compared to the atheoretical simple-sum method.  The quantity index under the 

aggregation theoretic approach extracts and measures the income effects of changes in relative 

prices and is invariant to substitution effects, which do not alter utility and thereby do not alter 

perceived services received.  The simple sum index, on the other hand, does not distinguish 

between income and substitution effects, if the aggregate’s components are not perfect substitutes 

in identical ratios, and thereby the simple sum index confounds together substitution effects with 

actual services received.  The aggregation-theoretic monetary aggregator function, which 

correctly internalizes substitution effects, can be tracked accurately by the Divisia quantity index, 

constructed by using expenditure shares as the component growth-rate weights.  Barnett 
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(1978,1980) derived the formula for the theoretical user-cost price of a monetary asset, needed in 

computation of the Divisia index’s share weights, and thereby originated the Divisia monetary 

aggregates.  The growth rate weights resulting from this approach are different across assets, 

depending on all of the quantities and interest rates in each share, and those weights can be time-

varying at each point in time.  For a detailed description of the theory underlying this 

construction, see Barnett (1982,1987).   

It is important to understand that the direction in which an asset’s growth-rate weight will 

change with an interest rate change is not predictable in advance.  Consider Cobb-Douglas utility.  

Its shares are independent of relative prices, and hence of the interest rates within the component 

user cost prices.  For other utility functions, the direction of the change in shares with a price 

change, or equivalently with an interest rate change, depends upon whether the own price 

elasticity of demand exceeds or is less than -1.  In elementary microeconomic theory, this often 

overlooked phenomenon produces the famous “diamonds versus water paradox” and is the source 

of most of the misunderstandings of the Divisia monetary aggregates’ weighting, as explained by 

Barnett (1983). 

 Several authors have studied the empirical properties of the Divisia index compared with the 

simple sum index.  The earliest comparisons are in Barnett (1982) and Barnett, Offenbacher, and 

Spindt (1984).  More recent examples include Belongia (1996), Belongia and Ireland (2006), and 

Schunk (2001), and the comprehensive survey found in Barnett and Serletis (2000).  In particular, 

Belongia (1996) replicates some studies on the impact of money on economic activity and 

compares results acquired using a Divisia index instead of the originally used simple sum index, 

Schunk (2001) investigates the forecasting performance of the Divisia index compared with the 

simple sum aggregates, and Belongia and Ireland (2006) explore the policy implications in the 

dual space of aggregated user costs and interest rates.  Barnett and Serletis (2000) collect together 

and reprint seminal journal articles from this literature.1 

 In this paper we compare the different dynamics of simple sum monetary aggregates and the 

Divisia indexes, not only over time, but also over the business cycle and across high and low 

inflation and interest rate phases. The potential differences between the series can be 

economically very important.  If one of the indexes corresponds to a better measure of money, its 

dynamical differences from the official simple sum aggregates increase the already considerable 

uncertainty regarding the effectiveness and appropriateness of current monetary policy. We aim 

to study the differences and whether they occur during particular periods.  Information about the 

                                                 
1 Other overviews of published theoretical and empirical results in this literature are available in Barnett, Fisher, and 
Serletis (1992) and Serletis (2006). 
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state of monetary growth becomes particularly relevant for policymakers, when inflation enters a 

high growth phase or the economy begins to weaken.  In fact Barnett (1997) has argued and 

documented the connection between the decline in the policy credibility of monetary aggregates 

and defects that are peculiar to simple sum aggregation.  

 Although traditional comparisons of the series sometimes suggest that they share similar long 

run dynamics, there are differences during certain important periods, such as around turning 

points.  These differences cannot be evaluated by long run average behavior.  Our proposed 

approach offers several ways in which these differences can be analyzed.  A nonlinear dynamic 

factor model is used to separate out the common movements underlying the monetary aggregate 

indexes, summarized in the latent dynamic factor, from individual variations specific to each of 

the indexes, captured by the idiosyncratic terms.  The idiosyncratic terms and the measurement 

errors reveal where the monetary indexes differ.2  The idiosyncratic terms show the movements 

that are peculiar to each series, whereas the measurement error captures the remaining noise 

inherent in the data. That is, the dynamic factor represents simultaneous downturn and upturn 

movements in money growth rate indexes.  If only one of the indexes declines, this would be 

captured by its idiosyncratic term. 

 We model both the common factor as well as the idiosyncratic terms for each index as 

following different Markov processes.  Given that the idiosyncratic movements are peculiar to 

each index, the idiosyncratic terms’ Markov processes are assumed to be independent of each 

other.  In addition, we allow the idiosyncratic terms to follow autoregressive processes.  These 

assumptions entail a very flexible framework that can capture the dynamics of the differences 

across the indexes without imposing dependence between them. 

 Factor models with regime switching have been widely used to represent business cycles (see 

e.g., Chauvet 1998, 2001, Kim and Nelson 1998, among several others), but without relationship 

to aggregation theory. Our proposed model differs from the literature in its complexity, as it 

includes estimation of the parameters of three independent Markov processes.  In addition, the 

                                                 
2In aggregation theory measurement error refers to the tracking error in a nonparametric index number's approximation 
to the aggregator function of microeconomic theory, where the aggregator function is the subutility or subproduction 
function that is weakly separable within tastes or technology of an economic agent’s complete utility or production 
function.  Consequently, aggregator functions are increasing and concave and need to be estimated econometrically. On 
the other hand, state space models use the term measurement error to mean un-modeled noise, which is not captured by 
the state variable or idiosyncratic terms.  In this paper, measurement error refers to this latter definition, which can be 
expected to be correlated with the former, when the behavior of the data process is consistent with microeconomic 
theory.  But it should be acknowledged that neither concept of measurement error can be directly derived from the 
other.  In fact the state space model concept of measurement error is more directly connected with the statistical 
(“atomistic”) approach to index number theory than to the more recent “economic approach,” which is at its best when 
data is not aggregated over economic agents. 
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focus is not only on the estimated common factor, but on the idiosyncratic terms that reflect the 

divergences between the monetary aggregate indexes in a manner relevant to aggregation theory. 

 To our knowledge, there is no parallel work in the literature that formally compares simple 

sum aggregate with the Divisia index directly, using a multivariate time-series framework to 

estimate the dynamical differences between these series.  Our contribution goes beyond the 

simple comparison over time, as we also focus on major measurement errors that might have 

occurred during some periods, such as around the beginnings or ends of recessions or in transition 

times, as from low (high) to high (low) inflation or interest rate phases.  

 We estimate three models, one for each pair of the monetary indexes: simple sum M1 and 

Divisia MSI1 (Model 1), simple sum M2 and Divisia MSI2 (Model 2), and simple sum M3 and 

Divisia MSI3 (Model 3), where MSI is the monetary services index computed from the Divisia 

index by the St. Louis Federal Reserve Bank.  Our findings confirm some of the findings of the 

previous literature in addition to producing several new results.   

 In general, the idiosyncratic terms for both the simple sum aggregates and the Divisia indexes 

display a business cycle pattern, especially since 1980.  They generally rise around the end of 

high interest rate phases – a couple of quarters before the beginning of recessions – and fall 

during recessions to converge subsequently to their average behavior during the beginnings of 

expansions.  We find that the major differences between the simple sum aggregates and Divisia 

indexes occur around the beginnings and ends of economic recessions, and during some high 

interest rate phases.  This is particularly the case for the period between 1977 and 1983, which 

includes a slowdown, two recessions, two recoveries, and the change in the Federal Reserve’s 

operating procedure during the “monetarist experiment” period.  Notice that this period also 

corresponds to a high interest rate phase.  Another time during which we find that the indexes 

diverge substantially is around the 1990 recession.  A more detailed summary of findings is found 

in section 4. 

 

2. Monetary Aggregation Theory 
 2.1. Monetary Aggregation 

 Aggregation theory and index-number theory have been used to generate official 

governmental data since the 1920s.  One exception still exists.  The monetary quantity aggregates 

and interest rate aggregates supplied by many central banks are not based on index-number or 

aggregation theory, but rather are the simple unweighted sums of the component quantities and 

the quantity-weighted or arithmetic averages of interest rates.  The predictable consequence has 

 4



been induced instability of money demand and supply functions, and a series of ‘puzzles’ in the 

resulting applied literature.  In contrast, the Divisia monetary aggregates, originated by Barnett 

(1980), are derived directly from economic index-number theory.  Financial aggregation and 

index number theory was first rigorously connected with the literature on microeconomic 

aggregation and index number theory by Barnett (1980; 1987).   

 Data construction and measurement procedures imply the theory that can rationalize the 

aggregation procedure. The assumptions implicit in the data construction procedures must be 

consistent with the assumptions made in producing the models within which the data are to be 

used.  Unless the theory is internally consistent, the data and its applications are incoherent.  

Without that coherence between aggregator function structure and the econometric models within 

which the aggregates are embedded, stable structure can appear to be unstable.  This phenomenon 

has been called the ‘Barnett critique’ by Chrystal and MacDonald (1994). 

 2.2. Aggregation Theory versus Index Number Theory 

 The exact aggregates of microeconomic aggregation theory depend on unknown aggregator 

functions, which typically are utility, production, cost, or distance functions.  Such functions must 

first be econometrically estimated.  Hence the resulting exact quantity and price indexes become 

estimator- and specification-dependent.  This dependency is troublesome to governmental 

agencies, which therefore view aggregation theory as a research tool rather than a data 

construction procedure. 

 Statistical index-number theory, on the other hand, provides indexes which are computable 

directly from quantity and price data, without estimation of unknown parameters.  Within the 

literature on aggregation theory, such index numbers depend jointly on prices and quantities, but 

not on unknown parameters.  In a sense, index number theory trades joint dependency on prices 

and quantities for dependence on unknown parameters.  Examples of such statistical index 

numbers are the Laspeyres, Paasche, Divisia, Fisher ideal, and Törnqvist indexes.   

 The loose link between index number theory and aggregation theory was tightened, when 

Diewert (1976) defined the class of second-order ‘superlative’ index numbers, which track any 

unknown aggregator function up to the second order.  Statistical index number theory became 

part of microeconomic theory, as economic aggregation theory had been for decades, with 

statistical index numbers judged by their non-parametric tracking ability to the aggregator 

functions of aggregation theory.   

 For decades, the link between statistical index number theory and microeconomic 
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aggregation theory was weaker for aggregating over monetary quantities than for aggregating 

over other goods and asset quantities.  Once monetary assets began yielding interest long ago, 

monetary assets became imperfect substitutes for each other, and the ‘price’ of monetary-asset 

services was no longer clearly defined.  That problem was solved by Barnett (1978; 1980), who 

derived the formula for the user cost of demanded monetary services.3   

 Barnett’s results on the user cost of the services of monetary assets set the stage for 

introducing index number theory into monetary economics. 

 2.3. The Economic Decision 

 Consider a decision problem over monetary assets.  The decision problem will be defined 

in the simplest manner that renders the relevant literature on economic aggregation over goods 

immediately applicable.4  Initially we shall assume perfect certainty. 

 Let m t  = (m1t, m2t, … , mnt) be the vector of real balances of monetary assets during 

period t, let rt be the vector of nominal holding-period yields for monetary assets during period t, 

and let Rt be the one period holding yield on the benchmark asset during period t.  The benchmark 

asset is defined to be a pure investment that provides no services other than its yield, Rt, so that 

the asset is held solely to accumulate wealth.  Thus, Rt is the maximum holding period yield in 

the economy in period t. 

′

 Let yt be the real value of total budgeted expenditure on monetary services during period t.  

Under simplifying assumptions for data within one country, the conversion between nominal and 

real expenditure on the monetary services of one or more assets is accomplished using the true 

cost of living index on consumer goods.5  The optimal portfolio allocation decision is: 

 maximize u(mt)                  (1) 

                                                 
3 Subsequently Barnett (1987) derived the formula for the user cost of supplied monetary services.  A regulatory wedge 
can exist between the demand and supply-side user costs, if non-payment of interest on required reserves imposes an 
implicit tax on banks. 
4 Our research in this paper is not dependent upon this simple decision problem, as shown by Barnett (1987), who 
proved that the same aggregator function and index number theory applies, regardless of whether the initial model has 
money in the utility function, or money in a production function, or neither, so long as there is intertemporal 
separability of structure and certain assumptions are satisfied for aggregation over economic agents.  The aggregator 
function is the derived function that has been shown in general equilibrium always to exist, if money has positive value 
in equilibrium, regardless of the motive for holding money.  See, e.g., Arrow and Hahn (1971), Stanley Fischer (1974), 
Phlips and Spinnewyn (1982), and Poterba and Rotemberg (1987).  Analogously, Feenstra (1986, p. 271) demonstrated 
“a functional equivalence between using real balances as an argument of the utility function and entering money into 
liquidity costs which appear in the budget constraints.”  The converse mapping from the money in the aggregator 
(utility or production) function approach to the explicit motive is not unique, but in this paper we are not seeking to 
identify the motives for holding money. 
5 The multilateral open economy extension is available in Barnett (2007). 
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 subject to π t
′ mt = yt,  

 

where π t = (π1t ,…,πnt) is the vector of monetary-asset real user costs, with ′

 πit = 
1

t it

t

R r
R

−
+

.                  (2) 

The function u is the decision maker’s utility function, assumed to be monotonically increasing 

and strictly concave.6  The user cost formula (2), derived by Barnett (1978; 1980), measures the 

forgone interest or opportunity cost of holding monetary asset i, when the higher yielding 

benchmark asset could have been held.  

 Let  be derived by solving decision (1).  Under the assumption of linearly homogeneous 

utility, the exact monetary aggregate of economic theory is the utility level associated with 

holding the portfolio, and hence is the optimized value of the decision’s objective function: 

*mt

 Mt = u( ).                  (3) *mt

 2.4. The Divisia Index 

 Although equation (3) is exactly correct, it depends upon the unknown function, u.  

Nevertheless, statistical index-number theory enables us to track Mt exactly without estimating 

the unknown function, u.  In continuous time, the monetary aggregate, Mt = u( ), can be 

tracked exactly by the Divisia index, which solves the differential equation 

*mt

 
*

i

log log
= ∑t

it
d M d ms

dt dt
it               (4) 

for Mt, where  

 
*π

= it it
it

t

ms
y

 

is the i’th asset’s share in expenditure on the total portfolio’s service flow.7  The dual user cost 

                                                 
6 To be an admissible quantity aggregator function, the function u must be weakly separable within the consumer’s 
complete utility function over all goods and services.  Producing a reliable test for weak separability is the subject of 
much intensive research, most recently by Barnett and Peretti (2008). 
7 In equation (4), it is understood that the result is in continuous time, so the time subscripts are a short hand for 
functions of time.  We use t to be the time period in discrete time, but the instant of time in continuous time.   
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price aggregate Πt = Π( ), can be tracked exactly by the Divisia price index, which solves the 

differential equation 

tπ

 
i

log logt
it

d ds
dt dt

Π π
= ∑ it .              (5) 

The user cost dual satisfies Fisher’s factor reversal in continuous time: 

 ΠtMt = π t mt.                 (6) ′

 As a formula for aggregating over quantities of perishable consumer goods, that index was 

first proposed by François Divisia (1925), with market prices of those goods inserted in place of 

the user costs in equation (4).  In continuous time, the Divisia index, under conventional 

neoclassical assumptions, is exact.  In discrete time, the Törnqvist approximation is: 

 * *

i
log log (log log )− = −∑t t -1 it it i,t -1M M s m m ,         (7) 

where  

 ( )= +it it i,t -1
1

2
s s s . 

In discrete time, we often call equation (7) simply the Divisia quantity index.8  After the quantity 

index is computed from (7), the user cost aggregate most commonly is computed directly from 

equation (6). 

 2.5. Risk Adjustment 

 Extension of index number theory to the case of risk was introduced by Barnett, Liu and 

Jensen (2000), who derived the extended theory from Euler equations rather than from the 

perfect-certainty first-order conditions used in the earlier index number-theory literature.  Since 

that extension is based upon the consumption capital-asset-pricing model (CCAPM), the 

extension is subject to the ‘equity premium puzzle’ of smaller-than-necessary adjustment for risk.  

We believe that the under-correction produced by CCAPM results from its assumption of 

intertemporal blockwise strong separability of goods and services within preferences.  Barnett 

and Wu (2005) have extended Barnett, Liu, and Jensen’s result to the case of risk aversion with 

                                                 
8 Diewert (1976) defines a ‘superlative index number’ to be one that is exactly correct for a quadratic approximation to 
the aggregator function.  The discretization (7) to the Divisia index is in the superlative class, since it is exact for the 
quadratic translog specification to an aggregator function.   
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intertemporally non-separable tastes.9   

 2.6.  Dual Space 

 User cost aggregates are duals to monetary quantity aggregates.  Either implies the other 

uniquely.  In addition, user-cost aggregates imply the corresponding interest-rate aggregates 

uniquely.  The interest-rate aggregate rt implied by the user-cost aggregate Πt is the solution for rt 

to the equation: 

 
1

t t

t

R r
R

−
+

 = Πt. 

 Accordingly, any monetary policy that operates through the opportunity cost of money (that 

is, interest rates) has a dual policy operating through the monetary quantity aggregate, and vice 

versa.  Aggregation theory implies no preference for either of the two dual policy procedures or 

for any other approach to policy, so long as the policy does not violate principles of aggregation 

theory.  In our current state-space comparisons, we model in quantity space rather than the user-

cost-price or interest-rate dual spaces.  Regarding policy in the dual space, see Barnett (1987) and 

Belongia and Ireland (2006). 

 

3. The State Space Model 
 Let Yt be the n x 1 vector of monetary indexes, where n is the number of monetary indexes in 

the model. 

  ΔYt = λ ΔFt +  γτt + vt,                   (8) 

where Δ =1 – L and L is the lag operator.  Changes in the monetary aggregates, ΔYt, are modeled 

as a function of a scalar unobservable factor that summarizes their commonalities, ΔFt, an 

idiosyncratic component n x 1 vector, which captures the movements peculiar to each index, vt, 

and a potential time trend τt.  The factor loadings, λ, measure the sensitivity of the series to the 

                                                 
9 The Federal Reserve Bank of St. Louis Divisia database, which we use in this paper, is not risk corrected.  In addition, 
it is not adjusted for differences in marginal taxation rates on different asset returns or for sweeps, and its clustering of 
components into groups was not based upon tests of weak separability, but rather on the Federal Reserve’s official 
clustering.  The St. Louis Federal Reserve Bank is in the process of revising its MSI database, perhaps to incorporate 
some of those adjustments.  Regarding sweep adjustment, see Jones, Dutkowsky, and Elger (2005).  At the present 
stage of this research, we felt it was best to use data publicly available from the Federal Reserve, so we did not modify 
the St. Louis Federal Reserve’s MSI database in any ways. 
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dynamic factor, ΔFt.10  Both the dynamic factor and the idiosyncratic terms follow autoregressive 

processes: 

  ΔFt =  + φ(L) ΔFt-1 + ηt   ηt ~N(0, ),           (9) 
tSα

2σ

  vt = + d(L)vt-1 + εt,         εt ~ i.i.d. N(0, Σ),             (10) h
tSΓ

where ηt is the common shock to the latent dynamic factor, and εt are the measurement errors. In 

order to capture potential nonlinearities across different monetary regimes, the intercept of the 

monetary factor switches regimes according to a Markov variable, St, where = α0 + α1 , and 

 = 0, 1. That is, monetary indexes can either be in an expansionary regime, where the mean 

growth rate of money is positive (  = 1), or in a contractionary phase with a lower or negative 

mean growth rate (  = 0). 

tSα
α
tS

α
tS

α
tS

α
tS

 We also assume that the idiosyncratic terms for each index follow distinct two-state Markov 

processes, by allowing their drift terms, , to switch between regimes. For example, in the case 

of two monetary indexes, n = 2, there will be two idiosyncratic terms, each one following an 

independent Markov process  and , where  = 0, 1 and = 0, 1.  Notice that we do not 

constraint the Markov variables , , and  to be dependent of each other, but allow them 

instead to move according to their own dynamics. In fact, there is no reason to expect that the 

idiosyncratic terms would move in a similar manner to each other or to the dynamic factor, since 

by construction they represent movements peculiar to each index not captured by the common 

factor. 

h
tSΓ

δ
t

β
tS

S

S

β
tS

β
tS δ

tS

α
t

δ
tS

 The switches from one state to another is determined by the transition probabilities of the 

first-order two-state Markov processes,  = P( =j| = i), where k
ijp k

tS k
tS 1−  1,0 1

1

0
,i,j,p

j
k
ij ==∑ =

 

with k = α, β, δ identifying the Markov processes for the dynamic factor and the two 

idiosyncratic terms, respectively.  

 The model separates out the common signal underlying the monetary aggregates from 

individual variations in each of the indexes. The dynamic factor captures simultaneous downturns 

and upturns in money growth indexes.  On the other hand, if only one of the variables declines, 

e.g. M1, this would not characterize a general monetary contraction in the model and would be 

captured by the M1 idiosyncratic term.  A general monetary contraction (expansion) will occur 

                                                 
10 The factor loading for the Divisia monetary index series is set equal to one to provide a scale for the latent dynamic 
factor. This normalization is a necessary condition for identification of the factor, and the choice of parameter scale 
does not affect any of the time series properties of the dynamic factor or the correlation with its components. 
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when all n variables decrease (increase) at about the same time.  That is, ηt  and vt are assumed to 

be mutually independent at all leads and lags for all n variables, and d(L) is diagonal.  The 

dynamic factor is the outcome of averaging out the discrete states.  Although the n monetary 

indexes represent different measurements of money, the estimated dynamic factor is a nonlinear 

combination of them, representing broader movements in monetary aggregates in the U.S.  On the 

other hand, once a contraction or expansion is clearly under way, the idiosyncratic term for a 

particular aggregate can be highly informative near a turning point. 

 Dynamic factor models with regime switching have been widely used to represent business 

cycles. The proposed model differs from the literature in its complexity, as it includes estimation 

of the parameters of three independent Markov processes.  

 The model is cast in state space form, where (11) and (12) are the measurement and transition 

equations, respectively: 

  ΔYt = Z ξt +  Gτt                 (11) 

  ξt = + T ξt-1 + ut.               (12) 
stξμ

A particular state space representation for the estimated indicator using two variables is: 

ΔYt  = , Z = ,  ξt  =  = ,  ⎥
⎦

⎤
⎢
⎣

⎡
Δ
Δ

t

t
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Y

2

1
⎥
⎦
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⎢
⎣
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0101
0011

⎥
⎥
⎥
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⎢
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1

t

t

t

t
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v
F

stξμ

⎥
⎥
⎥
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The term Ft-1 is included in the state vector to allow estimation of the dynamic factor in levels 

from the identity ΔFt-1 = Ft-1 - Ft-2. 

 The model is estimated using an extended version of the nonlinear Kalman filter to compute 

the latent dynamic factor and each one of three Markov processes.  The nonlinear filter forms 

forecasts of the unobserved state vector, , and the associated mean squared error matrices, 

, based on information,  ≡ [ΔY't-1, ΔY't-2,..., ΔY'1]', available up to time t-1 on the Markov 

state St, with each  taking on the value j, and St-1 taking on the value i, for i, j = 

0,1:  

j)(i,
1-t|tξ

j)(i,
1-t|tθ 1−tI

δβ
tt S,Sα= tt ,SS

 =   E(ξt | It-1, St = j, St-1 = i)                   (13) j)(i,
1-t|tξ
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 =   E[(ξt - ξt|t-1)( ξt - ξt|t-1)'| It-1, St = j, St-1 = i)].          (14) j)(i,
1-t|tθ

 The filter uses as inputs the joint probability of the Markov-switching states at time t-1 and t, 

conditional on information up to t-1, P(St-1 = i, St = j |It-1); an inference  about the state 

vector using information up to t-1, given St-1 = i and St = j; and the mean squared error matrices, 

{ }.  The outputs are their one-step updated values. The nonlinear Kalman filter is:  

j)(i,
1-t|1-tξ

j)(i,
1-t|1-tθ

     (prediction equations)        
ΗΤΤθθ

Τξμξ

 + ' =

+ =
i

1-t|1-t
j)(i,
1-t|t

i
1-t|1-t

j)(i,
1-t|t stξ ( )

( )16
15

     (updating equations)        
,)-( =

 +  =
j)(i,
1-t|t

j)(i,
t

j)(i,
t|t

j)(i,
1-t|t

j)(i,
t

j)(i,
1-t|t

j)(i,
t|t

θΖΚΙθ

ΝΚξξ

n

( )
( )18
17

where H is the variance-covariance matrix of the vector of disturbances ut, In is the identity 

matrix, = , = ΔYt - Ζ  is the conditional forecast error of ΔYt, and 

 is its conditional variance. 

j)(i,
tΚ

j)(i,
1t|tθΖ −

1j)(i,
t

j)(i,
1-t|t ][' −QΖθ

'Ζ

j)(i,
1-t|tΝ j)(i,

1-t|tξ

=j)(i,
tQ

 The probability terms are computed using Hamilton’s filter, for each , as: δβα= tttt S,S,SS

 P(S t-1 = i, St = j |I t-1) =  pij P(St-2 = h, St-1 = i | It-1).        (19) ∑ =

1

0h

From these joint conditional probabilities, the density of  ΔYt conditional on St-1, St, and It-1 is:  

 f(ΔYt |St-1 = i, St = j, It-1 ) = )
2
1exp(||)(2[ j)(i,

1t|t
1j)(i,

t
j)'(i,

1t|t
2/1j)(i,

t
n/2-

−

−

−
− − ΝQΝQπ .   (20) 

The joint probability density of states and observations is then calculated by multiplying each 

element of (19) by the corresponding element of (20): 

 f(ΔYt, St-1 = i, St = j| It-1) = f(ΔYt| St-1 = i, St = j, It-1) P(St-1 = i, St = j| It-1).     (21) 

The probability density of ΔYt given It-1 is: 

 f(ΔYt |It-1) = f(ΔYt, St-1 = i, St = j |It-1).         (22) ∑ ∑= =

1

0

1

0j i

The joint probability density of states is calculated by dividing each element of (14) by the 

corresponding element of (22): 

  P(St-1 = i, St = j | It)= f(ΔYt, St-1 = i, St = j | It-1) / f(ΔYt | It-1)       (23) 

Finally, summing over the states in (23), we obtain the filtered probabilities of expansions or 

recessions: 

 P(St = j | It)  = ∑ P(St-1 = i, St = j | It).           (24) 
=

1

0i
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 As with the linear Kalman filter, the algorithm calculates recursively one-step-ahead 

predictions and updates equations of the dynamic factor and the mean squared error matrices, 

given the parameters of the model and starting values for , , and the probabilities of the 

Markov states.  However, for each date t the nonlinear filter computes 2k forecasts, where k is the 

number of states, and at each iteration the number of cases is multiplied by k.  This implies that 

the algorithm would be computationally unfeasible, even for the simplest cases.  Kim (1994), 

based on Harrison and Stevens (1976), proposes an approximation introduced through  and 

for t >1.  This approximation consists of truncating the updating equations into averages 

weighted by the probabilities of the Markov states.  

j
t|tξ j

t|tθ

j
t|tξ

j
t|tθ

 At each t, the conditional likelihood of the observable variables is obtained as a by-product of 

the algorithm from equation (20), which is used to estimate the unknown model parameters. The 

filter evaluates this likelihood function, which is then maximized with respect to the model 

parameters using a nonlinear optimization algorithm.  The maximum likelihood estimators and 

the sample data are then used in a final application of the filter to draw inferences about the 

dynamic factor and probabilities, based on information available at time t.  The final estimated 

state vector is calculated as: 

       .)P(1

0
j
t|tt|t ∑ =

==
i tt j|IS ξξ

 The estimation is implemented through a numerical procedure.  The nonlinear discrete filter 

produces two outputs: the state vector, , containing the dynamic factor and the idiosyncratic 

terms, along with the associated probabilities of the Markov states. The filtered probabilities give 

at time t the probability of the Markov state, using only information available at t, P(St = 0, 1 |It).  

On the other hand, the smoothing probabilities are obtained through backward recursion using the 

information in the full sample, P(St = 0, 1| IT). 

 

t|tξ

4. Empirical Results 
 4.1. Data 

 We use the federal funds rate as the interest rate in defining high and low interest rate phases 

and the log first difference of consumer price index as the inflation rate in defining high and low 

inflation phases. Those two series and the simple sum monetary aggregates, M1, M2, and M3, as 

well as their corresponding “monetary service indexes” (Divisia), MSI1, MSI2, MSI3, were all 

obtained from the Federal Reserve Bank of Saint Louis.  The Research Division of the Saint 

 13



Louis Federal Bank produces the MSI indexes on a regular basis using equation (7).  The MSI 

Divisia indexes measure the flow of monetary services obtained by households and firms from 

holding monetary assets. For the theory and methodology utilized in the construction of these 

indexes, and for details of the construction of these indexes, see Anderson, Jones, and Nesmith 

(1997a and b).  For a survey of the theory of monetary aggregation, empirical comparisons of 

monetary aggregates, and reprints of seminal papers on the subject, see Barnett and Serletis 

(2000).  We use quarterly data from 1960:2 to 2005:4, which is the sample period during which 

the Divisia indexes data were available at the time that this research was conducted. 

 4.2. Specification Tests  

 The dynamic factor structure captures cyclical comovements underlying the observable 

variables.  We find that the resulting dynamic factor is highly correlated with all of the monetary 

aggregates used in its construction.  As a result, it is clear that the structure was not imposed on 

the data by assuming large idiosyncratic errors. 

 In addition, tests for the number of states strongly support the single factor specification. This 

conclusion is tested in different ways.  First, the eigenvalues of the correlation matrix of the 

common factor indicate adequacy of the single factor specification.11  Second, the model assumes 

that the factor summarizes the common dynamic correlation underlying the observable variables.  

Consequently, the idiosyncratic terms in vt are uncorrelated with the observed variables in ΔYt.12  

To test this assumption, the idiosyncratic terms vt are regressed on six lags of the observable 

variables ΔYt, and the parameters of the equations are found to be insignificantly different from 

zero.  In addition, the one-step-ahead conditional forecast errors, Νt|t-1, obtained from the filter 

described in section 2, are not predictable by lags of the observable variables. These results 

support the single factor specification, since these error terms are not capturing common 

information underlying the observable variables.  
 With respect to the measurement errors, εt, the i.i.d. assumption is tested using Ljung-Box 

statistics on their sample autocorrelation and the BDS test proposed by Brock, Dechert, 

Scheinkman, and LeBaron (1996).13  Both tests fail to reject the i.i.d. assumption at any level. 

                                                 
11 The magnitude of the n eigenvalues for each factor reflects how much of the correlation among the observable 
variables is explained by k n potential factors. For each of the three composite indicators, there is only one eigenvalue 
greater than one, while the others are close to zero. 

≤

12 The model was estimated allowing either AR(1) or AR(0) processes for the disturbances Δvt. The likelihood ratio 
test favors the AR(1) specification at the 1% level. 
13  The BDS test requires prior settings of two calibration parameters:  embedding dimensions, m, and norm bound, ε.  
We set m = 2, 3, 4, 5, 6 months and ε = standard deviation of the univariate disturbance time series, assumed to have 
constant mean function and constant conditional variance. 
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 4.3. High and Low Inflation and Interest Rate Phases 

 We study changes in monetary growth across business cycle phases and across high and low 

inflation and interest rate periods.  We use economic recessions and expansions as dated by the 

NBER to analyze changes across business cycle states. Regarding inflation, we are mostly 

interested in identifying periods during which there is a persistent change in this series.  We 

classify a high inflation phase as one in which inflation increases persistently for several quarters 

until it reaches a peak.  Analogously, low inflation phases start when inflation falls for several 

quarters until it reaches a trough.  A high (low) inflation phase may include periods during which 

the level of inflation is still relatively low (high) but is increasing (decreasing) persistently.  That 

is, the level of inflation is not as relevant as its rate of change.  For example, inflation was 

historically low in the early 2000s, but since its derivative turned positive in 2002:1 and remained 

so for a couple of quarters, this date indicates the beginning of a high inflation phase. 

 The metric proposed to determine inflation phases is as follows: a high inflation phase starts 

in quarter t, if inflation πt-1 was in a low phase in quarter t-1 and 112 −++ π≥π≥π≥π tttt .  That is, 

inflation grows for three consecutive quarters. A low inflation phase starts in quarter t, if inflation 

πt-1 was in a high phase in quarter t-1 and 11 −+ π<π<π ttt .  That is, inflation falls for two 

consecutive quarters.  This is similar to the rule of thumb of two quarters decrease (increase) in 

GDP to determine the beginning of recessions (expansions), although we use an asymmetric 

number of quarters for high and low phases based on inflation persistence.  However, the results 

do not change, if we use instead two quarters decrease or increase.  

 We also use the Bry and Boschan (1971) routine to determine inflation phases.  Bry and 

Boschan (B-B) formalize turning point dating rules into a computer routine, which has been 

refined by Haywood (1973) to include an amplitude criterion.14  The turning points obtained 

coincide with our proposed criterion described above.  In fact, both methods select turning points 

that would be easily picked simply by visual inspection of the smoothed series. 

 The resulting inflation phases are plotted in figure 1a together with inflation, smoothed 

inflation, and NBER recessions.  When inflation starts increasing, it does so slowly and steadily.  

However, when inflation falls, it drops abruptly, making it easier to identify the beginning of a 

low inflation phase than the start of a high inflation phase.  Notice that inflation phases are 

associated with NBER recessions.  In particular, all recessions begin around the end of high 

                                                 
14The main steps of the B-B routine are: (1) the data are smoothed after outliers are discarded; (2) preliminary turning 
points are selected and compared with the ones in the original series; (3) duration of the phases is checked, and if 
duration is below 6 months, the turning points are disregarded; (4) amplitude criterion is applied, based on a moving 
standard deviation of the series.  In the end, the program selects turning points that would be easily picked simply by 
visual inspection. 
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inflation phases.  In addition, there were only two high inflation phases, in 1983-1984 and in 

2002, during which a recession did not follow.  However, the economy entered a slowdown in 

1984-1986. 

 With respect to interest rate, the determination of peaks and troughs is simplified by the fact 

that this series is smoother than inflation.  We use a similar metric to the one used for inflation. 

However, using two or three quarters of change as the cut off for dating the phases results in 

exactly the same dating.  Thus, we use the following metric:  a high interest rate phase starts in 

quarter t, if interest rate it-1 was in a low phase in quarter t-1 and if ; and a low 

interest rate phase starts in quarter t, if interest rate it-1 was in a high phase in quarter t-1 and if 

.  That is, the turning point of interest rate phases takes place, when the interest rate 

falls or rises for two consecutive quarters.  Once again, we use the Bry and Boschan (1971) 

routine to determine interest rate phases and find the same turning points as the two-consecutive-

quarter rule of thumb. 

11 −+ ≥≥ ttt iii

11 −+ << ttt iii

 The interest rate phases are shown in figure 1b as well as interest rate, smoothed interest rate, 

and NBER recessions.  Interest rate phases are also associated with the NBER recessions and 

expansions – the peak generally is at, or right before, economic recessions, whereas the trough is 

roughly in the middle of expansions.   One exception is for the most recent expansion, in which 

the high interest phase started a lot earlier, at the trough of the 2001 recession.  

 4.4. Estimates 

 Table 1 displays the maximum likelihood estimates of the Markov switching dynamic factor 

model applied to the monetary aggregates. Three models were estimated, one for each pair of the 

monetary indexes: M1 and MSI1 (Model 1), M2 and MSI2 (Model 2), and M3 and MSI3 (Model 3). 

 The Markov states for the factors are statistically significant across the specifications.  For 

models 1 and 3, state 1 has a positive mean growth rate, α1, while state 0 has a negative mean 

growth rate, α0.  For model 2, the mean growth rates in both states are positive, although the 

mean growth rate in state 0 is smaller than in state 1, and they both are statistically significant at 

the 1% level. 

 The autoregressive coefficient for the factor, φ, is positive and near 0.5 across all 

specifications.  The factor loadings measure how changes in the dynamic factor affect changes in 

the observable variables.  The loadings for the Divisia monetary indexes are set equal to one to 

provide a scale for the latent dynamic factors. This normalization is a necessary condition for 

identification of the factors. The choice of parameter scale does not affect any of the time series 

properties of the dynamic factor or the correlation with its components.  We find that the 
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estimated factor loading for the simple sum monetary aggregate is positive and close to one 

across all models, indicating that the Divisia index and the simple sum aggregate have a similar 

and proportional impact on the factor for each model. 

 All other parameters of the model are statistically significant as well.  We discuss their 

dynamics for each model below. 

 4.5. Simple M1 Aggregate and Divisia M1 

 The factor extracted from the growth rates of the simple sum aggregate M1 and from the 

growth rate of the Divisia M1 (MSI1) index is plotted in Figure 2a together with the probabilities 

of low monetary growth and NBER recessions (DF1).  During the 1960s and 1970s, the factor is 

mostly positive with an average quarterly growth of 1.2%.  In the second half of the sample, there 

are times during which money growth decreases substantially, reaching negative values.  The 

smoothed probabilities identify four phases of negative monetary growth during this second half: 

1989:1-1989:4, 1994:4-1997:2, 2000:2-2000:4, and 2005:1-20005:3; and a pulse change in 

1980:2. 

 With correlation values of 0.988 for M1 and 0.998 for MSI1, respectively (Table 2), the 

dynamic factor is highly correlated with its components.  Notice that M1 and MSI1 are more 

correlated with the factor than with each other.  Figure 2b plots these series and NBER 

recessions.  Although the comparison of the series suggests that they share very similar dynamics, 

there are important differences during certain times and around turning points that cannot be 

evaluated by their average behavior.  The idiosyncratic terms and the measurement errors reveal 

where the monetary indexes differ.   

 The idiosyncratic term for MSI1 is highly autocorrelated (0.98) and smooth, whereas the one 

for M1 is a lot less persistent (0.48) and more jagged (Table 1 and Figure 2c).  Both idiosyncratic 

terms display a business cycle pattern from 1980 on.  In particular, they rise before the beginnings 

of recessions and fall during recessions, but subsequently converge to their average in the 

beginnings of expansions.  During the 1980s’ and 1990s’ expansions, the idiosyncratic terms 

increased steadily until reaching a peak in the middle of these expansions.  

 Figure 2d plots the squared difference between the idiosyncratic terms for M1 and MSI1, 

NBER recessions, and phases of high inflation and interest rates.  From 1960 until 1976 the 

difference between them was almost zero.  However, analysis of the second part of the sample 

uncovers some interesting divergent patterns.  The major differences took place right around the 

beginning or end of recessions.  Notice that the beginning of recessions is also the end of high 

interest rate and inflation phases. The largest differences occurred at the end of the 1981-82 

recession and in 2005:3, followed by divergences before the 1980-81 and 1981-82 recessions and 
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at the trough of the 1990-91 recession.  In addition, persistent differences took place during high 

phases of inflation and interest rates.  It can be observed that differences also occur, when there 

are some major changes in the magnitude of monetary growth. This is especially the case between 

1994:4-1997:2, when both the rate of growth of M1 and of the Divisia index, MSI1, decreased 

substantially to negative values. 

 Figure 2e shows the measurement error from simple sum aggregate M1 growth, from Divisia 

M1 growth (MSI1), and NBER recessions.   The measurement error from Divisia growth is a lot 

smaller than from simple sum M1 growth throughout the sample.  As discussed in the previous 

section, linear and nonlinear tests fail to reject the hypothesis of i.i.d. for the measurement errors. 

However, some interesting patterns can be observed in their squared differences.  Since 1984, the 

measurement error of M1 growth is greater than of Divisia growth in the middle of expansions 

and smaller from the second half of expansions until around the beginning of recessions.  The 

difference becomes positive during recessions but reverts to negative at their end. The major 

difference between the two took place in the first quarter of 1983, when the measurement error 

for M1 growth reached its maximum value. 

 Figure 2f shows the squared difference between the measurement errors.  As for the 

idiosyncratic terms, the difference between the measurement errors is almost zero before 1976. 

However, its highest levels occurred during the high inflation phase between 1977 and 1983.  It 

also increased at the peak and trough of the 1990-1991 recession and between 1999 and 2000, 

during the high inflation and interest rate phase that preceded the 2001 recession.  As for the 

idiosyncratic terms, the only time that the difference between the two measurement errors was 

large, but not associated with a high inflation or interest rate phase or a recession, was between 

1995-1996.  This period corresponds to a shift of monetary growth from historically positive to 

very negative.   

 This analysis confirms previous results (see e.g. Belongia 1996), which find large differences 

between M1 and Divisia MSI1 between 1984 and 1987 and between 1995 and 1997, with the 

former being greater than the latter. 

 4.6. Simple M2 Aggregate and Divisia M2 

 The dynamic factor obtained from the growth rates of the simple sum aggregate M2 and from 

the Divisia M2 (MSI2) is highly correlated with these series, with correlations of 0.95 and 0.96, 

respectively (Table 2).  Figure 3a shows this factor (DF2) and the probabilities of high monetary 

growth.  The most noticeable feature of the factor (and of its components) is its rise during 1970-

73 and during 1975-78.  These periods are captured by the smoothed probabilities, as well as the 

fast monetary growth phases following the 1980-81 and 1981-82 recessions, and during the 2001 
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recession.  Other periods during which money growth was well above its average included 1985-

86 and 1998, as depicted by the probabilities.  

 The dynamics of the factor DM1 differ substantially from the factor DM2, especially after 

1990 (Figures 1c and 3b), and the overall correlation between them is only 0.34.  First, the DM1 

factor does not increase as substantially as the DM2 factor in the 1970s.  Second, the DM2 factor 

moves in the opposite direction from the DM1 factor during 1991-1994, with DM2 reaching its 

highest level of growth during this period.  A divergent movement also takes place in 1995-1996, 

when DM1 grows and DM2 falls. This same pattern is found by comparing the growth rate of M1 

and MSI1 with M2 and MSI2. 

 The idiosyncratic terms for M2 and MSI2 are shown in Figure 3c.  There are marked 

differences between them.  Although they generally move in the same direction in the first part of 

the sample, they differ substantially around turning points and in the second period.  For example, 

the idiosyncratic term for M2 increased during the 1970 and 1974-75 recessions, even when 

interest rate was already in a low phase.  The idiosyncratic term for the MSI2, on the other hand, 

decreased during these periods.  From 1982 there are several instances in which these series 

display divergent movements.  

 Figure 3d shows the squared difference between these two series along with NBER 

recessions and phases of high inflation and interest rates.  For the most part the discrepancies 

between the idiosyncratic terms take place during transition times, such as around business cycle 

turning points or the beginnings and ends of interest rate or inflation phases.  The largest 

differences were from the middle to the trough of the 1980-81 and 1981-82 recessions, at the end 

of the high interest rate phase in 1989 (and the beginning of an economic slowdown), and 

between 1991 and 1996.  In this last period the differences were not only large, but they were also 

the longest in the sample, corresponding to cyclical movements of DM1 and DM2 in opposite 

directions as explained above.  There were other important divergences, such as the ones during 

the 1970 and 1990 recessions, and during the transitions from tight to loose monetary policies.  

 Figure 3f plots the difference between the measurement errors for M2 and MSI2 growth. The 

main discrepancies between these two series occur between 1979 and 1982.  This period includes 

a slowdown, two recessions and a small recovery, and coincides with the time during which the 

Federal Reserve changed its operating procedures. 

 Another time during which these series differ is in the transition between two phases in 1989.  

In particular, a large difference takes place at the peak of the interest rates cycle.  While interest 

rate started decreasing in 1989:2, inflation remained in a high phase until 1990:2. 
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 4.7. Simple M3 Aggregate and Divisia M3 

 Figure 4a shows the dynamic factor (DF3) resulting from the growth rates of the simple sum 

aggregate M3 and from Divisia M3 (MSI3), while Figure 1c compares the three dynamic factors, 

DF1, DF2, and DF3.  The factor DF1 moves in the opposite direction from the factors DF2 and 

DF3 during some periods, whereas in general DF2 and DF3 display very similar dynamics 

(Figure 1c).  However, DF3 growth (as well as M3 and MSI3 growth) was not as high in the 

1970s as DF2 growth.  In fact, the Markov probabilities for DF3 capture instead a large drop in 

the underlying M3 and MSI3 growth between 1989:2 and 1995:1 as being the most salient 

variation in the series.  Other important low growth phases captured by the probabilities are in 

1966, between 1969-70, in 2002, and in 2004-05. 

 The dynamic factor DF3 is highly correlated with M3 and MSI3 growth, but more so with the 

former (0.98) than with the latter (0.90) (Table 2).  However, the correlation between the dynamic 

factor and the growth of MSI3 is a lot higher, if the period between 1978 and 1982 is excluded. 

During this time, MSI3 growth oscillated substantially (Figure 4b). 

 The idiosyncratic terms for M3 and MSI3 growth are shown in Figure 4c.  The term 

corresponding to M3 is smoother and has smaller fluctuations.  Although they have generally 

similar dynamics, the two idiosyncratic terms differ substantially during some important periods.   

Figure 4d plots their squared difference.  The major divergences between M3 and MSI3 growth 

coincide in time and amplitude with the differences between M2 and MSI2 growth.  The largest 

discrepancies took place during the high inflation phase between 1978 and 1981, and during the 

1981-82 recession.  Times of high uncertainty are associated with larger asynchronous 

movements between M3 and MSI3 growth, such as during recessions or at interest rate turning 

points.  This is the case, for example, between 1989 and 1990, when the high interest rate phase 

ended, but inflation remained in a high phase until right before the beginning of the 1990 

recession. This is also the case in 1965-67, during the 1969-70 and 1990-91 recessions, and 

during the 1972-74 period, which corresponds to a high inflation phase and recession. 

 Another way of gauging the differences between M3 and MSI3 growth is through the 

measurement errors.  Figure 4e shows the squared difference between their measurement errors. 

Analysis of these series indicates that the major differences took place in 1979:4, 1982:1, and in 

the middle of the 1969-73 recession, in addition to the dissimilarities captured by the 

idiosyncratic terms.  
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5. Summary of Findings 
 These differences are economically very important.  If one of the aggregates corresponds to a 

better measure of economic monetary services in the economy than the other, their differences 

add to the uncertainty about the economy and about the effectiveness and appropriateness of 

monetary policy --- exactly at times during which information about the state of monetary growth 

is premium, such as around business cycle turning points and changes in inflation phases.  

 In general, the idiosyncratic terms for both the simple sum aggregates and the Divisia indexes 

display a business cycle pattern, especially since 1980.  Those terms generally rise around the end 

of high interest rate phases (i.e., a couple of quarters before the beginning of recessions), fall 

during recessions, and subsequently converge to their average in the beginning of expansions.  

  We find that the major differences between the simple sum aggregates and Divisia indexes 

occur around the beginnings and ends of economic recessions, and during some high interest rate 

phases.  This is particularly the case for the period between 1977 and 1983, which includes a 

slowdown, two recessions, two recoveries and the change in the Federal Reserve’s operating 

procedure.  Notice that this period also corresponds to a high interest rate phase, which took place 

from 1977:2 to 1981:2.  Another period during which the indexes diverge substantially is around 

the 1990 recession. 

 In the case of M1 and MSI1, the main divergence between the two indexes is in 1983:1.  The 

idiosyncratic term for M1 counter-intuitively increased to its highest level during a quarter that 

marked the beginning of a high interest rate phase. The MSI1, on the other hand, had only a 

minor rise. At that time, Milton Friedman, based on the movements of the official simple sum 

monetary aggregates, warned in newspapers and magazines that this ‘monetary explosion’ was 

bounded to be followed by a contractionary policy by the Federal Reserve, and thereby would 

lead to another period of stagflation.  William Barnett, on the other hand, correctly predicted that 

there was no reason for concern, since monetary growth was at its average rate, based on the 

Divisia index data.  In fact, Barnett correctly determined in real time that the large increase in 

simple sum money was a ‘statistical blip’ produced by the defects in simple sum monetary 

aggregation.  In fact the two conflicting predictions appeared most dramatically on exactly the 

same day:   September 26, 1983, Newsweek, (Friedman) and September 26, 1983, Forbes 

(Barnett), both full page articles.15  

                                                 
15This is hardly the only such example of monetary policy puzzles associated with monetary aggregation problems.  
For more examples, see Barnett (1997) and Barnett and Chauvet (2008).  It is perhaps paradoxical that Friedman was 
mislead by confidence in Federal Reserve monetary aggregates data, since he was highly critical of the Federal 
Reserve, and since Friedman and Schwartz (1970, pp. 151-152) were among the first to make clear the nature of the 
Federal Reserve’s data aggregation error, when they wrote:  “The [simple summation] procedure is a very special case 

 21



 The differences and similarities between the pairs M2-MSI2 (model 2) and M3-MSI3 (model 

3) are closer than the ones for M1 and MSI1 (model 1).  First, the Divisia indexes MSI2 and 

MSI3 decrease a lot more before recessions (at the peak of inflation phases) and increase 

substantially more during recessions and recoveries (low interest rate phases) than the simple sum 

aggregates M2 and M3, respectively.  That is, the dynamics of these Divisia indexes correspond 

more closely to the expected movements related to interest rates and inflation.   

 A noticeable difference between the Divisia MSI2 and the simple sum aggregate M2 is their 

movement in opposite directions between 1991 and 1995. During the recovery after the 1990 

recession, M2 increased more than MSI2, while interest rates were falling.  However, M2 

continued to increase even during the high interest rate phase that started in 1993:3 and ended in 

1995:1.  On the other hand, MSI2 showed a movement more consistent with changes in interest 

rates, which decreased during this period. 

  Another difference that is observable in both pairs M2-MSI2 and M2-MSI3 is their behavior 

at the end of the 1981 recession, when there was a large increase in the idiosyncratic terms from 

the Divisia indexes, and only a minor rise for the simple sum aggregates.  Accordingly, the 

Divisia indexes display a business cycle pattern more consistent with monetary policy. 

 With respect to MSI3 and the simple sum aggregate M3, the idiosyncratic terms for these 

series move in opposite directions on several occasions.  In particular, this term for the Divisia 

index increases during the expansion in the early 1970s, while the idiosyncratic term for M3 

counter-intuitively decreases.  In addition, the idiosyncratic term for M3 shows a steady increase, 

since the end of the 1981-82 recession until 1989, thereby showing no link with the high interest 

rate phase that took place during 1986:4-1989:1.  On the other hand, the term for MSI3 increased 

during the low inflation phase following the 1981-82 recession, but fell during this high interest 

rate phase.  More recently, the idiosyncratic term from the M3 has been counter intuitively high 

during the latest high interest rate phase that started in 2004, whereas the Divisia MSI3 shows the 

expected decrease.   

 

6. Conclusions 
 Microeconomic aggregation theory offers an appealing alternative to the disreputable simple-

sum method of aggregation.  The quantity index under the aggregation-theoretic approach passes 

through and measures income effects while internalizing and removing substitution effects, which 
                                                                                                                                                 
of the more general approach.  In brief, the general approach consists of regarding each asset as a joint product having 
different degrees of ‘moneyness,’ and defining the quantity of money as the weighted sum of the aggregated value of 
all assets …. We conjecture that this approach deserves and will get much more attention than it has so far received.”  
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are at constant utility and hence cannot reflect a change in perceived services.  The simple sum 

index, on the other hand, confounds together income and substitution effects, unless components 

are one-to-one perfect substitutes, i.e., indistinguishable goods.  In this paper we compare the 

dynamic empirical differences between the theory-based definition of money, tracked 

nonparametrically by the Divisia index, and the simple sum monetary aggregates, traditionally 

used by central banks and currently in low repute within the economics profession. 

 Our focus is not only on differences in their average behavior, but also their behavior during 

some important periods of time, such as around business cycle turning points and across high and 

low inflation and interest rate phases.  We propose a factor model with regime switching to 

evaluate the common dynamics of the indexes, as well as their idiosyncratic movements.  

 The state-space time-series approach provides a highly promising direction for research into 

aggregation theory, index number theory, and economic policy.  In this paper we have introduced 

the connection between the state-space time-series approach to assessing measurement error and 

the aggregation theoretic concept, with emphasis upon the relevancy to monetary aggregation and 

monetary policy.   

 We find some interesting new results. The idiosyncratic terms for both indexes display a 

business cycle pattern, especially since 1980. The period between 1977 and 1983 is the one 

during which the most notable differences take place.  This period not only includes a slowdown, 

two recessions, two recoveries, and the change in the Federal Reserve’s operating procedure, but 

also corresponds to a high interest rate phase, which occurred from 1977:2 to 1981:2. 

  In general, we find that the major differences between the simple sum aggregates and Divisia 

indexes occur around the beginnings and ends of economic recessions, and during some high 

interest rate phases.  These are times in which information on monetary aggregates is premium 

for policymakers. 

 We would once again wish to draw attention to one especially clear figure:  Figure 4c.  

Properly weighted broad aggregates are the best measures of monetary service flows, as observed 

by Lucas (2000, p. 270), who wrote:  “I share the widely held opinion that M1 is too narrow an 

aggregate for this period [the 1990s], and I think that the Divisia approach offers much the best 

prospects for resolving this difficulty.”  As a result, those measures that are specific to (i.e., 

idiosyncratic to) simple sum M3 and Divisia M3 are of particular interest.  Compare Divisia M3’s 

idiosyncratic downward spikes in figure 4c with simple sum M3’s idiosyncratic behavior and 

then compare the relative predictive ability of the two extracted idiosyncratic terms with respect 

to NBER recessions.  Figure 4c speaks for itself.   
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             Table 1:  Maximum Likelihood Estimates  

 Parameters 
 
M1 and MSI1 

 
M2 and MSI2 

 
M3 and MSI3 

 α0 -0.226 0.621 -0.767 
  (0.022) (0.115) (0.137) 
 α1 0.636 0.731 0.949 
  (0.226) (0.195) (0.141) 
 Φ 0.556 0.518 0.497 
   (0.070) (0.082) (0.071) 
 dM 0.431 0.976 0.962 
  (0.084) (0.020) (0.039) 
 dMSI 0.979 0.589 0.603 
  (0.010) (0.095) (0.075) 
 2σ  0.511 0.254 0.157 

  (0.056) (0.038) (0.026) 
 2

Mσ  0.030 0.006 0.005 

  (0.003) (0.003) (0.002) 
 2

MSIσ  1.099 0.047 0.093 

   (0.018) (0.007) (0.011) 
 λM 1.099 0.977 1.172 
  (0.018) (0.034) (0.054) 
 α

00p  0.987 0.970 0.857 

  (0.016) (0.031) (0.076) 
 α

11p  0.941 0.795 0.967 

  (0.059) (0.150) (0.022) 
 β

00p  0.560 0.633 0.992 

  (0.209) (0.144) (0.009) 
 β

11p  0.967 0.977 0.976 

  (0.019) (0.011) (0.021) 
 δ

00p  0.954 0.681 0.679 

  (0.019) (0.138) (0.136) 
 δ

11p  0.701 0.971 0.972 

  (0.137) (0.014) (0.014) 
 β0 -0.322 -0.549 -0.040 
  (0.063) (0.059) (0.010) 
 β1 0.024 0.009 0.262 
  (0.012) (0.002) (0.015) 
 δ0 -0.018 -0.703 -0.857 
  (0.010) (0.433) (0.086) 
 δ1 0.096 0.008 0.051 
  (0.020) (0.003) (0.020) 
 τ 0.002 0.002 0.004 
  (0.001) (0.001) (0.0007) 
 Log L(θ) -88.404  -68.893 -77.295 

                                          Asymptotic standard errors in parentheses.  
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                Table 2: Correlation Coefficients between Monetary Indexes and Dynamic Factors  

Parameters 
 
M1 

 
MSI1 

 
M2 

 
MSI2 

 
M3 

 
MSI3 

DFM1 0.988 0.998 0.337 0.423 0.150 0.265 
DFM2 0.354 0.339 0.947 0.963 0.767 0.883 
DFM3 0.120 0.128 0.793 0.732 0.987 0.902 
M1 1 0.984 0.354 0.429 0.139 0.260 
MSI1 0.984 1 0.332 0.418 0.151 0.261 
M2 0.354 0.332 1 0.894 0.802 0.806 
MSI2 0.429 0.418 0.894 1 0.693 0.904 
M3 0.139 0.151 0.802 0.693 1 0.858 
MSI3 0.260 0.261 0.806 0.904 0.858 1 

 

 28



Figure 1a:  Smoothed Inflation (___), Inflation (___), High Inflation Phases (___), and NBER 
Recessions (Shaded Area)   
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Figure 1b:  Interest Rates (___), High Interest Rates Phases (___), and NBER Recessions 
(Shaded Area) 
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Figure 1c:  Dynamic Factors from the Pairs M1-MSI1 Growth (___), M2-MSI2 Growth (___) 
and M3-MSI3 (___) Growth, High Interest Rate Phases (___), High Inflation Phases (___), and 
NBER Recessions (Shaded Area)   
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Figure 2a:  Dynamic Factor (___) and Probabilities of High Monetary Growth Based on M1 
and MSI1 (___), and NBER Recessions (Shaded Area) 
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Figure 2b:  Dynamic Factor (___), Rate of Growth of M1 (___) and MSI1 (___), and NBER 
Recessions (Shaded Area)   
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Figure 2c:  Idiosyncratic Terms for M1 (___) and MSI1 Growth (___), High Interest Rate 
Phases (___), High Inflation Phases (___),  and NBER Recessions (Shaded Area) 
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Figure 2d:  Difference between Idiosyncratic Terms for M1 and MSI1 Growth without (___), 
and with Dummy (___), High Interest Rate Phases (___), High Inflation Phases (___), and 
NBER Recessions (Shaded Area) 
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Figure 2e:  Measurement Errors for M1 (___) and MSI1 Growth (___), High Interest Rate 
Phases (___), High Inflation Phases (___), and NBER Recessions (Shaded Area) 
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Figure 2f:  Difference between Measurement Errors for M1 and MSI1 Growth without (___), 
and with Dummy (___), High Interest Rate Phases (___), High Inflation Phases (___), and 
NBER Recessions (Shaded Area) 
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Figure 3a:  Dynamic Factor (___) and Probabilities of High Monetary Growth Based on M2 
and MSI2 (___), and NBER Recessions (Shaded Area) 
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Figure 3b:  Dynamic Factor (___), Rate of Growth of M2 (___) and MSI2 (___), and NBER 
Recessions (Shaded Area)  
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Figure 3c:  Idiosyncratic Terms for M2 (___) and MSI2 Growth (___), High Interest Rate 
Phases (___), High Inflation Phases (___),  and NBER Recessions (Shaded Area) 
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Figure 3d:  Difference between Idiosyncratic Terms for M2 and MSI2 Growth (___), High 
Interest Rate Phases (___), High Inflation Phases (___), and NBER Recessions (Shaded Area) 
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Figure 3f:  Difference between Measurement Errors for M2 and MSI2 Growth (___), High 
Interest Rate Phases (___), High Inflation Phases (___), and NBER Recessions (Shaded Area) 
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Figure 4a:  Dynamic Factor (___) and Probabilities of Low Monetary Growth Based on M3 
and MSI3 (___), and NBER Recessions (Shaded Area) 
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Figure 4b:  Dynamic Factor (___), Rate of Growth of M3 (___) and MSI3 (___), and NBER 
Recessions (Shaded Area)  

-1

0

1

2

3

4

60 65 70 75 80 85 90 95 00 05

 

 36



Figure 4c:  Idiosyncratic Terms for M3 (___) and MSI3 Growth (___), High Interest Rate 
Phases (___), High Inflation Phases (___),  and NBER Recessions (Shaded Area) 
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Figure 4d:  Difference between Idiosyncratic Terms for M3 and MSI3 Growth Without 
(___), and With Dummy (___), High Interest Rate Phases (___), High Inflation Phases (___), and 
NBER Recessions (Shaded Area) 
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Figure 4e:  Difference between Measurement Errors for M3 and MSI3 Growth without 
(___), and With Dummy (___), High Interest Rate Phases (___), High Inflation Phases (___), and 
NBER Recessions (Shaded Area) 
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