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Abstract 

We propose a new multivariate GARCH model with Dynamic Conditional Correlations that 
extends previous models by admitting multivariate thresholds in conditional volatilities and 
correlations. The model estimation is feasible in large dimensions and the positive deniteness 
of the conditional covariance matrix is easily ensured by the structure of the model. 
Thresholds in conditional volatilities and correlations are estimated from the data, together 
with all other model parameters. We study the performance of our model in three distinct 
applications to US stock and bond market data. Even if the conditional volatility functions of 
stock returns exhibit pronounced GARCH and threshold features, their conditional 
correlation dynamics depends on a very simple threshold structure with no local GARCH 
features. 
We obtain a similar result for the conditional correlations between government and 
corporate bond returns. On the contrary, we ¯nd both threshold and GARCH structures in 
the conditional correlations between stock and government bond returns. In all applications, 
our model improves signi¯cantly the in-sample and out-of-sample forecasting power for 
future conditional correlations with respect to other relevant multivariate GARCH models. 
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Abstract

We propose a new multivariate GARCH model with Dynamic Conditional Correlations

that extends previous models by admitting multivariate thresholds in conditional volatilities

and correlations. The model estimation is feasible in large dimensions and the positive defi-

niteness of the conditional covariance matrix is easily ensured by the structure of the model.

Thresholds in conditional volatilities and correlations are estimated from the data, together

with all other model parameters. We study the performance of our model in three distinct

applications to US stock and bond market data. Even if the conditional volatility functions

of stock returns exhibit pronounced GARCH and threshold features, their conditional corre-

lation dynamics depends on a very simple threshold structure with no local GARCH features.

We obtain a similar result for the conditional correlations between government and corpo-

rate bond returns. On the contrary, we find both threshold and GARCH structures in the

conditional correlations between stock and government bond returns. In all applications, our

model improves significantly the in-sample and out-of-sample forecasting power for future

conditional correlations with respect to other relevant multivariate GARCH models.
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1 Introduction

In this paper, we present a new multivariate GARCH model with Dynamic Conditional Cor-

relations (DCC) that extends previous approaches by admitting multivariate thresholds in the

conditional volatilities and correlations of multivariate time series. This extension allows us to

account for rich asymmetric effects and dependencies of conditional volatilities and correlations,

as they are often encountered - for instance - in financial real data applications. Similarly to

the classical Engle (2002) DCC-model, our model estimation is numerically feasible in large di-

mensions. Moreover, the positive definiteness of the conditional covariance matrix is ensured in

a natural way by the structure of the model. Finally, thresholds in volatilities and correlations

of our model are not fixed ex ante, but are estimated from the data, together with all other

parameters in the model.

To define the threshold function in our model, we extend the tree-structured state space

partition in Audrino and Bühlmann (2001) to a setting with multivariate thresholds in both

volatilities and correlations. As shown in Audrino and Trojani (2006) and Audrino (2006) the

tree-structured threshold construction can incorporate in a parsimonious way a potentially large

number of multivariate regimes in univariate settings. In this paper, we study a multivariate

model with a potentially high number of tree-structured thresholds in volatilities and correla-

tions, as well as a feasible estimation strategy that can be applied to estimate the model also in

large dimensional applications. The threshold construction is obtained using a binary tree, in

which each terminal node defines a local GARCH-type dynamics for volatilities and correlations

over a partition cell of the multivariate state space. The estimation is performed by a simple

two-step procedure that estimates the number and the structure of the underlying thresholds to-

gether with the parameters of the local GARCH dynamics for volatilities and correlations. The

optimal threshold structure is identified by solving a high dimensional model selection problem

based on the Schwarz Bayesian Information Criterion (BIC).

We estimate our model in three distinct applications to US stock and bond market data

and focus on its explanatory power for future conditional correlations with respect to a set of

relevant competing models in the literature. These models include Engle (2002) DCC-model,

Ledoit et al. (2003) flexible multivariate GARCH model and Pelletier (2006) Regime Switching

Dynamic Correlations (RSDC) model. The first and the third of these models can be estimated,

like our one, by a two step procedure that separates the estimation of the conditional volatility

and correlation dynamics. In order to measure, where possible, the additional forecasting power
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for correlations, we estimate these models using a set of univariate tree structured GARCH-

dynamics for volatility identical to those in our model. The flexible multivariate GARCH model

cannot be estimated by a two step estimation procedure. Therefore, in this case the estimated

volatility dynamics are different from those estimated for our model. The major difference

between our model and the other ones arises, however, in the way how we specify the correlation

dynamics. The DCC and the flexible multivariate GARCH models are single-regime models

for correlations. The RSDC model specifies a very simple regime structure for conditional

correlations. Our setting can account in a parsimonious way for GARCH-type dynamics and

complex threshold structures in conditional correlations, without fixing from the beginning the

structure and the number of the thresholds in the model.

Using our tree-structured GARCH-DCC model, we study empirically the relative impor-

tance of GARCH and threshold effects in the conditional correlation dynamics of US stock and

bond returns. Even if the conditional volatility functions of US stock returns exhibit GARCH

and threshold features, we find that their conditional correlations depend on a simple threshold

structure with no local GARCH features. A similar result is derived also for the conditional

correlations between US government and corporate bond returns. On the contrary, we find rich

threshold and GARCH structures in the conditional correlations between stock and government

bond returns. In these cases, past equity and bond returns impact on the arising multivari-

ate correlation thresholds. In all applications, the tree-structured partition of the state space

improves significantly the in-sample and out-of-sample forecasting power for future conditional

correlations with respect to the other multivariate GARCH models analyzed in the paper.

In Section 2 we present our tree-structured GARCH-DCC model and the two-step estimation

procedure that can be applied to estimate it. Section 4 presents the empirical findings from our

real data applications to the estimation of conditional (volatility and) correlation dynamics for

the US stock and bond markets. Section 5 summarizes the main results and concludes.

2 The model

We consider a multivariate stochastic process (Xt)t∈Z with values in Rd:

Xt = Dtεt, (2.1)

where Dt := diag[σ1,t, . . . , σd,t] and σi,t is the conditional standard deviation of the i−th com-

ponent of Xt at time t − 1. (εt)t∈Z is a zero-mean process in Rd with components having a
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unit conditional standard deviation by construction.1 The conditional covariance matrix of εt

at time t− 1 is denoted by Rt. Therefore, we obtain the following standard factorization of the

conditional covariance matrix of Xt:

Covt−1(Xt) = DtRtDt, (2.2)

Our tree-structured DCC-GARCH model parameterizes the conditional volatility matrix Dt

and the conditional correlation matrix Rt by means of two parametric threshold functions.

Each diagonal element of Dt is modeled as a univariate tree-structured threshold GARCH(1,1)-

model, as in Audrino and Bühlmann (2001) and Audrino and Trojani (2006). The conditional

correlation matrix Rt is modeled according to a threshold DCC-type model described in more

details below.

2.1 Tree-structured model for Dt

Let Xt,j be the j−th component of Xt. In principle, the thresholds in the volatility dynamics

of Xt,j can depend on all components of Xt−1. For simplicity of exposition, let us assume that

they are functions of (Xt−1,1, Xt−1,j). Let Pj = {R1,j , ..,Rkj ,j} be a partition of the state space

G := R2 × R+ of (Xt−1,1, Xt−1,j , σ
2
t−1,j):

Pj = {R1,j , . . .Rkj ,j}, ∪kj

s=1Rs,j = G, Ri,j ∩Rs,j = ∅ (i 6= s).

Given a partition cell Ri,j , we specify the local conditional variance dynamics of Xt,j on Ri,j as

a GARCH(1,1) model. Therefore, threshold function σ2
t,j takes the form

σ2
t,j =

kj∑

i=1

(αij + βijX
2
t−1,j + γijσ

2
t−1,j)I[(Xt−1,1,Xt−1,j ,σ2

t−1,j)∈Ri,j ]
, (2.3)

where I[·] is the indicator function and θ1,j is the parameter vector:

θ1,j = {αij , βij , γij ; i = 1, .., kj}.

To specify completely the conditional variance function (2.3), we have to define the class of

partitions Pj that are admissible in our tree-structured model. Essentially, the only restriction

we impose is that Pj is composed by rectangular cells Ri,j , i = 1, .., kj , delimited by a set of

multivariate thresholds for (Xt−1,1, Xt−1,j , σ
2
t−1,j). For example, in a model with three regimes

and two thresholds, the partitioning cells R1,j ,R2,j ,R3,j could be of the form:
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R1,j = {Xt−1,j ≤ d1},

R2,j = {Xt−1,j > d1 and Xt−1,1 ≤ d2},

R3,j = {Xt−1,j > d1 and Xt−1,1 > d2},

where the parameters d1, d2 define the two multivariate thresholds in the model. In this case,R1,j

is associated with a regime of low conditioning values Xt−1,j . R2,j corresponds to a regime with

higher conditioning values of Xt−1,j , but low values of Xt−1,1. Finally, R3,j implies a regime in

which both conditioning values Xt−1,1 and Xt−1,j are large. The multivariate threshold function

in our model is defined by means of a binary tree Tj in which every terminal node represents

a particular cell Ri,j . Details on the construction and the interpretation of binary trees for

our applied examples are provided in Audrino and Trojani (2006). For each component Xt,j ,

estimation of (2.3) is achieved by a high dimensional model selection problem that determines

the optimal number and the structure of the relevant thresholds (and hence the partition cells)

in Pj . Details on this estimation procedure for univariate tree structured GARCH(1,1) models

are given in Audrino and Bühlmann (2001) and Audrino and Trojani (2006), Section 2.3.

2.2 Tree structured model for Rt

Let

εt = Dt(θ1)−1Xt,

so that

Rt = Corrt−1(Xt) = Covt−1(εt).

We model Rt by means of a tree-structured model, in which conditional correlations satisfy a

Engle (2002)-type local DCC model across several multivariate thresholds. In order to keep the

model tractable, we assume that thresholds in the Rt dynamics depend on εt−1 only via the

average

ρt−1 =
1

d(d− 1)

∑

u6=v

εt−1,uεt−1,v

of the cross products of the component of εt−1. Intuitively, this choice allows us to account

for asymmetric effects in conditional correlations, as a function of particular lagged process

realizations Xt−1 and specific movements in average lagged conditional correlations shocks ρt−1.
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To define the parametric threshold function Rt in our model, let P = {R̃1, .., R̃w} be a

partition of the state space G̃ := Rd+1 of (Xt−1, ρt−1). We consider the following family of

functional forms for Rt:

Rt =
w∑

i=1

ciRitI{(Xt−1,ρt−1)∈R̃i} +

(
1−

w∑

i=1

ciI[(Xt−1,ρt−1)∈R̃i]

)
Idn (2.4)

where c1, . . . , cn ∈ [0, 1], Idn is the d−dimensional identity matrix and the parametric processes

for Rit, 1 = 1, . . . , n, are given by:

Rit = diag[Qit]−1/2Qit diag[Qit]−1/2 (2.5)

with

Qit = (1− φi − λi)Q + φiεt−1ε
′
t−1 + λiQit−1 , (2.6)

parameters φi, λi ≥ 0 such that φi + λi < 1 for all i = 1, .., w, and Q is, like in the classical

Engle (2002) DCC model, the unconditional covariance matrix of the residuals εt. Given a fixed

partition P, the parameter vector

θ2 = {ci, φi, λi, vech(Q) ; i = 1, .., w}. (2.7)

completely parameterizes the threshold function defining the conditional correlation function

(2.4).

Since for any i = 1, .., w, the local model for Qit satisfies a Engle (2002) DCC-type dynamics,

positive definiteness of the resulting threshold model for Rt is easily implied by the model

structure under the above conditions on the model parameters. When P = {G̃}, i.e. the

partition is trivial, we obtain Engle (2002) DCC model by setting c1 = . . . = cw = 1. Therefore,

this model is nested in our one. Moreover, by setting φi = λi = 0 for i = 1, .., w, we can write

Rt as:

Rt =
w∑

i=1

ciRI
[(Xt−1,ρt−1)∈R̃i]

+

(
1−

w∑

i=1

ciI[(Xt−1,ρt−1)∈R̃i]

)
Idn. (2.8)

where R is a fixed d−dimensional correlation matrix.2 In this case, we obtain a piecewise

constant correlation matrix defined by a multivariate threshold function over the partition P.

In contrast to the RSDC model in Pelletier (2006), this particular subcase of our model can

account for a flexible description of multiple multivariate regimes in correlations, because the

number and the structure of the regimes in the estimated model does not have to be fixed from
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the beginning. Finally, when φi > 0 or λi > 0 for i = 1, .., w and P is not a trivial partition,

we obtain by setting c1 = . . . = cw = 1 a tree-structured DCC–model satisfying locally Engle’s

DCC-dynamics over the distinct partitioning cells R̃i.

As for the univariate tree-structured volatility dynamics of the last section, we need to define

the class of admissible partitions P for our correlation function. Again, the only restriction we

put on P is that it is composed by rectangular partition cells R̃i, i = 1, .., w. Consistently

with our assumptions, these partition cells are delimited by a set of multivariate thresholds for

(Xt−1, ρt−1). In order to construct such rectangular partition cells, we make use of a binary

tree, in which every terminal node represents a cell R̃i. Estimation of the threshold function in

the correlation dynamics (2.4) is achieved by a high dimensional model selection procedure that

determines the optimal number and the structure of the relevant thresholds in the underlying

partition. This model selection scheme is not computationally feasible if applied directly to the

multivariate time series (εtε
′
t)t∈Z. A natural way to reduce estimation complexity is to remark

that the partition P is identical to the one implied by a corresponding tree-structured univariate

model for the time series (ρt)t∈Z. Indeed, since Rt = Et−1(εtε
′
t) it follows:

Et−1(ρt) =
1

d(d− 1)

∑

u6=v

Ruv
it

=
w∑

i=1

ci


 1

d(d− 1)

∑

u6=v

Ruv
it


 I

[(Xt−1,ρt−1)∈R̃i]
(2.9)

where Ruv
t (Ruv

it ) denotes the uv−th component of the matrix Rt (Rit). Therefore, the tree-

structured model

ρt = Et−1(ρt) + ηt, (2.10)

where (ηt)t∈Z is a martingale difference process and Et−1(ρt) is given by equation (2.9), defines

a univariate tree-structured process for ρt based on the same partition P as in the correlation

dynamics (2.4). It follows, that we can exploit the univariate model (2.10) to estimate the

threshold structure in equation (2.4). In particular, we can develop a model selection procedure

for selecting the optimal threshold structure in the correlation dynamics. The most simple

dynamics arises in the piecewise constant case:

Et−1(ρt) =
w∑

i=1

ci


 1

d(d− 1)

∑

u6=v

R
uv


 I

[(Xt−1,ρt−1)∈R̃i]
(2.11)
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where R
uv is the uv−component of the correlation matrix R in the piecewise-constant dynamics

(2.8). This piecewise constant function is the optimal one that has been estimated in our

applications to the US equity market in Section 4.1 and to the US bond market in Section 4.3.

More generally, for c1 = . . . = cn = 1 and λi, φi > 0, i = 1, .., w, we can also encompass the

univariate dynamics of ρt that are consistent with a tree-structured DCC model of the form

(2.4) for correlations. This threshold structure is the one we estimate in our application of

Section 4.1 when we model the correlation between Treasury bond and stock returns. Model

selection across this class of potential threshold functions for Et−1 [ρt] is performed using the

BIC-information criterion. Once the partition P in (2.10) has been estimated, the parameter

(2.7) of the multivariate correlation dynamics can be estimated using a multivariate conditional

pseudo likelihood for εt, in which the selected partition P is held fixed. The next section provides

additional details on the estimation procedure used to estimate our–tree structured DCC model.

3 Estimation of the tree-structured DCC model

Estimation of our tree-structured model is achieved in two steps. In the first step, an estimate of

the volatility process Dt is obtained by performing d estimations of the univariate tree structured

conditional volatility dynamics σt,1(θ1,1), .., σt,d(θ1,d) implied by the specification (2.3). The

resulting point estimate D̂t := Dt(θ̂1) is used to compute the estimated scaled residuals

ε̂t := D̂−1
t Xt. (3.12)

The scaled residuals ε̂t are used in the second step of our procedure to estimate the tree-

structured conditional correlation dynamics (2.4).

3.1 Estimation of tree-structured univariate GARCH-dynamics

Estimation of the d tree-structured univariate volatility functions (2.3) is achieved by a high

dimensional model selection problem, which determines the optimal structure of the relevant

thresholds in any partition Pj of the univariate volatility dynamics (2.3), j = 1, .., d.

In a first step, a largest univariate tree-structured GARCH model is estimated for any

j = 1, .., d, given a fixed maximal number Mj of possible thresholds in (2.3). This first step

delivers a maximal possible partition Pmax
j of the relevant state space G in the univariate

volatility dynamics (2.3).
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In a second step, a tree-structured model selection procedure for non nested models is applied,

which selects the optimal subpartition Pj ⊂ Pmax
j out of the maximal one. Model selection is

performed according to the BIC information criterion implied by a conditionally gaussian log

likelihood for any process coordinate Xt,j , j = 1, .., d. The resulting optimal tree-structured

volatility model minimizes the BIC information criterion across all tree-structured sub partitions

of Pmax
j . The complete algorithm used to estimate univariate tree-structured GARCH(1,1)

models is given in Audrino and Bühlmann (2001) and Audrino and Trojani (2006).

The construction of the largest partition Pmax
j proceeds as follows. We first fix a maximal

number Mj +1 of partition cells in the tree. Because of the tree-structured construction of Pmax
j ,

this first step implies a maximal number Mj +1 of conditional volatility regimes (i.e. the number

of terminal nodes in the binary tree). A parsimonious specification of the maximal number Mj

of thresholds ensures a statistically and computationally tractable model dimension. Moreover,

it avoids (over) fitting a too flexible model dynamics, which would result in a poor out-of-sample

forecasting power. For any coordinate axis of the multivariate state space that has to be split we

search for multivariate thresholds over grid points that are empirical α-quantiles of the data along

the relevant coordinate axis. We fix the empirical quantiles as α = i/mesh, i = 1, ..,mesh − 1,

where mesh determines the fineness of the grid on which we search for multivariate thresholds.

Typically, we choose mesh = 8. The partition of the state space G = Rd × R+ into a maximal

number of Mj +1 cells is performed as follows. A first threshold d1 ∈ R or R+ in one coordinate

indexed by a component index ι1 ∈ {1, 2, . . . , d + 1} partitions G as

G = Rleft ∪Rright,

where Rleft = {(Xt−1, σ
2
t−1) ∈ Rd × R+; (Xt−1, σ

2
t−1)ι1 ≤ d1} and (Xt−1, σ

2
t−1)ι1 denotes the

ι1−component of the tuple (Xt−1, σ
2
t−1). Rright is defined analogously using the relation ‘>’

instead of ‘≤’. In a second step, one of the partition cells Rleft, Rright is further partitioned

with a second threshold d2 and a second component index ι2, in the same way as above. We

then iterate this procedure. For the m−th iteration step, we specify a new pair (dm, ιm), which

defines a new threshold dm for the coordinate indexed by ιm, and an existing partition cell that

is going to be splitted into two subcells. For a new pair (d, ι) ∈ R×{1, . . . , d + 1} refinement of

an existing partition P(old) is obtained by picking Rj∗ ∈ P(old) and splitting it as

Rj∗ = Rj∗,left ∪Rj∗,right . (3.13)
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This procedure produces a new (finer) partition of G, given by

P(new) = {Rj ,Rj∗,left,Rj∗,right, j 6= j∗}. (3.14)

In this partition, the tuple (d, ι) describes a threshold d and a component index ι such that

Rj∗,left = {(Xt−1, σ
2
t−1) ∈ Rj∗ ; (Xt−1, σ

2
t−1)ι ≤ d}. Rj∗,right is defined analogously, with

the relation ‘>’ instead of ’≤’. The whole procedure finally determines a partition Pmax
j =

{R1,j , . . . ,RMj+1,j}. This partition can be represented and summarized by a binary tree in

which every terminal node represents a partition cell of Pmax
j . To select the specific thresh-

old and component index (d, ι) in each iteration step of the above procedure we optimize the

corresponding conditional negative (pseudo) log-likelihood in the model.

3.2 Estimation of tree-structured DCC-dynamics

In the first step, we estimate the optimal partition P using the tree-structured model (2.10) for ρt

and the scaled estimated residuals ε̂t. In the second step, we fix the partition P̂ - say - estimated

for the univariate model (2.10), and estimate the parameter θ2 in (2.7) by a multivariate pseudo

maximum likelihood estimator.

(i) Estimation of the univariate tree structured model (2.10). Let

ρ̂t =
∑

u 6=v

ε̂t−1,uε̂t−1,v/[d(d− 1)]. (3.15)

The following tree–structured model for ρ̂t is estimated (compare with equation (2.10)):

ρ̂t = Et−1(ρ̂t) + ηt, (3.16)

where (ηt)t∈Z is a martingale difference sequence and

Et−1(ρ̂t) =
w∑

i=1

ci


 1

d(d− 1)

∑

u6=v

R̂uv
it


 I

[(Xt−1,ρ̂t−1)∈R̃i]
. (3.17)

In this equation, R̂it denotes for i = 1, . . . , n a constant correlation matrix when the tree-

structured model for correlations implies a piecewise constant correlation matrix. It then follows

in this case that the conditional mean of ρ̂t is simply a piecewise constant threshold function.

More generally, for c1 = . . . = cn = 1 and φi > 0 or λi > 0, where i = 1, . . . , w, the local

conditional correlation matrix R̂it is simply defined in the same way as Rit in equation (2.5) and

(2.6), but with ε̂t−1 replacing εt−1 in equation (2.6).
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We apply the same estimation procedure given in the last section for individual conditional

variances to the series ρ̂t. We first estimate a largest univariate tree structured model for

ρ̂t, given a fixed maximal number M of possible thresholds in (2.10). In all our empirical

applications we fix the maximal number of candidate thresholds in model (2.10) at M = 4. A

tree-structured model selection procedure for non nested models is then applied, which selects

the optimal subpartition P out of the maximal one. Model selection is performed according

to the BIC criterion implied by a conditionally gaussian pseudo log likelihood for ρ̂t.3 In our

empirical study, we found that this procedure offers a simple and effective way to reduce the

computational costs implied by the estimation of our multivariate tree-structured model. In

particular, in the applications of Section 4 a piecewise constant conditional correlation function

is estimated for equity and different types of bond returns. However, local DCC-type structures

are found to model better the conditional correlations between equity and bond returns.

(ii) Estimation of the tree-structured conditional correlation function Rt. In the second step of

our estimation procedure, we fix the partition P̂ estimated in step (i) and we estimate the pa-

rameter vector θ2 in (2.7) by a pseudo maximum likelihood estimator θ̂2 for θ2, under a Gaussian

multivariate conditional pseudo likelihood for ε̂t. If in step (i) the optimal threshold function

does not imply piecewise constant correlations, we estimate the matrix Q in the dynamics (2.6)

by doing correlation targeting, as proposed by Engle and Sheppard (2001) and Pelletier (2006).

If in step (i) a piecewise constant correlation structure has been selected, we estimate in the sec-

ond step a piecewise constant correlation process of the form (2.8). In such a case, we estimate

the constant matrix R by doing correlation targeting in a rolling window of one year of data.

The piecewise constant correlation structure reduces significantly the number of parameters over

which the likelihood function has to be maximized.

3.3 Consistency

Proofs of consistency of our model selection procedure for the case where the true model is

in the class of tree-structured models are very difficult to obtain. Analogously to CART, it is

possible to prove theorems that study the behavior of the prevailing parameter estimators when

growing the tree. However, such results do not imply model selection consistency. Furthermore,

it is quite hard to believe that the “correct” generating process in our and similar real data

examples is indeed exactly a tree-structured model for volatilities and correlations, respectively.

For this reason, it is more important to prove consistency of the estimates in a tree-structured
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model under a model misspecification, rather than showing consistency of the model selection

strategy under the assumption of a correctly specified tree-structured model. Consistency results

can be found in Audrino and Bühlmann (2001). Based on such results, consistency of the

two-step estimates (θ̂1, θ̂2) in the tree structured DCC-GARCH model under a possible model

misspecification can be derived in the standard way under mild regularity conditions; see, for

instance, Newey and McFadden (1994). Moreover, efficient estimates could be obtained by

performing a further one step Newton-Raphson estimation of the full likelihood, using as starting

values the parameter estimates obtained from the two-step procedure (see Pagan, 1986).

4 Results

In this section, we test the in-sample and out-of-sample explanatory power of our tree-structured

GARCH-DCC model in three different applications to the econometric analysis of US stock and

bond returns. We compare our model with several multivariate GARCH models that have been

recently proposed in the literature. Some of these models are nested in our one and can be

estimated, like our one, by a two-step estimation procedure:

• The CCC-GARCH model, as proposed by Bollerslev (1990); this model is nested in our

one.

• The DCC-GARCH model, as proposed by Engle (2002); this model is nested in our one.

• The RSDC-GARCH model with switching regimes in conditional correlations, as proposed

in Pelletier (2006). This model is not formally nested in our one.

Since the individual volatility processes are estimated separately from the correlation dynamics

in these models, we can easily focus in our empirical study on the additional explanatory for

conditional correlations, which is the main topic of this paper. To achieve this goal, we esti-

mate for all these models identical volatility processes as in our tree-structured DCC-GARCH

model, and specify the individual volatility dynamics as univariate tree-structured GARCH(1,1)

processes. In addition, we also study the performace of our model in relation to the one of

the flexible multivariate GARCH model in Ledoit et al. (2003). This model does not include

thresholds or regimes in volatilities or correlations. However, it is based on a more general cor-

relation dynamics than the one implied by Engle (2002) DCC model. Therefore, it is not nested

in our setting. Flexible multivariate GARCH models have been shown by Ledoit et al. (2003)
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to describe quite accurately the dynamics of stock returns. Therefore, they are further natural

competitors to our approach, especially in applications studying the multivariate dynamics of

stock markets, as in our first empirical application.

In all our empirical examples, we start from a maximal number M + 1 of partition cells

in the trees defining the conditional volatility and correlation dynamics, where M = 4. This

choice implies a maximal number of 5 regimes for conditional volatilities and/or correlations.

For any coordinate axis of the multivariate state space that has to be split to determine the

thresholds, we search over grid points that are empirical α−quantiles of the data along the

relevant coordinate axis. We fix the empirical quantiles as α = i/mesh, i = 1, ..,mesh− 1, where

mesh determines the fineness of the grid on which we search for multivariate thresholds. In all

our estimations we fixed mesh = 8.

To quantify and compare the in-sample and out-of-sample fit of the different models, we com-

pute several goodness-of-fit statistics for conditional covariances. Since the individual volatility

processes are identical for all but the flexible multivariate GARCH model in our study, this

comparison allows us to investigate the additional explanatory power of our model in explaining

the correlation dynamics. We consider the following goodness of fit measures:

• The multivariate negative log-likelihood statistic (NL),

• The multivariate version of the classical mean absolute error statistic (MAE),

• The multivariate version of the root mean squared error statistic (RMSE),

The last two performance measures require the specification of sensible values for the unknown

true conditional covariance matrix. A powerful way of computing good proxies for this matrix

is by means of the the so-called realized covariance approach, which is the natural multivariate

version of the realized volatility approach proposed, among others, in Andersen et al. (2001,

2003) and Barndorff-Nielsen and Shephard (2001, 2002a). We follow this approach in our first

two real data applications, in which we collect tick-by-tick return data to compute the realized

covariance between returns with the methodology proposed in Corsi and Audrino (2007). In

the third and last application, we do not have tick-by-tick data at our disposal to compute the

realized covariances between returns. Therefore, we use products of centered returns as (noisy)

proxies for the unknown covariances between returns.4
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The different statistics used to quantify the in-sample and out-of-sample goodness of fit in our

empirical analysis are defined as follows: (IS denotes in-sample and OS denotes out-of-sample):

IS-NL: − log-likelihood(Xn
1 ; φ̂)

OS-NL: − log-likelihood
(
Ynout

1 ; φ̂
)

IS-MAE:
1
d2

d∑

i,j=1

1
n

n∑

t=1

| vt,ij − v̂t,ij |

OS-MAE:
1
d2

d∑

i,j=1

1
nout

nout∑

t=1

| vt,ij − v̂t,ij(Yt−1
1 ) |

IS-RMSE:
( 1

d2

d∑

i,j=1

1
n

n∑

t=1

| vt,ij − v̂t,ij |2
)1/2

OS-RMSE:
( 1

d2

d∑

i,j=1

1
nout

nout∑

t=1

| vt,ij − v̂t,ij(Yt−1
1 ) |2

)1/2

where in the OS performance measures the expression v̂t,ij(Yt−1
1 ) is the ij−th covariance predic-

tion implied by our out-of-sample data Ynout
1 = {Y1, . . . ,Ynout} at time t under the parameter

estimates obtained from the in-sample data Xn
1 = {X1, . . .Xn}. vt,ij is the realized covariance

between the return series i and j at time t, in our first two applications, or the product of the

centered returns of series i and j at time t, in our last application. We mainly focus on the

out-of-sample goodness of fit measures. In all cases, a lower goodness of fit measure indicates a

higher forecasting power of a model for conditional correlations.

4.1 First real data application: US equity returns

We consider a multivariate time series of (annualized) daily log-returns for ten US stocks: Alcoa,

Citigroup, Hasbro, Harley Davidson, Intel, Microsoft, Nike, Pfizer, Tektronix and Exxon. Data

are for the sample period between January 2, 2001 and December 30, 2005, amounting to 1256

trading days. The source of the data is Tick Data, a division of Nexa Technologies, Inc. (see

the webpage http://www.tickdata.com). Using these tick-by-tick data, we construct realized

covariances with the method in Corsi and Audrino (2007) and obtain the quantities vt,ij needed

to compute our goodness of fit measures.

We split the sample in two subperiods. The first one consists of n = 752 trading days,

from January 2, 2001 to December 31, 2003. Data from this subperiod are used for in-sample

estimation and performance evaluation. The second subperiod consists of the remaining nout =

504 observations, up to December 30, 2005, and is used for out-of-sample performance evaluation.
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We focus on differences in goodness of fit implied by the conditional correlation matrix

dynamics under the different model settings. We estimate our model in two steps as follows.

First, we estimate separately the univariate conditional volatility dynamics for each single return

series and include as possible conditioning variables in the threshold definition (i) its estimated

conditional volatility and (ii) the first lag of all components in the multivariate return series.

This threshold volatility structure has proven to produce good empirical results in applications

of tree-structured GARCH models to financial data; see, for example, Audrino and Trojani

(2006). This first step of the estimation procedure is kept identical for all models in which

volatilities can be estimated separately from correlations: the CCC, the DCC, the RSDCC and

our tree-structured DCC model. In this way, we ensure that differences in the goodness of

fit of these models with respect to the estimated conditional covariance matrix dynamics are

exclusively due to differences in the explanatory power with respect to conditional correlations.

In the second step of our estimation procedure, we estimate possible tree-structured thresholds

and GARCH-type dynamics in conditional correlations. We include as possible conditioning

variables for the definition of the threshold structure of conditional correlations (i) the first lag

of the average conditional correlation shocks across returns and (ii) the first lag of all components

of our multivariate return series; see also Section 2.2 for details.

4.1.1 Estimation results

The estimation results of our tree-structured DCC-GARCH model for the ten-dimensional time

series of US stock returns introduced above are summarized in Table 1.

TABLE 1 ABOUT HERE.

Table 1, Panel A, highlights that at most two regimes are necessary to model accurately the

individual conditional variance dynamics. The most important predictor variables impacting on

the corresponding threshold structures are the lagged returns of Microsoft and Harley Davidson.

The structure of the estimated conditional correlation dynamics in our model is summarized in

Panel B of Table 1. Similar to volatilities, the most important and statistically significant predic-

tor variable impacting on the threshold structure of conditional correlations is the lagged return

of Harley Davidson. Moreover, the complete estimated threshold structure of conditional cor-

relations is fully characterized using only two further lagged stock returns, the returns of Alcoa

and Intel (in descending order of statistical significance), and implies four different correlation
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regimes. The first regime is associated with contemporarily low lagged Harley Davidson and

Alcoa returns.5 The second one arises for lagged large Alcoa returns and low Harley Davidson

returns. The third regime is obtained for lagged large Harley Davidson and low Intel returns.

Finally, the fourth regime is caused by contemporarily large lagged returns of Harley David-

son and Intel. A striking difference between the estimated volatility and correlation dynamics

arises for the local DCC models implied by the estimated threshold structures. In contrast to

volatilities, the estimated local correlation dynamics never exhibit GARCH-type effects across

the different correlation regimes: Conditional correlations are regime dependent, but piecewise

constant. Even if the levels of the correlation across regimes are similar, we find that the BIC

criterion increases significantly in all cases when incorporating the additional correlation regimes

into the model. This finding in confirmed by our following out-of-sample analysis on the model’s

forecasting power for future correlations.

4.1.2 Multivariate performance results

We now compare the accuracy of the conditional correlation predictions implied by our model

with the one implied by the CCC, the DCC, the RSDC ad the flexible multivariate GARCH

model.6 In Table 2, we present the goodness of fit measures defined in Section 4 for the real

data application to our ten dimensional stocks returns series.

TABLE 2 ABOUT HERE.

Our multivariate tree structured model achieves the highest goodness of fit compared to the

CCC, the DCC and the RSDC models, which are all based on the same volatility dynamics. Only

for the in-sample NL measure the RSDC model obtains a larger goodness of fit. Note, however,

that this larger in-sample forecasting power is not surprising at all, since the RSDC model

has more than twice the number of parameters of the other models. It follows that our tree-

structured setting provides a higher out-of-sample forecasting power for conditional correlations.

The improvement goes from 0.5% to 17%, depending on the goodness of fit measure used. When

comparing the results of our model with those of the flexible multivariate GARCH model, we

see that the out-of-sample forecasting performance of the latter specification is only marginally

better in two out of three cases, despite having more than double the number of parameters.

The heavy parametrization of the flexible multivariate GARCH model can make it unpracticable

for problems with dozens to hundreds individual time series. Our and all other models in this
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paper, instead, can be used to estimate the conditional variance-covariance dynamics also for

very high-dimensional time series settings.

4.2 Second real data application: US stock index and bond returns

We now consider a two-dimensional time series of (annualized) daily log-returns for the US

S&P500 stock index and the US 30-years Treasury bond. The time period under investigation

goes from January 3, 1996 to October 30, 2003, and contains 1899 trading days. The data is

provided by Tick Data. As in the previous section, we exploit the tick-by-tick data to construct

the series of realized volatilities and covariances between stock index and bond returns. As

before, for forecasting evaluation purposes we split the sample in two sub-periods. The first

sub-period consists of n = 1219 trading days and goes from January 3, 1996 to December 29,

2000. The second sub-period consists of the last three years of data (nout = 680 observations).

4.2.1 Estimation results

The estimation procedure follows the same steps of the one described in the last paragraph of

Section 4.1. The individual variance structures and the correlation threshold functions estimated

by our tree structured DCC model are summarized in Table 3.

TABLE 3 ABOUT HERE.

The individual threshold functions estimated for the volatilities of each return series depend

only on one lag of each series. As previously reported in the literature, for instance in Audrino

and Trojani (2006), the conditional variances of stock index returns are driven by more than two

regimes. The estimated conditional variance dynamics of Treasury bond returns is determined

by two different regimes.

Two regimes also arise for the estimated conditional correlation function between stock index

and Treasury bond returns, which is characterized by one threshold that depends exclusively on

the lagged return of the S&P00 index. The first regime is determined by lagged low S&P500

returns and the second regime by lagged large S&P500 returns. The estimated local correla-

tion dynamics across regimes feature GARCH-type effects as in Engle (2002) DCC model, but

with regime dependent parameters that are significantly different according to the BIC crite-

rion. Therefore, we obtain conditional correlation dynamics that are very different from those

obtained in the previous section for our application to a ten dimensional stock returns series.
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The flexibility of our setting enables us to take easily into account the different conditional

correlation features prevailing among the returns of different classes of assets.

4.2.2 Multivariate performance results

Table 4 summarizes the goodness of fit measures of Section 4 implied by the models estimated

on our stock index and Treasury bond return data.

TABLE 4 ABOUT HERE.

Our multivariate tree-structured model obtains the best goodness of fit results across all

in-sample and out-of-sample measures used and with respect to all models considered. The

improvement in the out-of-sample performance of our model is in the order of 1%-25%, depending

on the goodness of fit measure applied. In this application, a piecewise constant conditional

correlation dynamics, as the one implied by the RSDC model, has no additional value for

forecasting conditional correlations. However, GARCH-type effects in conditional correlations

dramatically improve the model’s out-of-sample correlation fit.

4.3 Third real data application: US government and corporate AAA bond

returns

We conclude our empirical analysis by studying a three-dimensional time series of daily bond

index log-returns for the following bond types: corporate AAA intermediate bonds (5 years

maturity), corporate AAA long bonds (10 years maturity) and Treasury long bonds (10 years

maturity). The data under investigation are for the time period between April 23, 1996 to

December 31, 2002, for a total of 1745 observations. We use the first 1223 observations (until

the end of 2000) to estimate the different models. The remaining ones are used for forecasting

evaluation purposes. The data is provided by Lehmann Brothers.

Since no tick-by-tick or other smaller frequencies data are available in this setting, we have

to rely on products of (centered) returns as proxies for the unobserved conditional covariances

of returns. The main disadvantage caused by this feature is that the arising IS- and OS- MAE

and RMSE measures are now noisily proxied. Therefore, small differences in the true unknown

goodness of fit measures can be easily obscured by a low signal to noise ratio. Thus, our IS-

and OS- measures can be expected to have discrimination power only between models implying

quite large differences in forecasting power.
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Moreover, as Patton (2006) recently showed in his study, when using such noisy approxi-

mations for conditional covariances, the MAE loss function leads to an optimal forecast that is

significantly biased. Therefore we report goodness of fit results only for the “robust” NL and

RMSE measures.

4.3.1 Estimation results

The individual variance structures and the correlation threshold functions estimated by our tree

structured DCC model for the three dimensional time series of bond returns are summarized in

Table 5.

TABLE 5 ABOUT HERE.

The conditional variance dynamics estimated for the long Treasury and corporate bond

return series feature one single regime. The one estimated for the intermediate corporate bond

return series is characterized by a single threshold that depends exclusively on the lagged return

of intermediate corporate bonds. The conditional correlation dynamics features a piecewise

constant complex structure that is characterized by three regimes. The estimated threshold

function for conditional correlations depends completely on the lagged return of intermediate

AAA bonds. The first regime is associated with lagged low returns on intermediate AAA

corporate bonds. The second one is due to lagged moderately negative AAA intermediate bond

returns. The third regime implies lagged positive AAA intermediate bond returns.

4.3.2 Multivariate performance results

The goodness of fit measures of Section 4, implied by the models estimated using our three-

dimensional bond return series, are presented in Table 6.

TABLE 6 ABOUT HERE.

Our multivariate tree structured model achieves the best goodness of fit across all in-sample

and out-of-sample measures, with the only exception of the IS-NL statistic. Improvements in

the out-of-sample goodness of fit of our model over the competitors are approximately 10%.

This result is in line with those found in the previous empirical applications and confirms the

higher forecasting power of our tree-structured setting for the conditional correlation of future

returns in this application, too.
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5 Conclusions

We propose a new multivariate DCC-GARCH model that extends previous models by admitting

multivariate thresholds in conditional volatilities and correlations. Thresholds in conditional

volatilities and correlations are modeled using a tree-structured partition of the multivariate

state space and are estimated from the data, together with all other model parameters. Three

distinct real data applications support the good forecasting power of our model for forecasting

future correlations of financial returns. Competing multivariate GARCH models, including

Bollerslev’s CCC model, Engle’s DCC model and Pelletier’s RSDC model have difficulties in

fitting adequately the conditional correlation features of financial data, which are found to be

often characterized by both multivariate regimes and local GARCH-type effects. Our model

is able to cope in a parsimonious way with these features of the data also in applications with

large cross-sections of financial asset returns. An interesting venue for future research is the joint

empirical modeling of the dynamic correlation features of the returns of several asset classes, like

stocks, government and corporate bonds, nominal and index-linked bonds, and exchange rates,

which are likely to exhibit rich threshold and GARCH-type effects that could be parsimoniously

taken into account by our setting.
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Notes

1To simplify the notation, conditional means of Xt have been set to zero in (2.1).

2For this case, the trivial parametrization R = diag[Q]−1/2Qdiag[Q]−1/2 is superfluous.

3See again Audrino and Trojani (2006), Section 2.3, for details on this estimation procedure.

4All estimated models also include a linear autoregressive conditional mean function modeled

by a simple diagonal VAR(1) process.

5Note that with the terminology “low” (“large”) returns we mean in fact returns that are

below (above) the thresholds in the estimated threshold functions.

6Since all models, with the only exception of the flexible multivariate GARCH model, have

the same individual volatility dynamics, any difference in the goodness of fit for the forecasts of

the returns covariance matrix is due to a difference in the quality of the forecasts for conditional

correlations.

22



References

Andersen, T. G., Bollerslev, T., Diebold, F. X. and Labys, P. 2001. The distribution of

exchange rate volatility. Journal of the American Statistical Association 96, 42–55.

Andersen, T. G., Bollerslev, T., Diebold, F. X. and Labys, P. 2003. Modeling and forecasting

realized volatility. Econometrica 71(2), 579–625.

Audrino F. (2006). Tree-structured multiple regimes in interest rates. Journal of Business

& Economic Statistics 24, No. 3, 338-353.
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Panel A. Individual conditional variance structures.
Series Regimes Optimal predictors

Alcoa 1 −
Citigroup 2 Microsoft

Hasbro 2 Harley Davidson

Harley Davidson 2 Harley Davidson

Intel 1 −
Microsoft 1 −
Nike 2 Exxon

Pfizer 2 Microsoft

Tektronix 2 Harley Davidson

Exxon 1 −

Panel B: Conditional correlation structure and parameters.

Cond. corr. structure Cond. corr. parameters

Rk ck

Xt−1,Harley Davidson ≤ −19.983 and
0.928

Xt−1,Alcoa ≤ −3.553

Xt−1,Harley Davidson ≤ −19.983 and
0.897

Xt−1,Alcoa > −3.553

Xt−1,Harley Davidson > −19.983 and
0.962

Xt−1,Intel ≤ −15.016

Xt−1,Harley Davidson > −19.983 and
0.955

Xt−1,Intel > −15.016

Table 1: Estimation results for a multivariate time series of ten daily (annualized) US stock

returns (in %). Data are for the in-sample time period between January 2, 2001 and December

31, 2003, consisting of 752 observations. Estimated individual conditional variance structures

(Panel A) and estimated conditional correlation structure and parameters (Panel B) are for the

tree-structured GARCH-DCC model fit.
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US equity returns: Goodness of fit results.

Model # par.
IS- OS-

NL MAE RMSE NL MAE RMSE

CCC-GARCH 80 34959 269.413 360.798 21694 105.470 144.161

DCC-GARCH 82 34942 269.525 362.569 21652 103.259 142.440

RSDC-GARCH 173 34684 276.604 371.628 21634 105.470 149.253

TreeDCC-GARCH 84 34927 241.830 327.791 21594 86.0280 126.659

F-MGARCH 185 34378 188.850 296.328 21588 79.6050 129.462

Table 2: Goodness-of-fit of different models for a multivariate time series of ten daily (annualized)

US stock returns (in %). Data are for the time period between January 2, 2001 and December 30,

2005, for a total of 1256 observations. The in-sample estimation period goes from the beginning

of the sample to the end of 2003 (752 observations). NL, MAE and RMSE are multivariate

versions of the standard univariate negative log-likelihood, the mean absolute error, and the

root mean squared error statistics. # par. reports the number of parameters estimated by the

different models.
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Panel A. Individual conditional variance structures.
Series Regimes Optimal predictors

S&P500 3 S&P500

30-years Treasury bond 2 30-years Treasury bond

Panel B: Conditional correlation structure and parameters.

Cond. corr. structure Cond. corr. parameters

Rk φk λk

Xt−1,S&P500 ≤ −3.847098 0.0490 0.9129

Xt−1,S&P500 > −3.847098 0.0222 0.9724

Table 3: Estimation results for a two-dimensional time series of daily (annualized) returns (in

%) for the US S&P500 index and the US 30-years Treasury bond. Data are for the in-sample

time period between January 3, 1996 and December 29, 2000, consisting of 1219 observations.

Estimated individual conditional variance structures (Panel A) and estimated conditional cor-

relation structure and parameters (Panel B) are for the tree-structured GARCH-DCC model

fit.
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US index and bond returns: Goodness of fit results.

Model # par.
IS- OS-

NL MAE RMSE NL MAE RMSE

CCC-GARCH 25 9334.7 63.6310 112.334 5511.5 97.2933 146.769

DCC-GARCH 27 9299.2 59.4418 105.613 5451.7 74.8853 120.934

RSDC-GARCH 30 9334.7 63.6310 112.334 5511.5 97.2933 146.769

TreeDCC-GARCH 29 9290.2 58.7296 105.146 5440.9 70.7387 108.145

F-MGARCH 13 9389.2 65.0761 117.326 5483.4 86.1455 141.501

Table 4: Goodness-of-fit of different models for a two-dimensional time series of daily (annual-

ized) returns (in %) on the US S&P500 index and the 30-years Treasury bond. Data are for the

time period between January 3, 1996 and October 30, 2003, for a total of 1899 observations.

The in-sample estimation period goes from the beginning of the sample to the end of 2000 (1219

observations). NL, MAE and RMSE are the multivariate versions of the standard univariate

negative log-likelihood, the mean absolute error, and the root mean squared error statistics. #

par. reports the number of parameters estimated in the different models.
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Panel A. Individual conditional variance structures.
Series Regimes Optimal predictors

Corporate AAA intermediate 2 Corporate AAA intermediate

Corporate AAA long 1 −
Government long 1 −

Panel B: Conditional correlation structure and parameters.

Cond. corr. structure Cond. corr. parameters

Rk ck

Xt−1,Corporate AAA intermediate ≤ −0.0583 0.965

−0.0583 < Xt−1,Corporate AAA intermediate ≤ 0 0.985

Xt−1,Corporate AAA intermediate > 0 0.947

Table 5: Estimation results for a three-dimensional time series of daily returns (in %) of the

following US bond: 5-years corporate AAA (intermediate), 10-years corporate AAA (long) and

10-years government (long). Data are for the in-sample time period between April 23, 1996 and

December 29, 2000, consisting of 1223 observations. Estimated individual conditional variance

structures (Panel A) and estimated conditional correlation structure and parameters (Panel B)

are for the tree-structured GARCH-DCC model fit.
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US corporate and government bond returns: Goodness of fit results.

Model # par.
IS- OS-

NL RMSE NL RMSE

CCC-GARCH 20 13.4818 0.4142 433.01 0.4620

DCC-GARCH 22 −297.56 0.4145 454.41 0.4624

RSDC-GARCH 29 −336.12 0.4159 418.16 0.4653

TreeDCC-GARCH 23 −100.02 0.3723 377.91 0.4102

F-MGARCH 24 −41.331 0.4294 425.32 0.4841

Table 6: Goodness-of-fit of different models for a three-dimensional time series of daily returns

(in %) of US 5-years and 10-years corporate AAA bonds and 10-years Treasury bonds. Data

are for the time period between April 23, 1996 and December 31, 2002, for a total of 1745

observations. The in-sample estimation period goes from the beginning of the sample to the end

of 2000 (1223 observations). NL and RMSE are multivariate versions of the standard univariate

negative log-likelihood and the root mean squared error statistics. # par. reports the number

of parameters estimated in the different models.
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