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Summary� In case of estimating growth curves nonparametrically one faces the

fact that the data driven bandwidth selectors published in standard textbooks mostly

choose bandwidths much too low� This is due to the positive autocorrelation observed

in growth data� This paper introduces an easy way to incorporate this e�ect in the

known concept of penalizing functions�
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� Introduction

Nonparametric regression is a �exible tool for estimating the underlying true but unknown

regression function from noisy data� Unlike the parametric methods it does not require any

assumptions other than the smoothness of the curve� But although the method is called

nonparametric there is a very important parameter to be estimated� As this paper tackles

the widely known kernel method� this parameter is to be characterized as the window width

since kernel estimators are locally weighted averages of the response variables where the

weights assigned are derived from the kernel function� The width of the window containing

positive weights is determined by the bandwidth parameter�

The magnitude of bandwidth controls the smoothness of the estimated regression function�

If the bandwidth is too large� the regression function is oversmoothed �i�e� the estimated

function may miss some important local properties of the true function� whereas in case of

too low a bandwidth the regression function is undersmoothed �i�e� the estimated function

may have some features which are the result of some irregularities and are in no way

systematic�� Hence� choosing an optimal value of the bandwidth is the main problem in

the �eld of nonparametric regression� This holds true since the other variable component�

the kernel function itself does not have any signi�ciant in�uence in the performance of the

estimator �see e�g� H�ardle �	

�a���

For independent observations there are several methods to be found in standard textbooks

�see e�g� H�ardle �	

�b��� These are mostly designed to minimize a quadratic error

measure like the mean average square error �MASE�� But� as H�ardle and Marron �	
��

proved� the choice of the error measure to be minimized is not critical in the sense that

sup
h�Hn

�
�
�
�

d�h��MISE�h�

MISE�h�

�
�
�
�

a�s�
�� � �n���

where Hn � �n���� n���� � � � � �

�
and d�h� is one of the widely known error measures

ASE�h�� MASE�h� and ISE�h�� h is the bandwidth parameter and n the number of

observations�

Two main methods have been proven very useful in the case of independent observations�

the crossvalidation method and the more �exible concept of penalizing functions which

even includes measures known from time series analysis� This paper presents a generaliza�

tion of this concept of penalizing functions to the case of correlated errors which will be

observed when working with growth data� It will be shown how the conventional concept

�



fails in this case and how this failure may be corrected� A small simulation study will

support these results�

In the literature there are already some solutions to special problems connected with cor�

related data� M�uller and Stadtm�uller �����	 worked out a test for serial correlation which

heavily depends upon the assumption that with increasing n in a 
xed interval and be�

cause of the smoothness of the underlying true regression function the in�uence of this

regression function vanishes asymptotically and therefore can be viewed as a nuisance re�

gression function� Further� they do not oer a recipe how to choose the optimal bandwidth�

Hart and Wehrly �����	 have developed a way to calculate the optimal bandwidth in case

of correlated data using observations from several experimental units� Chu and Marron

�����	 compare the modi
ed crossvalidation �MCV	 with the partitioned crossvalidation

�PGCV	 introduced by Marron �����	� Altman �����	 corrects for the correlation by us�

ing the empirical autocorrelation function� a method which is also pursued in this paper

in the context of penalizing functions� Chu �����	 oers a bandwidth selector derived by

minimzing the MASE�h	 and using the empirical autocorrelation function�

In the next section the conventional concept of penalizing function is presented and it

is shown why and how this concept fails in case of correlated data� The third section

contains the generalization of this concept which corrects for the above failure� The paper

closes with a short simulation study which shows �in the case of a growth function	 the

superiority of the new bandwidth selector�

� The conventional concept of penalizing functions

First it is considered the equally spaced 
xed design

Yi � m�xi	 � �i

with support on ��� �� where m is a smooth unknown regression function and the �i are

iid errors� To estimate the regression function m� we consider the widely known kernel

estimator as introduced by Nadaraya �����	 and Watson �����	�

�m�x	 �

P
n

i��Kh�x� xi	YiP
n

i��Kh�x� xi	

Kh�x � xi	 is the simpli
ed notation for �

h
K
�
x�xi

h

�
� where K�u	 is the known kernel

function� It is easily seen that �m�x	 belongs to the class of linear estimators as it can be

�



written as a weighted sum of the observations�

�m�x� �
�

n

nX
i��

Wi�x�Yi with Wi�x� �
Kh�x� xi�

�

n

Pn
i��Kh�x� xi�

As stated in the introduction the optimal bandwidth may be estimated by minimizing a

quadratic error measure like the ASE�h�� which can be decomposed as following�

ASE�h� �
�

n

nX
i��

�m�xi�� �m�xi��
�

�
�

n

nX
i��

m��xi� 	
�

n

nX
i��

�m��xi��



n

nX
i��

m�xi� �m�xi�

Obviously only the third term is of practical interest since the �rst term is independent

of h and the second term can be directly computed as it does not contain any unknown

elements�

Estimating the third term may be simply done by substituting the unknown regression

function m�xi� by the observable value Yi� If this is done throughout the whole expression

for ASE�h�� one obtains the following substitution estimate�

p�h� �
�

n

nX
i��

�Yi � �m�xi��
�

Minimization of this term must produce a value of h which leads to pure interpolation

since in this case p�h� � � In other words p�h� is a biased estimator of ASE�h�� which is

easily seen by the following decomposition�

p�h� �
�

n

nX
i��

�Yi � �m�xi��
�

�
�

n

nX
i��

��i 	ASE�h� �



n

nX
i��

�i � �m�xi��m�xi��

As the �rst term is again independent of h the usefulness of p�h� as an estimator of ASE�h�

depends heavily on the magnitude of the last term� Unfortunately this is not of negligible

size�

E

�
�




n

nX
i��

�i � �m�xi �m�xi��

�
� �




n

nX
i��

E

�
�i

�
�

n

nX
i��

Wj�xi�Yj �m�xi�

��

� �




n

nX
i��

E

�
�i

�
�

n

nX
i��

Wj�xi��m�xj� 	 �j��m�xi�

��

� �




n

nX
i��

E ��i�

�
�

n

nX
i��

Wj�xi�m�xj��m�xi�

�

� �




n�

nX
i��

nX
j��

Wj�xi�E ��i�j �

�



The conventional concept of penalizing functions now makes the assumption that the

errors �i are independent random variables with expectation zero and variance ���xi��

This reduces the above expression in the following way�

E

�
�

�

n

nX
i��

�i � �m�xi��m�xi��

�
� �

�

n�

nX
i��

nX
j��

Wj�xi�E 	�i�j 


� �

�

n�

nX
i��

Wi�xi�E
h
�
�

i

i

� �

�

n�

nX
i��

Wi�xi��
��xi�

As this term does not vanish� the substitution estimator has to be adjusted by a cor�

recting term which penalizes too small bandwidths� This leads to the penalizing function

estimator�

G�h� �


n

nX
i��

�Yi � �m�xi��
� �

�
nX

i��

Wi�xi�

�

Any function ��u� which satis�es the condition

��u� �  � �u�O�u�� �u� ��

may serve as a correcting term� The major examples are shown in table �

Table � Types of Correcting Terms

name ��u�

Shibata  � �u

Generalized CV 
�� u��

AIC exp��u�

FPE  � u
� u

Rice 
� �u

The penalizing function estimator now decomposes �ignoring terms of higher order� as

follows�

G�h� �


n

nX
i��

h
�
�

i � �m�xi�� �m�xi��
� � ��i �m�xi�� �m�xi��

i
�

�
 �

�

n
Wi�xi�

�

�


n

nX
i��

�
�

i �ASE�h� �
�

n

nX
i��

�i �m�xi�� �m�xi�� �
�

n�

nX
i��

�
�

iWi�xi�

�



One can easily verify that the expectation of the third term is exactly the negative expected

value of the last term which makes G�h� an unbiased estimator of ASE�h��

This of course only holds true under the crucial assumption of uncorrelated errors which

means in this case
nX

i��

nX
j��

Wj�xi�E ��i�j � �
nX

i��

Wi�xi�E
h
��i

i
�

The question now is what happens if this assumption does not hold� Heuristically the

following conclusions may be drawn�

� If the correlations are predominantly positive �i�e�
Pn

i��

Pn
j��Wj�xi�E ��i�j � �

Pn
i��Wi�xi�E

�
��i
�
� then the penalizing term is too small to compensate for the

bias and therefore the penalizing of too small values for the bandwidth fails which

leads to undersmoothing�

� If the correlations are predominantly negative �i�e�
Pn

i��

Pn
j��Wj�xi�E ��i�j� �

Pn
i��Wi�xi�E

�
��i
�
� then the penalizing term is too big which leads to an overpe	

nalizing of too small bandwidths and thus produces an oversmoothed estimate�

� Generalized concept of penalizing functions

As the bias of the substitution estimator contains the correlation structure of the errors

the penalizing term should contain this correlation structure
 too� As one can easily see

the bias extends in the correlated case to

Bias�p� � �
�

n�

nX
i��

nX
j��

Wj�xi���ji � jj� �

where the correlated case is assumed to be characterized by

E ��i�j � � ��	�ji� jj�

and where ��ji� jj� is the autocovariance function �	�ji� jj� the corresponding autocorre	

lation function� depending only upon the distance of the points xi and xj which is in the

relevant case of equidistant time points equivalent to the dependence upon the distance

of the points i and j�

The penalizing functions to be constructed have to estimate this bias� Thereby the Gen	

eralized concept should mimic the traditional concept insofar to further use the functions

�



from table � �especially the �rst�order Tayler expansion should be the same� ��u� 	

�
�u
O�u�� �u� ��� The autocorrelation function may now be included to construct

the generalized penalizing function selector�

�G�h� 	
�

n

nX
i��

�Yi � �m�xi��
� �

�
� �

n

nX
j��

Wj�xi���ji� jj�

�
A

Decomposing �G�h� it can now be shown that the penalizing term will correct for this bias�

�G�h� 	
�

n

nX
i��

h
�i 
 �m�xi�� �m�xi��

� 
 ��i �m�xi�� �m�xi��
i

�

�
�� 
 �

n

nX
j��

Wj�xi���ji � jj�

�
�

	
�

n

nX
i��

��i 
ASE�h� 

�

n

nX
i��

�i �m�xi�� �m�xi�� 

�

n�

nX
i��

nX
j��

��iWj�xi���ji � jj�

As in the uncorrelated case with the conventional concept of penalizing function the ex�

pectation of the last term in the decomposition of �G�h� is exactly the bias of the pure

substitution estimator

Unfortunately� the true autocorrelation function will be rarely known so that it has to be

estimated As in Altman ������ and in Chu ������ the autocorrelation function may be

estimated nonparametrically�

��h�s� 	

n����nh����sX
i��nh���

��i��i�s

n����nh����sX
i��nh���

���i

��i 	 Yi� �mh�xi� are the estimated residuals The limits of the above sums are formulated to

avoid the usual bias in nonparametric regression So the nh�� observations near the border

of the support ��� �� are just left out The estimated residuals are the result of a separate

nonparametric regression This leads to another problem� Estimating the autocorrelation

function is done using nonparametric regression which involves �xing another optimal

bandwidth Fortunately the choice of bandwidth is not so critical in this stage as the

simulation in the next chapter and other works �eg Altman ������� show

Another possible way is to suppose a speci�c parametric model for the error structure

and then to estimate the correlations by usual parametric methods This approach has

been followed by Truong ������ This of course leads to a general discussion about the

�



comparison between parametric and nonparametric methods� A completely nonparametric

method should not contain any parametric assumptions� so the path used in this paper is

to be preferred�

The in�uence of the bandwidth h used to construct the autocorrelation function is ex�

plained heuristically as follows�

� Using too high a bandwidth will lead to a too smooth estimate and thus some parts of

the systematic component will be found in the estimated residuals� This will increase

the in�uence of the assumed autocorrelation and thus the correction used above will

overpenalize smaller bandwidths which results in generally too large values for �h�

� Using too low a bandwidth will lead to a wiggly estimate �in the extreme case even to

interpolation	 and thus the estimated residuals will underestimate the real stochastic

in�uence so that the possible autocorrelation will be underestimated� This of course

leads to less penalization of too low bandwidths which results in generally too low

values for �h�

� Simulation Study

Throughout the whole section the true function m�x	 �normally unknown	 will be consid�

ered to be a logistic function

m�x	 

Y �

� � expfa� b � tg

with the parameters xed at Y � 
 �� a 
 �� � and b 
 �� The errors are generated from a

Gaussian AR��	�process� As the number of observations in growth curve analysis mostly

does not exceed n 
 ��� this was also the length of the generated times series� In each

simulation study there are N 
 ��� times series generated to perform the MC�simulation�

The kernel function used was the Epanechnikov�kernel �K�u	 
 �

�
���u�	I�juj � �		 since

it can be easily shown that this is an optimal kernel �see standard textbooks	� Anyway

the use of the kernel function is not as critical as the choice of the bandwidth�

First the in�uence of the bandwidth h used by the preceding nonparametric regression

will be analyzed� Therefore the ASE�optimal bandwidth is computed and relative to this

value h is determined� Three situations are examined �the situation of gure � is given	�

�



Figure �� Logistic function with Y � � �� a � �� �� b � � overlayed by a

Gaussian AR����process with � � �� �� and � � �� �

Y

x

�	 h � hopt��

�	 h � hopt


	 h � � � hopt

Using these values the optimal bandwidth �h is estimated	 Since it is more important to

examine the di�erence in ASE also the relative values of the ASE �ASE��h��ASE�hopt��

in each of the three cases are calculated	 Figure � shows the nonparametric density

estimate �f�h� of the MC�distribution of the resulting optimal values of h in the true

case �direct ASE�minimized� and the three cases to be examined	 It can be easily seen

that the success of the generalized concept of penalizing function depends severely upon

the choice of bandwidth in estimating the autocorrelation function	 Choosing too low a

bandwidth results in much too low estimated values for h	 Even values which are exactly

identical with the optimal bandwidth lead to a too low bandwidth	 Doubling the value

leads as expected to a too big value for the estimated bandwidth	 But the bias is

much smaller than in the �rst two cases	 Thus oversmoothing is much less critical than

undersmoothing	 This is supported by Figure 
 which shows the nonparametric density

estimate of the MC�distribution of the relative ASE�values at the estimated values for h

�



Figure �� Distribution of the true and the estimated optimal values for h

�f�h�

h

�ASErel � ASE�hopt��ASE��h���

The second part of the simulation study shows the superiority of the proposed method over

the conventional concept� Further	 the consequences of using the empirical autocorrelation

function are examined by comparing with the situation when the true but normally unkown

autocorrelation function is used� It will be seen that the empirical autocorrelation function

leads indeed to acceptable results�

The data are generated according to the 
rst simulation study with varying values for the

autocorrelation coe�cient � and for the standard deviation �� For all the combinations

the relative values of the ASE are calculated for the following three di�erent cases�

� Generalized concept using the empirical autocorrelation function �ASE��

� Generalized concept using the true autocorrelation function �ASE��

� Conventional concept �ASE��

It is easy to see that the relative ASEvalues have a minimum of � which indicates that

the used concept leads to an ASEoptimal choice of h� Increasing values show worse

performance� Table � shows the medians of all the di�erent cases �for each case there

were ��� simulations done�� Although the median is a useful measure it does not contain

��



Figure �� Distribution of the relative ASE�values

�f�h�

h

Table �� Performance of the proposed concept
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the complete information of the MC�distribution in each of the above cases� In order to

compare the performance of the di�erent concepts more accurately �gures � and � show

in analogy to �gure � the nonparametric density estimate of the simulated distributions in

the case of � 	 
� � and varying values for � �starting with � 	 �
�  up to � 	 
�  using

the same steps as in table ��� For the uncorrelated case � 	 
 a graphical presentation is

omitted since all three concepts work well �ASE� and ASE� are even equal in this case��

The graphs are in some way misleading since they show positive densities in areas below

�� This is the result of the chosen bandwidth �h 	 
� � in this case� for the nonparametric

density estimation�

One can easily see that the use of the empirical autocorrelation function is indeed accept�

able since the distributions of ASE� and ASE� are in fact quite similar� The dotted lines

which represent the traditional concept without taking into account the autocorrelation

show that an increasing absolute value of � leads to a worse performance� whereas the

value of � does not have any in�uence on the distribution of the relative ASE when us�

ing the proposed concept of the generalized penalizing functions so that this concept is

applicable without regard of the underlying correlation structure�

��



Figure �� Distribution of the relative ASE�values in case of negative autocorrelation�

ASE� is represented by the solid� ASE� by the dashed and ASE� by the dotted line�

��



Figure �� Distribution of the relative ASE�values in case of positive autocorrelation�

ASE� is represented by the solid� ASE� by the dashed and ASE� by the dotted line�

��
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