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Abstract

This paper adapts an already existing nonparametric hypothesis test
to the bootstrap framework. The test utilizes the nonparametric kernel
regression method to estimate a measure of distance between the models
stated under the null hypothesis. The bootstraped version of the test allows
to approximate errors involved in the asymptotic hypothesis test. The paper
also develops a Mathematica Code for the test algorithm.
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1. Introduction!

Recently, there has been wide interest in testing the significance of a subset of
explanatory variables through a nonparametric regression technique. Although
this technique generates estimates robust to misspecification, their precision varies
inversely with the number of explanatory variables (see Hérdle, 1991; Cao-Abad,
1991; Yatchew, 1998; among others), and hence parsimony is important when the
nonparametric regression is applied. Researchers have been aware of this pitfall for
some time now, only recently, however, have they turned to developing hypothesis
testing procedures to identify those variables significant.

The most recent studies in the literature adopt the nonparametric kernel re-
gression technique as the main element of the hypothesis testing procedure. For
instance, Delgado and Manteiga (1999) and Fan and Li (1996) propose tests based
on the conditional expectation function given only those variables which are sig-
nificant under the null hypothesis. The latter opts for the asymptotic approach,
while the former develops a test adopting the bootstrap framework because of an
analytically intractable distribution for the test statistic constructed. Exploiting
a traditional approach, Lavergne and Vuong (1996) base their test on the em-
pirical mean-squared error, which is very often adopted in parametric hypothesis
tests, from the kernel regression, and suggest a consistent test for discriminating
between two sets of regressors. Remaining in spirit of Lavergne and Vuong’s ap-
proach, Hall and Hart (1990) construct a test for differences between means in
nonparametric regressions and adapt it to the bootstrap resampling scheme. More
consistent tests are introduced by Lewbel (1995) who tests Slutsky symmetry us-
ing U.K. survey data and by Gozalo (1993) who constructs a theoretical test for
omitted variables. Last but not least, Yatchew (1992) proposes a test based on
comparison of unrestricted and restricted sums of squares, using residuals from
the nonparametric regression model. One can easily extend the list at will.

Often adopted in the literature on nonparametric hypothesis tests has been
the approach that approximates the finite-sample null distribution (f.s.n.d.) of a
test statistic by its asymptotic distribution. This is unfortunate since such ap-
proximations are usually subject to serious errors when the empirical distribution
of the observed sample significantly departs from the true unknown distribution
(Singh, 1981; Hall and Horowitz, 1996). Efron (1979) offers the bootstrap re-

!The author would like to thank Michiel Keyzer not only for his commensts and suggestions
on the earlier version of the paper but also for his enthusiastic ideas that pulled my attention
towards this exponentially growing area of econometrics.



sampling scheme as a way to avoid the approximation errors and to identify some
unknown characteristics of the test statistic associated with the observed sample.?
The bootstrap assumes that the unknown relationship between the population and
the actual sample is preserved in the relationship between the actual sample and
the bootstraped samples. Accordingly, the f.s.n.d. is approximated through the
bootstraped distribution based on resamples from the actual sample. To date, the
bootstrap technique has found many useful applications especially in situations
where variance or confidence limits of test statistics cannot at all or can only with
undue effort be calculated by analytical means or where test statistics depend on
unknown characteristics of the underlying distribution of variables of interest or
where there is a need to estimate the distribution of test statistics in high di-
mensional linear models or to measure the goodness of fit of a regression model
(Delgado and Manteiga, 1999; Stute, Manteiga, and Quindimil, 1998; Mammen,
1993; among others).

The present study aims at adapting Fan and Li’s (1996) nonparametric asymp-
totic hypothesis test procedure to the bootstrap framework as this framework, as
shown by Hall and Horowitz (1996), promises smaller approximation errors than
those associated with the asymptotic analysis. Such adaptation is relevant be-
cause, as proven by Huskova and Janssen (1993), the bootstrap is consistent for
degenerate U — statistics which are the building blocks of the nonparametric ker-
nel regression we apply. The current study contributes the literature through the
adaptation of an asymptotic test to the bootstrap framework.

The rest of this study is organized as follows. In the following section we
discuss the main approaches adopted in hypothesis testing and outline the main
advantages of the bootstrap over the asymptotic approximation. In Section 3, we
describe and modify Fan and Li’s test. Section 4 explains how to calculate the
bootstrap test statistic and how to make a decision by using it. Finally, Section
5 concludes the paper.

2Here is the simplest example to illustrate why and how the bootstrap is applied. Suppose
that a real-valued parameter, 7, for example, the unknown population mean of n i.i.d. random
variables, can be written as a functional of some common cumulative distribution function
F; that is, n = n(F). The objective is to obtain information from the actual sample {X; :
i = 1,..,n} on n. Put differently, a relationship is sought between 1 and the sample, and
the bootstrap method approximates this relation by utilizing the relationship between 7 (i.e.,
the sample mean) and a bootstrap sample {X* : ¢ = 1,...,n}. But, as is clearly seen, this
approximation is possible only through the approximation of F', and hence the bootstrap is
applied to approximate F'.



2. Motivation for the bootstrap

How robust is a decision if it is based only on one sample of data? This has been
the most prominent research question in statistical theory and still occupies the
first seat in the theory. To date, decision rules have been constructed as follows.
First of all, the sample at hand is reduced to a single observation, which is in
statistical theory called test statistic; next, the asymptotic distribution of that
statistic is obtained as the number of observations goes to infinity; and finally, an
arbitrary confidence level, conventionally set at the 5 percent, is used to make a
decision as to whether the statement under the null hypothesis is valid. What is
unfortunate in this context is the fact that that single test statistic contains no
information in the continuous sample space, giving rise to different approaches to
the development of a robust decision rule.

The classical and Bayesian approaches are often adopted in the literature as
a way to bridge the gap between the actual observation and a decison rule. The
fundamental difference between these approaches lies in the way the parameters
of the model of interest are treated. The classical approach treats them as un-
known constants to be estimated, and the OLS method provides the best linear
unbiased estimators. These estimators are then evaluated for qualities, such as
unbiasedness and consistency, by repeated sampling from the population assumed
to be available. On the contrary, the Bayesian approach treats them as random
variables about which the analyst has or can obtain information before observing
the actual sample. This information, called prior information, is characterized
by a prior probability distribution. The task then becomes to incorporate this
information into the analysis, but unfortunately its update might vary across in-
dividuals.

Research on establishing ”good” decison rules has not yet been conclusive
because in practice the population is very often unavailable and because prior
information makes inferences highly subjective. A proper interpretation of a sin-
gle test statistic requires knowledge of its f.s.n.d., which is available only in very
specific and less realistic circumstances, and it seems that it would be wrong if
such knowledge is derived from approximations through its asymptotic distribu-
tion. There are few good reasons not to rely on the asymptotic approximations.
First, asymptotic theory pertains to the hypothetical situation of infinitely many
observations, while, in fact, there are only few observations. Second, asymptotic
distributions are independent of any feedback mechanism, whereas the f.s.n.d. of
a test statistic is in general affected by such mechanisms. Third, various types of



misspecifications, such as wrong distributional assumptions and dynamic misspec-
ification, may have important effects on the accuracy of asymptotic distributions.?
All in all, in his paper, Efron shows that the bootstrap might offer some insights
when situations of the above kinds arise. In this paper, we give it a try to see
whether the bootstrap really generates better results relative to the asymptotic
results.

3. A nonparametric hypothesis test procedure

A statistical test is a decision problem involving unknown parameters that must lie
in a certain parameter space. However, this parameter space can be divided into
two disjoint subsets, and one must figure out, perhaps using a random sample of
data, the subset that is more likely to contain the unknown parameters. Following
Rabinson (1989), we develop a hypothesis test that involves the seven main steps.
In the first step we specify a data-generating process to characterize the data at
hand. A model is constructed in the second step. The hypotheses of interest
are formulated in the third step: a null hypothesis is maintained until evidence
to the contrary is shown, and an alternative hypothesis is adopted if the null
is rejected. In the fourth step we establish asymptotic distributions of distance
measures implied by the two hypotheses. A test statistic is defined in the fifth step
- a single condensed value that has a known distribution under the null and has
some other distribution under the alternative hypothesis. The test is carried out
using this single statistic rather than by considering the multidimensional sample
space. In the sixth step we define a critical region associated with those values
of the test statistic for which the null will be rejected. Finally, we establish a
decision rule. In the subsequent paragraphs these steps are explored.

Step 1. The data-generating process (DGP)

Assumption 1. Let {(Y, X)} be an independent and identically distributed (.i.d.)
random sample (r.s.) of n observations drawn from (1 + k)— dimensional
distribution with density f(.,.), where Y is a scalar and X = (X1, ..., X}).!

3For a more detailed discussion, the reader is referred to Delgado and Manteiga (1999), Stute,
Manteiga, and Quindimil (1998), Giersbergen (1998), Hall and Horowitz (1996), Phillips and
Park (1988).

4Formally, a random variable, Xj,j=1,2,..k, is defined as a function of events denoted by
w; that is, x; = X,;(w), where z; is a realization of X; when the event @ occurs, and likewise,
(y,x) is a particular realization of (Y, X), where z = (1, ..., ).



Assumption 1 makes explicit the way the data should be generated. Indepen-
dence ensures that the product of marginal distributions, fy (v), fx, (1), ..., fx, (%),
is equal to the joint distribution,

Fmy, o ae) ™ () fx, (). fx, (21) for each (y, z) € R¥*HL,

while identical distribution ensures that the product of all of the marginal distri-
butions with the same functional form is equal to the joint distribution,

fly,x1,..., 1) i f@) f(x1)...f(x1) for each (y,x) € R¥T,

where © = (x1,...,2;) € R*. The independence imposed is crucial: if the r.v.’s
are normally and identically distributed only they are not necessarily stationary
because it is possible to construct different joint distributions that all have normal
marginal distributions. By changing the joint distributions, we could violate the
stationarity condition while preserving marginal normality. Thus, stationarity
strengthens the assumption of identical distribution, since it applies to joint and
not to simply marginal distributions.” On the other hand, stationarity is weaker
than the 7.7.d. assumption, since 7.i.d. sequences are stationary, but stationary
sequences do not have to be independent.

Step 2. The model
Consider the nonparametric regression model,
yi = r(x;) + €, (3.1)

where z; = (1, ..., %) € R* is a vector of k variables, ¢; the disturbance term
assumed to satisfy E(e;|X;) = 0 almost surely (a.s.) (or with probability 1).
Let r : % — R be a real valued Borel measurable true but unknown regression
function. The goal is to estimate, r(x;), without making explicit assumptions
about its functional form. Assumption 1 further implies that Y satisfies E|Y| < oo
and E(Y) = py, and that X satisfies F|X| < oo and E(X;) = p; for all j.% These
conditions ensure the existence of the conditional expectation of y; given X; = x;;
that is, E(y;|X; = x;) = r(x;) for all z;.

5 A sequence is stationary if the joint distribution of the variables in the sequence is identical,
regardless of the date of the first observation.
6See Theorem 3.1 in White (1984, p.30).



Step 3. The null and alternative hypotheses

We consider a model with k(= ¢+ p) independent variables and aim at testing
the significance of a total of p variables. The null and alternative hypotheses are
expressed as a moment restriction,’

Hy : r(x;) =m(z]) as. (3.2)

where ! = (@;1,...,2;) € R9. The null hypothesis states that given z;, the
contribution of p variables to the explanation of the variation in y; is insignificant;
that is, E(y;|x;) = E(y;|z]). Defining v; = [y; — m(z])], we have the following
restricted model under Hy,

yi = m(z]) + vi, (3.3)

where E[vi| Xi] = E(y; — m(27))|Xi] = Ely;| Xi] — E[m(27)|Xi] = r(z:) — m(a])
= 0. Since E[v;|X;] = 0 under Hy, we have

T = E[v;E(vi|X;)] = E{[E(v;] X;)]*} = 0. (3.4)

On the contrary, since E[v;|X;] = r(z;) — m(x!) # 0 under Hy, we have T" > 0.
Using the sample analogue of 7', which is some measure of distance between the
two nonparametric regression models, 7(z;) and m(z!), we form a consistent test.
This measure has a non-degenerate U— distribution under Hy, while having a
degenerate U— distribution under E[v;|X;] = 0 for all X;.®
An estimator of T. The idea is to estimate T" and test its significance. Rejec-
tion of Elv;|X;] = 0 would imply rejection of Hy. Obviously, if v; and E[v;|X|]
were available, we could estimate (3.4) by X" ,v;E[v;|X;]. Unfortunately, they
are not available, and therefore to obtain a feasible test statistic, we estimate it
by
S B ()X ), (35

n <
=1

T,

"See Gozalo (1993), Fan and Li (1996), and Delgado and Manteiga (1999) for a similar
formulation of the hypotheses.

81t should be noted that Hy, a conditional first-moment restriction, is translated into a
conditional second-moment restriction, because this allows for the exploitation of U — structures.



where f(z]) and f(z;) stand for the joint probability density functions (p.d.f.)
of 2 and =z;, respectively.” The kernel regression method is applied and (3.5)
estimated by its sample analogue.!® The term v; is estimated by 7; = (y; — ;)
and a kernel estimator of m(z), denoted by ¢;, by

[(n = D) 31 U555

yi = - , (3.6)
f (i)
where f(af) = [(n = Dn) 7 Y gy K&, K = T k(422), and k() a uni-

variate kernel with band width n = 7,. Next, we calculate E[7; f(z?)|X;]f(z;)

as
n

[(n— D0 > [7:f ()] Ky (3.7)

j=1&#

where f(z;) = [(n — 1)*]"! >tk Kigy Kij = i k(7457%), and 6 = 6,

band width corresponding to the unrestricted regression model (3.1). Lastly,
substitution of 7;, f(z}), and f(x;) into (3.5) yields the sample analogue of T, :

f— - 0691 Y Y [mifad)] [fa)] K (3.8)
i=1 j=1&j#i
where 7; = (y; — 9;) = [m(2) + v] — [m(z]) + 2], and m(z]) and 7; are defined
in the same way as ¢; in which y; is replaced by m(x?) and v, respectively.

Assumption 2. The kernel function K(X) is a Borel measurable real-valued
bounded function on a Euclidean space such that (a) [ K(X)dX =1, (b)

9A density-weighted version of 27, v; E[v;| X;], which was first introduced by Powell, Stock,
and Stoker (1989), is commonly used in the literature for its two useful consequences. First, its
multiplication by f(z?) avoids trimming the small values of the density function; and second,
this multiplication yields a degenerate U — structure, whose asymptotic properties have been
well-established.

10The nonparametric kernel regression has several advantages. First, rather than imposing
a particular class of functional and distributional forms to the data which may or may not
be correctly specified, it allows the data to reveal the data-generating process. Second, it
can be designed to keep bias small enough not to compromise the asymptotic validity of test
statistics. Third, in the presence of serial dependence, it is easier to handle mathematically
than some others via estimating the density function by the the drop-one method. Dropping-
one observation at a time yields a density estimate for x;, f (z;), which is independent of x;.



JIK(X)]dX < oo (i.e., boundedness), (c) supy |[K(X)| < oo (i.e., K van-
ishes outside X), and (d) K(X) = K(—X) and lim x| || X || K(X) =0,
where || X || is the Eucledian norm of X in R*.

Assumption 3. (a) 7(X) and f(X) are Lipschitz continuous in their respective
arguments and (b) supycx [7(X)| < oo and supyex f(X) < oo (ie., 7(.)
and f(.) vanish outside the compact support X).

Assumption 4. Let {0,,7,} be an a priori chosen sequence of positive numbers
satisfying lim,, o 0, = 0, lim,, . 71,, = 0, lim,,_, n@ﬁ = 00, lim, o nni =
00, limy, o0 n1200%% = 0, lim,, o0 (%) = 0, where § = min(A+1, ), A > 0,

and p > 0 (Fan and Li, 1996).

Assumption 2 characterizes the kernel K which vanishes outside the Euclidean
space X CR*. The test proposed is still valid if X is a finite convex subset of R¥
and f(X) vanishes on the boundary of X. However, if X is a compact subset of
R* and f(X) is bounded away from zero on X, then the proposed test needs some
modification. Some trimming method is needed to overcome the boundary effect.
One way to accomplish this is to use a fixed weight function such that the support
of the weight is a proper subset of X. For consistency of such tests, the weight
function is required to be a function of n such a way that its support approaches
X asn — 400 (Fan and Li, 1996). Assumption 3 guarantees that there exists two
unique continuous functions, 7(X) and f(X), defined for all values of X such that
their derivatives exist and reduces to 7(Xy) and f(Xy) at X = Xy. The first four
conditions in Assumption 4 simply state that (i) band widths should be small if
n is large, (ii) the kernel estimators involved are consistent, and (iii) the limiting
distribution of neﬁ/ 2T, under Hy ia centered correctly at zero. Also implied by
Assumption 4, as suggested by Rabinson (1988), Fan and Li (1996), and Delgado
and Manteiga (1999), are the necessary conditions, y = ¢/2 and A = (¢/2) — 1,
required for bias reduction using higher order kernels.

Step 4. The asymptotic distribution of T,

~ The asymptotic distribution of T, needs to be determined to tell how far
T, must be from zero to reject Hy, and a value of T), far from zero should be
regarded as evidence against Hy.!! The key to establishing /n— consistency

1A lengthy proof for the existence of the asymptotic distribution of 7}, is given in Fan and
Li (1996). The proof heavily exploits the key features of U — statistics which are commonly

9



and asymptotic normality of 7}, is to note that Equ. (3.8) can be written as a
U — statistic, whose structure permits proper accounting of the ”overlaps” in the
density estimators. These overlaps result from the fact that each data point is
used in the estimation of several density estimates.'?

The finite sample distribution, defined as D, (x) = P[y/n0%*(T, —T)/ \/ﬁ&fn
x], has no closed-form expression because it depends on certain features of the
distribution of (Y, X). Luckily, by the central limit theorem the studentized root,

[\/n0"*(T, —T)/ \/E&TA”], is asymptotically standard normally distributed under

weak regularity conditions. Define Z,, = an/ T, 4N (0,202 ) since T' = 0 under
Hy. Next, a law of large numbers is 1nvoked to show consistency in probability
of Z, for Z (i.e., E(Z,) % Z) and unbiasedness in probability of Z, to center Z,
correctly at zero (i.e., P[{[E(Z,) — Z] < €}] = 1 where ¢ > 0).

Estimation of the consistent variance of .. Typically, the variance o2 is
unknown. The goal is then to find a consistent estimator &;n such that (AQA —
UQT) — 0 as n goes to oco. Utilizing the U — structure, Fan and Li (1996) derive

&T , a natural estimator of the asymptotic variance of T,

62 = [n(n — 1)6"]" ;]lz&;#[af ][u,f ”VK2 du}. (3.9)

Step 5. The test statistic

A touchy point is to calculate an ”appropriate” test statistic, 7,,, where 7, =
7(Z,). This functional implies that the distribution of 7, should agree with that
of Z,. Hence, we opt for a y? distribution for 7, since degenerate U — statistics

used in the literature when the kernel regression is utilized for hypothesis testing purposes, see,
for example, Powell, Stock, and Stoker (1989), Lee (1990, 1992), Horowitz and Hardle (1994),
Sherman (1994), Zheng (1996), and Fan and Li (1996). For the arguments in the following
paragraphs, the reader is referred to Definitions 1 and 2 and Assumption A, stated by Rabinson
(1988) and Fan and Li (1996).

12Gee Appendix for more on the structure of U — statistics. and on how one can translate the
kernel estimator as a U — statistic.

3For bias reduction, Robinson (1988), Powell, Stock, and Stoker (1989), and Liu and Singh
(1992) suggest the use of a higher order kernel or the generalized jackknife estimator of Tn,
because both the kernel and jackknife estimators maintain maximum rate of convergence in
distribution.

10



built in Z, ordinarily are asymptotically distributed as linear combinations of x?
variates (see Horowitz and Hardle (1994)).!4

Define
2

Zn,
\/5& T,
where T' = 0 under Hy. But 7,, depends on certain unknown characterisitcs of the
distribution of (Y, X), and an asymptotic test cannot be implemented except in
exceptional circumstances. That is why we propose a bootstrap test in order to
approximate the f.s.n.d. and then estimate the critical values of 7,."

“ X (3.10)

Tp =

Step 6. The critical region

A critical region of given size a is defined as Pr[7} ., < 7] = «, where
) the boot-

obs

727 is the test statistic calculated from the observed sample, T;[

strap critical value, B the number of the bootstrap samples.

a(B+1

Step 7. The decision rule

For small n, an approximate a—level significance test is to reject Hy if 7% >

TZ[a(BH)]-

4. Hypothesis Test Algorithm

The bootstrap treats the observed data as if they were the population and, by
repeatedly sampling the data and computing {77, : b = 1,..., B}, from the re-
sulting bootstrap samples, develops the empirical distribution of the bootstrap
version of 7,, 7). The bootstrap estimate of the o — level critical value of 7,
is the 1 — a quantile of the empirical distribution of 7). Three main bootstrap
schemes are present to accomplish this: the residual-based bootstrap (RB), the
paired-based bootstrap (PB), and the external (or wild) bootstrap (EB).! Fol-

lowing Hall and Hart (1990), we opt for the residual-based bootstrap scheme to

Developing an asymptotic test procedure, Fan and Li (1996) define 7,, = {ngf;/ 2T, / ﬂ&T}
— N(0,1) in distribution under Hy.

15See Delgado and Manteiga (1999) for an application of a bootstrap test in a similar context.
They employ the Kolmogorov-Smirnov and Cramer-von Mises test statistics.

16See Giersbergen (1998) for a comparison of these resampling schemes.

11



determine critical values for testing because the null postulates E(v;|X;) = 0 V,.
Here is the procedure to apply this scheme. First, the residuals, 7; = (y; — 9;),
are centered by 7; = (; — ), where v = n~ !X ;. Then, a bootstrap resample,

vl i=1,..,n}, is drawn from {7; : i = 1,...,n} at random, with replacement.
Resampling is done from the centered residuals to ensure E(7;|X;) = 0 under H,
and hence E(7]|X;) = E(1;]X;) = 0 V,. The centering is especially important as
the alternative hypothesis, F(7;|X;) # 0 ¥;, holds in the nonparametric regression
models.'

The residual-based bootstrap test
1. Consider the restricted nonparametric regression model,
yi = m(z]) + v,
and estimate m(z}) by

[(n = D] e i K
fa?)

where f(2f) = [(n — )77 3271050 KT

2. Define 7; = (y; — 9;) and approximate the asymptotic test statistic:

Ui =

2

i

where
Zn = anL/QTn
f= a6 S [d@d)] 3] Ko
i=1 j=1&j#i
Ki; = Hﬁzlk(%d ; %d)
52 = [n(n—1)6" " i i E f(xg)r 7, f(xg)rmj [ / KQ(u)du]
i=1 j=1&j#1i

1"The reader is referred to Freedman (1981,1984), Hall (1988), Hall and Hart (1990), and Li
and Maddala (1996) for a discussion of choice of appropriate resampling scheme.

12



/K2 ur [(n—1)0"] /Va’r’[f(xi)]da:i
fla) =[n=16" Y K

3. Rescale 7; as i; = (; — ), where 7 = n™'X"_,;, and draw the bootstrap
sample {77 : i = 1,...,n} at random, with replacement, from {7; : i =
1,...n}.

4. Calculate the bootstrap test statistic:

.z
Th \/§&T;{
where
Ty =t =00 Y > o] 7] K
i=1 j=1&j#1

6%, = [n(n—1)0"] Z Z [ } [ﬁ; A(a:g)rKij [/K%u)du} .

i=1 j=1&j#i
Replicate this calculation for B times to obtain

{r},:b=1,..., B}.

5. Let 7* iy < T* oy S - S T*[ B] denote B ordered bootstrap realizations. Given

«, the bootstrap crltlcal value, 7% _, is determined as'®

nao’
T;kwc = T;kz[oz(B—l—l)]:
such that Pr(7}, > 77 ,) = a.
6. Reject Hy if 79 > 17
7. Choose a such that
=Pr [Tff’s > Tfm]
where o denotes the bootstrap p — value (or the rejection probability)
conditional on Hy.

18For convenience in applications, B is usually chosen in such a way that a(B + 1) is an
integer. For example, if B =99 and a = 0.05, then 7}, = 72[5} which is the 5th lowest value in
the ordered T:;[ M-

13



5. Concluding Remark

In this paper we adapted an asymptotic, nonparametric hypothesis test to the
bootstrap framework, applying the kernel regression method for the estimation of
a measure of distance between the models under the null hypothesis. Furthermore,
with an algorithm, the proposed bootstrap test was operationalized, allowing us
to compare the asymptotic with the bootstrap approximations of the test statistic.
The paper also developed a Mathematica Code for the test algorithm.

14
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(*******************************************************)

(*******************************************************)

(» Bootstrap Hypothesis Test Algorithm *)
(» Developed by Tugrul Temel, June 28, 2011 *)
(» Development Research Institute, Tilburg University *)
(* Tilburg, The Netherlands *)

(*******************************************************)

(*******************************************************)

The Residual-Based Bootstrap Test

<< Statistics'DescriptiveStatistics’
<< Statistics’NormalDistribution

Clear [X,Y,n,k, p,q, n, e, o, ke, prob,Y ", 7, ¥, kernel,

probability, F ", vark, T, VarT", VarT, =z, v, ¥, f , X*,
k*,pr *, T ,F", VarK *, t*, OrderedTS, a, M, t},];

SetDirectory ["u:\Andre\Bootstrap" 1;
Data = Import ["Georgia.dat", "Table" 1;
Y = Data [[1]];

X[1] = Data [[2]];

X[2] = Data [[3]];

X[3] = Data [[4]];

(******************************************************)

(* Variables, Parameters, and Indices *)
(******************************************************)
(» X[d] d-th independent variable, d =1,...k *)
(» Y dependent variable *)
(* n # of observations, i,j =1,...,n *)
(» p # of variables tested for significance *)
(* q # of variables in the restricted model *)
(*» «a significance level *)
(*» n band width for the restricted model *)
(» 6 band width for the unrestricted model *)
(* u, A,y parameters for biased reduction *)
(» o[d, e] standard deviation * 6 *)
(* o[d, n] standard deviation * 7 *)
1
(% e:N[(n (i+2) )_k] optimal band width *)
(* necessary conditions for biased reduction: *)
(% u=N[%+1]; A:N[%]; ¥=N[Min [u, 2+1]] *)

(******************************************************)

n = Length [Y];



Bootstrap Mathematica Code.nb

O T X
]
~ b, W

-p;

1

_N[[n<q+2>]m];

6 = N[L3 n],
Do[

ol[d, 6] =N[VVariance [X[d]] e];

o[d, n =N[VVariance IX[d1] n], (d, 1,k 3}

(*************************************************)
(» Step 1: Estimate Y by the N  -W kernel, Y~ *)

(*************************************************)

Do[
Do[
Do[
kern [d,i ] = N[NormalDistribution [X[d1[[i11, old, n111;
prob [d,i,j 1 =N[PDF[kern [d,i ],X[d1[[j1111], {iiL,n }
1, {i,1,n }
1, {d1,q}
1
Do[
Y11= N[ ZY[[J 1] ﬂprob [di,j 1-Y[[i]] ﬂprob [d, i, i ]]/
j=1 d=1 d=1

[iﬁprob[dlj ]—]_[prob [d,i,i ]]] {i,1,n }
j

j=1d=1

Do[

j=1d=1 d=1

n g q
f[i]=N[(n o [anrob [d,i,j 1-]]prob [d,i,i ]]];
VI =N[Y[[i11-Y[i1], {i,1,n }

]

Dol
Dol
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Dol
kernel [d,i ] = N[NormalDistribution [X[d]1[[i]1], o[d, €]111;
probability [d,i,j 1 =N[PDF[kernel [d,i 1,X[dI[[j1111, (.1, n }
1, {i,lL,n }
1, {d, 1,k }

n k k
Fli] = [ - [anrobablllty [d, i, j ]—]_[probability (d,i,i ] ] (i.1,n }
(n-1) e

j=1d d=1

VarK = (n-1) é* Variance [Table [IA:[i 1, L, 3]

n n
ZZ v[|]f[|] V[J]f[j] nprobablllty [d,i,j 1-

TIni =N[n T {. 2

d=1

n [S
Du(vtiafrin) (vii1frig) Jerobabilty — [d,i,i ]]
i=1

n n k
VarT=N[n(n 1)6k[ZZ (v 1f0i1)* (V0170 1)° [ [probabilty — [d,ij 1-

i=1]j d=1

n 5 5 k

Z(\"x[i]f[i]) (vri1frii) ﬂprobabnity [d, i, i ]]
i=1 d=1

] VarK;

nek/2 T[n] ]

vV 2 VvarT

t[n] = N[

(*****************************************************)
(* Step 3: Define standardized residual, i *)

(*****************************************************)

Do[
VIi1=V[i]1-Mean[Table [V[i], {i,1,n }]], {i,1,n }

|E

(*************************************************************)

(= Step 4: Bootstrap samples {3} from ¥, *)
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(*************************************************************)

(* asterix * superscript for bootstrap variables *)
(» B # of bootstrap samples, b =1,...B *)
(% VI[i]1=V estimated v; from the restricted model *)
(» v[i 1=(¥ - v)=v; standardized Vi, where v=Mean[¥; ] *)
(» v'[b1={¥"} b-th bootstrap sample from (Vi } *)
(% V[b]:Y{':(\?i +v;)  b-th bootstrap sample from Vi } *)
(+ YY[b]=Y, rearranged Y ~; according to b -th sample *)
(* X*[j,b 1=X rearranged X ; according to b -th sample *)

(**************************************************************)

B = 39;

Do[
rndSmpl = Table [Random[Integer, {1,n 3}], {n}1;
Bsmpl [b] = rndSmpl, {b,1,B }
1

Do|
v'[b] = Table [ v[Bsmpl [b]1[[i 111, {i,1.n }];
f*[b] = Table [f (Bsmpl [b][[i11], {i1,n }], {b,1,B }

|E

Do[
Do[
X*[d,b ] = Table [X[d][[Bsmpl [bI1[[i]]1]. {i,1,n }], {b,1,B }
1, {d, 1,k }
1

(*****************************************************)
(* Step 5: Calculate the bootstrap test stat G Th %)

(*****************************************************)

Do|
Do|
o*[d, b, 6] = N[\/Variance [X*[d, b 1] e];
o*[d, b, n] = N[\/Variance [X*[d, b 1] n], (d, 1,k }
], {b,1,B }

]

Dol
Dol
Do[
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Dol
k*[b,d,i 1 = N[NormalDistribution [X*[d,b1[[i]1], o*[d,b, ©]11;
pr*[b,d,i,j 1 =N[PDF[k*[b,d,i 1,X*[d,b]I[[j11]], {iil,n }

1, {i,1,n }
1, {d,1,k }
1, {b,1,B }
1
Ak 1
Do[T [b]=N[—
n(n-1) e
n n . - . . K
D (T brti 11 b 17) (Yirbrct 11 FbrcGi 11) [ er*ibdii o 1-
i=1j=l d:l
n - . 2 k
DL (i1 b1 1) Jeretbidivi ]
i=l d:l
], (b,1,B }
Do[
Do[
n k k
F [b,i 1=N pr*[b,d,i,j ] - pr*[b,d,i,i ] {i,,n }
[(n—l)ek ,;ﬂ ﬂ ]
], {b,1,B }

Do|
VarK*[b] = (n-1) e Variance [Table [IA:*[b,i 1, {i1,n }]], {(b,1,B}

]:

Do[

1
VarT *[b] = N[m
n(n-

n n k
SIS orrri11 frbrrri11)° (3b1cr 11 b1t 1) [eretodii 1-

1 =lj =1 d=1

n [S
> (¥ o111 fb1tci11)” [Jprib diii ]
1 d=1

]VarK*[b], (b,1,B }
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Do[
nek’2 7" [b]
t*[b] =N —], {b,1,B }

A2 VarT *[b]
]

(***************************************************)

(* Step 6: Order the bootstrap realizations, *)
(* Thi1;STa2; S Sthgey, and calculate *)
(* the bootstrap critical value, Tha *)
(* a = significance level *)

(***************************************************)

OrderedTS = Table [t*[b], {b,1,B }7I;
a = 0.05;

M=a (B+1);

T, = Sort [OrderedTS 1[[M]];

(***************************************************)

(» Step 7 : Establish a decision rule *)

(***************************************************)

* 0

If [t[n] > T}, Print ["Reject H o because <t[nl1>t}," 1.
Print ["Accept H o because <t[nl<zi,"11;



