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1 Introduction

We study a class of preconditioners for the solution of large indefinite linear systems, without
assuming any sparsity pattern for the system matrix. In many contexts of numerical analysis
and nonlinear optimization the iterative efficient solution of sequences of linear systems is
sought. Truncated Newton methods in unconstrained optimization, KKT systems, interior
point methods, and PDE constrained optimization are just some examples (see e.g. [5]).

In this work we consider the solution of symmetric indefinite linear systems by using
preconditioning techniques; in particular, the class of preconditioners we propose uses infor-
mation collected by Krylov subspace methods, in order to capture the structural properties
of the system matrix. We iteratively construct our preconditioners either by using (but not
performing) a factorization of the system matrix (see, e.g. [8, 12, 19]), obtained as by prod-
uct of Krylov subspace methods, or performing a Jordan Canonical form on a very small
size matrix. We address our preconditioners using a general Krylov subspace method; then,
we prove theoretical properties for such preconditioners, and we describe results which indi-
cate how to possibly select the parameters involved in the definition of the preconditioners.
The basic idea of our approach is that we apply a Krylov-based method to generate a pos-
itive definite approximation of the inverse of the system matrix. The latter is then used to
build our preconditioners, needing to store just a few vectors, without requiring any prod-
uct of matrices. Since we collect information from Krylov-based methods, we assume that
the entries of the system matrix are not known and the necessary information is gained by
using a routine, which computes the product of the system matrix times a vector.

In the companion paper [10] we experience our preconditioners, both within linear al-
gebra and nonconvex optimization frameworks. In particular, we test our proposal on
significant linear systems from the literature. Then, we focus on the so called Newton–
Krylov methods, also known as Truncated Newton methods (see [16] for a survey). In these
contexts, both positive definite and indefinite linear systems have been considered.

We recall that in case the optimization problem in hand is nonconvex, i.e. the Hessian
matrix of the objective function is possibly indefinite and at least one eigenvalue is nega-
tive, the solution of Newton’s equations within Truncated Newton schemes may claim for
some cares. Indeed, the Krylov-based method used to solve Newton’s equation, should be
suitably applied considering that, unlike in linear algebra, optimization frameworks require
the definition of descent directions, which have to satisfy additional properties [6, 17]. In
this regard our proposal provides a tool, in order to preserve the latter properties.

The paper is organized as follows: in the next section we describe our class of precondi-
tioners for indefinite linear systems, by using a general Krylov subspace method. Finally, a
section of conclusions and future work completes the paper.

As regards the notations, for a n×n real matrix M we denote with Λ[M ] the spectrum
of M ; Ik is the identity matrix of order k. Finally, with C ≻ 0 we indicate that the matrix
C is positive definite, tr[C] and det[C] are the trace and the determinant of C, respectively,
while ∥ ⋅ ∥ denotes the Euclidean norm.
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2 Our class of preconditioners

In this section we first introduce some preliminaries, then we propose our class of precon-
ditioners. Consider the indefinite linear system

Ax = b, (2.1)

where A ∈ IRn×n is symmetric, n is large and b ∈ IRn. Some real contexts where the latter
system requires efficient solvers are detailed in Section 1. Suppose any Krylov subspace
method is used for the solution of (2.1), e.g. the Lanczos process or the CG method [12]
(but MINRES [18] or Planar-CG methods [13, 7] may be also an alternative choice). They
are equivalent as long as A ≻ 0, whereas the CG, though cheaper, in principle may not
cope with the indefinite case. In the next Assumption 2.1 we consider that a finite number
of steps, say ℎ ≪ n, of the Krylov subspace method adopted have been performed.

Assumption 2.1 Let us consider any Krylov subspace method to solve the symmetric linear
system (2.1). Suppose at step ℎ of the Krylov method, with ℎ ≤ n − 1, the matrices
Rℎ ∈ IRn×ℎ, Tℎ ∈ IRℎ×ℎ and the vector uℎ+1 ∈ IRn are generated, such that

ARℎ = RℎTℎ + �ℎ+1uℎ+1e
T
ℎ , �ℎ+1 ∈ IR, (2.2)

Tℎ =

⎧

⎨

⎩

VℎBℎV
T
ℎ , if Tℎ is indefinite

LℎDℎL
T
ℎ , if Tℎ is positive definite

(2.3)

where

Rℎ = (u1 ⋅ ⋅ ⋅ uℎ), uTi uj = 0, ∥ui∥ = 1, 1 ≤ i ∕= j ≤ ℎ,

uTℎ+1ui = 0, ∥uℎ+1∥ = 1, 1 ≤ i ≤ ℎ,

Tℎ is irreducible and nonsingular, with eigenvalues �1, . . . , �ℎ not all coincident,

Bℎ = diag1≤i≤ℎ{�i}, Vℎ = (v1 ⋅ ⋅ ⋅ vℎ) ∈ IRℎ×ℎ orthogonal, (�i, vi) is eigenpair of Tℎ,

Dℎ ≻ 0 is diagonal, Lℎ is unit lower bidiagonal.

Remark 2.1 Note that most of the common Krylov subspace methods for the solution of
symmetric linear systems (e.g. the CG, the Lanczos process, etc.) at iteration ℎ may easily
satisfy Assumption 2.1. In particular, also observe that from (2.2) we have Tℎ = RT

ℎARℎ, so
that whenever A ≻ 0 then Tℎ ≻ 0. Since the Jordan Canonical form of Tℎ in (2.3) is required
only when Tℎ is indefinite, it is important to check when Tℎ ≻ 0, without computing the
eigenpairs of Tℎ if unnecessary. On this purpose, note that the Krylov subspace method
adopted always provides relation Tℎ = LℎDℎL

T
ℎ , with Lℎ nonsingular andDℎ block diagonal

(blocks can be 1×1 or 2×2 at most), even when Tℎ is indefinite [18, 19, 8]. Thus, checking
the eigenvalues of Dℎ will suggest if the Jordan Canonical form Tℎ = VℎBℎV

T
ℎ is really

needed for Tℎ, i.e. if Tℎ is indefinite.
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Observe also that from Assumption 2.1 the parameter �ℎ+1 ma be possibly nonzero, i.e. the
subspace span{u1, . . . , uℎ} is possibly not an invariant subspace under the transformation
by matrix A (thus, in this paper we consider a more general case with respect to [3]).

Remark 2.2 The Krylov subspace method adopted may, in general, perform m ≥ ℎ itera-
tions, generating the orthonormal vectors u1, . . . , um. Then, we can set Rℎ = (uℓ1 , . . . , uℓℎ),
where {ℓ1, . . . , ℓℎ} ⊆ {1, . . . ,m}, and change relations (2.2)-(2.3) accordingly; i.e. Assump-
tion 2.1 may hold selecting any ℎ out of the m vectors (among u1, . . . , um) computed by
the Krylov subspace method.

Remark 2.3 For relatively small values of the parameter ℎ in Assumption 2.1 (say ℎ ≤ 20,
as often suffices in most of the applications), the computation of the eigenpairs (�i, vi),
i = 1, . . . , ℎ, of Tℎ when Tℎ is indefinite may be extremely fast, with standard codes. E.g.
if the CG is the Krylov subspace method used in Assumption 2.1 to solve (2.1), then the
Matlab [1] (general) function eigs() requires as low as ≈ 10−4 seconds to fully compute all
the eigenpairs of Tℎ, for ℎ = 20, on a commercial laptop. In the latter case indeed, the matrix
Tℎ is tridiagonal. Nonetheless, in the separate paper [9] we consider a special case where
the request (2.3) on Tℎ may be considerably weakened under mild assumptions. Moreover,
in the companion paper [10] we also prove that for a special choice of the parameter ‘a’ used
in our class of preconditioners (see below), strong theoretical properties may be stated.

On the basis of the latter assumption, we can now define our preconditioners and show their
properties. To this aim, considering for the matrix Tℎ the expression (2.3), we define (see
also [11])

∣Tℎ∣
def
=

⎧

⎨

⎩

Vℎ∣Bℎ∣V
T
ℎ , ∣Bℎ∣ = diag1≤i≤ℎ{∣�i∣}, if Tℎ is indefinite,

Tℎ, if Tℎ is positive definite.

As a consequence, when Tℎ is indefinite we have Tℎ∣Tℎ∣
−1 = ∣Tℎ∣

−1Tℎ = VℎÎℎV
T
ℎ , where

the ℎ nonzero diagonal entries of the matrix Îℎ are in the set {−1,+1}. Furthermore, it is
easily seen that ∣Tℎ∣ is positive definite, for any ℎ, and the matrix ∣Tℎ∣

−1T 2
ℎ ∣Tℎ∣

−1 = Iℎ is
the identity matrix.

Now let us introduce the following n × n matrix, which depends on the real parameter
‘a’:

Mℎ
def
= (I −RℎR

T
ℎ ) +Rℎ∣Tℎ∣R

T
ℎ + a

(

uℎ+1u
T
ℎ + uℎu

T
ℎ+1

)

, ℎ ≤ n− 1,

= [Rℎ ∣ uℎ+1 ∣ Rn,ℎ+1]

⎡

⎣

(

∣Tℎ∣ aeℎ
aeTℎ 1

)

0

0 In−(ℎ+1)

⎤

⎦

⎡

⎣

RT
ℎ

uTℎ+1

RT
n,ℎ+1

⎤

⎦ (2.4)

Mn
def
= (I −RnR

T
n ) +Rn∣Tn∣R

T
n = Rn∣Tn∣R

T
n , (2.5)

where Rℎ and Tℎ satisfy relations (2.2)-(2.3), a ∈ IR, the matrix Rn,ℎ+1 ∈ IRn×[n−(ℎ+1)] is
such that RT

n,ℎ+1Rn,ℎ+1 = In−(ℎ+1) and [Rℎ ∣ uℎ+1 ∣ Rn,ℎ+1] is orthogonal. By (2.4), when
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ℎ ≤ n− 1, the matrix Mℎ is the sum of three terms.
It is easily seen that I − RℎR

T
ℎ represents a projector onto the subspace S orthogonal to

the range of matrix Rℎ, so that Mℎv = v + a(uTℎ+1v)uℎ, for any v ∈ S. Thus, for any

v ∈ S, when either uTℎ+1v = 0 or a = 0, then Mℎv = v (or equivalently if Mℎ is nonsingular

M−1
ℎ v = v), i.e. the vector v is unaltered by applying Mℎ (or M−1

ℎ ). As a result, if either
a = 0 or uTℎ+1v = 0 then Mℎ behaves as the identity matrix for any vector v ∈ S.
Using the parameter dependent matrix Mℎ in (2.4)-(2.5) we are now ready to introduce the
following class of preconditioners

M ♯
ℎ(a, �,D) = D

[

In − (Rℎ ∣ uℎ+1) (Rℎ ∣ uℎ+1)
T
]

DT ℎ ≤ n− 1,

+ (Rℎ ∣ Duℎ+1)

(

�2∣Tℎ∣ aeℎ
aeTℎ 1

)−1

(Rℎ ∣ Duℎ+1)
T (2.6)

M ♯
n(a, �,D) = Rn∣Tn∣

−1RT
n . (2.7)

Theorem 2.1 Consider any Krylov method to solve the symmetric linear system (2.1).
Suppose that Assumption 2.1 holds and the Krylov method performs ℎ ≤ n iterations. Let
a ∈ IR, � ∕= 0, and let the matrix D ∈ IRn×n be such that [Rℎ ∣ Duℎ+1 ∣ DRn,ℎ+1] is

nonsingular, where Rn,ℎ+1R
T
n,ℎ+1 = In − (Rℎ ∣ uℎ+1) (Rℎ ∣ uℎ+1)

T . Then, we have the
following properties:

a) the matrix M ♯
ℎ(a, �,D) is symmetric. Furthermore

– when ℎ ≤ n − 1, for any a ∈ IR− {±�(eTℎ ∣Tℎ∣
−1eℎ)

−1/2}, M ♯
ℎ(a, �,D) is nonsin-

gular;

– when ℎ = n the matrix M ♯
ℎ(a, �,D) is nonsingular;

b) the matrix M ♯
ℎ(a, �,D) coincides with M−1

ℎ as long as either D = In and � = 1, or
ℎ = n;

c) for ∣a∣ < ∣�∣(eTℎ ∣Tℎ∣
−1eℎ)

−1/2 the matrix M ♯
ℎ(a, �,D) is positive definite. Moreover, if

D = In the spectrum Λ[M ♯
ℎ(a, �, In)] is given by

Λ[M ♯
ℎ(a, �, In)] = Λ

[

(

�2∣Tℎ∣ aeℎ
aeTℎ 1

)−1
]

∪ Λ
[

In−(ℎ+1)

]

;

d) when ℎ ≤ n− 1:

– if D is nonsingular then M ♯
ℎ(a, �,D)A has at least (ℎ − 3) singular values equal

to +1/�2;

– if D is nonsingular and a = 0 then the matrix M ♯
ℎ(a, �,D)A has at least (ℎ− 2)

singular values equal to +1/�2;
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e) when ℎ = n, then M ♯
n(a, �,D) = M−1

n , Λ[Mn] = Λ[∣Tn∣] and Λ[M−1
n A] = Λ[AM−1

n ] ⊆

{−1,+1}, i.e. the n eigenvalues of the preconditioned matrix M ♯
ℎ(a, �,D)A are either

+1 or −1.

Proof: Let N = [Rℎ ∣ Duℎ+1 ∣ DRn,ℎ+1], where N is nonsingular by hypothesis. Observe

that for ℎ ≤ n− 1 the preconditioners M ♯
ℎ(a, �,D) may be rewritten as

M ♯
ℎ(a, �,D) = N

⎡

⎣

(

�2∣Tℎ∣ aeℎ
aeTℎ 1

)−1

0

0 In−(ℎ+1)

⎤

⎦NT , ℎ ≤ n− 1. (2.8)

The property a) follows from the symmetry of Tℎ. In addition, observe that RT
n,ℎ+1Rn,ℎ+1 =

In−(ℎ+1). Thus, from (2.8) the matrix M ♯
ℎ(a, �,D) is nonsingular if and only if the matrix

(

�2∣Tℎ∣ aeℎ
aeTℎ 1

)

(2.9)

is invertible. Furthermore, by a direct computation we observe that for ℎ ≤ n − 1 the
following identity holds

(

�2∣Tℎ∣ aeℎ
aeTℎ 1

)

=

(

Iℎ 0
a
�2 e

T
ℎ ∣Tℎ∣

−1 1

)(

�2∣Tℎ∣ 0

0 1− a2

�2 e
T
ℎ ∣Tℎ∣

−1eℎ

)(

Iℎ
a
�2
∣Tℎ∣

−1eℎ
0 1

)

.

(2.10)
Thus, since Tℎ is nonsingular and � ∕= 0, for ℎ ≤ n − 1 the determinant of matrix (2.9) is

nonzero if and only if a ∕= ±�(eTℎ ∣Tℎ∣
−1eℎ)

−1/2. Finally, for ℎ = n the matrix M ♯
ℎ(a, �,D) is

nonsingular, since Rn and Tn are nonsingular in (2.7).
As regards b), recalling that RT

ℎRℎ = Iℎ and ∣Tℎ∣ is nonsingular from Assumption 2.1,
when ℎ ≤ n− 1 relations (2.4) and (2.8) trivially yield the result, as well as (2.5) and (2.7)
for the case ℎ = n.

As regards c), observe that from (2.8) the matrix M ♯
ℎ(a, �,D) is positive definite, as

long as the matrix (2.9) is positive definite. Thus, from (2.10) and relation ∣Tℎ∣ ≻ 0 we

immediately infer that M ♯
ℎ(a, �,D) is positive definite as long as ∣a∣ < ∣�∣(eTℎ ∣Tℎ∣

−1eℎ)
−1/2.

Moreover, we recall that when D = In then N is orthogonal.
Item d) may be proved by first computing the eigenvalues of the matrix

[

M ♯
ℎ(a, �,D)A

] [

M ♯
ℎ(a, �,D)A

]T
= M ♯

ℎ(a, �,D)A2M ♯
ℎ(a, �,D).

On this purpose, for ℎ ≤ n − 1 we have for M ♯
ℎ(a, �,D)A2M ♯

ℎ(a, �,D) the expression (see
(2.8))

M ♯
ℎ(a, �,D)A2M ♯

ℎ(a, �,D) =

N

⎡

⎣

(

�2∣Tℎ∣ aeℎ
aeTℎ 1

)−1

0

0 In−(ℎ+1)

⎤

⎦C

⎡

⎣

(

�2∣Tℎ∣ aeℎ
aeTℎ 1

)−1

0

0 In−(ℎ+1)

⎤

⎦NT (2.11)

5



where C ∈ IRn×n, with

C = NTA2N =

⎡

⎣

RT
ℎA

2Rℎ RT
ℎA

2Duℎ+1 RT
ℎA

2DRn,ℎ+1

uTℎ+1D
TA2Rℎ uTℎ+1D

TA2Duℎ+1 uTℎ+1D
TA2DRn,ℎ+1

RT
n,ℎ+1D

TA2Rℎ RT
n,ℎ+1D

TA2Duℎ+1 RT
n,ℎ+1D

TA2DRn,ℎ+1

⎤

⎦ .

From (2.2) and the symmetry of Tℎ we obtain

RT
ℎA

2Rℎ = (ARℎ)
T (ARℎ) = (RℎTℎ + �ℎ+1uℎ+1e

T
ℎ )

T (RℎTℎ + �ℎ+1uℎ+1e
T
ℎ )

= T 2
ℎ + �2ℎ+1eℎe

T
ℎ

RT
ℎA

2Duℎ+1 = (ARℎ)
TADuℎ+1 = (RℎTℎ + �ℎ+1uℎ+1e

T
ℎ )

TADuℎ+1

= TℎR
T
ℎADuℎ+1 + �ℎ+1(u

T
ℎ+1ADuℎ+1)eℎ

= Tℎ(RℎTℎ + �ℎ+1uℎ+1e
T
ℎ )

TDuℎ+1 + �ℎ+1(u
T
ℎ+1ADuℎ+1)eℎ

= v1 (2.12)

RT
ℎA

2DRn,ℎ+1 = V1

uTℎ+1D
TA2Duℎ+1 = c

uTℎ+1D
TA2DRn,ℎ+1 = vT2

RT
n,ℎ+1D

TA2DRn,ℎ+1 = V2,

(2.13)

so that

C =

⎡

⎣

T 2
ℎ + �2ℎ+1eℎe

T
ℎ v1 V1

vT1 c vT2
V T
1 v2 V2

⎤

⎦ .

Moreover, from (2.10) we can readily infer that

[

�2∣Tℎ∣ aeℎ
aeTℎ 1

]−1

=

(

Iℎ − a
�2
∣Tℎ∣

−1eℎ
0 1

)

( 1
�2
∣Tℎ∣

−1 0

0 1

1− a2

�2
eT
ℎ
∣Tℎ∣−1eℎ

)

(

Iℎ 0

− a
�2
eTℎ ∣Tℎ∣

−1 1

)

=

(

1
�2 ∣Tℎ∣

−1 − a
�4!∣Tℎ∣

−1eℎe
T
ℎ ∣Tℎ∣

−1 !
�2 ∣Tℎ∣

−1eℎ
!
�2
eTℎ ∣Tℎ∣

−1 −!
a

)

, (2.14)

with
! = −

a

1− a2

�2
eTℎ ∣Tℎ∣−1eℎ

. (2.15)

Now, recalling that N = [Rℎ ∣ Duℎ+1 ∣ DRn,ℎ+1], for any ℎ ≤ n− 1 we obtain from (2.11)

M ♯
ℎ(a, �,D)A2M ♯

ℎ(a, �,D) =

N

⎡

⎣

[

�2∣Tℎ∣ aeℎ
aeTℎ 1

]−1 [
T 2
ℎ + �2ℎ+1eℎe

T
ℎ v1

vT1 c

] [

�2∣Tℎ∣ aeℎ
aeTℎ 1

]−1 ...

⋅ ⋅ ⋅ ⋅

⎤

⎦NT ,
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where the dots indicate matrices whose computation is not relevant to our purposes.
Now, considering the last relation, we focus on computing the submatrix Hℎ×ℎ corre-

sponding to the first ℎ rows and ℎ columns of the matrix

[

�2∣Tℎ∣ aeℎ
aeTℎ 1

]−1 [
T 2
ℎ + �2ℎ+1eℎe

T
ℎ v1

vT1 c

] [

�2∣Tℎ∣ aeℎ
aeTℎ 1

]−1

. (2.16)

After a brief computation, from (2.14) and (2.16) we obtain for the submatrix Hℎ×ℎ

Hℎ×ℎ =

[(

1

�2
∣Tℎ∣

−1 −
a

�4
!∣Tℎ∣

−1eℎe
T
ℎ ∣Tℎ∣

−1

)

(

T 2
ℎ + �2ℎ+1eℎe

T
ℎ

)

+

!

�2
∣Tℎ∣

−1eℎv
T
1

]

⋅

[

1

�2
∣Tℎ∣

−1 −
a

�4
!∣Tℎ∣

−1eℎe
T
ℎ ∣Tℎ∣

−1

]

+

[(

1

�2
∣Tℎ∣

−1 −
a

�4
!∣Tℎ∣

−1eℎe
T
ℎ ∣Tℎ∣

−1

)

v1 +
!

�2
c∣Tℎ∣

−1eℎ

]

⋅
!

�2
eTℎ ∣Tℎ∣

−1,

and for the case of Tℎ indefinite, from (2.3) we obtain (a similar analysis holds for the case
Tℎ ≻ 0, too)

Hℎ×ℎ =

[

1

�2
VℎÎℎV

T
ℎ Tℎ +

�2ℎ+1

�2
∣Tℎ∣

−1eℎe
T
ℎ −

a

�4
!∣Tℎ∣

−1eℎe
T
ℎVℎÎℎV

T
ℎ Tℎ

−
a

�4
!�2ℎ+1e

T
ℎ ∣Tℎ∣

−1eℎ∣Tℎ∣
−1eℎe

T
ℎ +

!

�2
∣Tℎ∣

−1eℎv
T
1

]

⋅

[

1

�2
∣Tℎ∣

−1 −
a

�4
!∣Tℎ∣

−1eℎe
T
ℎ ∣Tℎ∣

−1

]

+
!

�2

[

1

�2
∣Tℎ∣

−1v1 −
a

�4
!∣Tℎ∣

−1eℎe
T
ℎ ∣Tℎ∣

−1v1 +
!

�2
c∣Tℎ∣

−1eℎ

]

eTℎ ∣Tℎ∣
−1.

Recalling that (VℎÎℎV
T
ℎ )(VℎÎℎV

T
ℎ ) = Iℎ (so that eTℎ (VℎÎℎV

T
ℎ )(VℎÎℎV

T
ℎ )eℎ = 1), from the

last relation we finally have for Hℎ×ℎ the expression

Hℎ×ℎ =
1

�4

{

Iℎ +
[

�∣Tℎ∣
−1eℎ −

a!

�2
eℎ + !∣Tℎ∣

−1v1

]

eTℎ ∣Tℎ∣
−1

+ !∣Tℎ∣
−1eℎ

[

vT1 ∣Tℎ∣
−1 −

a

�2
eTℎ

]}

, (2.17)

where

� = �2ℎ+1 − 2
a

�2
!�2ℎ+1(e

T
ℎ ∣Tℎ∣

−1eℎ) +
a2!2

�4

+
a2

�4
!2�2ℎ+1(e

T
ℎ ∣Tℎ∣

−1eℎ)
2 − 2

a

�2
!2(eTℎ ∣Tℎ∣

−1v1) + !2c. (2.18)

Let us now define the subspace (see the vectors which define the dyads in relation (2.17))

T2 = span
{

∣Tℎ∣
−1eℎ , !

[

∣Tℎ∣
−1v1 −

a

�2
eℎ

]}

. (2.19)

Observe that when D = In then from (2.12) v1 = �ℎ+1

[

Tℎ + (uTℎ+1Auℎ+1)Iℎ
]

eℎ. Thus,
from (2.19) the subspace T2 has dimension 2, unless
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(i) D = In and Tℎ is proportional to Iℎ,

(ii) a = 0 (which also implies from (2.15) ! = 0).

We analyze separately the two cases. The condition (i) cannot hold since (2.2) would imply
that the vector Aui is proportional to ui, i = 1, . . . , ℎ− 1, i.e. the Krylov subspace method
had to stop at the very first iteration, since the Krylov subspace generated at the first
iteration did not change. As a consequence, considering any subspace Sℎ−2 ⊆ IRn, such
that Sℎ−2

⊕

T2 = IRn, we can select any orthonormal basis {s1, . . . , sℎ−2} of the subspace
Sℎ−2 so that (see (2.17)) the ℎ− 2 vectors {s1, . . . , sℎ−2} can be thought as (the first) ℎ− 2
eigenvectors of the matrix Hℎ×ℎ, corresponding to the eigenvalue +1/�4.
Now, recalling that the submatrixHℎ×ℎ corresponds to the first ℎ rows and ℎ columns of the
matrix M ♯

ℎ(a, �,D)A2M ♯
ℎ(a, �,D), from the Cauchy interlacing property for the eigenvalues

of a real symmetric matrix [4], the matrix M ♯
ℎ(a, �,D)A2M ♯

ℎ(a, �,D) has at least ℎ − 3

eigenvalues equal to +1/�4. Thus, the matrix M ♯
ℎ(a, �,D)A has at least ℎ − 3 singular

values equal to +1/�2, which proves the first statement of d).
As regards the case (ii) with a = 0, observe that by the definition (2.15) of !, a = 0
implies ! = 0, and from relations (2.17)-(2.18), for any D we have Hℎ×ℎ = 1/�4[Iℎ +
�2ℎ+1∣Tn∣

−1eℎe
T
ℎ ∣Tn∣

−1]. Thus, the subspace T2 in (2.19) reduces to T1 = span{∣Tℎ∣
−1eℎ}.

Now, reasoning as in the case (i) (where D = In, with Tℎ proportional to Iℎ), we conclude

that the matrix M ♯
ℎ(a, �,D)A has at least (ℎ− 2) singular values equal to +1/�2.

As regards item e), observe that for ℎ = n the matrix Rn is orthogonal, so that by (2.5)

and (2.7) Λ[M ♯
ℎ(a, �,D)] = Λ[M−1

ℎ ] = Λ[∣Tℎ∣
−1]. Furthermore, by (2.2) and (2.7) we have

for the case of Tℎ indefinite (a similar analysis holds for the case Tℎ ≻ 0, too)

M ♯
n(a, �,D)A = M−1

n A = Rn∣Tn∣
−1RT

nRnTnR
T
n = RnVnÎnV

T
n RT

n = (RnVn)În(RnVn)
T .
(2.20)

Since both Rn and Vn are orthogonal so is the matrix RnVn; thus, relation (2.20) proves

that M ♯
n(a, �,D)A has all the n eigenvalues in the set {−1,+1}.

Remark 2.4 Note that of course the matrix Rn,ℎ+1 in the statement of Theorem 2.1 always
exists, such that [Rℎ ∣ uℎ+1 ∣ Rn,ℎ+1] is orthogonal. However, Rn,ℎ+1 is neither built nor
used in (2.6)-(2.7), and it is introduced only for theoretical purposes. Furthermore, it is
easy to see that since [Rℎ ∣ uℎ+1 ∣ Rn,ℎ+1] is orthogonal, any nonsingular diagonal matrix
D may be used in order to satisfy the hypotheses of Theorem 2.1.

Remark 2.5 Observe that the introduction of the nonsingular matrix D in (2.6) addresses

a very general structure for the preconditioner M ♯
ℎ(a, �,D). As an example, setting ℎ = 0 we

have M ♯
ℎ(a, �,D) = DDT ≻ 0, so that the preconditioner M ♯

ℎ(a, �,D) will encompass several
classes of preconditioners from the literature (e.g. diagonal banded and block diagonal pre-
conditioners [18]), even though no information is provided by the Krylov subspace method.

On the other hand, with the choice D = In and � = 1 the preconditioner M ♯
ℎ(a, 1, In) can

be regarded as an approximate inverse preconditioner [18], without any scaling. Finally,
though the choice � = 1 in (2.6) seems the most obvious, numerical reasons related to for-

mula (2.14) and to the condition number of M ♯
ℎ(a, �,D)A may suggest other values for the

parameter ‘�’. In the companion paper [10] we give motivations for the latter conclusion.
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It is possible to show that trying to introduce a slightly more general structure of
M ♯

ℎ(a, �,D), where the parameter ‘�’ is replaced by a scaling (diagonal) matrix Δ ∈ IRℎ×ℎ

(used to balance the matrix ∣Tℎ∣), the item d) of Theorem 2.1 may not be fulfilled. The
next result summarizes the properties of our class of preconditioners, for a very simple and
opportunistic choice of the parameters ‘a’, ‘�’ and matrix ‘D’.

Corollary 2.2 Consider any Krylov method to solve the symmetric linear system (2.1).
Suppose that Assumption 2.1 holds and the Krylov method performs ℎ ≤ n iterations. Then,
setting a = 0, � = 1 and D = In in Theorem 2.1 the preconditioner

M ♯
ℎ(0, 1, In) =

[

In − (Rℎ ∣ uℎ+1) (Rℎ ∣ uℎ+1)
T
]

+ (Rℎ ∣ uℎ+1)

(

∣Tℎ∣ 0

0 1

)−1

(Rℎ ∣ uℎ+1)
T (2.21)

M ♯
n(0, 1, In) = Rn∣Tn∣

−1RT
n , (2.22)

is such that

a) the matrix M ♯
ℎ(0, 1, In) is symmetric and nonsingular for any ℎ ≤ n;

b) the matrix M ♯
ℎ(0, 1, In) coincides with M−1

ℎ , for any ℎ ≤ n;

c) the matrix M ♯
ℎ(0, 1, In) is positive definite. Moreover, its spectrum Λ[M ♯

ℎ(0, 1, In)] is
given by

Λ[M ♯
ℎ(0, 1, In)] = Λ

[

∣Tℎ∣
−1
]

∪ Λ [In−ℎ] ;

d) when ℎ ≤ n − 1, then the matrix M ♯
ℎ(0, 1, In)A has at least (ℎ − 2) singular values

equal to +1;

e) when ℎ = n, then Λ[Mn] = Λ[∣Tn∣] and Λ[M ♯
n(0, 1, In)A] = Λ[M−1

n A] = Λ[AM−1
n ] ⊆

{−1,+1}, i.e. the n eigenvalues of M ♯
ℎ(0, 1, In)A are either +1 or −1.

Proof: The result is directly obtained from (2.4)-(2.5) and Theorem 2.1, with a = 0, � = 1
and D = In.

Remark 2.6 Observe that the case ℎ ≈ n in Theorem 2.1 and Corollary 2.2 is of scarce
interest for large scale problems. Indeed, in the literature of preconditioners the values of
‘ℎ’ typically do not exceed 10÷20 [14, 15]. Moreover, for small values of ℎ the computation
of the inverse matrix

(

�2∣Tℎ∣ aeℎ
aeTℎ 1

)−1

, (2.23)

in order to provide M ♯
ℎ(a, �, In) or M

♯
ℎ(a, �,D), may be cheaply performed when Tℎ is either

indefinite or positive definite. In the former case Remark 2.3 and relation (2.14) will provide
the result. In the latter case it suffices to use (2.14). Thus, the overall cost (number of flops)
for computing (2.23) is mostly due to the computational burden of ∣Tℎ∣

−1. However, with a
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better insight and considering that our preconditioners are suited for large scale problems,
observe that the application of our proposal only requires to compute the inverse matrix
(2.23) times a real (ℎ+ 1)-dimensional vector. Indeed, Krylov subspace methods never use
directly matrices during their recursion. Thus, the computational core of computing the
matrix (2.23) times a vector is the product ∣Tℎ∣

−1u, where u ∈ IRℎ. In this regard, we have
the following characterization:

∙ if Tℎ is indefinite then ∣Tℎ∣
−1u = (Vℎ∣Bℎ∣V

T
ℎ )−1u = V T

ℎ ∣Bℎ∣
−1Vℎu, and recalling that

Bℎ is at most 2 × 2 block diagonal, the cost C(∣Tℎ∣
−1u) of calculating the product

∣Tℎ∣
−1u (not including the cost to compute the Jordan Canonical form of Tℎ), is given

by C(∣Tℎ∣
−1u) = O(ℎ2);

∙ if Tℎ is positive definite then ∣Tℎ∣
−1u = (LℎDℎL

T
ℎ )

−1u = L−T
ℎ D−1

ℎ L−T
ℎ u. Consider-

ing the results in Section 4 of [9], we have that again the cost C(∣Tℎ∣
−1u) of computing

the product ∣Tℎ∣
−1u, is given by C(∣Tℎ∣

−1u) = O(ℎ2).

Remark 2.7 The choice of the parameters ‘�’ and ‘a’, and the matrix ‘D’ is problem
dependent. In particular, ‘�’ and ‘a’ may be set in order to impose conditions like the
following (which tend to force the clustering of the eigenvalues of matrix H(ℎ+1)×(ℎ+1) or
Hℎ×ℎ -see (2.16)- near +1 or near −1):

det
[

H(ℎ+1)×(ℎ+1)

]

= 1, tr
[

H(ℎ+1)×(ℎ+1)

]

= ℎ+ 1,

det [Hℎ×ℎ] = 1, tr [Hℎ×ℎ] = ℎ.

Nonetheless, also the choice a = 0 seems appealing, as described in the companion paper
[10]. Finally, observe that depending on the quantities in the expressions (2.17)-(2.18),
there may be real values of the parameters ‘�’ and ‘a’ such that � = 0. Choosing the latter
values for ‘�’ and ‘a’ may reinforce the conclusions of item d) in Theorem 2.1.

3 Conclusions

We have given theoretical results for a class of preconditioners, which are parameter de-
pendent. The preconditioners can be built by using any Krylov subspace method for the
symmetric linear system (2.1), provided that the general conditions (2.2)-(2.3) in Assump-
tion 2.1 are satisfied. We will give evidence in the companion paper [10] that in several real
problems, a few iterations of the Krylov subspace method adopted may suffice to compute
effective preconditioners. In particular, in many problems using a relatively small value of
the index ℎ, in Assumption 2.1, we can capture a significant information on the system
matrix A. In order to clarify more carefully the latter statement, consider the eigenvec-
tors {�1, . . . , �n} of matrix A in (2.1), and suppose the eigenvectors {�ℓ1 , . . . , �ℓm}, with
{�ℓ1 , . . . , �ℓm} ⊆ {�1, . . . , �n}, correspond to large eigenvalues of A (as often happens). In
case the Krylov subspace method adopted to solve (2.1) generates directions which span the

subspace {�ℓ1 , . . . , �ℓm}, then M ♯
ℎ(a, �,D) will be likely effective as a class of preconditioners.

On this guideline our proposal seems tailored also for those cases where a sequence of
linear systems of the form

Akx = bk, k = 1, 2, . . .
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requires a solution (e.g., see [14, 5] for details), where Ak slightly changes with the index k.

In the latter case, the preconditioner M ♯
ℎ(a, �,D) in (2.6)-(2.7) can be computed applying

the Krylov subspace method to the first linear system A1x = b1. Then, M
♯
ℎ(a, �,D) can be

used to efficiently solve Akx = bk, with k = 2, 3, . . ..
Finally, the class of preconditioners in this paper seems a promising tool also for the

solution of linear systems in financial frameworks. In particular, we want to focus on
symmetric linear systems arising when we impose KKT conditions in portfolio selection
problems, with a large number of titles in the portfolio, along with linear equality constraints
(see also [2]).
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