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1 Introduction

The matching function is a modeling device designed to capture the process through which the

supply and demand sides are brought together in a frictional market. In a labor market context,

the matching function maps the stock of job seekers and the stock of vacant jobs at any given date

into the number of jobs (or “matches” between vacant jobs and job seekers) formed at that date

(Pissarides, 2000). The matching function is the centerpiece of countless quantitative contributions

to the broad field of macro-labor, some aiming to explain aggregate fluctuations in hours, wages, and

other macro variables, others aiming to evaluate some policy, others still focusing on the allocation

of the workforce between different regions or industries. . .

All those quantitative contributions have to rely on values of the matching function elasticities

with respect to the numbers of vacant jobs and job seekers. Those elasticities have been and

continue to be the focus of a large body of empirical work, which keeps expanding as better and

more abundant data on job vacancies become available. In this paper, we argue that existing

estimates of the matching function elasticities are likely to be exposed to an endogeneity bias

arising from the search behavior of agents on either side of the market. We offer an estimation

method which, under certain assumptions, is immune from that bias. We apply our method to the

estimation of a very simple version of the matching function using aggregate U.S. data from the

Job Openings and Labor Turnover Survey (JOLTS). Results suggest that the bias is quantitatively

important. For example, under the (common) assumption of constant returns to scale, an OLS

estimate of the aggregate matching function elasticity w.r.t. vacancies based on the JOLTS series

available at the time of writing is around 0.82. Our proposed estimate is around 0.68.1

From a theoretical standpoint, the source of bias that we highlight is very straightforward.

The matching function takes job vacancies as one of its inputs. Vacancies are posted by profit

maximizing firms. The returns to posting a vacancy depend on the efficiency of the matching

process. Therefore, random shocks to matching efficiency affect the number matches formed both

directly through the matching technology and indirectly through firms’ vacancy-posting behavior

— very much like TFP shocks affect aggregate production both directly and indirectly through the

demand for inputs. Hence, job vacancies are endogenous, and an estimation strategy consisting

of, say, running OLS regressions of the number of new matches on measures of the numbers of job

seekers and job vacancies (a common strategy in the literature) fails to account for that endogeneity.

Yet, numbers based on such OLS estimates are routinely used to calibrate matching models in

which labor demand is explicitly endogenous, typically through a free entry condition (firms post

job vacancies as long as the expected value of doing so is positive).2

1So the bias is positive in this case. While that particular OLS estimator is very commonly used in the literature,
other estimators have also been implemented, leading to different biases with different signs. We provide an extensive
discussion of those different estimators below.

2Many of those papers revolve around the model developed by Mortensen and Pissarides (1994).
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Perhaps surprisingly, the source of bias we identify in this paper has been largely ignored in

the matching function estimation literature, which has mainly been concerned with other potential

sources of bias such as time aggregation or imperfect input measurement, or with fundamental

specification issues (such as the relevance of stock-flow matching).3 While we do recognize the

importance of those various issues, we set them aside in this paper and focus on the source of

endogeneity described above.

Recent papers have used lags of the matching function’s inputs as instruments for their own

current values. Depending on the assumptions made about the process of matching efficiency

shocks, some of the resulting estimates may coincide with ours. However our focus is different

from that of these papers as we highlight the role of the free entry condition, or more generally of

endogenous search behavior on one or both sides of the market, as potential sources of simultaneity.4

By explicitly modeling the response of labor demand to matching efficiency shocks, we make the

source of endogeneity explicit which allows us to justify our instrumentation strategy within the

structure of a general search and matching model.

The paper is organized as follows. In Section 2 we give a brief formal account of the endogeneity

of vacancies using a stripped-down, standard labor-matching model. In Section 3 we show how to

consistently estimate the matching function within the model of Section 2, imposing some structure

on the matching efficiency shock. Section 4 gives a brief description of the data. Results are then

set out in Section 5 and further discussed in Section 6. Section 7 concludes.

2 Statement of the Problem

2.1 A Simple Matching Model

Although in principle the argument that we make in this paper applies to any matching model, in

order to make our point with minimal peripheral complication we shall focus on the simplest — and

perhaps most widely considered — case of an aggregate matching function m (·) that determines

the number of matches formed between unemployed job seekers and vacant jobs. Specifically, the

number M of such matches formed in a given month is related to the number of unemployed

workers, U , and job vacancies, V , at the beginning of that month, in the following way:

M = m (U, V ) = AU δV η, (1)

3See the surveys by Petrongolo and Pissarides (2001) and Yashiv (2007). Burdett, Coles and van Ours (1994)
offer a very clear and insightful discussion of time aggregation in matching models. An empirical analysis of the time
aggregation bias is conducted by Berman (1997). Anderson and Burgess (2000), Fahr and Sunde (2005) and Sunde
(2007) quantify the bias arising from incomplete or imperfect input measurement. Gregg and Petrongolo (2005)
and Coles and Petrongolo (2008) offer an empirical investigation of the stock-flow matching hypothesis, whereby the
number of matches formed at any date is jointly determined by the stock of job seekers and the inflow of new job
vacancies into the search market.

4Yashiv (2000) conducts a structural estimation of an equilibrium search and matching model. Sedlác̆ek (2010)
analyzes the efficiency of the matching function while accounting for unobserved job vacancies. Lastly, Barnichon and
Figura (2011) study the effect of unemployment composition and dispersion of labor market conditions on matching
efficiency.
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where to further fix ideas we follow the vast majority of empirical studies of the matching function in

assuming a Cobb-Douglas functional form.5 An important feature of (1) is the presence of a shifter,

A, which has a random component capturing random shocks to the matching technology. Those

shocks parallel TFP shocks hitting the aggregate production function: they can be interpreted as

recruitment-sector specific productivity shocks caused, for example, by changes in ICT affecting the

way jobs are advertised or applied for, or by policy shocks affecting the functioning of employment

agencies, or by changes in the geographic mobility of the workforce. . . In this paper we will refer to

A as the “reallocation shock”, for want of a better term.

We further assume that the matching function exhibits Constant Returns to Scale (CRS) so

that η = 1− δ.6 In this case, and with random matching — whereby all job seekers (vacant jobs)

have equal sampling probability — the matching function can be redefined in terms of a job seeker’s

job finding rate, F , as follows:

F =
M

U
= AΘη, (2)

where Θ = V/U is labor market tightness. The job finding rate is the probability for any unem-

ployed worker to find a job in the current month.7

The standard matching model (see e.g. Pissarides, 2000) is closed by assuming free entry and

exit of firms in the search market. While there are alternatives to the free entry assumption as

a way to model labor demand (mostly involving some adjustment cost of vacancies), we choose

to focus on the free entry assumption as it is used in the overwhelming majority of applications.

Under free entry, firms post vacancies at a flow cost of C per month until profit opportunities from

doing so are exhausted. Labor demand is then determined by the free entry condition:

C =
M

V
·Π, (3)

where Π is the present discounted value (PDV) of a filled and producing job in the typical firm.

The interpretation of (3) is that employers equate the marginal flow cost of posting a vacancy (the

constant C) to the expected marginal return of doing so, which equals the value of a filled job, Π,

times the probability of filling the job, which from a firm’s perspective equals M/V under random

matching. Further note that, with CRS in matching, that probability is also a function of labor

market tightness only as M/V = F/Θ = AΘη−1. Substituting into the free entry condition (3)

yields:

Θ1−η =
ΠA

C
. (4)

5Implicit in (1) is the additional assumption that unemployed workers all look for jobs with the same fixed intensity.
It is conceptually straightforward to extend our point to the case of endogenous search intensity.

6CRS is a theoretically desirable property for the aggregate matching function, and is indeed assumed in a vast
majority of theoretical applications, as well as in many empirical studies of the matching function. Yet an important
body of empirical literature has been concerned with testing the assumption of CRS.

7Note that, in a discrete time model as the one considered in this paper, a constraint should be added to (2) to
ensure that F is always less than one. We follow conventional practice and ignore that constraint, assuming that A
and Θ takes on values that are consistent with F ≤ 1.
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Given the number of unemployed job seekers U , firms post more vacancies if the PDV of employing

a worker, Π, is higher, or if the cost of posting a vacancy, C, is lower, or if the efficiency of the

matching technology, A, is currently higher.

2.2 Endogeneity of Labor Market Tightness

Taking logs in (2) and using lower case letters to denote logarithms, one obtains a convenient linear

relationship between f and θ:

f = ηθ + a. (5)

The focus of a large part of the empirical literature on the matching function — and that of this

paper — is to obtain an estimate of η. The common approach to this problem is to use measures

of f and θ to estimate (5) by OLS. If free entry holds, however, this approach will fail to deliver

a consistent estimate of η as (4) clearly implies that θ is correlated with a.8 Rewriting (4) in log

terms yields:

θ =
π − c+ a

1− η
, (6)

so that Cov (θ, a) 6= 0 in general. Intuitively, the reallocation shocks affects the job finding rate

both directly by changing the efficiency of the matching process, and indirectly by affecting the

employers’ incentives to post vacant jobs. In spite of this potential source of bias originating from

the free entry condition, estimates of η based on OLS regressions of f on θ are routinely used to

calibrate matching models in which the free entry condition is assumed to hold.9

We now show how the endogeneity of θ can be overcome by imposing some structure on the

process of reallocation shocks.

3 The Statistical Model

3.1 Specification

We propose to estimate the matching function using monthly time series observations of the job

finding rate and labor market tightness. Introducing a time index t, which becomes necessary at

this juncture, we now decompose the reallocation shock at as follows: at = µ+ τt + εt, where µ is a

constant, τt is a seasonal dummy, and εt is an unobserved component. Rewriting equation (5), we

obtain:

ft = µ+ ηθt + τt + εt. (7)

8Notable exceptions to the OLS-in-levels approach are discussed below. For example, some authors have estimated
a first-differenced version of (5) by OLS. As we show below, this approach is also exposed to a simultaneity bias.

9As briefly mentioned in the Introduction, many papers in the matching function estimation literature have
addressed potential simultaneity biases originating from measurement problems, as well as temporal aggregation
biases. The problem we address in this paper is clearly distinct and, in principle, cannot be solved by recourse to
better or higher frequency data.
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We further assume that the stochastic component of the reallocation shock εt follows an AR(p)

process:

εt =

p∑
`=1

ρ`εt−` + ωt ⇔ P (L) εt = ωt, (8)

where L is the lag operator, P (L) := 1−
∑p

`=1 ρ`L
`, and ωt is a serially uncorrelated disturbance.10

3.2 Estimation

Applying the transformation P (L) to (7), using (8) and re-arranging we obtain our main equation

of interest for the estimation:

ft = ν +

p∑
`=1

ρ`ft−` + ηθt −
p∑
`=1

λ`θt−` + P (L) τt + ωt, (9)

where ν =
(
1−

∑p
`=1 ρ`

)
µ and λ` = ηρ` for all `. With serially uncorrelated ωt’s, estimation of

this latter model can be based on the moment conditions E (ωtθt−`) = 0 for all ` ≥ 1. While θt

is still endogenous in (9) as a consequence of free entry, the structure imposed on the reallocation

shock implies that its own lags are valid instruments for θt.
11 How strong those instruments are

will depend on the amount of persistence in the various components of θ — see equation (6) —

and will be assessed in the estimation.

In this simple case of serially uncorrelated ωt’s, only θt is endogenous in (9). Thus in principle

we only need one excluded instrument for identification. Because all lags of θt are valid instruments,

the model is overidentified.

4 Data

We take our measures of job vacancies and matches formed from the Job Openings and Labor

Turnover Survey (JOLTS). JOLTS offers an aggregate time series of job openings and hires covering

the U.S. non-farm sector starting December 2000 and ending in February 2011 at the time of writing.

The “job openings” variable (our measure of vacancies) is a count of all positions that are open on

the last business day of the month. The “hires” variable (our measure of matches formed) counts

all additions to the payroll during the month.12 Finally, we use data on the number of unemployed

aged 16 or over from the Bureau of Labor Statistics (BLS).

The left panel on Figure 1 plots the non-seasonally adjusted time series of the job finding rate

and labor market tightness, both in log terms. The shaded areas indicate NBER-dated recessions.

10Extending the method to allow for some degree of persistence in ωt by assuming it to follow an MA(q) process
is straightforward. However the data do not appear to call for this complication (see below).

11θt is the only endogenous regressor under the assumption of no serial correlation in ωt. Had we assumed that ωt

followed an MA(q) process, we would have needed to instrument all lags of θt and ft up to q and base estimation on
E (ωtθt−`) = 0 holding for all ` ≥ q + 1. Our proposed estimation method remains valid, however, up to this simple
modification.

12See www.bls.gov/jlt/ for details.
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Figure 1: The job finding rate and labor market tightness

Apart from strong seasonality in both variables, the graph suggests the presence of two breaks

occurring around the middle of the two recessions covered by the data (September 2001 and, more

markedly, October 2008 — both breaks are materialized on the figure by vertical solid lines). The

right panel of Figure 1 is a scatter plot of the job finding rate against labor market tightness, both

in log terms. Those two series co-vary very closely and the figure provides prima facie evidence of

an affine relationship between ft and θt. The right panel of Figure 1 also shows that labor market

tightness is slightly more volatile than the job finding rate.

Dickey-Fuller tests do not reject the hypothesis of a unit root in both the job finding rate and

labor market tightness. The possibly nonstationary nature of ft and θt has led some authors to be

concerned about the spuriousness of the correlation between those two variables.13 As shown by

Hsiao (1997), these concerns do not apply to our structural estimation, based on a 2SLS regression

of equation (9). More specifically, if ft and θt are nonstationary then OLS on (7) will yield a super-

consistent estimator of a cointegrating vector for (ft, θt) (see Phillips and Durlauf, 1986, or Stock,

1987). However, what we are after when estimating a matching function is not a cointegrating

relation between ft and θt. Rather, we are seeking to estimate the parameter of a structural

relationship between ft and θt (the matching function). In other words, at the true value of the

matching function elasticity η, the residual εt in (7) may not be stationary (our estimation results

will indeed show that we cannot reject nonstationarity). Hsiao (1997) shows that, in this context,

2SLS on (9) is consistent.14

13The standard strategy is then to consider a first-differenced version of equation (7) (see e.g. Yashiv, 2000).
14A few further subtleties arise here. The statement that the OLS estimator of the regression coefficient of a

nonstationary variable yt on a nonstationary vector xt is super-consistent for a cointegrating vector for (yt,x
′
t) is

only true if the elements of xt are not themselves cointegrated. Strictly speaking, this fails to hold in our case as
the r.h.s. in (7) comprises θ and month dummies, which are stationary. Following from that, note that if we take
pseudo-differences and thus consider equation (9), we have a cointegration relation (ω is stationary by assumption)
but the regressors are obviously cointegrated so OLS on (9) will also produce a biased estimate.
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5 Estimation Results

5.1 Baseline Results

Table 1 shows estimation results for our baseline specification of the reallocation shock process,

which is to assume that εt follows an AR(3) process, three being the highest autoregression order

which we find to be statistically significant in our data. All estimations are run on non-seasonally

adjusted data and include month dummies to capture seasonality. Prior seasonal adjustment of the

data would indeed create artificial serial correlation in all adjusted variables which would combine

itself with the endogeneity issue we are tackling here. The results gathered in Table 1 include our

preferred estimator (column 5), as well as for a number of benchmark specifications taken from the

literature. We now go over those results.

Column 1 reports estimates obtained from OLS applied to equation (7). Our OLS estimate

of η is on the high side of estimates previously obtained by other authors based on JOLTS data,

probably owing to the combined facts that the JOLTS series now covers a longer period and has

undergone a substantial revision in April 2011.15 Hall (2005) finds an elasticity of 0.77 based on

one year of JOLTS data (2002). Nagypál (2009) finds an elasticity of total hires with respect to

vacancies (not imposing CRS) of 0.668 on seasonally adjusted data and 0.531 on non-seasonally

adjusted data. (She rejects CRS in the latter case.) Nagypál’s sample stops in November 2004.

Rogerson and Shimer (2010) find an elasticity of 0.42 (imposing CRS) on a sample going up to

mid-2009, although they use MA-smoothed seasonally adjusted data in the regression.

For Column 2, we took first differences (FD) of (7) and then ran OLS. Some authors have

advocated estimating (7) in first differences, based on the worry that OLS estimates from the model

in levels might be spurious owing to the nonstationary nature of ft and θt. The OLS estimate of η

based on the first-differenced version of (7) is indeed about half of that from the model in levels.

While at first blush this may reflect the spurious nature of the estimates in levels, our interpretation

is that the difference in estimates between Columns 1 and 2 simply reflect different biases.16

We next implement the estimator succinctly described and used by Yashiv (2000) in an effort

to “cater for nonstationarity [. . . ] and endogeneity”. Yashiv’s estimator is again based on first

differences of (7): it consists of a 2SLS regression of ∆ft on ∆θt, where ∆θt is instrumented by

lags of ∆θt of order 2 and above. Note that this estimator coincide with our preferred estimator

(see Section 3) if εt follows a random walk. The point estimate reported in Column 3 is markedly

higher than the OLS estimate from the model in FD (Column 2), although not as high as the OLS

estimate from the model in levels. The discrepancy between the OLS and IV estimates on model

(7) in FD should arouse suspicion as to the consistency of OLS. Moreover, a Sargan test rejects the

15See www.bls.gov/jlt/ for details.
16Asymptotically (and ignoring month dummies), the bias in Column 1 converges to Cov (θ, a) /Var (θ), while the

bias in Column 2 converges to Cov (∆θ,∆a) /Var (∆θ). Those expressions are impossible to sign in general as they
depend on the dynamic structure of the reallocation shock a and on its correlation with π and c (see Section 2).
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consistency of the set of instruments used in Column 3.

Column 4 reports OLS estimates of (9) and is there for comparison with Column 5 (our proposed

estimator) to gauge the extent of the simultaneity bias arising from correlation between θt and the

contemporaneous innovation ωt. Estimates using our proposed strategy are reported in Column 5:

equation (9) is estimated by 2SLS with θt instrumented by lags of ∆θt (∆θt−4 to ∆θt−7). While our

preferred estimate of the matching function elasticity is closer to the simple OLS estimate based

on (5) in levels (Column 1) than to the one based on OLS in first differences (Column 2), it is still

markedly lower, meaning that the simultaneity bias affecting OLS estimates has a positive sign.

Consistency of the set of instruments that we use to produce the results in Column 5 is accepted

by a Sargan test (reported at the bottom of Column 5). The sizeable differences between IV and

OLS estimates of (9) (Column 5 vs Column 4) as well as the reasonably large first-stage partial R-

squared and F statistic all further suggest that we are not facing a weak instrument problem. Most

importantly, estimation of (9) by OLS produces a substantially lower value of η, suggesting that

simultaneity is indeed there and quantitatively important. Finally, the common factor restriction

(CFR) λ` = ηρ` was not imposed in our estimation of (9). The restriction can be tested using a

Wald test, which is also reported in Table 1 and does not reject the restriction.17

Based on the results shown in Column 5, the hypothesis that
∑3

`=1 ρ` = 1 cannot be rejected,

i.e. the reallocation shock εt may be nonstationary.18 This restriction can be imposed in (9), which

leads to estimating the following model (with p = 3):

∆ft =− (1− ρ1) ∆ft−1 − (1− ρ1 − ρ2) ∆ft−2

+ η∆θt + η (1− ρ1) ∆θt−1 + η (1− ρ1 − ρ2) ∆θt−2

+ P (L) τt + ωt.

We estimate this equation by 2SLS, not imposing the common factor restriction, and report the

results in Column 6. As expected, point estimates are very close to those obtained in Column 5

(with a slight gain in precision) and the common factor restriction is not rejected.

5.2 Robustness

We investigate the robustness of the results to different assumptions about the amount of persistence

in the reallocation shock εt, to the inclusion of structural breaks in September 2001 and October

2008, and to restricting the estimation sample to a different sub-period. Results are gathered in

Table 2.19 We note that the conventional OLS estimate of model (7) in levels is sensitive both to

the inclusion of a structural break at the beginning of the 2008 Recession and to the inclusion of

17Because the CFR is a nonlinear restriction, the form under which we test it may matter for the Wald test (Gregory
and Veall, 1986). Here we test equality to zero of λ` − ηρ`. Using other forms (e.g. λ`/η− ρ` = 0) leads to the same
qualitative conclusion.

18Note that, consistently with (9), the constant term is estimated at 0 in Column 4.
19The table only reports a subset of the coefficients. A full table is available on request.

10



the post-2008 Recession period in the estimation sample. Our IV estimate is far more robust to

these changes especially when considering our preferred specification of the residuals, AR(3).

1 2 3 4 5
OLS on (7) OLS on (7) IV on (9) assuming εt is. . .

in FD AR(1) AR(2) AR(3)

Whole sample (2000:m12 - 2011:m1)

θt 0.824
(.015)

0.369
(.063)

0.612
(.117)

0.672
(.105)

0.675
(.116)

ft−1 — — 0.749
(.079)

0.430
(.107)

0.294
(.114)

ft−2 — — — 0.441
(.102)

0.291
(.100)

ft−3 — — — — 0.388
(.102)

Whole sample, with structural breaks 2001:m9 and 2008:m10

θt 0.623
(.027)

0.371
(.064)

0.610
(.112)

0.660
(.103)

0.711
(.129)

ft−1 — — 0.561
(.089)

0.341
(.110)

0.212
(.122)

ft−2 — — — 0.406
(.102)

0.312
(.101)

ft−3 — — — — 0.332
(.100)

Period up to 2008:m9

θt 0.646
(.026)

0.362
(.074)

0.722
(.187)

0.722
(.181)

0.677
(.167)

ft−1 — — 0.538
(.151)

0.322
(.166)

0.264
(.159)

ft−2 — — — 0.414
(.166)

0.322
(.121)

ft−3 — — — — 0.233
(.120)

Month dummies included as regressors in all specifications. Structural
breaks at 2001:m9 and 2008:m10 included in bottom two panels. Excluded
instruments in columns 2-4 are ∆θt−p−` for ` = 1 to 3 and p is the order
of the autoregressive component of ε.

Table 2: Robustness checks

6 Further Quantitative Assessment of the Bias

Whether unemployment fluctuations are caused by fluctuations in labor demand induced by shocks

to firms’ revenues (productivity or demand shocks), or by shifts in the matching function itself (i.e.,

in the parlance of equation (2), by shifts in A), is a classic question in macro-labor (dating back to
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at least Blanchard and Diamond, 1989).20 The standard approach to addressing that question is to

pick a matching function elasticity η̂ (usually obtained from calibration or OLS regression), back

out the implied time series of reallocation shocks as ât = ft− η̂θt, and look at the cyclical behavior

of that shock. In this section, we gauge the quantitative consequences of using OLS estimates of

the matching function elasticity for that exercise, as opposed to using our preferred, consistent IV

estimates.

Figure 2: Matching efficiency

Figure 2 plots time series of the reallocation shock constructed from standard OLS estimates

(Table 1, Column 1) and from IV estimates (Table 1, Column 5). The OLS-based matching

efficiency shows no particular trend and is somewhat countercyclical (it has a correlation of 0.31

with detrended unemployment). The IV-based matching efficiency, on the other hand, does not

appear to follow any cyclical pattern, but declines steadily since the second semester of 2007. Those

two time series suggest radically different conclusions as to the causes of unemployment fluctuations.

The OLS estimates suggests that, if anything, matching efficiency improves in periods of high

unemployment, so that based on the model, high unemployment can only be due to depressed

labor demand caused by adverse productivity or demand shocks. The IV estimates, on the other

hand, suggests that matching efficiency has started to slowly and steadily deteriorate round the mid

2000s, which may partly account for the slow recovery that the U.S. labor market is experiencing

at the time of writing.

20Of course a further source of confusion resides in the fact that, if labor demand is determined by a free entry
condition, then any shock to matching efficiency A will induce a simultaneous response of firms’ labor demand, in
addition to its direct impact on the matching function.

12



7 Conclusion

This paper begins by pointing out a simple implication of equilibrium matching models: the search

behavior of firms and/or job seekers implies that labor market tightness and the job finding rate

are simultaneously determined as a function of the unobserved efficiency of the matching process.

As a consequence, the standard practice of regressing the job finding rate on a measure of labor

market tightness using, e.g., OLS, is exposed to a simultaneity bias. Putting some structure on the

process followed by matching efficiency (or the ‘reallocation shock’) allows us to offer a consistent

estimator of the matching function elasticity. Application of our method to the estimation of a

basic version of the matching function using JOLTS data suggests that the bias has potentially

important quantitative consequences, which we illustrate through the classic question of whether

unemployment fluctuations are caused by labor demand shocks or by reallocation shocks (shifts

in the matching function itself). Based on our estimates of the matching function, we conclude

that matching efficiency has indeed declined markedly since the beginning of the Great Recession,

whereas OLS-based estimates of the matching function would lead one to conclude that matching

efficiency has actually improved during that recession.

In order to make our point with minimal peripheral complication, we have focused on a very

basic version of the equilibrium matching model, and deliberately abstracted from a number of

important problems analyzed elsewhere in the literature (such as time aggregation, imperfect input

measurement, or stock-flow matching). Further work is needed to examine how those sources of bias

interact with the ‘structural’ problem of endogeneity of labor market tightness that we emphasize

in this paper.
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