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Non–technical Summary

The effect of market structure on innovative activity has been one of the main topics

of empirical industrial economics. But, in most of the studies the feedback effect of

innovation on market structure is neglected, at least in the empirical analysis. This

paper analyzes the interdependency between innovation and market structure for

German manufacturing industries in the nineties.

We use a newly constructed panel data set which results from expanding firm level

data on innovative activity (Mannheim Innovation Panel, MIP) on the sectoral level

of aggregation. This data set has been merged with publically available data from

the German statistical office. Innovative activity is measured by the share of R&D

expenditure in total sales and market concetration by the Herfindahl index of sales

concentration.

For the German manufacturing sector, innovative activity leads to more concen-

trated markets in the long run, and hence to greater market power of firms reducing

competition. On the other hand, competition enforces innovation. Firms engage in

R&D to withstand competitive pressure. Competition is a fundamental incentive

for innovation.
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and market structure within a simultaneous framework at the industry level of ag-

gregation. We use a model in which R&D affects both, demand and cost conditions.

An optimization process leads to optimal industry R&D expenditure and market

structure in a symmetric equilibrium. The model is applied to a newly constructed

panel for Germany. Generalized Method of Moments (GMM) estimation techniques
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trast, competition enforces innovation, i.e. sales concentration has a negative impact

on R&D.

Keywords: innovation, R&D, market structure, panel data, dynamic models, ap-

plied econometrics

JEL Classification: O31, L11, C33, L60

Acknowledgements The authors would like to thank Georg Licht for helpful com-

ments and their colleagues Thorsten Doherr, Günther Ebling, Thomas Hempell,

Hiltrud Niggemann and Bettina Peters for sharing the load of preparing the data

set.

1



1 Introduction

It has been a central issue of industrial economics how differences in market struc-

tures affect economic performance. A common argument in this context is that

concentrated markets may be favorable to technological progress, and hence eco-

nomic growth. This issue was brought into mainstream economics by Schumpeter

(1942), who argued that large firms operating in concentrated markets are the main

engine of technological progress. A number of specific hypotheses as to why this

may be the case have been advanced. For instance, innovation may be higher in

concentrated industries because firms with greater market power have better access

to resources for financing research and development (R&D). Moreover, they can

more easily appropriate the returns from innovation and hence have more incentives

to innovate because of internal capabilities. In contrast to the Schumpeterian hy-

potheses, Scherer (1967) states that firms in a fully competitive market are more

likely to innovate. The pressure of competition encourages innovation activities for

staying in the market in the long–run. Market power based on absence of strong

competitive pressure possibly leads to inertia.

The theoretical literature has emphasized that both innovation and market structure

are endogenous (see e.g. Dasgupta and Stiglitz, 1980, Futia, 1980, Lee and Wilde,

1980). Dasgupta and Stiglitz (1980) argue that in the short run market structure

and innovation are determined simultaneously. The degree of concentration in an

industry ought not be treated as given. They do not regard the relationship between

concentration and innovative activity as a causal one. Whereas Futia (1980) states

that industries with greater innovative opportunities tend to be more concentrated.

Many empirical studies concerning the relationship between innovation and market

structure have used single equation models to relate some measure of innovative in-

puts or output to some concentration indices. A serious problem with this approach

is the obvious endogeneity of market concentration (for an overview see Cohen and

Levin, 1989 and Cohen, 1995). Among the models that have focused on the re-

lationship between cost-reducing and demand-creating R&D on the one hand and

market structure on the other hand are: Levin and Reiss (1988) and Harhoff (1997),

whereas other models are limited on cost-reducing R&D, see e.g. Dasgupta and

Stiglitz (1980) as well as Levin and Reiss (1984).

We use the model developed by Levin and Reiss (1988) in which firms perform
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cost-reducing process and demand-creating or price increasing product R&D. It

yields a number of important insights into relationships between R&D spillovers,

technological opportunities, and market structure. The effect of spillover on the

amount and composition of R&D can be examined. However, in their empirical

implementation Levin and Reiss (1988) restricted their analysis to cross section

data. Moreover, they only use a single equation estimation approach for both, the

resulting market concentration equation and the R&D equation.

We extend the analysis of Levin and Reiss (1988) in two directions: firstly, we ex-

plicitly consider the simultaneity of market structure and R&D expenditure in the

estimation framework. Secondly, we use panel data, which allow for incorporat-

ing dynamic aspects of the market structure–R&D relationship by including lagged

variables. We use generalized method of moments (GMM) estimation techniques for

dynamic panel data systems to consider the interdependence of the endogenous vari-

ables. The data originate from a new data set for Germany which was constructed

from the Mannheim Innovation Panel (MIP) by expanding relevant variables to

industry levels.

The outline of the paper is as follows. The model of Levin and Reiss (1988) is

sketched in the following second chapter. Chapter 3 contains the empirical speci-

fication where deviations from Levin and Reiss (1988) are explained in detail. In

chapter 4 we briefly introduce the estimation technique. Estimation results and

interpretations follow in chapter 5. Chapter 6 concludes and outlines directions for

future research.

2 The Theoretical Model

Market structure, i.e. the number and size distribution of firms, is determined by

demand and cost conditions which firms’ are facing within the industry. Demand

and cost conditions change if firms invest in R&D to improve production processes

and renew products. But firms’ decisions on R&D expenditure depend on market

structure as well as on appropriability conditions. Hence, market structure and

R&D activity are interdependent.

We follow Levin and Reiss (1988) to model the interdependence between market

structure and innovation. According to Levin and Reiss (1988), firms spend money
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on R&D to perform process as well as product innovation which have different im-

pacts on the firms’ demand and cost conditions. Process innovations reduce the

production costs per unit while product innovation widen the scope of pricing.

Hence, R&D expenditure on process innovations (process R&D) is cost decreas-

ing and R&D expenditure on product innovation (product R&D) is price increasing

or demand creating.1 Since firms within an industry more or less act on the same

sales and purchasing markets and possibly cannot completely appropriate the re-

turns on their R&D due to spillovers, firms decisions are interdependent. Levin and

Reiss (1988) apply the Cournot–Nash–conjecture to model the interdependence of

profit–maximizing firms. The outcome determines the equilibrium scale of R&D

expenditure and equilibrium number of firms within an industry.

Firms’ production possibilities are affected by own as well as by pooled industry

process R&D. Own R&D contributes to both, firms’ individual as well as pooled

industry knowledge. Own and rival process R&D are considered as perfect substi-

tutes in the pool of industry knowledge. Following Levin and Reiss (1988), the unit

cost function of firm i can be defined as2

Ci = C(ri, r̄i) = Acr
−αr
i r̄−γr

i , (i = 1, ..., N) (1)

which is a Cobb–Douglas function in ri, the quantity of own process R&D done by

firm i, and r̄i the pool of industry knowledge available to firm i with

r̄i = ri + ωr

N∑
j 6=i

rj. (2)

ωr is a scalar parameter representing the extent of process R&D spillovers, i.e.

the extent to which other firms’ process R&D contribute to the pool of knowledge

available to firm i. The parameter γr, the elasticity of unit cost with respect to

the industry R&D pool, is representing the productivity of spillover in contrast to

their extent. αr defines the elasticity of unit cost with respect to own R&D in the

1In practice, product and process innovation quite often go hand in hand, i.e. new processes are

needed to produce new products. These processes may not necessarily lead to lower production

costs (see Ebling et al., 2000). However, the simultaneity of product and process R&D is neglected

in this paper to keep the empirical analysis tractable.
2In the following we use the subscript r to distinguish parameters related to process innovation

from parameters related to product innovation. For the latter we use the subscript d.
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absence of spillovers. If spillovers exist, the elasticity is equal to αr + γr
ri

r̄i
. N is the

equilibrium number of firms in the industry and Ac a scale or efficiency parameter.

Firms’ demand conditions are affected by own as well as pooled industry product

R&D. Own product R&D affects the firms’ demand conditions through relative

changes in utility which expand the demand for the firms’ products and hence allow

firms to achieve higher prices given the overall price level in the industry. Following

Levin and Reiss (1988) the inverse demand function firm i is facing can be defined

as

Pi = P (Q̄)Gi = ApQ̄
−1/εGi. (3)

Gi represents the perceived quality or attractiveness of firm i’s product. P (·) is an

industry price index depending on

Q̄ =
N∑

j=1

Gjqj (4)

as a weighted aggregate industry output index. Aggregate output depends on the

unobservable individual firm’s output qj with the perceived quality of products as

weights. ε is the constant price elasticity of industry demand.

The perceived product quality depends on own as well as pooled industry product

R&D. Own and rival product R&D are considered as perfect substitutes in the

industry pool. Analogously to the unit cost function the quality function is defined

as a Cobb–Douglas function

Gi = Gi(di, d̄i) = Agd
αd
i d̄γd

i . (5)

di is product R&D done by the i-th firm and d̄i is the analog to the knowledge pool

of process R&D:

d̄i = di + ωd

N∑
j 6=i

di. (6)

The scalar parameter ωd represents the extent of product R&D spillovers. The

parameter γd, the elasticity of perceived product quality with respect to the industry

product R&D pool, can be seen as the productivity of spillovers. αd is the elasticity

of perceived quality in the absence of spillovers. If spillovers exist, the elasticity is

αd + γd
di

d̄i
. Ag is a scale parameter.
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Firms are maximizing their profits with respect to process and product R&D ri, di

and output qi:

max
qi,ri,di

(
Pi(qi, Q(qi), di, d̄i(di))− Ci(ri, r̄i(ri))

)
qi − ri − di − ki . (7)

ki are fixed costs of production. For simplicity a symmetric equilibrium is assumed,

i.e. each firm confronts the same decision problem. Furthermore, the firms are

assumed to have Cournot-Nash conjectures regarding output and R&D decisions of

other firms. The three first-order conditions and the free-entry zero–profit condition

characterize the equilibrium.

After aggregating across firms and some transformations Levin and Reiss (1988)

derive the following two equations for industry process and product R&D:

R

1− (R+D+K)
= αr +

γr

1 + ωr(N−1)
(8)

D = αd

[
1−H

ε

]
+ γd

[
1

1 + ωd(N−1)
− H

ε

]
. (9)

Equation (8) and (9) can be aggregated to one R&D equation

R+D

1− (R+D+K)
(10)

= αr + αd +
γr

1 + ωr(N−1)
+

γd

1− H
ε

(
1

1 + ωd(N−1)
− H

ε

)
.

The variables R and D are the ratios of industry process and product R&D to

industry sales, respectively. K represents the ratio of other industry fixed costs to

industry sales. The left-hand side of equation (10) can be interpreted as the ratio

of industry R&D costs to total variable production costs of the industry. H = 1
N

represents the Herfindahl index of concentration if all firms in an industry have equal

market shares. Coefficients αr and αd cover the technological opportunities firms are

facing when engaging in R&D. Terms containing γr, γd and ωr, ωd reflect to aspects

of appropriability conditions: the extent and productivity of spillovers, respectively.

Levin and Reiss (1988) derive another equation from the optimization process (7)

determining the endogenous market structure.

H = ε (R + D + K) (11)
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in which market concentration is explained by demand conditions reflected by the

price elasticity of demand ε, the costs of industry R&D-to-sales ratio (R+D) and

the ratio of industry fixed costs to industry sales (K).

3 The Empirical Specification

3.1 The Data Set

We use data from the Mannheim Innovation Panel (MIP) to test the empirical

implications of the outlined model for Germany. The MIP is the official German

innovation survey in the manufacturing sector conducted by ZEW in co–operation

with infas Institute for Applied Social Science on behalf of the German government.

It contains seven years of cross sections of business data covering the period be-

tween 1992 and 1998. The sample of the MIP is representative for the German

manufacturing sector. Since expansion factors are available, we are able to expand

the relevant variables on innovation and R&D activities for the German economy on

the sector level.3 See appendix A as well as Janz et al. (2001) and references cited

therein for more detailed information on the MIP and the expansion techniques.

3.2 The R&D equation

Since information on R&D expenditure generally is not available for process and

product R&D separately, we use equation (10) as R&D equation. In a functionalized

version, the sector level R&D equation can be defined as

Rst+Dst

1− (Rst+Dst+Kst)
= α(Ast) +

γr(Γrst)

1 + ωr(Ωrst)(Nst−1)
(12)

+
γd(Γdst)

1− Hst

εst

(
1

1 + ωd(Ωdst)(Nst−1)
− Hst

εst

)
(s = 1, . . . , S; t = 1, . . . , T ).

The cross–sectional index s identifies sectors where the total number of sectors

considered is S. We observe a time period, indicated by t, of T years. Note that

equation (12) is non–linear in the parameters of interest.

3We use 2–digit NACE classes to define industry sectors.
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The parameters reflecting technological opportunities and appropriability condi-

tions, α = αr + αd, γr, γd and ωr, ωd are functionalized by variables or vectors

of variables Ast, Γrst, Γdst, Ωrst, Ωdst, respectively.

To account for inter–industry differences in technological opportunity we use three

dummy variables for the most innovative sectors (see Ebling et al., 2000). These

are the chemical industry, the manufacturing of transportation equipment industry

(including manufacturing of motor vehicles) and the electrical goods industry. We do

not distinguish between technological opportunities regarding product and process

innovation since the share of both, product and process innovators, are well above

average in these industries. We expect a positive sign of the referring parameters.

Additionally, we assume differences in technological opportunity between East and

West Germany and include the shares of firms located in East Germany. Only 7% of

the whole German R&D expenditure can be attributed to firms in Eastern Germany

(see Ebling et al., 2000). We expect a negative impact of the share of East German

firms on R&D activity in the considered sector.

The productivity of spillovers γd, γd are part of the non–linear terms of equation

(12). We functionalize them by variables pointing out the importance of external

knowledge for the innovation activities of firms in these industries. Within the MIP,

firms were asked if items in a given list of sources of information were important

for their innovation activities. The expansion of the answers allows to calculate

the share of firms in a sector which use given sources of information. We restrict

our attention to external knowledge and differentiate between customers, suppli-

ers, competitors and science as sources for knowledge. According to Czarnitzky

et al. (2000), especially suppliers give important incentives to innovate production

processes. Scientific institutes and universities may be interpreted as suppliers of

knowledge as well. We use both, the share of firms using suppliers and science as

information sources to functionalize the productivity of spillover concerning process

innovations γr. The share of firms using customers or competitors as information

sources are used to functionalize the productivity of spillover concerning product

innovations, γd. Spillover effects could arise by imitating products from competitors

or by co–operating with competitors or customers. We expect positive impacts of

the usage of information sources on R&D expenditure.

The extent of knowledge spillover ωd, ωr defines the formation of the knowledge

pool which may spill over and be more or less productive in decreasing cost or
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increasing markets. In a negative sense, they may be interpreted as the extent of

innovation protection. We use the information on patent protection available in the

MIP to functionalize the extent of knowledge spillover. Firms give information on

patent applications in the last three years. To differentiate between product and

process innovation, we weight the share of firms with patent applications by the

information on the importance of patents for either product or process innovations

from the first wave of the MIP in 1992. We get a measure of the relative amount of

knowledge protected (and thus not spilling over) for product and process innovations,

respectively. For that reason, we assume a negative impact on the extent of research

activities.

3.3 The concentration equation

Following Levin and Reiss (1988), we take a generalized log–linear specification of

the concentration equation. Additionally, we allow for a time lag in the effect of

R&D on market concentration which enables us to distinguish between short and

long run effects of R&D on concentration

ln Hst = β0 + β1 ln εst + β2 ln(Rst+Dst+Kst) (13)

+β3 ln(Rs,t−1+Ds,t−1+Ks,t−1)

(s = 1, . . . , S; t = 1, . . . , T ).

Equation (11) is nested in the long run if β0 = 0, β1 = 1 and β2 + β3 = 1.

The equation contains three theoretical constructs that are not directly observable:

market concentration measured by the Herfindahl index Hst, fixed costs Kst, and

the price elasticity of demand εst. We calculate the Herfindahl index from estimated

market shares of firms in the Mannheim enterprise panel (MUP), which includes

12,000 firms.4 The price elasticity of demand of each industry results from a dis-

crete approximation with producer price indices and industry sales published by the

German statistical office. Our proxy for fixed costs is depreciation as reported in

line of business data by the same institution.

We allow a time lag in the effect of the R&D expenditure on sales concentration. Past

and actual decisions of firms concerning the extent of R&D expenditure determine

4See Appendix A for more detailed information on the MUP.
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the knowledge pool of an industry. To this extent we assume a partial adjustment

process of market structure.

Table 1 presents descriptive statistics of the variables used in the estimation.

Table 1: Descriptive Statistics

Variables Mean Std.dev. Min Max

Herfindahl Index 0.23 0.21 0.04 0.94

R&D exp./Sales 0.025 0.030 0.001 0.174

R&D exp./Total Costs 0.033 0.039 0.001 0.210

Fixed Costs/Sales 0.058 0.052 0.011 0.264

Price Elasticity -.99 -.05 -1.13 -.60

Extent of Spillover:

Share of firms [%]

Product Patents 12.6 9.5 0 35.9

Process Patents 10.1 10.1 0 45.3

Productivity of Spillover:

Share of firms [%]

Customers 59.7 19.4 5.7 98.3

Competitors 51.8 18.8 8.8 83.7

Suppliers 51.4 17.1 9.0 94.7

Science 18.8 11.5 0 56.8

4 The Estimation Method

Equations (12) and (13) describe a simultaneous dynamic equation system. We

use Generalized Method of Moments (GMM) techniques for dynamic panel data to

estimate the parameters of interest (Hansen, 1982, Gallant, 1987, Cornwell et al.,

1992).
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Following Gallant (1987), the system to be estimated can be defined as

fg(yst, xst, βg) = egst (g = 1, 2; s = 1, . . . , S; t = 0, . . . , T ) (14)

where g is the number of the equations. t indexes observations over time and s indi-

cates the cross-sectional unit. fg(·, ·, ·) is a real valued function. The 2–dimensional

vector of endogenous variables is characterized by yst. The vector xst summarizes all

explanatory variables. It may additionally contain lagged values of the endogenous

and the explanatory variables. Explanatory variables can be selected from xst by a

proper selection of functions fg. As usual βg is a vector of the unknown parameters

to be estimated. The unobservable error term egst may in general be heteroscedastic

and serially correlated.

For the estimation procedure we have to specify a vector of instrumental variables

zst orthogonal to the error term egst being a sub–vector of xst

zst = Z(xst). (15)

We use the orthogonality property of zst to form theoretical moment conditions

m(β) = E (m(yst, xst, β)) = 0 (16)

with

m(yst, xst, β) = f(yst, xst, β)⊗ zst.

The right direct matrix product, well known as the Kronecker product, is denoted

by ⊗. β = (β1, β2)
′ denotes the vector or parameters and f(·) = (f1(·), f2(·))′

summarizes both equations.

The number of orthogonality restrictions generated through (16) in general is higher

than the number of parameters to be estimated. In consequence, we cannot set to

zero the empirical counterparts of (16) and use a criterion function quadratic in the

empirical moments

mST (β) =
1

ST

S∑
s=1

T∑
t=1

m(yst, xst, β) (17)
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which has to be minimized with respect to the parameters to be estimated. The

GMM–estimator of β is defined as that value β̂ that minimizes the criterion function

S(β, V ) = [STmST (β)]′V −1[STmST (β)]. (18)

The resulting GMM–estimator is consistent and asymptotically normal for any

weighting matrix V which is non–stochastic and positive definite. The GMM–

estimator is asymptotically efficient in the chosen specification for either S →∞ or

T →∞ if a matrix proportional to the variance–covariance matrix of the empirical

moments

V = Cov
{
[STmST (β)] , [STmST (β)]′

}
(19)

is used as weighting matrix.5

We allow the error terms egst in equation (14) to be heteroscedastic across time and

firms as well as serially correlated over time. In estimating the variance–covariance

matrix (19) we allow for first order serial correlation obtaining a heteroscedasticity

and autocorrelation consistent (HAC) covariance matrix estimator. To ensure the

positive definiteness of the covariance matrix of the orthogonality conditions the

spectral density kernel is used as weights. We use the Parzen weights (Parzen,

1957) discussed by Gallant (1987) and Andrews (1991) instead of the usual Bartlett

weights (Newey and West, 1987) since Andrews (1991) has shown that the Bartlett

kernel is somewhat inferior in terms of asymptotic mean–squared error among the

class of kernels that generate positive semi-definite estimated matrices.

As the number of moment conditions m(·) is higher than the dimension of β we are

generating overidentifying restrictions equal to the number of orthogonality condi-

tions which are not set to zero by the linear combination of orthogonality conditions

defining the GMM–estimator. We can use these free empirical moments to test

for the null–hypothesis that the remaining theoretical orthogonality restrictions are

equal to zero. Sargan (1958) and Hansen (1982) have shown that under the null–

hypothesis the function (18) evaluated at the estimate is χ2 distributed with degrees

of freedom equal to the difference between the dimension of m(·) and β.

5Numerical algorithms determine the minimum of the criterion function (18). Initial conditions

for estimation are obtained with usual three-stage least squares estimates. The computations are

done with the software package TSP.
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We used a pooled panel data approach to obtain estimates for the parameters. To

check the assumption of pooling, we use the test for the presence of industry–specific

effects developed by Holtz-Eakin (1988). Under the assumption of industry–specific

effects the system (14) changes to

fg(yst, xst, βg) = fgs + egst (g = 1, 2; s = 1, . . . , S; t = 0, . . . , T ) (20)

where fgs denotes stochastic effects constant over time and possibly correlated with

parts of the variables xst. To obtain a consistent estimator for fixed T the effects have

to be filtered by a suitable filter matrix. Usually the first difference filter introduced

by Anderson and Hsiao (1981,1982) is used as filtering matrix generating a moving–

average error term of order one: egst − egs,t−1. In consequence, not all instruments

in zst maybe valid, since some of them may be orthogonal to egst but not to egs,t−1.

The procedure of Holtz–Eakin (1988) tests the null–hypothesis that orthogonality

conditions valid only in the absence of firm–specific effects are equal to zero. The test

statistic is equal to the difference of the criterion–function under the null and under

the alternative when the same matrix is used as weighting matrix. The resulting test

statistic is χ2–distributed with degrees of freedom equal to the number of additional

orthogonality restrictions.

For testing the model assumption that equation (11) is nested in the long run, i.e.

β2 + β3 = 1. We follow Gallant (1987, p. 457f.) and calculate a Likelihood Ratio

type statistic which is the difference between the criterion–function evaluated at the

restricted (nested) and unrestricted estimates. One has to use the same weighting

matrix calculated under the null hypothesis in both terms. The test statistic is

χ2–distributed with degrees of freedom equal to the number of restrictions.

5 The Empirical Results

The parameters of the R&D–equation (12) and the market concentration equation

(13) are estimated using aggregated data from the Mannheim Innovation Panel

(MIP). We restrict the constant term in the market concentration equation to be

zero to nest the monopoly case in which the Herfindahl index equals 1. To allow

for possible endogeneity of the explanatory variables only lagged values of the ex-

planatory variables are included in the list of instruments with the exception of the
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price elasticity of demand. Following Levin and Reiss (1988), the price elasticity

is assumed to be pre–determined, i.e. current values enter the list of instruments.

We use the same list of instruments for both equations: price elasticity of demand,

shares of patents for product and process innovations respectively, innovation ex-

penditure over sales, number of employees in logs, exports over sales, variables for

the productivity of spillover as explained, share of firms in Eastern Germany and

dummy variables indicating chemical industry, motor manufacturing industry, elec-

trical goods industry, machine construction and the sector for medicine, technology

of measurement and control engineering added by a constant term.

Table 2 summarizes the estimation results. The third and fourth column contain

t–statistics and p–values for the marginal level of significance. First we have to

check the suitability of the estimation procedure. The discussed test statistics are

contained in the bottom of table 2. The test for overidentifying restrictions (Sargan,

1958 and Hansen, 1982) does not reject the validity of the instruments, i.e. the

instruments are orthogonal to the error term. This result is supplemented by the

test for the absence of industry–specific effects supporting the pooling approach.

The estimated coefficients of the concentration equation confirm our hypothesis

about the impact of past innovation activities on sales concentration. In contrast,

current R&D expenditures and fixed costs are negatively correlated with sales con-

centration. However, the long-run effect of R&D and fixed costs on sales concen-

tration is clearly positive. Therefore, investigation in R&D is concentrating market

shares and hence market power on few firms, at least in the long–run. But, the

long–run model is rejected by the Likelihood Ratio type test. The price elasticity of

demand has no significant impact on sales concentration. This confirms the results

of Levin and Reiss (1988) who neither find any price effects.
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Table 2: Result of the GMM-Estimation

Variables Coefficients t-statistic p-value

Concentration equation

ln(Rs + Ds + Ks) -0.751 -4.855 0.000

ln(Rs + Ds + Ks)t−1 0.922 4.439 0.000

ln(εs) 0.465 0.490 0.624

R&D Equation

Constant 0.032 3.511 0.000

Technological Opportunities:

Chemical Industry 0.029 2.149 0.032

Extent of Spillover:

Product Patents 0.001 1.954 0.051

Process Patents -0.000 -0.313 0.754

Productivity of Spillover:

Customers -0.299 -2.491 0.013

Competitors -0.268 -3.044 0.002

Suppliers 0.455 2.317 0.021

Science 0.183 2.772 0.006

Marginal effect of concentration

on innovation -0.011 -7.109 0.000

Number of observations 110

Overidentification test 27.126 0.251

Pooling test 0.424 1.000

Parameter restriction test 74.126 0.000
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The second part of the table shows the results for the estimated coefficients of the

second equation of the model. Contrary to our assumptions, the variables represent-

ing the technological opportunities of an industry have no significant effect on the

R&D intensity, with exception of the dummy for chemical industry. Therefore, we

select a specification only including the dummy representing the chemical industry

which remains significant at a 5–percent level. As we find no significant effect of the

variable measuring the share of East German firms in an industry on R&D intensity

we leave it out, too. Patent protection for process innovation as a measure of the

extent of knowledge spillover has no significant effect on R&D expenditure either.

However, the effect of patents protecting product innovation is slightly positive.

Patents do affect the extent of knowledge spillover for product R&D, but not for

process R&D.

The importance of information sources for innovative activities, i.e. the productivity

of spillovers, cannot be denied. All coefficients are significant, even at a 1–percent

level. Suppliers of enterprises, acting as an information source for innovation, cause

a rise in R&D expenditure. This effect concerns mainly process innovations which

quite often are supplier dominated. This becomes quite obvious when thinking of

modern IT–technologies. The same holds for information from scientific institu-

tions. In contrast to our expectation, information from customers and competitors

have a negative impact on R&D expenditure. This might indicate an increase in

efficiency of the innovations especially caused by a tight relationship between firms

and customers. Czarnitzky et al. (2000) calculated a higher share of sales with new

products for these firms.

On average, the marginal effect of the concentration variable, the Herfindahl index,

on the extent of R&D is negative. This confirms our hypothesis of a stimulating

effect of higher competition on innovation activities in an industry. Innovation will

support the increase of market power of few firms, but market power will lead to

inertia when competition is hampered.

6 Conclusion

In this paper we have analyzed the interdependence between innovative activities and

market structure for German industries following the approach of Levin and Reiss
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(1988). In contrast to Levin and Reiss (1988), we use a simultaneous estimation

framework and allowed for a time–lag in the effect of R&D on market concentration.

We find a positive long run effect of innovation activities on sales concentration. The

innovation input variable we use supports the shift of market shares and hence sales

concentration which leads to greater market power of few firms in an industry. On

the other hand we conclude, that firms are forced to innovate in a more competitive

environment to withstand competitive pressure. Hence competition is a fundamental

incentive to innovate. Our result supports the early thesis of Scherer (1967). An

industry will not remain in a fixed state when a lack of competition leads to inertia

and thus increases the chances for entrants in the market which will strengthen

competition and innovation.

Future work will concentrate on two fields of research: since we found dynamic

effects of R&D on market concentration, the static framework of Levin and Reiss

(1988) will be extended using a dynamic optimization framework with adjustment

costs for R&D–activities. Additionally we will expand our analysis on different

forms of innovation activities beside R&D focusing especially on forms of innovation

activities which are closer to the market. Our results confirm those of Levin and

Reiss (1988) that marketing activities could be an essential determinant of market

shares and thus market structure. Moreover, an examination of relationships at the

level of the firm may give additional insight in the functioning of markets (see e.g.

Harhoff, 1997).

A Appendix

A.1 The Mannheim Innovation Panel

The Mannheim Innovation Panel (MIP) started in 1993 as a voluntary mail survey

and is constructed as a panel with yearly waves. Up to 1999 it has been running

seven times in co-operation with infas Institute for Applied Social Science. The

MIP is strongly based on the recommendations on innovation surveys manifested in

the Oslo-Manual of the OECD and Eurostat (OECD, 1997). It gives basic infor-

mation on product and process innovations, innovation activities and components

of innovation expenditure related to these activities. Innovation expenditure com-
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prises all current expenditure (personnel, materials, services, etc.) as well as capital

expenditure for innovation. It includes R&D expenditure6.

Most of the quantitative variables are available for every firm in every year. In our

estimation we need sales, total wage costs, material costs and R&D expenditure.

The population of the MIP covers legally independent German firms in the sectors

mining and manufacturing with at least 5 employees. In our estimation we use the

NACE classes7 10, 15, 17-36. The sample of the MIP is drawn as a stratified random

sample. Firm size (8 size classes according to the number of employees), branch of

industry (according to 2-digit NACE classes) and region (East and West Germany)

are used as stratifying variables.

Expansion factors have been constructed for single cross-sections taking into account

the stratification as mentioned above. We expand the values of R&D for the years

1993 to 1999 at the 2-digit NACE level.

A.2 The Mannheim Foundation Panel

The Mannheim Enterprise Panel (MUP) is composed by information on a sample

of 12,000 German firms, which is provided by CREDITREFORM8. The sample is

stratified according to branches and an employment classification9. The available

information, which we use for our purpose, includes industry classification, number

of employees, sales, data regarding insolvency proceedings and date of last enquiry.

We use information about sales and industry classification to calculate the Herfindahl

index of markets’ sales concentration.

6The definition of R&D according to OECD (1997) used in official R&D statistics is explicitly

nested in the definition of innovation.
7NACE (Nomenclature générale des activités économique dans le Communautés européennes)

as published by Eurostat.
8CREDITREFORM is Germany’s largest credit rating agency and has most comprehensive

database of German firms at its disposal.
9See Almus et al. (2000) for more detailed information on the MUP.
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