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Abstract

General-to-Specific (GETS) modelling has witnessed major advances over the
last decade thanks to the automation of multi-path GETS specification search.
However, several scholars have argued that the estimation complexity associ-
ated with financial models constitutes an obstacle to multi-path GETS mod-
elling in finance. Making use of a recent result on log-GARCH Models, we
provide and study simple but general and flexible methods that automate
financial multi-path GETS modelling. Starting from a general model where
the mean specification can contain autoregressive (AR) terms and explana-
tory variables, and where the exponential volatility specification can include
log-ARCH terms, asymmetry terms, volatility proxies and other explanatory
variables, the algorithm we propose returns parsimonious mean and volatility
specifications. The finite sample properties of the methods are studied by
means of extensive Monte Carlo simulations, and two empirical applications
suggest the methods are very useful in practice.
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1 Introduction

Most financial models are highly non-linear and require complex optimisation al-
gorithms and inference strategies in empirical application. Examples of some of
the estimation and inference issues that may need careful attention include numer-
ical approximation, multiple optima, convergence issues, negative variance, initial
values, parameter constraints, finite sample approximations, and so on. For mod-
els with few parameters this may not pose unsurmountable problems. But as the
number of parameters increases the resources and efforts needed for reliable esti-
mation, inference and model validation multiply. Indeed, this may even become an
obstacle to financial multi-path General-to-Specific (GETS) modelling, as for ex-
ample argued by Granger and Timmermann (1999), and McAleer (2005) regarding
automated GETS modelling of financial volatility.

A recent result in Sucarrat and Escribano (2010) means many of the estimation
and inference complexity issues typically associated with financial models can readily
be overcome. Specifically, they provide a result that enables consistent least squares
estimation and inference of power log-GARCH models1 for fixed power, under very
general assumptions on the standardised error. Moreover, their simulations suggest
Ordinary Least Squares (OLS) estimation of power log-ARCH models compares
favourably with (Gaussian) Quasi Maximum Likelihood (QML) estimation when
the standardised error is non-Gaussian. Since the exponential specification ensures
positive variance and imposes fewer restrictions on the parameter space than stan-
dard ARCH models, this effectively means that estimation and inference are greatly
simplified. Next, building on the work on automated GETS modelling by Hoover
and Perez (1999), Hendry and Krolzig (2001, 2005), and Doornik (2009), and on the
study by Bauwens and Sucarrat (2010) on GETS modelling of exchange rate volatil-
ity, we propose a simple but general and flexible model framework, and develop
associated algorithms that automate multi-path GETS modelling of both the mean
and volatility specifications. Starting from a general model where the mean specifi-
cation (AR-X) can include autoregressive (AR) terms and explanatory variables (X),
and where the exponential volatility specification can include log-ARCH, asymme-
try terms, volatility proxies and other explanatory variables, our algorithm returns
parsimonious mean and volatility specifications. The parameters of the variance
specifications in the model we propose are consistently estimated by means of OLS,
and inference regarding the parameters is performed by means of ordinary inference
theory. Log-ARCH models can be viewed as nesting certain classes of stochastic
volatility (SV) models, see Sucarrat and Escribano (2010), so we label the model a
stochastic exponential ARCH (SEARCH) model. The acronym also connotates our
main motivation for the model, namely that it facilitates specification search.

It is well known that ordinary ARCH models can be consistently estimated by

1“GARCH” is short for generalised autoregressive conditional heteroscedasticity, and the origins
of the acronym are Engle (1982) and Bollerslev (1986).
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means of OLS, and that heteroscedasticity robust inference strategies hold asymp-
totically. However, for several reasons, the least squares estimation and inference
procedures associated with the power log-ARCH model have much better proper-
ties. First, the error term in the ARCH regression is heteroscedastic. By contrast,
the error term in power log-GARCH regressions is IID. Second, the distribution of
the error term in the ARCH regression has an exponential-like shape, and takes on
values in [−1,∞). By contrast, in the power log-ARCH regression it is almost sym-
metric with the left-tail usually being “longer”, and takes on values in (−∞,∞).
This means estimators and test-statistics are likely to correspond much closer to
their asymptotic approximations in finite samples, since the convergence to their
asymptotic counterparts will be much faster. Also, coefficient tests are likely to
exhibit greater power under the alternative, since the error is “smaller” due to the
log-transformation (this is the motivation for logarithmic Mincer and Zarnowitz
(1969) regressions of volatility, see Pagan and Schwert (1990)). Finally, power log-
GARCH regressions impose much weaker restrictions on the parameter space due
to the exponential variance specification. In ARCH regressions, by contrast, strong
parameter restrictions might be needed in order to ensure positive variance. The
consequence of this is that a power log-GARCH regression is capable of depicting a
much larger range of economic phenomena than an ARCH regression.

GETS modelling starts with a general unrestricted model (GUM) that is vali-
dated against a chosen set of misspecification tests. Next, simplification is under-
taken by means of backwards step-wise regression, where each deletion is checked
against the misspecification tests, and by a backtest (BaT) against the GUM.2 Sim-
plification stops when there are no more insignificant regressors, or when the possible
deletions either do not pass the misspecification tests or the BaT. Multi-path GETS
undertakes the simplification along several deletion paths, which may result in mul-
tiple terminal models. If so, then procedures for the selection between them are
implemented. The main attraction of GETS modelling is that it takes the influence
of all the potential variables into account already at the outset, which ideally should
result in better estimation and inference, since each variable’s impact is controlled
for the impact of the others. Also, GETS model selection provides a predictable
way of controlling the likeliness of retaining irrelevant variables via the regressor
significance level.

GETS modelling has witnessed major advances over the last decade thanks to
the development of multi-path GETS specification search software that automates
the modelling process, see amongst others Hoover and Perez (1999), Hendry and
Krolzig (2001, 2005), Krolzig (2003) and Doornik (2009).3 An important result
in this literature is that multi-path GETS can be vastly superior to single-path

2The BaT is also known as a parsimonious encompassing test.
3GETS specification search is closely related to, but not the same as, the GETS methodology,

see Campos et al. (2005) for a comprehensive overview of the GETS methodology, and Mizon
(1995) for a concise overview. Doornik (2008) discusses the relation between encompassing, an
important aspect of the GETS methodology, and GETS specification search.

2

w
or

ki
ng

pa
pe

rs
 s

er
ie

s



GETS and many other specification search algorithms. Key to the success is that
estimation is essentially by means of OLS procedures, something which renders the
automation of multi-path GETS specification search feasible in practice. Otherwise,
if the multi-path GETS search were to be undertaken manually, practitioners and
academics would often find it too time-consuming and cumbersome to implement.

The finite sample properties of the methods and algorithms that we propose are
studied by means of extensive Monte Carlo simulation, and illustrated in two em-
pirical applications. The simulations suggest that our algorithm compares well both
in modelling the mean and volatility specifications, and the empirical applications
confirm that the methods can be very useful in practice. The rest of the paper we
organise in four sections. The next section, section 2, outlines the SEARCH model.
Section 3 studies the properties of our multi-path GETS algorithm through exten-
sive Monte Carlo simulation. Section 4 contains the two empirical applications and,
finally, section 5 concludes.

2 The SEARCH model

If automated multi-path GETS modelling is the objective, then there are limits4 to
what the mean and volatility specifications may contain. An example of a general
and flexible structure that is amenable to automated multi-path GETS modelling
is what we label the SEARCH model. In words, the SEARCH model can be de-
scribed as an AR(M)-X specification in the mean, and as a power log-ARCH(P )
specification with asymmetry terms, a volatility proxy and explanatory variables in
the logarithmic volatility specification. Specifically, the SEARCH model is given by

rt = ϕ0 +
M∑

m=1

ϕmrt−m +
N∑

n=1

ηnxnt + ϵt (1)

ϵt = σtzt, zt ∼ IID(0, 1), (2)

log σδ
t = α0 +

P∑
p=1

αp log |ϵt−p|δ +
A∑

a=1

λa(log |ϵt−a|δ)I{zt−a<0}

+ω0 logEqWMAt−1 +
D∑

d=1

ωdydt, δ > 0 (3)

In the mean specification (1) ϕ0 is the mean intercept, M is the number of au-
toregressive (AR) terms and N is the number of other conditioning variables that
may be contemporaneous and/or lagged. Moving average (MA) terms are not in-

4One should maybe add the qualifier “current”, because future developments are likely to
broaden the class of models that are amenable to automated GETS modelling.
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cluded in the mean specification in order to simplify estimation and thus specifi-
cation search. However, the estimation and inference methods we employ for the
log-volatility specification (equation (3)) will in general be applicable if MA terms
or other non-linearities are included in the mean. One type of non-linearity that
our methods does not admit, though, is GARCH-in-mean terms due to the depen-
dence with the volatility specification.5 The standardised errors {zt} are IID zero
mean and unit variance, and can be both more or less fat-tailed than the normal,
and possibly skewed.6 In the logarithmic volatility specification (3), δ is the power.
Throughout we will set δ to 2 for convenience, but our methods and algorithms
can also be applied when δ differs from 2. Indeed, δ can in principle take on any
real-valued number—integer or not—strictly greater than zero. P is the number
of log-ARCH terms, and if sufficiently big then the log-ARCH(P ) structure can be
viewed as an approximation to a stationary log-GARCH(P ,Q) specification. The
λa are the impacts of logarithmic asymmetry term analogous to those of Glosten
et al. (1993), but one may consider other asymmetry specifications instead, see Su-
carrat and Escribano (2010). The question of which approach to asymmetry is most
appropriate we leave for future research. The logEqWMAt−1 term is the natural
logarithm of a volatility proxy that is equal to an equally weighted moving average
of the past absolute residuals raised to the power δ. That is, given the residu-
als {ϵ̂t}, EqWMAt−1 is computed as (1/T ∗)

∑T ∗

t∗=1 |ϵ̂t−t∗|δ where T ∗ is the length
of the moving average. It should be noted that the term logEqWMAt−1 can be
viewed as a local approximation to log σδ

t−1, that is, a volatility proxy. The at-
tractive properties of logEqWMAt−1 compared with log σδ

t−1, though, is that it is
simpler to estimate the associated parameter of the former, and that ordinary least
squares inference regarding the parameter ω0 can be undertaken. D is the number
of other conditioning variables that may be contemporaneous and/or lagged, and if
λ1 = · · · = λA = ω0 = ω1 = · · · = ωD = 0, then |

∑P
p=1 αp| < 1 is a sufficient condi-

tion for stability in the log-volatility specification. If zt is distributed as a Normal, a
Generalised Error Distribution (GED) with shape distribution greater than 1, or a
Student’s t with more than two degrees of freedom, then the unconditional variance
will in general exist. Under standard assumptions (stability, etc.) the parameters of
both the mean and volatility specifications can be estimated consistently by means
of least squares. In particular, the log-volatility specification can be estimated via
an AR-representation by means of an OLS procedure. Furthermore, if the mean is
zero or if it is estimated with sufficiently high precision, then ordinary OLS inference
in the AR-representation of the log-volatility specification is asymptotically valid for
all the parameters apart from the constant α0. See Sucarrat and Escribano (2010)
for further details.

5This is not necessarily a serious drawback, since proxies for financial price variability (functions
of past squared returns, bid-ask spreads, functions of high-low values, etc.) that can be included
as regressors in the mean are readily available.

6Some moments may not exist if the density is too fat-tailed, see Sucarrat and Escribano (2010).
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3 Financial multi-path GETS modelling

In this section we propose and study a simple and very flexible algorithm for fi-
nancial multi-path GETS modelling of the SEARCH model. We underline that the
algorithm might possibly be improved in numerous ways (we will briefly discuss
some of them at various points), but we leave this for future research. The results
in this section could therefore be viewed as a minimal starting point, or as a “lower
bound” of what is possible.

The automated GETS algorithm we propose can be viewed as consisting of two
stages,7 whose starting point is an (overall) General Unrestricted Model (GUM).
That is, a model with general unrestricted mean (MGUM) and volatility (VGUM)
specifications. The first stage consists of multi-path GETS specification search of the
MGUM specification, while the VGUM specification is kept unchanged. Of course,
one could instead consider to model them simultaneously or alternatively the volatil-
ity specification first. But we leave this for future research. Our choice of modelling
the mean specification first is simply motivated by technical and conceptual sim-
plicity. The second stage of the algorithm we propose consists of multi-path GETS
specification search of the VGUM specification, while the parsimonious mean spec-
ification is kept unchanged. Again, one could of course consider alternative search
procedures, say, multi-path GETS specification search applied to each of the termi-
nal specifications from the GETS search of the mean. But, again, we leave this for
future research, and again our choice is based on technical and conceptual consider-
ations. The purpose of this section is to study the properties of the first and second
stages of our algorithm through Monte Carlo simulations.

In the Monte Carlo simulations we will focus on three statistics. Let k0 denote
the number of relevant variables in the GUM, and let k1 denote the number of
irrelevant variables in the GUM. The first statistic p̂(DGP ) is simply the probability
of recovering the DGP exactly, that is, the probability of selecting a model such that
k̂0 = k0 and k̂1 = 0. The statistic p̂(DGP ) is intimately related to what in a multiple
hypothesis testing context is called the Family-Wise Error (FWE), which is simply
the probability of making one or more false rejections.8 Specifically, in a GETS
context the FWE is 1-p(DGP ), and consistent model selection takes place when
p(DGP ) tends to 1 as the sample size goes to infinity, or alternatively that the
FWE tends to 0. As pointed out by Romano et al. (2008), however, the FWE is
rather conservative, and the FWE may in any case not be the error rate of greatest
interest. The two statistics of (arguably) greatest interest in a GETS context are
the average relevance proportion M(k̂0/k0), which is analogous to statistical power
in a hypothesis testing context and which Doornik (2009) calls “potency”, and the

7In earlier versions of this paper we included a third stage that modelled the density of the
standardised error zt. Due to space limitations we have taken this part out, and the issue is
instead pursued in further detail in Maŕın and Sucarrat (2011).

8The methods of White (2000), Hansen (2005), and Romano and Wolf (2005) are examples of
approaches that seek to control the FWE.
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average irrelevance proportion M(k̂1/k1), which is analogous to statistical size in
a hypothesis testing context and which Doornik (2009) terms “gauge”. These two
statistics can be viewed as a more detailed characterisation of the expected value of
the False Discovery Proportion (FDP), see Romano et al. (2008).

3.1 A comparison of multi-path GETS algorithms

Three multi-path GETS specification search algorithms have previously been stud-
ied in the academic literature: The algorithm of Hoover and Perez (1999), hence-
forth HP, the PcGets algorithm of Hendry and Krolzig (1999, 2001, 2005), and the
Autometrics algorithm (Doornik and Hendry 2007, Doornik 2009). The way our
algorithm undertakes multi-path GETS specification search in stages 1 and 2 is
essentially a straightforward improvement of the HP algorithm. But in order to dis-
tinguish our algorithm from that of Hoover and Perez we will refer to our algorithm
as AutoSEARCH.9 The purpose of this subsection is to compare the properties of
AutoSEARCH with those of HP, PcGets and Autometrics. The latter three have
all been developed for and studied in the modelling of a mean specification with
homoscedastic errors, so the simulations in this subsection will exclusively focus
on modelling the mean under the assumption of constant variance. In this case,
AutoSEARCH proceeds as follows:

Step 1. Check whether a general unrestricted mean GUM (MGUM) of the form (1)
produces serially uncorrelated residuals free from ARCH. By assumption, k0 ≥ 0 of
the regressors are relevant, k1 ≥ 0 are irrelevant and the total number of regressors
k is given by k0 + k1 + 1 = k. The “+1” is due to the constant, which is restricted
from removal in the simulations of AutoSEARCH.

Step 2. If the MGUM passes the diagnostic tests, then define the number of paths
to be searched as equal to the number of insignificant variables in the GUM. In
other words, just like PcGets, AutoSEARCH is not restricted to a maximum of ten
paths as in the HP algorithm. The first insignificant variable constitutes the first
variable to be removed in path 1, the second insignificant variable constitutes the
first variable to be removed in path 2, and so on.

Step 3. After removal of the first variable in a path, subsequent simplification
in each path is undertaken using “single-path” GETS search, where the regressor
with highest p-value is sought deleted at each simplification. For each removal
the standardised residuals are checked for serial correlation and ARCH using a
Bonferroni correction,10 and by a backtest (BaT) against the GUM. If removal
induces either autocorrelation or heteroscedasticity (or both), or if removal does not

9We intend to make the code developed for this paper freely available as an (open source) R
package with the name AutoSEARCH, see Sucarrat (2010).

10For example, if an overall nominal level of 5% is chosen for the diagnostic tests, then the
autocorrelation and ARCH tests are each checked for significance using a level equal to the chosen
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pass the BaT against the GUM, then the variable is re-included and subsequently
restricted from removal in the simplification search in that path (but the variable is
not restricted from removal in other paths). Simplification along the current path
ends when there are no more insignificant variables, or if deletion of any of the
insignificant variables does not pass the BaT against the GUM, or if one or more
of the diagnostic tests fail. The single-path GETS search is undertaken for each of
path.

Step 4. Form a list of models that contains the distinct terminal models of the search
in steps 2 and 3. The GUM is always included in the list in order to ensure that the
list is never empty.

Step 5. Select the best model from the list according to an information criterion
(Schwarz is used in the simulations) that is computed using the Normal log-likelihood
of the standardised residuals.

The AutoSEARCH algorithm can be viewed as a modified version of the HP algo-
rithm of Hoover and Perez (1999), and the most important differences between the
two algorithms are two. First, the HP algorithm is restricted to search a maximum
of 10 paths, because this—in Hoover and Perez’s view—resembled what users of the
GETS methodology did in practice (prior to the existence of multi-path GETS spec-
ification search software). By contrast, just like in PcGets the number of paths in
the AutoSEARCH algorithm is not limited to 10, but to the number of insignificant
variables in the GUM (as in PcGets). This change improves the ability to detect rel-
evant variables. The second important difference compared with HP concern which
and how many diagnostic checks that are undertaken at each simplification.

The first main difference between the PcGets algorithm of Hendry and Krolzig
(2005) on the one hand and the HP and AutoSEARCH algorithms on the other,
is that PcGets is a “multi-round” algorithm, whereas HP and AutoSEARCH are
“single-round” algorithms. Whereas HP and AutoSEARCH select between models
from a first-round multi-path GETS simplification search, PcGets goes on to do
further rounds if more than one model results from the first round. Starting from
a GUM made up of the union of the models from the first round, PcGets continues
the multi-round search until the resulting GUM does not change anymore. The
main effect of multi-round search is an increased ability to retain relevant variables.
However, it does to some extent come at the cost of excluding irrelevant variables.
The Autometrics algorithm of Doornik (2009) is also a multi-round algorithm, and
the basic principles are similar to those of PcGets. However, Autometrics searches
more paths than PcGets by means of a “tree search” procedure.

In order to compare AutoSEARCH with HP, PcGets and Autometrics, we study
AutoSEARCH in Monte Carlo experiments that have previously been run for the

nominal level divided by the number of diagnostic tests. Here, the number of tests is two and so the
Bonferroni adjusted level is 2.5%. Simulations (not reported) suggests the Bonferroni correction
is appropriate as long as the sample size is greater than 50.
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three other algorithms. In Table 1 the experiments are labelled HP1, HP2’ and
HP7’, and the results are contained in Table 2. The first important feature that
emerges from the result is that AutoSEARCH is correctly calibrated in the sense
that the average irrelevance proportion M(k̂1/k1) is approximately equal to the
regressor significance level (5%) used in the simulations. This is the case for all three
experiments. The second important feature of the results is that AutoSEARCH
compares well overall in deleting irrelevant variables. In experiment HP1 where
none of the regressors matter, AutoSEARCH recovers the DGP about 24% of time,
which is lower than HP and PcGets. However, in HP2’ and HP7’ the values of
p̂(DGP ) are higher than those of HP and Autometrics. Admittedly though they
are not as high as those of PcGets. A third important feature of the simulation
results is that AutoSEARCH performs as well as the other algorithms in retaining
relevant variables as measured by the average relevance proportion M(k̂0/k0). It
should be pointed out though that in experiments HP2’ and HP7’ the signal of the
variables that matter is relatively high. So possibly a different experimental design
is needed in order to provide a more accurate comparison of the relative potency of
the algorithms.

3.2 Multi-path GETS of the mean with heteroscedastic er-
rors

When modelling financial returns, the errors {ϵt} of the mean specification very
often remain heteroscedastic even after including explanatory information in the
mean specification. So it is of interest to study the properties of multi-path GETS
when the {ϵt} are heteroscedastic.11 In doing so, we modify Steps 1-3 in our multi-
path algorithm from the previous subsection in two straightforward ways. First,
we use the White (1980) variance-covariance matrix for the coefficient test-statistics
instead of the ordinary matrix.12 Second, we turn off ARCH diagnostic checking
and designate all the diagnostic checking significance level (5%) to the test for serial
correlation.

The results of four Monte Carlo experiments, all with a reasonably persistent
log-GARCH(1,1) specification on the errors of the mean {ϵt}, are contained in Ta-
ble 3. The first two experiments, HP1∗ and HP2’∗, are essentially equal to HP1 and
HP2’ but for the heteroscedastic errors {ϵt}.13 At first sight the results of HP1∗ and
HP2’∗ are not very encouraging, since the irrelevance proportion is about 15-16%,

11To our knowledge, no one has studied the properties of multi-path GETS specification search
of the mean when the errors of the mean {ϵt} are heteroscedastic.

12There are several other heteroscedasticity consistent variance-covariance matrices that one
might consider instead, and an interesting research question is to compare their relative merits.
This we leave for future research, and here we choose White (1980) simply because it is the most
common one in econometric software.

13In HP1∗ and HP2’∗ the value of α0 has been calibrated. Specifically, the limit of the uncondi-
tional variance of a model with log-GARCH(1,1) specification log σ2

t = α0+α1 log ϵ
2
t−1+β1 log σ

2
t−1
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the triple of the nominal level. We do not know whether this is due to the—in a
financial context—relatively small sample, the nature of the experiment, both, or
some other reason(s). More investigation is needed. Nevertheless, one could argue
that the results of experiments HP1∗ and HP2’∗ are not very indicative of how multi-
path GETS actually performs in modelling financial returns at any rate. Firstly, the
characteristics of the explanatory variables of the Hoover and Perez (1999) experi-
ments do not correspond to the typical characteristics of explanatory variables in a
financial context. Secondly, the DGP in HP2’∗ is a very persistent AR(1) process
with an AR(1) coefficient as high as 0.75. In empirical finance by contrast the AR(1)
coefficient is typically close to zero and rarely higher than 0.1 in absolute value. Fi-
nally, in finance one may argue that a sample size of 139 observations is actually
relatively small. These reasons motivate two additional Monte Carlo experiments,
namely SE1 and SE2, which better correspond to a modelling situation of financial
returns. In the DGP of SE1 there are no relevant regressors, whereas in SE2 there
is one, namely an AR(1) term with coefficient equal to 0.1. The results of these
two experiments are much more encouraging, since the irrelevance proportion is ap-
proximately equal to the nominal level of 5%. Moreover, in experiment SE1 (where
no regressors matter) AutoSEARCH recovers the DGP with a probability of about
0.60, whereas in SE2 both the relevance proportion and p̂(DGP ) are relatively high
in large samples. All in all, then, multi-path GETS works better for financial data
than the HP1∗ and HP2∗ experiments suggests, since SE1 and SE2 better reflect the
sample sizes and characteristics of financial modelling situations.

3.3 Multi-path GETS of the log-volatility specification

The purpose of this subsection is to study the properties of AutoSEARCH in mod-
elling the log-volatility specification. Specification search of the volatility proceeds
in a similar way to specification search of the mean, but for one difference. Au-
toSEARCH undertakes diagnostic checks of the standardised residuals {ẑt} instead
of the residuals of the AR-representation of log σ2

t , see Sucarrat and Escribano (2010)
for the relation between log-ARCH specifications and their AR-representations. Ta-
ble 3 contains the simulation results of the two experiments SE3 and SE4. In

is

exp

(
α0

1− α1 − β1

)
· lim
Q→∞

Q∏
q=1

E
[
z
2α1(α1+β1)

q−1

t−q

]
.

Numerical simulation suggests the limit of the power term is approximately equal to 0.3167 when
zt ∼ N(0, 1) for α1 = 0.1 and β1 = 0.8. In order to calibrate the DGP in HP1∗ such that its
unconditional variance equals the constant variance of the DGP in HP1, we thus need to solve

1302 = exp

(
α0

1− α1 − β1

)
· 0.3167

for α0, which yields α0 ≈ 1.0885. Similarly, in HP2’∗ we obtain α0 ≈ 1.0058.
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experiment SE3 the simulation DGP contains no relevant variables, whereas in SE4
the simulation DGP contains a single relevant variable, a log-ARCH(1) term, with
α1 = 0.2. These two experiments start from a GUM that contains five log-ARCH
terms, an asymmetry term, the contemporaneous and lagged variable of an unre-
lated but strongly persistent AR(1) process, two standard normal IID processes
and two exponentially distributed IID processes with shape parameter equal to 1.
The strongly persistent process may be interpreted as a volatility proxy (say, the
level of trading volume or a high-frequency based measure), the normally distributed
variables may be interpreted as proxying “short-term” relative changes in, say, trad-
ing volume, whereas the exponentially distributed variables may be interpreted as
proxying the square of, say, stock market return, interest rate changes, or similarly.

The results of experiments SE3 and SE4 are contained in Table 3. The first main
property is that the irrelevance proportion is remarkably stable (between 4.3% and
6.%) and close to the nominal level of 5% across the two experiments. Interestingly,
the property is robust both across sample size and across the tail-thickness (deter-
mined by the shape parameter τ in the Generalised Error Distribution (GED)) of
the standardised error. This is a very useful finding since it effectively means that
one in empirical practice does not have to worry about the impact of these features
on the irrelevance proportion. A second main property of the simulations is that
the relevance proportion is reasonably high in experiment SE4, and that it tends to
1 as the sample size increases. Fatter tails than the normal reduces the relevance
proportion, but not much since the difference reaches a maximum of 6 percentage
points. Finally, a third property is that p̂(DGP ) seems to depend on sample size
when regressors matter, but not when no regressor matters.

3.4 A more conservative GETS algorithm for finance

Financial markets are notoriously difficult to predict ex ante, so falsely suggesting
predictive or explanatory power by retaining irrelevant variables may potentially
lead to huge losses and substantial systemic damage if it is used to guide investment
or policy decisions. To achieve this one could simply reduce the regressor signifi-
cance level α. However, this will affect the relevance proportion negatively, so one
could also consider other modifications to the GETS algorithm that makes it more
conservative, that is likely to have a less negative impact on the relevance proportion
when variables matter. One such straightforward modification is simply to include
the empty model in the list of terminal models (in Step 4) as long as it passes the
diagnostic tests, irrespective of whether the multi-path GETS specification search
finds the empty model or not (in Steps 1-3), and irrespective of whether the empty
model passes the BaT against the GUM or not. We will refer to this modified algo-
rithm as “GETS with empty” or “GETS w/empty” for short. Above, by contrast,
AutoSEARCH included the empty model only if it was a proper terminal in Steps
1-3, and if it passed the BaT against the GUM.

The properties of GETS w/empty when T → ∞ are straightforward when the
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empty model is the DGP, since then the probability of the empty model being in-
cluded among the terminal models is (1−a), where a is the overall asymptotic diag-
nostic significance level. Accordingly, limT→∞ p̂(DGP ) = (1−a) and the irrelevance
proportion will tend to a value that is either lower than or equal to the regressor
significance level: limT→∞M(k̂1/k1) ≤ regressor significance level. In other words,
the regressor significance level now becomes an upper bound rather than the target
of the irrelevance proportion. When the DGP is not equal to the empty model, then
the irrelevance proportion will also tend to a value that is either lower than or equal
to the regressor significance level. But the effect on the relevance proportion and on
p̂(DGP ) is uncertain, since it will depend on the exact nature of the DGP. Neverthe-
less, it seems reasonable to conjecture that the relevance proportion is more likely
to fall rather than to stay unchanged or rise. Overall, then, the consequence of the
minor modification is that GETS w/empty becomes a more conservative algorithm
than PcGets and Autometrics who start with a BaT of the empty model against
the GUM: The empty model may not end up among the terminals if it does not
parsimoniously encompass the GUM and the other terminals. So GETS w/empty is
a more conservative algorithm under the same regressor and diagnostic significance
levels.

Table 4 contains the results of applying GETS w/empty (implemented by modi-
fying AutoSEARCH) on our previous experiments. The results suggest indeed that,
when the DGP is empty, then p̂(DGP ) increases substantially. The most dramatic
improvement occurs in HP1∗ where p̂(DGP ) goes up from 2% to 78%. Moreover,
the irrelevance proportion falls from a value of 16%—which is three times higher
than and incompatible with the value predicted by the underlying statistical theory,
to a new value of 3.2% that is compatible with and within the interval predicted by
theory. In the other experiments where the DGP is equal to the empty model, the
increase in p̂(DGP ) varies from about 15% points to about 35% points, and the fall
in irrelevance proportion varies from about 0% points to about 4.5 % points. When
the DGP is not equal to the empty model, then the irrelevance proportion either
remains close to the theoretical target of 5%, or drops about 1-3% points. The only
exception is the curious HP2’∗ whose irrelevance proportion remains unchanged at
about 16%. As for the relevance proportion, we see indeed a fall as we conjectured.
In HP2’, HP2’∗ and HP7’ there is no change, but in these experiments the signal is
too strong to be very informative. The results of experiments SE2 and SE4 are more
indicative of the properties of GETS w/empty, and in these experiments the rele-
vance proportion either remains about the same (SE2) or falls substantially (SE4).
As for p̂(DGP ), it remains generally about the same but for experiment SE4, where
it falls substantially in smaller samples.
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4 Empirical applications

In this section we illustrate and assess the methods and algorithm further through
two empirical applications.

4.1 Explanatory modelling of the mean and variance

In the empirical illustration of Sucarrat (2009) an explanatory model of weekly ex-
change rate return with homoscedastic errors outperforms standard volatility mod-
els (including realised volatility) in predicting variability ex post, both in-sample
and out-of-sample. The principal source of the unusually high explanatory power
(about 40% in terms of R2) is forward order flow. Here, we revisit the model by
extending the data sample and by adding more explanatory variables to the GUM,
both in the mean and volatility specifications. The overall GUM we start from
contains 14 deletable regressors in the mean and 14 in the volatility specification.
Next, we undertake multi-path GETS w/empty specification search by means of
the AutoSEARCH algorithm. In other words, we use the conservative configuration
explored in subsection 3.4.

The overall GUM we start from is (p-values in square brackets)

rt = ψ0 + ψ1rt−1 + ψ2r
2
t−1 + ψ3∆xt + ψ4∆xt−1 + ψ5∆(irnot − ireut )

+ψ6∆(irnot−1 − ireut−1) + ψ7∆oilpt + ψ8∆oilpt−1 + ψ9∆oset + ψ10∆oset−1

+ψ11∆sp100t + ψ12∆sp100t−1 + ψ13ÊCM t−1 + ϵt,

ÊCM t = st − 2.16− 0.03irnot + 0.06ireut ,

ϵt = σtzt, zt ∼ IID(0, 1),

log σ2
t = α0 +

5∑
p=1

αp log ϵ
2
t−p + λ(log |ϵt−1|2)Izt−1<0 + ω0 logEqWMA(8)t−1

+ω1∆vt + ω2vt−1 + ω3(∆ir
no
t )2 + ω4(∆ir

eu
t )2 + ω5(∆oilpt)

2 + ω6(∆oset)
2

+ω7(∆sp100t)
2

R2 : 0.35 AR1−2 : 1.60
[0.45]

ARCH1−6 : 1.55
[0.96]

JB : 7.37
[0.03]

T = 190

The sample goes from 2 October 2005 to 5 July 2009 (197 end-of-week observations),
where rt = (st − st−1)× 100 is log-return in % of the NOK/EUR exchange rate (an
increase means the NOK depreciates), ∆xt is the associated forward order flow
(buy initiated volume - sell initiated volume) in billions of NOK, irnot is the 1-
week Norwegian interbank money market interest rate in %, ireut is the 1-week
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Eurozone interbank money market interest rate in %, oilpt is the log of oilprice, oset
is the log of the main stock market index at the Oslo stock exchange, sp100t is the

log of the Standard and Poor’s 100 index of US stocks, ÊCM t is the estimate of
an error correction model, EqWMA(8)t is an eight week equally weighted moving
average of the squared residuals {ϵ̂2t}, vt is the log of weekly forward volume (buy
initiated volume + sell initiated volume), AR1−2 is a Ljung and Box (1979) test for
serial correlation in the standardised residuals up to the 2nd. order, ARCH1−6 is a
Ljung and Box (1979) test for serial correlation up to the sixth order in the squared
standardised residuals, JB is the Jarque and Bera (1980) test for non-normality,
and T is the number of observations used in the estimation.14 GETS specification
search of the mean is undertaken while holding the volatility specification fixed,
with the constant in the mean restricted from deletion. Two diagnostic checks of
the standardised residuals are undertaken after each regressor removal, AR1−2 and
ARCH1−6, both at 2.5%, and the Schwarz information criterion (made up of a
Gaussian log-likelihood in the residuals of the mean) is used as tie-breaker. The
search yields four terminal models, the most parsimonious one yielding the smallest
information criterion and thus constituting the specific mean specification. Next,
GETS specification search of the volatility specification while holding the mean
specification fixed and the volatility constant excluded from deletion, yields three
terminal volatility specifications. Again, two diagnostic checks of the standardised
residuals are undertaken after each regressor removal, AR1−2 and ARCH1−6, both
at 2.5%. Also, the Schwarz information criterion is used as tie-breaker, but this
time the Gaussian log-likelihood is computed in the standardised residuals.15 The
overall specific model that we obtain is (t-ratios in parentheses and p-values in square
brackets):

r̂t = 0.019 + 0.180
(2.37)

rt−1 − 0.033
(−2.31)

∆xt−1 − 0.099
(−6.20)

∆oilpt − 6.387
(−2.56)

ÊCM t−1,

log σ̂2
t = −3.765 + 1.439

(2.86)
∆vt + 0.886

(2.43)
vt−1

R2 : 0.27 AR1−2 : 0.56
[0.76]

ARCH1−6 : 2.00
[0.92]

JB : 5.59
[0.06]

T = 190

The mean specification differs in two ways compared with Sucarrat (2009). The
lagged order flow ∆xt−1 is retained instead of the contemporaneous order flow, and
the contemporaneous relative change in oil price is now found to be significant.

14The rawdata of st, ir
no
t , ireut , oilpt, oset and sp100t are the daily series ew:nor19101,

ew:nor14265, ew:emu14313, ew:com20220, ew:nor15565 and ew:usa15100200, respectively, from
Reuters - EcoWin. The Norwegian order flow data are from Norges Bank (the Norwegian central
bank) and can be downloaded via the url http://www.norges-bank.no/templates/reportroot_
___60389.aspx. The data are described in more detail in Meyer and Skjelvik (2006).

15This resulted in a situation where two specifications attained the lowest value on the infor-
mation criterion. In order to choose among them we simply selected the one that we found more
interesting from an economic point of view.
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Further investigation suggests the most important reasons for the difference is that
the impact of contemporaneous forward order flow changed in the course of the
financial events of 2008-2009, and that both the oil price and the value of the NOK
fell substantially over the same period. The specific volatility specification contains
two terms: Changes in market activity as measured by the relative change in forward
volume, and the lagged (log-)level of volume. The latter is strongly autocorrelated
and may thus be the source of any possible ARCH. Finally, the Jarque and Bera
(1980) test suggest there is a slight departure of normality in the standardised
residuals.

4.2 How well do volatility proxies forecast variability?

Volatility is by definition a conditional forecast of price variability when the condi-
tional mean is zero, and a common economic interpretation of a mean equal to zero
is that the direction of the financial price change is unpredictable. This explains
the importance of volatility forecasts in derivative pricing. Indeed, volatility fore-
casts are arguably the most important inputs in derivative pricing, and so volatility
forecasting is of great importance in the financial industry.

The volatility forecasting literature has experienced major developments over the
last decade or so. One of the developments is the increased production, dispersion
and availability of high-frequency data, and the increased and cheaper computing
power to handle the larger datasets. A second development of great importance is
theoretical. The last ten years have witnessed many theoretical contributions that
enables efficient volatility forecasting by making use of high-frequency data. The
most well-known of the estimators is realised volatility (RV, sums of squared intra-
period high-frequency returns), but numerous relatives have also been proposed and
studied. How well do all these volatility proxies actually forecast price variability?
If the underlying continuous time model is a valid or “true” representation of the
DGP in some appropriate sense—this is effectively the assumption that RV and its
cousins rely upon, then this has three important implications. First, the standard-
ised residuals defined as ẑt = rt/

√
RV t should be serially uncorrelated and exhibit

no ARCH. Second, the coefficient restrictions α0 = 0 and ω = 1 in the SEARCH
specification log σ2

t = α0 +ω logRVt should not be rejected. Third, RVt should par-
simoniously encompass models that make use of the same data. If it does not, then
this means the other models make more efficient use of the data.

The first two implications are readily investigated via logarithmic Mincer-Zarnowitz
regressions (MZ), which amounts to fitting

log σ2
t = α0 + ω logRVt. (4)

Hansen and Lunde (2006) and Patton and Sheppard (2009) have argued against the
use of logarithmic Mincer and Zarnowitz (1969) regressions. However, the problems
they point to are essentially resolved by the results in Sucarrat and Escribano (2010).
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Next, the hypotheses of no serial correlation and ARCH in the standardised error,
and whether α0 = 0 and ω = 1, can readily be tested. Table 5 contains logarithmic
MZ-regressions of daily stock return (IBM) on three different volatility proxies. This
data series is of interest because Patton (2011) uses them to illustrate how volatility
proxies can improve volatility forecast evaluation. However, Table 5 shows that all
the three proxies invalidate the hypothesis of no ARCH in the standardised residuals,
and at 6% percent or lower the joint coefficient restrictions α0 = 0 and ω = 1 are
rejected for all three proxies. In other words, the basic diagnostic tests and the
coefficient restriction tests do not convincingly suggest that the theory upon which
the volatility proxies is based on holds empirically. The candidate that comes closest
to satisfying the basic diagnostics is the third proxy, that is, RV made up of 5-minute
intra-day returns.

Whether a volatility proxy parsimoniously encompasses other models that make
use of the same data is readily investigated by means of automated multi-path GETS
modelling. Table 6 contains the results of an analysis for the third volatility proxy.
MGUM is the general and unrestricted mean specification, whereas VGUM1 and
VGUM2 are two different volatility GUMs. VGUM1 contains only the constant
and logRV 5m

t as regressor, and the ARCH diagnostic test suggests logRV 5m
t does

not capture all the volatility persistence given the MGUM. This motivates VGUM2
where we add log-ARCH lags and an asymmetry term to the VGUM. This improves
the ARCH diagnostics. MSPEC and VSPEC are the specifications obtained after
multi-path GETS specification search of MGUM and VGUM2: First MSPEC is ob-
tained by holding the volatility specification fixed and equal to VGUM2, and next
VSPEC is obtained by holding the mean specification fixed and equal to MSPEC.
In the specification search of the mean the standardised residuals are checked after
each deletion for serial correlation up to the 3rd. order, and the squared standard-
ised residuals are checked for serial correlation up to the 5th. order. Schwarz’s
information criterion, computed in terms of a Gaussian log-likelihood made up of
the residuals of the mean, is used as tie-breaker for terminal models in the mean.
The Schwarz criterion is also used as a tie-breaker between log-volatility specifica-
tions. However, in this case the standardised residuals are used for the Gaussian
log-likelihood. The constants in both the mean and log-volatility specifications are
restricted from deletion during the specification search. The conclusion is that RV 5m

t

does not parsimoniously encompass all the other hypothesised effects, since three
day-of-the week dummies are retained in addition to logRV 5m

t in the log-variance
specification. Indeed, the estimates suggest that there are some substantial peri-
odicity effects (volatility lower on Wednesday, Thursday and Friday) that are not
accounted for by realised volatility.
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5 Conclusions

By making use of the recent results in Sucarrat and Escribano (2010), we have pro-
posed methods and algorithms that resolves many of the problems earlier faced in the
implementation of automated multi-path General-to-Specific (GETS) specification
search of financial models. The simulations and empirical applications suggest the
methods can be of great value in financial practice for the following reasons: First,
our simulations show that the GETS algorithm we propose compares well with the
other multi-path GETS algorithms that are currently available. The irrelevance
proportion is generally equal to the nominal regressor level across experiments (the
exceptions are in experiments of little relevance for finance), sample sizes and density
shapes, and the relevance proportions are sufficiently high. Second, the slight modi-
fication to multi-path GETS modelling that we propose for finance in order to make
GETS model selection more conservative, improves substantially the probability to
recover the DGP when it is equal to the empty model (the cost is that it affects
the relevance proportion negatively only when variables are marginally significant),
and reduces the irrelevance proportion to a value that is lower than the nominal
regressor significance level. This increased capacity to delete irrelevant variables is
particularly desirable for financial economics and business finance. Third, in our
first empirical application it takes us only a couple of seconds on an ordinary com-
puter to undertake multi-path GETS modelling of a Stochastic Exponential ARCH
(SEARCH) model with a total of 28 deletable regressors in the mean and volatil-
ity specifications. By contrast, automated multi-path GETS specification search of
the GARCH counterpart of our SEARCH model, with joint ML estimation of the
mean, volatility and density of the standardised errors, may not be feasible in prac-
tice, and would in any case require substantial effort and time by the modeller, in
addition to numerous subjective decisions throughout the modelling process about
starting values, convergence criteria, multiple optima, sensible estimates and so on.
Fourth, our second empirical application show that our methods can be of great
use in both evaluating the forecasts of volatility proxies, and in improving them.
Nevertheless, there is still room for further improvement, generalisation and explo-
ration of the methods and algorithms we have proposed in this paper. For example,
the efficiency of the estimation procedures may be improved through (say) feasible
generalised least squares (FGLS) procedures and/or iterative least squares proce-
dures, and common outlier detection algorithms (developed for the identification of
outliers in the mean) can readily be adapted to search for Bernoulli jumps in the
log-volatility specification.
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Table 2: Comparison of GETS algorithms: Specification search in the mean with
Gaussian homoscedastic errors {ϵt}, using a nominal regressor significance level of
5%
Experiment k0 k1 Algorithm T M(k̂0/k0) M(k̂1/k1) p̂(DGP )
HP1 0 40 AutoSEARCH 139 0.049 0.239

HP 0.045 0.292
PcGets ≈ 0.04 ≈ 0.45

HP2’ 1 39 AutoSEARCH 139 1.000 0.050 0.252
HP 1.000 0.107 0.000
PcGets ≈ 0.97 ≈ 0.05 ≈ 0.32
Autometrics 1.000 0.063 0.119

HP7’ 3 37 AutoSEARCH 138 1.000 0.051 0.232
HP 0.967 0.082 0.040
PcGets ≈ 1.00 ≈ 0.04 ≈ 0.37
Autometrics 0.999 0.066 0.111

Simulations of the AutoSEARCH algorithm are in R with 1000 replications. M(k̂0/k0) is the

average proportion of relevant variables k̂0 retained relative to the actual number of relevant

variables k0 in the DGP. M(k̂1/k1) is the average proportion of irrelevant variables k̂1 retained

relative to the actual number of irrelevant variables k1 in the GUM. The estimate k̂1 includes both

significant and insignificant retained irrelevant variables (this is in line with Hendry and Krolzig

(2005), and Doornik (2009), but counter to HP which only includes significant irrelevant variables

in the estimate). p̂(DGP ) is the proportion of times the DGP is found exactly. The properties of

the HP algorithm are from Hoover and Perez (1999, Table 4 on p. 179). The properties of the

PcGets algorithm are from Hendry and Krolzig (2005, Figure 1 on p. C39), and the properties

of the Autometrics algorithm are from Doornik (2009, section 6). For AutoSEARCH, a constant

is included in all the regressions but ignored in the evaluation of successes and failures (this is

in line with Hoover and Perez (1999) but counter to Hendry and Krolzig (2005), and Doornik

(2009)), in the diagnostic checks both the AR and ARCH test of the standardised residuals were

undertaken at lag 2 using a significance level of 2.5% for each, and as tiebreaker the Schwarz

information criterion is used with a Gaussian log-likelihood made up of the standardised residuals

of the mean specification.
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Table 3: Properties of AutoSEARCH: Specification search in the mean with het-
eroscedastic errors {ϵt} and in the log-volatility specification, using a nominal re-
gressor significance level of 5%

Experiment DGP k0 k1 T τ M(k̂0/k0) M(k̂1/k1) p̂(DGP )
HP1∗ Empty 0 40 139 2.0 0.160 0.015

HP2’∗ AR(1) 1 39 139 2.0 1.000 0.156 0.021

SE1 Empty 0 9 139 2.0 0.065 0.591
200 2.0 0.057 0.622
500 2.0 0.053 0.615
1000 2.0 0.058 0.613

SE2 AR(1) 1 8 139 2.0 0.217 0.065 0.147
200 2.0 0.274 0.054 0.184
500 2.0 0.549 0.048 0.379
1000 2.0 0.821 0.049 0.567

SE3 Empty 0 12 139 2.0 0.043 0.625
1.1 0.048 0.607

200 2.0 0.047 0.612
1.1 0.052 0.562

500 2.0 0.044 0.624
1.1 0.044 0.628

1000 2.0 0.047 0.594
1.1 0.050 0.573

SE4 Log-ARCH(1) 1 11 139 2.0 0.477 0.057 0.316
1.1 0.425 0.063 0.267

200 2.0 0.643 0.059 0.421
1.1 0.583 0.063 0.355

500 2.0 0.949 0.048 0.608
1.1 0.947 0.048 0.615

1000 2.0 1.000 0.045 0.638
1.1 0.999 0.050 0.601

Simulations of the AutoSEARCH algorithm are in R with 1000 replications. In HP1∗, HP2’∗,

SE1 and SE2 only one diagnostic check (AR) of the standardised residuals is undertaken at lag

2 using a significance level of 5%, and as tiebreaker the Schwarz information criterion is used

with a Gaussian log-likelihood made up of the mean residuals {ϵ̂t}. In SE3 and SE4 the AR and

ARCH tests of the standardised residuals are undertaken at lag 2 using a nominal significance

level of 2.5% for each, and as tiebreaker the Schwarz information criterion is used with a Gaussian

log-likelihood made up of the standardised residuals {ẑt}.
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Table 4: Properties of AutoSEARCH: Conservative GETS model selection, using a
nominal regressor significance level of 5%

Experiment DGP k0 k1 T M(k̂0/k0) M(k̂1/k1) p̂(DGP )
HP1 Empty 0 40 139 0.032 0.470

HP2’ AR(1) 1 39 139 1.000 0.051 0.253

HP7’ AR(1) + xHP
11t , x

HP
29t 3 37 138 1.000 0.052 0.240

HP1* Empty 0 40 139 0.032 0.783

HP2’* AR(1) 1 39 139 1.000 0.160 0.016

SE1 Empty 0 9 139 0.031 0.788
200 0.034 0.767
500 0.029 0.793

1000 0.023 0.840

SE2 AR(1) 1 8 139 0.224 0.042 0.132
200 0.287 0.039 0.212
500 0.568 0.033 0.405

1000 0.838 0.039 0.614

SE3 Empty 0 12 139 0.006 0.954
200 0.004 0.955
500 0.004 0.962

1000 0.005 0.967

SE4 Log-ARCH(1) 1 11 139 0.205 0.024 0.141
200 0.335 0.026 0.222
500 0.863 0.041 0.536

1000 0.998 0.048 0.603
Simulations of the AutoSEARCH algorithm are in R with 1000 replications. The standardised

errors {zt} are IIN(0, 1) in all simulations (that is, τ = 2).

23

w
or

ki
ng

pa
pe

rs
 s

er
ie

s



Table 5: Logarithmic Mincer-Zarnowitz regressions of variability (squared return)
on volatility proxies
Model α̂0

[p−val]
ω̂

[p−val]
χ2(2)
[p−val]

AR(1)
[p−val]

ARCH(5)
[p−val]

JB
[p−val]

log σ2
t = α0 + ω logRV 65m

t −0.04
[0.85]

2.17
[0.00]

72.81
[0.00]

−0.04
[0.04]

0.06
[0.00]

6301.47
[0.00]

log σ2
t = α0 + ω logRV 15m

t −0.58
[0.03]

1.87
[0.00]

19.22
[0.00]

−0.01
[0.45]

0.11
[0.00]

53.80
[0.00]

log σ2
t = α0 + ω logRV 5m

t −0.64
[0.05]

1.55
[0.02]

5.69
[0.06]

−0.01
[0.76]

0.11
[0.00]

4.68
[0.10]

All computations in R. The estimates and tests are based on the assumptions that

rt = σtzt, zt ∼ IID(0, 1) and log σ2
t = α0 + ω logRV

(·)
t , where rt is daily IBM return 4

January 1993 - 31 December 2003 (2772 observations). The data are from Patton (2011), where

RV 65m
t , RV 15

t and RV 5m
t are realised volatilities made up of 65-minute, 15-minute and 5-minute

intra-day returns. The p-values in the α̂0 and ω̂ columns are from Wald coefficient restriction tests

of α0 = 0 and ω = 1, respectively, whereas the p-values in the χ2(2) column are from their joint

test. The ordinary variance-covariance matrix is used for the Wald tests. AR(1) is a Ljung and

Box (1979) test of 1st. order serial correlation in the standardised residuals {ẑt}, ARCH(5) is a

Ljung and Box (1979) test of 5th. order serial correlation in the squared standardised residuals

{ẑ2t }, and JB is the Jarque and Bera (1980) test for non-normality.
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Table 6: Parsimonious encompassing test of RV 5m
t

MGUM: r̂t
[p.val.]

= 0.216
[0.02]

− 0.035
[0.14]

rt−1 − 0.029
[0.20]

rt−2 + 0.005
[0.06]

RV 5m
t−1 + 0.002

[0.62]
RV 5m

t−2 − 0.060
[0.62]

Tuet

−0.327
[0.01]

Wedt − 0.152
[0.27]

Thut − 0.291
[0.02]

Frit

VGUM 1: log σ̂2
t

[p.val.]

= −0.154
[0.03]

+ 1.046
[0.00]

logRV 5m
t

AR(3)
[p.val.]

: −0.01
[0.50]

ARCH(5)
[p.val.]

: 0.05
[0.01]

VGUM 2: log σ̂2
t

[p.val.]

= 0.133
[0.31]

+ 0.000
[1.00]

log ϵ̂2t−1 − 0.012
[0.52]

log ϵ̂2t−2 − 0.015
[0.41]

log ϵ̂2t−3 + 0.028
[0.12]

log ϵ̂2t−4

+0.039
[0.37]

log ϵ̂2t−5 − 0.003
[0.93]

(log ϵ̂2t−1)Î{ϵt−1<0} − 0.051
[0.45]

logEqWMA(20)t−1

+1.052
[0.00]

logRV 5m
t − 0.130

[0.33]
Tuet − 0.261

[0.05]
Wedt − 0.333

[0.01]
Thut − 0.377

[0.00]
Frit

AR(3)
[p.val.]

: −0.01
[0.46]

ARCH(5)
[p.val.]

: −0.00
[0.78]

MSPEC: r̂t
[p.val.]

= 0.075
[0.07]

VSPEC: log σ̂2
t

[p.val.]

= −0.036
[0.66]

+ 1.094
[0.00]

logRV 5m
t − 0.237

[0.03]
Wedt − 0.299

[0.01]
Thut − 0.320

[0.00]
Frit

AR(3)
[p.val.]

: −0.02
[0.19]

ARCH(5)
[p.val.]

: 0.04
[0.04]

All computations in R. MGUM is short for mean GUM, VGUM is short for variance GUM,

MSPEC is short for specific mean specification, VSPEC is short for specific variance specification

and Tuet, Wedt Thut and Frit are week of the day dummies. In the mean specifications White

(1980) standard errors are used, whereas in the volatility specifications ordinary standard errors

are used. AR(3) is a Ljung and Box (1979) test of serial correlation in the standardised residuals

{ẑt} up to order 3 and ARCH(5) is a Ljung and Box (1979) test of serial correlation in the

squared standardised residuals {ẑ2t } up to order 5.
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