CEntre d'etudes
et de recherches
SUR Le developpement
international

Document de travail de la série

Etudes et Documents

E 2011.18

Taxe carbone globale, effet taille de marché et mobilité des firmes

Nelly Exbrayat, Carl Gaigné et Stéphane Riou

CERDI
65 BD. F. MITTERRAND
63000 CLERMONT FERRAND - FRANCE
TEL. 0473177400
FAX 0473177428
www.cerdi.org

Les auteurs

Nelly Exbrayat

Maître de Conférences, Clermont Université, Université d'Auvergne, CNRS, UMR 6587, Centre d'Etudes et de Recherches sur le Développement International (CERDI), F-63009 Clermont-Ferrand, France

Email : Nelly.Exbrayat@u-clermont1.fr

Carl Gaigné

Directeur de recherches, INRA-ESR, UMR 1302, 4 Allée Bobierre, F-35000 Rennes, France.
Email : gaigne@rennes.inra.fr

Stéphane Riou

Professeur des universités, Université de Lyon ; Université Jean Monnet, GATE-LSE, 6 rue basse des rives 42023 Saint-Etienne cedex 02, France.
Email : Stephane.Riou@univ-st-etienne.fr

Corresponding author: Stephane.Riou@univ-st-etienne.fr

La série des Etudes et Documents du CERDI est consultable sur le site :
http://www.cerdi.org/ed

Directeur de la publication: Patrick Plane
Directeur de la rédaction: Catherine Araujo Bonjean
Responsable d'édition : Annie Cohade
ISSN : 2114-7957

Avertissement :

Les commentaires et analyses développés n'engagent que leurs auteurs qui restent seuls responsables des erreurs et insuffisances.

Abstract

Nous analysons l'impact et les déterminants d'une taxe carbone globale dans une économie imparfaitement intégrée composée de pays de différente taille. A l'aide d'un modèle de commerce et de localisation, nous montrons tout d'abord que la concentration de firmes dans le pays disposant d'un avantage de taille de marché accroît les émissions totales de CO_{2}. L'introduction d'une taxe carbone globale conduit alors à des délocalisations de firmes du grand pays vers le petit pays de sorte que même fixée à un taux unique, une fiscalité carbone ne serait pas neutre du point de vue de la géographie économique. Enfin, parce qu'elles conduisent à une réduction des émissions mondiales de CO_{2}, ces relocalisations améliorent l'efficacité environnementale de la taxe carbone.

JEL Classification: F12, F15, F18, Q28

Key Words: Taxe carbone globale, Economie Géographique.

Taxe carbone globale, effet taille de marché et mobilité des firmes

Nelly Exbrayat, Carl Gaignétet Stéphane Riou ${ }^{\ddagger}$

11 février 2011

Abstract

Résumé Nous analysons l'impact et les déterminants d'une taxe carbone globale dans une économie imparfaitement intégrée composée de pays de différente taille. A l'aide d'un modèle de commerce et de localisation, nous montrons tout d'abord que la concentration de firmes dans le pays disposant d'un avantage de taille de marché accroît les émissions totales de CO_{2}. L'introduction d'une taxe carbone globale conduit alors à des délocalisations de firmes du grand pays vers le petit pays de sorte que même fixée à un taux unique, une fiscalité carbone ne serait pas neutre du point de vue de la géographie économique. Enfin, parce qu'elles conduisent à une réduction des émissions mondiales de CO_{2}, ces relocalisations améliorent l'efficacité environnementale de la taxe carbone.

Classification JEL: F12, F15, F18, Q28

[^0]"A uniform incremental CO2 tax would introduce an incentive, worldwide, to reduce carbon emissions. [...] The universal presence of the tax will also avoid geographic relocation of industries to avoid the tax - a potential problem under the Kyoto Protocol and its extensions - except where such relocation is in fact economically efficient." (R. N. Cooper, 2006, p. 6-7).

1 Introduction

Le précédent rapport du GIEC fait état d'une augmentation annuelle de 80% des émissions de dioxyde de carbone $\left(\mathrm{CO}_{2}\right)$ de 1970 à 2004^{1}. Face aux changements climatiques qui s'ensuivent, nombreux sont les économistes (G. Mankiw et W. Nordhaus, entre autres) qui se sont récemment prononcés en faveur de l'application d'une taxe carbone unique dans les principaux pays pollueurs pour deux raisons majeures.

D'une part, la qualité atmosphérique étant un bien public mondial, son contrôle doit relever d'une autorité supranationale pour que soient pris en compte les effets de débordements associés à la pollution de chaque pays. D'autre part, la non-coordination des politiques environnementales encouragerait les firmes à relocaliser leurs activités dans les pays les plus laxistes en matière de politique environnementale pour exporter le bien fini dans les autres pays, contribuant in fine à une possible augmentation des émissions à l'échelle planétaire ${ }^{2}$. Selon R.N. Cooper (2006) (cf citation), la mise en place d'une taxe carbone unique, en harmonisant les politiques environnementales nationales, pourrait éviter de telles relocalisations pour des motifs purement fiscaux ${ }^{3}$.

Notre article s'interroge sur les fondements théoriques de ce dernier argument. L'unicité d'une taxe carbone suffit-elle à éviter la relocalisation d'industries pour motifs fiscaux? Par ailleurs, la mobilité des entreprises polluantes nécessite-t-elle de taxer plus ou moins lourdement les émissions?

Pour répondre à ces questions, nous nous plaçons d'emblée dans un cadre où une autorité régulatrice supranationale a pleine compétence en matière de fiscalité environnementale ${ }^{4}$. Nous développons un modèle d'économie géographique et étudions l'impact et les déterminants d'une taxe carbone globale dans une économie composée de deux pays imparfaitement intégrés et de taille inégale. Les firmes mobiles produisent à rendements croissants, subissent des coûts d'échange à l'exportation, et leur activité de production génère des émissions

[^1]de CO_{2} taxées par l'autorité supranationale ${ }^{5}$. Nous montrons d'abord que la concentration de firmes dans le pays disposant d'un avantage de taille de marché - facilitée par le déclin des coûts d'échange - accroît les émissions totales de CO_{2}. Toutefois, l'introduction d'une taxe carbone globale conduit à un redéploiement du grand pays vers le petit pays. Autrement dit, une taxe carbone, même unique, affecterait la géographie économique. Cette nouvelle géographie économique étant moins génératrice d'émissions, le niveau optimal de taxation carbone devrait dépendre de la propension à la mobilité des industries.

Cet article s'inscrit dans le prolongement de la littérature relative à la fiscalité environnementale optimale en concurrence imparfaite. Les premières contributions généralisent le modèle de dumping réciproque en endogénéisant le nombre d'usines (Markusen et al., 1993 ; Motta and Thisse, 1994). Les firmes, supposées immobiles, peuvent réagir à un durcissement de la politique environnementale par la fermeture d'usines. La décentralisation de la politique environnementale amène donc les gouvernements à opter, suivant le niveau de désutilité associé à la pollution, soit pour une stratégie de dumping environnemental, soit pour une stratégie de type 'Not In My BackYard' (Markusen et al., 1995$)^{6}$. Des contributions récentes ont enrichi ces modèles en relâchant l'hypothèse d'immobilité des firmes, à l'aide de modèles d'économie géographique. En intégrant les principaux déterminants aux choix de localisation telle que la taille de marché, ces travaux tendent à relativiser la pertinence de l'hypothèse de havre de pollution selon laquelle, sous l'effet de la mondialisation, les industries polluantes tendraient à se déplacer vers les pays les plus laxistes en matière de politique environnementale. Ainsi, Zeng et Zhao (2009) montrent que l'existence d'une asymétrie de taille de marché peut atténuer l'effet de havre de pollution. D'autres travaux concluent à une relocalisation seulement partielle des activités dans le pays le plus laxiste en matière de contrôle des émissions (voir SannaRandaccio et Sestini, 2010 ; Ishikawa et Okubo, 2008). A notre connaissance, seul Pflüger (2001) endogénéise les choix de politique environnementale. Toutefois, il considère des pays identiques si bien que la mobilité des firmes n'a aucun impact sur la taxe optimale, et celle-ci n'affecte pas les choix de localisation.

L'article s'articule comme suit. La section suivante décrit le modèle. Les sections 3 et 4 présentent respectivement les résultats dans le cas où les firmes sont immobiles puis dans le cas où elles sont mobiles. La section 5 conclut.

2 Le modèle

Le modèle proposé correspond à une généralisation du modèle de dumping réciproque de Brander et Krugman (1983) avec l'introduction d'une pollution

[^2]due à l'activité de production de n firmes mobiles en oligopole ${ }^{7}$. L'économie est composée de deux pays notés $i=1,2$ accueillant chacun une part σ_{i} de la population totale (L). On suppose par la suite que le pays 1 est le plus peuplé $\left(\sigma_{1}>1 / 2>\sigma_{2}\right)$. Les résidents, dotés chacun d'une unité de travail et de capital, sont immobiles mais peuvent investir leur capital dans le pays procurant le meilleur rendement.

2.1 Consommateurs

Les consommateurs de chaque pays partagent la même fonction d'utilité quadratique :

$$
u_{i} \equiv a x_{i}-\frac{\beta}{2} x_{i}^{2}-\gamma\left(Q_{i}+Q_{j}\right)+z_{i}
$$

où x_{i} et z_{i} sont les consommations individuelles en biens x et z tandis que Q_{i} et Q_{j} correspondent respectivement aux quantités de bien x produites dans les pays i et $j(i \neq j)^{8}$. Le bien x est produit dans un premier secteur oligopolistique à partir d'une technologie polluante. Précisément, une unité produite de bien x engendre une unité d'émission d'équivalent CO_{2}, et la pollution est supposée globale. Le bien z, considéré comme numéraire, est au contraire non polluant. La fonction de dommage environnemental est représentée par le terme $\gamma\left(Q_{i}+Q_{j}\right)$, où γ mesure le dommage marginal engendré par le réchauffement climatique.

Chaque unité de CO_{2} est imposée par une autorité centrale au taux t, et le revenu de la taxation est redistribué de manière forfaitaire et égalitaire entre tous les individus. Par ailleurs, le bien z est produit dans un secteur en concurrence parfaite et exporté sans coûts d'échange. En supposant qu'une unité de travail est nécessaire pour produire une unité de ce bien et que les résidents travaillent dans le secteur de leur choix, il vient que le salaire est égalisé à 1 dans l'ensemble de l'économie ${ }^{9}$. Le revenu individuel est donc donné par :

$$
\begin{equation*}
y_{i}=1+\bar{r}+\frac{t\left(Q_{i}+Q_{j}\right)}{L}+z_{0} \tag{1}
\end{equation*}
$$

avec z_{0} la dotation intiale en numéraire, et \bar{r} le rendement net mondial du capital à l'équilibre de localisation. A la suite de Markusen, Morey et Olewiler (1995), on suppose que la pollution et la redistribution des recettes de la taxe sont perçues comme exogènes. La maximisation de l'utilité conduit à la fonction de demande aggrégée suivante pour le pays i :

$$
\begin{equation*}
X_{i}=\sigma_{i} L \frac{a-p_{i}}{\beta} \tag{2}
\end{equation*}
$$

[^3]
2.2 Les entreprises du secteur polluant

Le secteur oligopolistique est formé de n firmes qui se font concurrence à la Cournot. La production nécessite une unité de capital ainsi qu'un besoin marginal en travail que nous normalisons à 1 sans perte de généralités ${ }^{10}$. En raison de coûts d'implantation importants, ces firmes sont mono-établissement et desservent chacun des deux marchés à partir d'une seule implantation. L'exportation de bien x conduit à un coût d'échange de $\tau>0$ unités de numéraire par unité de bien transporté entre les deux pays ${ }^{11}$. Les marchés étant segmentés, chaque firme déterminera donc une quantité spécifique pour chacun des deux pays dans le cas où le commerce est bilatéral.

A l'équilibre de marché, les profits sont totalement absorbés dans la rémunération du capital, de sorte que :

$$
\begin{equation*}
r_{i}=\left(p_{i}-1-t\right) x_{i i}+\left(p_{j}-1-\tau-t\right) x_{i j} \tag{3}
\end{equation*}
$$

où $x_{i i}$ est la production d'une firme en i vendue sur le marché domestique et $x_{i j}$ celle vendue à l'export, et p_{i} le prix du bien x dans le pays i. Après résolution du programme de maximisation du producteur, il vient :

$$
\begin{equation*}
x_{i i}=\frac{\sigma_{i} L}{\beta}\left(p_{i}-1-t\right) ; x_{i j}=\frac{\sigma_{j} L}{\beta}\left(p_{j}-1-\tau-t\right) \tag{4}
\end{equation*}
$$

En posant n_{i} le nombre de firmes implantées dans les pays i, on obtient le prix d'équilibre qui égalise l'offre et la demande dans ce pays :

$$
\begin{equation*}
p_{i}^{*}=\frac{a+n(t+1)+\left(n-n_{i}\right) \tau}{n+1} \tag{5}
\end{equation*}
$$

A localisation donnée, l'imposition d'une taxe carbone globale engendre deux effets sur le rendement du capital. Le premier est direct et correspond classiquement à une augmentation du coût marginal de production. Le second est une incidence fiscale. L'imposition restreignant les quantités produites, les prix s'élèvent sur chaque marché, augmentant la valeur du capital. L'effet net sur le rendement relatif des deux marchés est étudié plus loin lorsque nous dérivons l'équilibre de localisation et étudions sa sensibilité au niveau de taxation.

A ce stade, et afin de se concentrer sur le cas le plus intéressant d'existence de commerce bilatéral, nous devons nous assurer que les coûts d'échange sont suffisamment faibles de sorte que $x_{i j}^{*}>0$ et $x_{j i}^{*}>0$. Cette condition, que nous supposons vérifiée par la suite, s'écrit $\tau<(a-t-1) /(n+1)=\tau_{\text {trade }}{ }^{12}$.

[^4]
3 Localisation, coût d'échange et pollution en l'absence de mobilité des firmes

Nous pouvons désormais établir un certain nombre de relations entre d'une part, le niveau de pollution émanant de la production et d'autre part, la distribution spatiale des firmes et la valeur des coûts d'échange. Notons que l'analyse qui suit est de court-terme en ce sens que nous supposons, pour le moment, une parfaite indépendance de la localisation des firmes à la taxation environnementale et aux coûts d'échange.

A l'équilibre de marché, le niveau total de production et donc d'émissions dans le pays i est donné par

$$
\begin{equation*}
Q_{i}^{*}=n_{i} L \frac{a-t-1-\tau \sigma_{j}+n_{j} \tau\left(\sigma_{i}-\sigma_{j}\right)}{\beta(1+n)} \tag{6}
\end{equation*}
$$

L'augmentation du nombre de firmes implantées en i - caractérisée par une hausse de n_{i} et une baisse de n_{j} - génère deux effets contradictoires sur les émissions nationales. Le premier est d'aggraver le dommage environnemental causé par le pays i. A niveau de production individuelle donné, l'implantation de nouvelles firmes équivaut à une augmentation des sources de pollution. Néanmoins, un plus grand nombre de producteurs étant localisés sur le marché i, la concurrence en quantité y devient plus vive et les niveaux de production et d'émissions individuels $\left(x_{i i}^{*}+x_{i j}^{*}\right)$ diminuent ${ }^{13}$. Chacun de ces deux effets étant évidemment de sens opposés pour le pays j, l'effet en terme de pollution globale est a priori ambigu. Notons enfin la place centrale qu'occupent les coûts d'échange (τ) dans ce modèle en conditionnant ces effets. Ainsi, dans un modèle sans coûts d'échange tels que celui de Cheikbossian (2010), seule la taille de marché totale influence les émissions totales si bien que la taxe globale est indépendante de la localisation de la demande et de la production.

Notons λ la part de firmes localisées dans le pays 1 où le nombre de consommateurs est le plus élevé et Q_{T}^{*} le niveau agrégé de production et d'émissions des deux pays. Il vient alors :

$$
\begin{equation*}
Q_{T}^{*}=\operatorname{Ln} \frac{a-t-1-\sigma_{1} \tau+\lambda \tau\left(\sigma_{1}-\sigma_{2}\right)}{\beta(n+1)} \tag{7}
\end{equation*}
$$

Dès lors qu'il existe une asymétrie de taille de marché ($\sigma_{1}>\sigma_{2}$), les choix de localisation ne sont donc pas neutres d'un point de vue environnemental puisque la pollution globale est une fonction croissante du nombre de firmes implantées sur le plus grand marché $\left(d Q_{T}^{*} / d \lambda>0\right)$. Suite à une entrée de firmes dans le pays 1 , la diminution des quantités individuelles produites en 1 et du nombre de firmes localisées en 2 est donc plus que compensée par l'augmentation du nombre de firmes polluantes en 1 et des quantités individuelles produites en 2.

[^5]La baisse des coûts d'échange génère aussi deux effets contradictoires sur les émissions. En effet, après insertion de (5) dans (4), nous vérifions que :

$$
\frac{d x_{i i}^{*}}{d \tau}>0 \forall i=1,2, \frac{d x_{12}^{*}}{d \tau}<0 \text { et } \frac{d x_{21}^{*}}{d \tau}<0 .
$$

Plus précisément, le commerce étant facilité (baisse de τ), chaque firme domestique fait face à une plus grande concurrence en quantité et ajuste sa production domestique à la baisse. Inversement, les quantités vendues à l'export s'ajustent à la hausse. L'effet net sur la pollution globale est donné par :

$$
\begin{equation*}
\frac{d Q_{T}^{*}}{d \tau}=\operatorname{Ln} \frac{\lambda\left(\sigma_{1}-\sigma_{2}\right)-\sigma_{1}}{\beta(n+1)}<0 \tag{8}
\end{equation*}
$$

de sorte que consécutivement, par exemple, à une intégration commerciale plus intense entre les deux pays, le surcroît d'émissions émanant de l'augmentation de la production à l'export domine le gain environnemental lié à la baisse de production pour le marché domestique. Dans ce qui suit, nous identifions un troisième effet d'une baisse des coûts d'échange. Ce dernier est propre au modèle d'économie géographique proposé qui combine asymétrie de taille de marché et mobilité des firmes.

4 Dommage environnemental et taxation centralisée en présence de mobilité des firmes

Dans la section qui précède, nous avons considéré la distribution spatiale des firmes comme exogène. Dans ce qui suit, nous montrons que cette hypothèse est loin d'être neutre pour l'analyse des effets de la mondialisation et du commerce international sur l'environnement et, par incidence, pour l'analyse des propriétés d'une taxe carbone harmonisée.

La résolution du modèle équivaut à résoudre un jeu en 3 étapes. L'autorité régulatrice supranationale est leader en Stackelberg et décide donc en première étape d'un niveau de taxe t qui maximise la somme des bien être nationaux. En seconde étape, les firmes décident de leur pays d'implantation. En dernière étape, les firmes et consommateurs décident de leurs niveaux de production et de consommation. La résolution se fait par induction à rebours. La dernière étape du jeu ayant été résolue dans la section précédente, seules les étapes 1 et 2 sont considérées ci-après.

4.1 Equilibre de localisation

L'équilibre de localisation dans l'industrie oligopolistique est atteint lorsqu'aucune firme ne peut espérer obtenir un rendement net du capital supérieur à celui dont elle bénéficie dans le pays où elle est localisée. Formellement, cet équilibre, unique et stable, tel que $r_{1}^{*}=r_{2}^{*}=\bar{r}$ est donné par

$$
\begin{equation*}
\bar{\lambda}=\frac{1}{2}+\frac{\sigma_{1}-\sigma_{2}}{2} \frac{2(a-1-t)-\tau}{n \tau} \tag{9}
\end{equation*}
$$

Plusieurs commentaires s'imposent ici. Il est d'abord aisé de vérifier que pour toute valeur de t compatible avec du commerce bilatéral ($t<t_{\text {trade }}$), l'équilibre de localisation est caractérisé par un effet de taille de marché (Home Market Effect) : la part de firmes accueillies dans le grand pays est plus que proportionnelle à sa part dans la population totale $\left(\bar{\lambda}>\sigma_{1}\right) \cdot{ }^{14}$ Ensuite, à niveau de taxe donné, l'ampleur de cet effet de taille de marché croît avec la baisse des coûts d'échange de sorte qu'au-dessus d'un certain degré d'intégration la totalité de l'industrie oligopolistique peut être localisée dans le grand pays. En d'autres termes, plus l'accès aux marchés extérieurs est aisé, plus il est avantageux de se localiser au sein du plus vaste d'entre eux afin de profiter pleinement des rendements croissants. Enfin, on observe facilement que, même fixée à un taux unique pour les deux pays, l'introduction d'une taxe environnementale distord les choix de localisation puisque $d \lambda / d t<0$.

Proposition 1 Soit une industrie polluante produisant en rendements croissants et soumise à une taxe carbone parfaitement harmonisée internationalement. En présence de deux pays imparfaitement intégrés et de taille différente, l'introduction d'une telle taxe à un taux positif conduit à des délocalisations de firmes du grand pays vers le petit pays.

Ce résultat s'explique de la manière suivante. La fiscalité sur les émissions équivaut à une taxation des quantités produites par chaque firme. Celles-ci étant plus élevées dans le pays 1 du fait de sa plus grande taille de marché, les firmes qui y sont implantées supportent une charge fiscale plus élevée même si le taux est identique à celui appliqué dans le pays $2 .{ }^{15}$ Ce résultat a une implication forte concernant la capacité de la taxe carbone à réduire les niveaux d'émissions. En effet, nous avons :

$$
\frac{d Q_{T}}{d t}=\frac{\partial Q_{T}}{\partial t}+\frac{\partial Q_{T}}{\partial \bar{\lambda}} \frac{\partial \bar{\lambda}}{\partial t}
$$

La mobilité des firmes modifie donc la nature et l'ampleur de l'impact de la taxation environnementale sur le niveau global d'émissions. A l'effet d'internalisation du dommage environnemental conduisant les firmes à diminuer leurs quantités produites $\left(\partial Q_{T} / \partial t<0\right)$ s'ajoute un second effet lié au redéploiement de l'industrie dans le petit pays (cf. proposition 1). Ce redéploiement conduit à une géographie économique moins défavorable à l'environnement $\left(\partial Q_{T} / \partial \lambda>0\right.$ et $\partial \bar{\lambda} / \partial t<0$). Pour mieux s'en rendre compte, il suffit d'introduire (9) dans (7). Les quantités produites à l'équilibre de localisation s'écrivent alors :

$$
\begin{equation*}
\bar{Q}_{T}=\frac{\left[n+\left(\sigma_{1}-\sigma_{2}\right)^{2}\right] L(2 a-2 t-\tau-2)}{2 \beta(n+1)} \tag{10}
\end{equation*}
$$

[^6]En dérivant ensuite l'équation (10) par rapport à t, on obtient :

$$
\begin{equation*}
\frac{d \bar{Q}_{T}}{d t}=-L \frac{n+\left(\sigma_{1}-\sigma_{2}\right)^{2}}{\beta(n+1)} \tag{11}
\end{equation*}
$$

et on vérifie aisément que $d \bar{Q}_{T} / d t<d Q_{T}^{*} / d t$. Nous résumons ce résultat par la proposition suivante :

Proposition 2 Une variation marginale et positive de t est plus efficace d'un point de vue environnemental si l'industrie polluante a une forte propension à la mobilité.

Enfin, en comparant (10) et (7), il apparaît clairement que l'hypothèse de localisations endogènes induit un nouveau mécanisme par lequel les émissions sont impactées par le niveau des coûts d'échange. Pour une distribution spatiale donnée des firmes, une baisse graduelle des coûts d'échange induit un surcroît d'émissions en élevant le niveau de production à l'export. Comme $d \lambda / d \tau<$ 0 et $d Q_{T} / d \lambda>0$, il vient que la baisse des coûts d'échange, combinée à la mobilité des firmes, influence aussi le dommage environnemental en favorisant une géographique économique à la fois plus agglomérée et davantage génératrice d'émissions.

4.2 Politique de taxation centralisée

Dans cette section nous déterminons la taxe optimale \bar{t} fixée par l'autorité supranationale en première étape. Celle-ci doit permettre de maximiser la somme des bien-êtres des deux pays. ${ }^{16}$ L'autorité régulatrice anticipe parfaitement les choix de localisation (étape 2) et les quantités produites et consommées (étape 3). La fonction de bien-être aggrégé est la suivante :

$$
\begin{equation*}
\bar{W}_{T}=\sigma_{1} L \bar{S}_{1}+\sigma_{2} L \bar{S}_{2}-\gamma L \bar{Q}_{T}+t \bar{Q}_{T}+\bar{r} n+L \tag{12}
\end{equation*}
$$

où les deux premiers termes donnent le surplus des consommateurs des deux pays et le troisième, le dommage occasionné par les émissions pour l'ensemble de la population. La redistribution forfaitaire du produit de la taxation est donnée par $t \bar{Q}_{T}$ et $\bar{r} n$ définit les revenus totaux du capital.

En dérivant (12) par rapport à t, il vient la condition de premier ordre :

$$
\frac{d \bar{W}_{T}}{d t}=\underbrace{\sigma_{1} L \frac{d \bar{S}_{1}}{d t}+\sigma_{2} L \frac{d \bar{S}_{2}}{d t}}_{-}-\gamma \underbrace{\frac{d \bar{Q}_{T}}{d t}}_{-}+\underbrace{t \frac{d \bar{Q}_{T}}{d t}+\bar{Q}_{T}}_{+ \text {ou }-}+\underbrace{n \frac{\bar{r}}{d t}}_{-}=0
$$

En posant $\sigma_{1}=\sigma$ et $\sigma_{2}=1-\sigma$, on obtient alors la taxe optimale suivante :

$$
\begin{equation*}
\bar{t}=\frac{2 n \sigma(\sigma-1)(2 a-\tau-2)}{n\left[n+2(2 \sigma-1)^{2}\right]+(2 \sigma-1)^{2}}+\gamma \frac{L(n+1)\left(n+(2 \sigma-1)^{2}\right)}{(2 \sigma-1)^{2}(2 n+1)+n^{2}} \tag{13}
\end{equation*}
$$

[^7]Le premier terme définit le niveau de taxation que choisirait une autorité régulatrice cherchant uniquement à corriger la sous-production liée à la nature oligopolistique de l'industrie. Ce terme est négatif et correspond donc à une subvention pour une valeur du paramètre de demande a suffisamment élevée et/ou des coûts d'échange non prohibitifs, ce que nous supposons vérifié ici. Le second terme, quant à lui, reflète la volonté de l'autorité supranationale de corriger l'externalité négative de pollution. Ce terme est positif et fonction croissante de γ. En conséquence, \bar{t} peut être en principe positif ou négatif. Nous donnons en appendice les conditions sur γ assurant que :i) \bar{t} corresponde bien à une taxation de la production et ii) du commerce bilatéral se réalise à ce niveau de taxe. ${ }^{17}$

Le niveau de taxe optimale présente plusieurs propriétés intéressantes.
Notons d'abord que si le premier terme de \bar{t} est une fonction croissante de l'asymétrie de taille de marché, le second, réflétant la correction de l'externalité négative de pollution, est une fonction décroissante de σ. L'intuition derrière cette seconde relation est simple. Les équations (9) et (11) montrent qu'une variation marginale et positive de t engendre des relocalisations vers le pays 2 et une diminution des émissions d'autant plus importantes que l'écart de taille de marché entre les deux pays est élevé. En présence de pays fortement asymétriques en taille, il est donc moins nécessaire de fixer une taxe élevée pour corriger l'externalité négative de pollution. Le calcul de l'effet net d'une augmentation de σ sur \bar{t} démontre toutefois que l'impact positif sur le premier terme domine l'impact négatif sur le second. ${ }^{18}$

Ensuite, il convient d'observer que la composante de taxation corrigeant l'externalité environnementale est indépendante des coûts d'échange. Le degré d'intégration des deux marchés n'affecte donc \bar{t} qu'au travers du premier terme de subvention. Il est ainsi facile de vérifier que $d \bar{t} / d \tau>0$ de sorte qu'une intégration plus poussée entre les deux pays conduirait à un niveau de taxation plus faible ${ }^{19}$. Pour résumer,

Proposition 3 Le niveau de taxe fixé par l'autorité supranationale crô̂t avec le degré d'asymétrie entre les deux pays et avec le niveau des coûts d'échange, du fait de leur impact positif sur la composante de \bar{t} corrigeant le niveau sousoptimal de production de l'oligopole.

Enfin, on peut démontrer la non neutralité de l'hypothèse de mobilité des firmes sur le niveau de fiscalité choisi. Pour cela, il convient de définir le niveau de taxation que fixerait une autorité pour laquelle la géographie économique serait neutre d'un point de vue environnemental. En maximisant (12) par rapport à t

[^8]et en considérant λ comme exogène, il vient :
\[

$$
\begin{equation*}
t(\lambda)=-\frac{\tau(2 \sigma-1) \lambda+(a-\sigma \tau-1)}{n}+\frac{L(n+1)}{n} \gamma \tag{14}
\end{equation*}
$$

\]

Il est difficile de comparer précisément les expressions de \bar{t} et $t(\lambda)$ puisque λ est a priori indéterminé et compris entre $(0 ; 1)$. On peut toutefois confronter les seconds termes des deux expressions (13) et (14) qui corrigent l'externalité environnementale de production. Notons les respectivement Λ et Υ. On a alors :

$$
\Lambda-\Upsilon=-(2 \sigma-1)^{2} \frac{L(n+1)^{2}}{\left[(2 \sigma-1)^{2}(2 n+1)+n^{2}\right] n} \gamma
$$

Cette expression est négative. Par conséquent, la composante de la taxe sensée corriger l'externalité négative de pollution est plus élevée lorsque l'autorité régulatrice n'internalise pas les effets de sa fiscalité sur les choix de localisation. Il vient donc la proposition suivante :

Proposition 4 La mobilité des entreprises, lorsqu'elle est parfaitement internalisée par l'autorité régulatrice, réduit le besoin de fixer une taxe carbone élevée pour corriger l'externalité environnementale.

En d'autres termes, l'autorité anticipe parfaitement que l'introduction d'une taxe commune aux deux pays conduit à une géographie industrielle moins polluante d'où une moindre nécessité de taxer lourdement la production.

5 Conclusion

A l'aide d'un modèle simple de commerce international et de localisation, cet article s'interroge sur la capacité d'une taxe carbone globale à réduire les émissions mondiales de GES tout en limitant le problème de la fuite carbone qui se pose dans un contexte de mondialisation économique.

Les résultats amènent à nuancer certaines idées reçues sur la taxe carbone globale. Tout d'abord, l'harmonisation des politiques environnementales ne garantit pas leur neutralité du point de vue de la géographie économique. Les entreprises disposent toujours d'une possibilité d'arbitrage entre, d'une part, le montant de la taxe dont elles doivent s'acquitter et qui augmente avec leur niveau de production et d'autre part, les bénéfices réalisés en produisant à grande échelle dans un pays jouissant d'une plus grande taille de marché. Face à cet arbitrage, certaines entreprises trouvent profitable de se relocaliser dans le petit pays pour minimiser le fardeau fiscal. Toutefois, nous montrons que la mobilité des entreprises polluantes réduit la nécessité pour l'autorité régulatrice d'élever la fiscalité carbone car celle-ci est doublement efficace : à l'effet pigouvien de réduction des émissions pour une localisation donnée s'ajoute un effet de réduction des émissions mondiales dû à une géographie économique moins concentrée.

Le modèle utilisé, bien que fortement stylisé, permet d'analyser l'efficacité d'une taxe carbone globale dans une économie imparfaitement intégrée composée de pays de différentes tailles et offre ainsi un éclairage intéressant sur le débat actuel relatif aux traités environnementaux. Naturellement, de nombreuses questions restent à explorer, telles que le mode de redistribution des recettes fiscales issues de la taxe ou bien encore l'efficacité de la taxe carbone dans une économie caractérisée par des firmes hétérogènes au niveau de leur technologie et de leurs émissions de GES.

Appendice

\bar{t} est positif si et seulement si

$$
\gamma>\bar{\gamma}=\frac{2 n \sigma(1-\sigma)(2 a-\tau-2)}{L\left[n+(2 \sigma-1)^{2}\right](n+1)}
$$

Par ailleurs, en \bar{t}, la condition échange bilatéral est réalisée si $\bar{t}<t_{\text {trade }}$ ce qui est vérifié pour tout γ tel que :

$$
\gamma<\tilde{\gamma}=\bar{\gamma}+\frac{(2 \sigma-1)^{2}(2 n+1)+n^{2}}{L\left[n+(2 \sigma-1)^{2}\right](n+1)} t_{\text {trade }}
$$

Ainsi pour tout $\bar{\gamma}<\gamma<\tilde{\gamma}, \bar{t}$ est positif et du commerce bilatéral a lieu entre les deux pays. En d'autres termes, la désutilité individuelle vis-à-vis des émissions ne doit pas être trop faible pour que la production soit effectivement taxée, mais ne doit pas être trop forte afin que le niveau de taxe rende le commerce profitable.

La dérivée du second terme de (13), que nous appelerons Λ, par rapport à σ, donne :

$$
\frac{d \Lambda}{d \sigma}=\frac{-4 \operatorname{Ln} \gamma(2 \sigma-1)(n+1)^{2}}{\left(n\left(n+2(2 \sigma-1)^{2}\right)+(2 \sigma-1)^{2}\right)^{2}}
$$

L'expression est bien de signe négatif pour tout $\sigma>1 / 2$. Ainsi, plus les pays sont asymétriques en taille, moins il est nécessaire de fixer une taxe élevée afin de corriger l'externalité négative de pollution. Toutefois, l'effet net d'une augmentation de σ sur \bar{t} est bien positif. En effet, l'expression de la dérivée de \bar{t} par rapport à σ est :

$$
\frac{d \bar{t}}{d \sigma}=2 n(2 \sigma-1)(n+1)^{2} \frac{2 a-\tau-2 L \gamma-2}{\left[(2 \sigma-1)^{2}(2 n+1)+n^{2}\right]^{2}}
$$

Cette expression est négative si $\gamma>\hat{\gamma}=(2 a-\tau-2) / 2 L$. Comme $\hat{\gamma}>\tilde{\gamma}$, $d t / d \sigma>0$ pour toute valeur de γ assurant l'existence de commerce bilatéral.

References

Brander J.A. et P. Krugman (1983). "A reciprocal dumping model of international trade". Journal of International Economics, 15, 313-323.

Calmette, M-F. (2008). "Politique environnementale en économie ouverte : une possible incompatibilité entre les décisions des firmes et des gouvernements". Revue Economique, 59 (3), 517-526.

Cheikbossian G. (2010). "La Coordination des Politiques Environnementales entre Deux Pays de Taille Asymétrique". Revue Economique, 61(1), 11-30

Cooper, R.N. (2006). "Alternatives to Kyoto : The Case for a Carbon Tax ". Mimeo.

Copeland. B.R. et M. Scott Taylor. (2003). Trade and the environment : Theory and evidence. Princeton University Press.

Haufler A. et I Wooton. (2010). "Competition for firms in an oligopolistic industry : the impact of economic integration". Journal of International Economics, 80, 239-248.

Hoel, M. (1997). "Environmental Policy with Endogenous Plant Locations". Scandinavian Journal of Economics 99, 241-59.

Ishikawa J. et T. Okubo (2008). "Greenhouse-gas Emission Controls and International Carbon Leakage through Trade Liberalization". RIEB Discussion Paper Series No. 231 .

Jeppesen, T., List, J., and Folmer, H. (2002), Environmental Regulations and New Plant Location Decisions : Evidence from a Meta-analysis, Journal of Regional Science, 42, 19-49.

Mankiw, G. (2007). One Answer to Global Warming : A New Tax. New York Times. 16 septembre 2007.

Markusen J., Morey E. and N. Olewiler (1993). "Environmental Policy when Market Structure and Plant Locations are Endogenous" Journal of Environmental Economics and Management, 24, 68-86.

Markusen J., Morey E. and N. Olewiler (1995). "Competition in Regional Environmental Policies when Plant Locations are Endogenous". Journal of Public Economics, 56, 55-77.

Motta M. and J-F. Thisse (1994). "Does Environmental Dumping Lead to Delocation ?" European Economic Review, 38, 563-76.

Nordhaus W. D., (2006). "After Kyoto : Alternative Mechanisms to Control Global Warming," American Economic Review, vol. 96, 31-34.

Pflüger M. (2001). "Ecological Dumping under Monopolistic Competition". Scandinavian Journal of Economics, 103(4), 689-706.

Rauscher, M. (1995). "Environmental Regulation and the Location of Polluting Industries". International Tax and Public Finance, 2, 229-44

Sanna-Randaccio F. and R. Sestini (2010). "The impact of unilateral climate policy with endogenous plant location and market size asymmetry". Working paper of Fondazione Eni Enrico Mattei.

Schubert K. (2010). Pour la taxe carbone. La politique économique face à la menace climatique, Opuscule CEPREMAP, Editions rue d'Ulm.

Sturm, D. M. (2003). Trade and the environment : a survey of the literature. In : Marsiliani, Laura and Rauscher, Michael and Withagen, Cees, (eds.) Environmental policy in an international perspective. Kluwer Academic, pp. 119-150.

Zeng D. and L. Zhao (2009) "Pollution havens and industrial agglomeration" Journal of Environmental Economics and Management, 58, 141-153.

[^0]: *CERDI, University de Clermont-Ferrand 1, Blvd F. Mitterrand 63-65, F-63000 ClermontFerrand, France. Courriel : Nelly.Exbrayat@u-clermont1.fr
 \dagger INRA, UMR 1302, 4 Allée Bobierre, F-35000 Rennes. Courriel : gaigne@rennes.inra.fr
 \ddagger GATE Lyon-Saint-Etienne; Université de Lyon ; Université Jean Monnet, 6 rue basse des rives 42023 Saint-Etienne cedex 02. Courriel : stephane.riou@univ-st-etienne.fr

[^1]: ${ }^{1}$ Le CO_{2} représentait 77% des émissions de GES en 2004.
 ${ }^{2}$ La relation entre commerce international et environnement fait l'objet d'une vaste littérature. Nous renvoyons le lecteur intéressé à Sturm (2003), Jeppesen et al. (2002) et Copeland et Taylor (2003).
 ${ }^{3}$ Outre les arguments invoqués ici, il existe un débat animé concernant l'éventuelle supériorité d'une taxe carbone relativement aux marchés de droits à polluer. Nous renvoyons le lecteur intéressé à Schubert (2009) pour une synthèse des principaux arguments.
 ${ }^{4}$ La question de la faisabilité et de l'acceptabilité par les gouvernements nationaux d'une telle organisation dépasse le cadre de cet article. Son traitement nécessiterait de considérer en amont un système de taxation décentralisée (voir Cheikbossian, 2010).

[^2]: ${ }^{5} \mathrm{Ce}$ corpus théorique présente l'avantage d'être relativement conforme aux principaux faits stylisés relatifs aux firmes les plus polluantes. En effet, ces dernières subissent souvent à la fois des coûts fixes et des coûts de transports importants (ex : pétrole, produits chimiques, métaux, automobiles etc...).
 ${ }^{6}$ Ces résultats ont été généralisés par Rauscher (1995) et Hoel (1997), à l'aide d'une simplification du modèle de Markusen et al (1995) et sous des hypothèses moins restrictives.

[^3]: ${ }^{7}$ Voir Haufler et Wooton (2010) pour une première généralisation du modèle de Brander et Krugman (1983).
 ${ }^{8}$ La fonction d'utilité et la façon dont elle intégre le dommage environnemental sont standards dans la littérature (voir notamment Markusen et al. 1993 et Markusen et al. 1995).
 ${ }^{9}$ Ce résultat tient dès lors que le secteur numéraire est toujours actif dans les deux pays, ce que nous supposons vérifié par la suite.

[^4]: ${ }^{10} \mathrm{Il}$ y a donc une correspondance parfaite entre la localisation des capitaux et celles des firmes polluantes.
 ${ }^{11}$ Les coûts d'échange doivent être entendus ici comme l'ensemble des coûts de transport, des coûts d'assurance et administratifs ainsi que les barrières douanières.
 ${ }^{12}$ Cela revient à définir un niveau de τ tel que du commerce bilatéral pourrait se réaliser alors même que toutes les firmes seraient localisées dans un seul pays. De façon équivalente, on peut définir un niveau seuil de taxation en-dessous duquel seulement, il y aura commerce bilatéral : $t<a-1-\tau(n+1)=t_{\text {trade }}$.

[^5]: ${ }^{13}$ Précisément, la production destinée au marché étranger $\left(x_{i j}^{*}\right)$ augmente sous l'effet d'une moindre concurrence, mais celle destinée au marché domestique ($x_{i i}^{*}$) diminue encore plus fortement car la marge bénéficiaire y est plus élevée.

[^6]: ${ }^{14}$ Plus généralement, on retrouve ce type d'effet dans les modèles d'économie géographique qui combine rendements croissants, mobilité du capital et/ou des travailleurs et coûts d'échange positifs.
 ${ }^{15}$ L'effet de taille de marché est bien entendu amplifié si l'autorité régulatrice décide de subventionner la production $(t<0)$.

[^7]: ${ }^{16}$ Cette taxe ne permet évidemment pas d'atteindre l'optimum de premier rang. Ce dernier nécessiterait la combinaison d'une taxe sur les émissions polluantes et d'une subvention permettant de corriger le niveau sous-optimal de production lié à la nature oligopolistique de l'industrie.

[^8]: ${ }^{17}$ Sans cette dernière condition, nous sommes confrontés au problème soulevé par Calmette (2008) : l'autorité fixe une taxe en anticipant du commerce bilatéral alors que le niveau de cette taxe ne l'autorise pas in fine.
 ${ }^{18}$ La preuve est donnée en appendice.
 ${ }^{19}$ Cette relation s'explique par le fait que l'effet positif d'une subvention à la production sur le surplus et la rémunération du capital est d'autant plus fort que les marchés sont bien intégrés.

