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Abstract 

This paper presents a generalized model of overlapping generations with economic aging of 

households. Economic age is defined as a set of personal attributes such as earnings potential 

and tastes that are characteristic of a person's position in the life-cycle. We separate the 

concepts of economic age and time since birth in assuming only a small number of different 

states of age. Agents sharing the same economic characteristics are aggregated analytically to 

a low number of age groups. The model thus allows for a very parsimonious approximation 

of life-cycle differences in earnings, wealth and consumption. As an illustration, we 

quantitatively apply the model to study the impact of demographic change. 
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1 Introduction

Modeling the behavior of overlapping generations (OLG) of households is important to

understand many topics of fiscal policy and intertemporal macroeconomics. Depending

on the particular issues to be analyzed, economists have a range of models at hand. At

one extreme end is the representative agent model of infinitely lived consumers due to

Ramsey (1928), Cass (1965), Koopmans (1965), and Weil (1987). At the other end is

the two period OLG model pioneered by Samuelson (1958) and Diamond (1965). The

model is analytically very tractable but cuts down life-cycle detail to the bare bones. The

length of a period featuring constant interest rates and constant rates of consumption

etc. covers about thirty years in real time which imposes severe limits in quantitative

empirical applications. At the expense of analytical tractability, empirical applications

thus rely on numerically solved models with a large number of generations and detailed

life-cycle patterns of earnings, consumption and savings. These models were pioneered by

Auerbach and Kotlikoff (1987) and Hubbard and Judd (1987) for the analysis of tax and

fiscal policy including demographic change and social security reform.

Life-cycle models with many generations tend to be analytically intractable and must

be solved numerically. Even the simplest life-cycle model with 55 cohorts operates in

a state space of as many as 108 dimensions as Laitner (1990) has shown. Dimensions

explode if one adds additional structure and household sector heterogeneity such as human

capital accumulation, different skill groups, several countries etc. By way of contrast, the

perpetual youth model due to Yaari (1965), Blanchard (1985) and Buiter (1988) is an

analytically very tractable OLGmodel with a realistic period length. The main drawback,

however, is the rigid demographic assumption of an age independent mortality rate and

the absence of life-cycle detail of earnings, consumption and savings.1 For this reason, the

model is not well suited for the analysis of aging, old age insurance and other applications

where it is necessary to distinguish households by age groups. The recent extension by

1Heijdra and Romp (2005), however, managed to include some life-cycle features in a continuous time

version of the model that still allows for analytical solutions.
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Gertler (1999) reconciles the perpetual youth model with an important aspect of life-

cycle behavior by allowing for a stochastic transition from work to retirement and from

retirement to death. It thereby opens up useful applications with a model that includes no

more than two stock variables to represent the household sector. Although more complex,

it is analytically tractable and easily implemented empirically. However, it does not allow

any further disaggregation between different age groups of workers and retirees.2

This paper presents an alternative approach that retains the simplicity of analytically

aggregated OLG models and yet succeeds to approximate the rich life-cycle detail of

the high dimensional finite horizon models. The number of state variables is drastically

reduced, depending on the desired degree of approximation. The key idea is to separate

the concept of “economic age” from “time since birth”. We understand economic age as a

set of physical or mental attributes such as earnings potential, mortality, tastes and other

characteristics. They are retained several periods before agents move to the next age

state. This is the key difference to existing models where aging and the passing of time

are perfectly synchronized and age is understood as time since birth. In introducing the

concept of economic age, we are thus able to introduce an approximate life-cycle structure

with a much reduced number of state variables and yet retain a period length of one year

for realistic short-run and transitional dynamics.

With economic aging, people move stochastically from one age state to another with an

age group specific transition rate. All agents sharing the same economic characteristics are

analytically aggregated in the same age group. Our model is thus a natural generalization

of Gertler (1999). Gertler aggregates into two age groups, workers and retirees. However,

for many applications one needs to distinguish several worker groups to capture life-

cycle earnings detail, and also a few groups of retirees to take account of the substantial

heterogeneity among old and very old generations. Our generalized OLG model allows

for considerably more heterogeneity and thus achieves a much closer approximation of

2This decomposition is essential for many applications, see Jaag, Keuschnigg and Keuschnigg (2007),

for example.
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empirical life-cycle properties. In this paper, we distinguish eight age (life-cycle) groups

and choose the economic characteristics to correspond to the average data of people

in their twenties, thirties etc. Another extension relative to Gertler is that we allow

for mortality also in younger age states for a closer approximation of the demographic

composition of the population. In fact, the number of age groups, and thereby the degree

of life-cycle approximation, can be variably chosen. Our generalized life-cycle model is

thus able to replicate a wide range of intertemporal household models as special cases

by appropriately choosing the parameters governing the mortality and aging process.3 In

the limit, when increasing the number of age states until they are equal to the number of

life-cycle periods, our model becomes identical to the Auerbach Kotlikoff (1987) model.

The main purpose of this paper is to introduce the concept of economic age in a

generalized OLG model. We illustrate its application by analyzing two scenarios of de-

mographic change: a temporary baby boom and increasing life-expectancy leading to a

substantial aging of the population. The paper is organized as follows. Section 2 explains

how an agent’s life-cycle is approximated by defining an arbitrary number of age states

with different economic characteristics. It is then shown how all agents sharing the same

economic age are analytically aggregated into a single life-cycle group. Section 3 solves the

intertemporal optimization problem of households in the presence of mortality and aging

risks and sets up the dynamic general equilibrium model with demographic structure.

Henceforth, we use EA as a short-hand for the economic aging model. Section 4 presents

two illustrative empirical scenarios of demographic change, and section 5 concludes.

2 A Model of Economic Aging

Age is commonly associated with time since birth. In standard life-cycle models, age

characteristics such as labor productivity, mortality, health and other individual attributes
3This is shown in the extended discussion paper version in Grafenhofer et al. (2006). The discussion

paper contains all proofs which are partly ommitted in this paper, and it applies the model to stylized

pension reform rather than demographic change.
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change from period to period so that there are as many states of age as there are life-cycle

periods. To reduce the state space, we approximate the life-cycle by a small number of

different states of “economic age”, a ∈ (1, . . . , A). In this paper, we describe economic age
as by a vector of attributes (θa, γa, ωa), consisting of labor productivity θa, the probability

γa of not dying, i.e. of surviving to the next period, and the probability ωa of not aging,

i.e. of remaining in the same state of economic age. These characteristics change only

when an agent switches to the next stage of economic age. Economic aging is a discrete

event that occurs stochastically and irregularly. Agents may thus retain their state of

economic age for several periods before they switch to the next age state. We thus need

two different clocks to measure the passing of real time since birth and the speed of

economic aging. The latter is determined by the probability ωa. We measure real time

in regular annual periods, with interest, prices and quantities appropriately defined per

year. The aging clock runs slower and stochastically. If we had ω = 1, agents would age

from period to period so that economic and demographic aging would coincide.

2.1 Life-Cycle Histories

We define a discrete number of A states of economic age. Each state is characterized

by a given set of life-cycle characteristics. Age group a ∈ {1, . . . , A} collects all agents
sharing the same economic characteristics. People start life in state a = 1 with a given

set of attributes. An agent changes her life-cycle characteristics only when moving to the

next state of age a + 1. Since economic aging occurs less frequently than true aging as

measured by time since birth, households differ not only by their date of birth, but also by

their diverse life-cycle histories. An agent’s life-cycle history is her biography of economic

aging events that have happened since birth. It is represented by a vector α that records

the past dates of aging events when the agent has moved from one to the next state. At

date t, the set of possible histories of a household belonging to age group a is

N a
t ≡ {(α1, . . . , αa) : α1 < . . . < αa ≤ t} . (1)
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A particular life-cycle history is represented by a vector α = (α1, . . . , αa) ∈ N a
t . The

element αi denotes the date at which the household who was formerly in age group i− 1,
became a member of group i. The element α1 thus lists the date of birth. We say that

a member of group one aged only once with no further aging since birth. Nevertheless,

different persons of the first age group are heterogeneous since they were born at different

moments in the past. The set of possible biographies isN 1
t = {(α1) : α1 ≤ t}. By the same

logic, α2 is the date when an agent moved from group 1 into 2. People in age group 2 have

aged twice. The set of life-cycle histories in this case is N 2
t = {(α1, α2) : α1 < α2 ≤ t}.

By definition, a person belonging to group a has aged a times in total. Her biography

given by the vector α thus contains a elements.

Economic aging is assumed to occur infrequently and stochastically, implying that

agents spend variable lengths of time in a given age state. At any moment in time, an

individual with an arbitrarily given life-cycle history faces the risk of economic aging and

dying. She must reckon with three possible events: (i) she dies with probability 1 − γa;

(ii) she survives without aging and remains in the same age group with probability γaωa,

and (iii) she survives and ages and belongs to age group a+1 next period with probability

γa (1− ωa). A key assumption is that these transition probabilities are identically and

independently distributed among all agents in group a. They are thus the same for all

agents, independent of how long they already stayed in this age state. Individuals in the

last age group have exhausted the aging process and remain in this group with probability

one, ωA = 1. They may either survive with probability γA within group A or die with

probability 1−γA. Observe that only the last age group behaves according to the mortality
and demographic assumptions of Blanchard’s (1985) perpetual youth model.

Since economic characteristics differ across age groups, an agent’s consumption, assets

and other economic variables will generally depend on her particular life-cycle history

which reflects how long she stayed in any of the past states of economic age. For example,

assets depend on the agent’s past earnings history which, in turn, is linked to her aging

trajectory. To keep track of the population’s heterogeneity, one must thus very carefully
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identify each agent by her age group as well as her aging biography α. The number of

agents at date t, in state of life a and with the same aging history α is given by Na
α,t.

People with the same biography are identical so that Na
α,t is the smallest homogeneous

population unit. They all face the same independent probability of moving to one of the

next, alternative states. With stochastically independent risks, the law of large numbers

implies so that the above stated individual probabilities correspond to the fraction of

people subject to the same demographic shock. Consequently, the group is divided into

three subgroups next period: (i) those who die and whose biography is updated to α†

where † means exit from the population; (ii) those who survive within the same age group
a. Their biography remains unchanged; and (iii) those who are hit by an aging event and

switch to the next higher age group:

(i) N †
α†,t+1 = Na

α,t · (1− γa) , death,

(ii) Na
α,t+1 = Na

α,t · γaωa, no aging,

(iii) Na+1
α0,t+1 = Na

α,t · γa (1− ωa) , aging.

(2)

The last line refers to persons with biography α = (α1, . . . , αa) ∈ N a
t who belong to age

group a and experience an aging event in period t. These agents arrive in the next age

state a + 1 next period. Their biography is thus appended by a new entry t + 1 and

reads α0 = (α1, . . . , αa, t+ 1) ∈ N a+1
t+1 . The set of agents N a+1

t+1 in group a+1 can thus be

decomposed into two subsets: the first consists of all those agents who already belonged

to group a+ 1 in period t and whose biography α remains unchanged, just as in case (ii)

above referring to group a. The second subset refers to the new arrivals with a freshly

appended biography α0. This decomposition into movers and stayers becomes important

for analytical aggregation below.4

4The perspective in (2) is from period t to the next period and therefore distinguish between those

who stay and who leave age group a. The alternative perspective is from t + 1 by distinguishing the

incumbants (stayers) who already belonged to group a in the preperiod, (ii) : Na
α,t+1 = Na

α,t · γaωa, and
the new arrivals (movers) who belonged to group a− 1 in t, (iii) : Na

α0,t+1 = Na−1
α,t · γa−1 ¡1− ωa−1

¢
.
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2.2 Aggregate Demographics

The total number of agents in the same economic demographic state a is obtained by

adding up over all possible histories α that end up in state a,

Na
t ≡

P
α∈Na

t
Na

α,t. (3)

The stochastic arrival of aging events implies that currently living agents have spent

variable lengths of time in each preceding age state since birth. In consequence, there

are many different aging trajectories leading to the same age state in period t. The

aggregation formula takes the sum over all possible biographies, including varying dates

of birth, that could conceivably lead to age state a in period t.

All agents in a given group are assumed in (2) to face identical transition probabili-

ties. Given stochastically independent mortality and aging risks, one can use the law of

large numbers to analytically aggregate the population into separate age groups. These

aggregates evolve deterministically over time. One obtains

Proposition 1 (a) The aggregate law of motion for age group 1 < a ≤ A is

Na
t+1 = γaωa ·Na

t + γa−1
¡
1− ωa−1¢ ·Na−1

t , ωA = 1. (4)

(b) Age group 1 evolves according to

N1
t+1 = γ1ω1 ·N1

t + nt, nt ≡ N1
(t+1),t+1 newborns. (5)

(c) The total population grows by

Nt+1 = Nt + nt −
P

a (1− γa)Na
t , Nt ≡

P
aN

a
t . (6)

Proof. The smallest homogeneous population unit is Na
α,t. It is assumed large enough

so that the law of large numbers applies. As indicated in (2), Na
α,t decomposes into three

groups. Members of group a can either die, or stay in the same group, or move to group

a+ 1 next period. Conversely, agents in group a next period come from stayers α ∈ N a
t
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and movers from the preceding group N a−1
t . Obviously, a stayer remains in the same

group a next period, α ∈ N a
t+1, while a mover belongs to N a−1

t this period and N a
t+1 next

period. A mover gets a new entry t+1 in her biography, α0 = (α1, . . . , αa−1, t+ 1). Group

a next period is populated by agents with biographies α ∈ N a
t+1. By definition, it can be

decomposed into incumbents with biographies α ∈ N a
t , and new arrivals with biographies

α0 = (α, t+ 1) where α0 ∈ N a
t+1 and α ∈ N a−1

t :
P

α∈Na
t+1

Na
α,t+1 =

P
α∈Na

t
Na

α,t+1 +P
α∈Na−1

t
Na

α,t+1. Using (2),P
α∈Na

t+1
Na

α,t+1 =
P

α∈Na
t
γaωaNa

α,t +
P

α∈Na−1
t

γa−1 (1− ωa−1)Na−1
α,t ,

Na
t+1 = γaωaNa

t + γa−1 (1− ωa−1)Na−1
t .

Transition probabilities are identical for all members of the same group and independent

of past history. They can thus be moved in front of the sum operators. Since the last

group cannot age further, the event in (2.iii) is precluded, implying the restriction ωA = 1.

In the first group, the inflow is the number of newborns nt who start life with a biography

α0 = (t+ 1). Adding up (4-5) and noting the restriction ωA = 1 yields (6).

The key demographic parameters are the birth rate, the transition rates to successive

age groups, and the mortality rates. Since all are exogenous, the demographic subsystem

is independent of economic influences and evolves autonomously according to (4-6). A

stationary population requires that inflows and outflows of any age group must balance

to yield constant group size. Using (4) and (5),

N1 =
n

1− γ1ω1
, Na =

γa−1 (1− ωa−1)
1− γaωa

·Na−1. (7)

For any demographic transition, the exogenous driving force is the flow nt of newborns.

With this flow exogenously specified and constant, the system arrives at a stationary

population N with demographic structure as in (7).

3 Life-Cycle Economies

The theory of economic aging is now combined with an intertemporal general equilibrium

model with life-cycle decisions and perfect foresight. In economic applications, a key
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distinction between age groups is the definition of wage related income,

yat =

⎧⎨⎩
¡
1− tW

¢
wtθ

a : a ∈ ©1, . . . , aR − 1ª ,
pt : a ∈ ©aR, . . . , Aª . (8)

There are several states of work and retirement life where aR denotes the first age state

of retirement. Each worker in group a is endowed with θa efficiency units of labor which

earn a wage of wt per unit. Consequently, a worker’s gross wage per unit of labor is

wa
t = wtθ

a
t . The government levies a proportional wage tax tW to finance pensions and

other public spending. Retirees receive a pension of pt per capita from a pay-as-you-go

(PAYG) social security system. Wage related income per capita, yat , differs across age

groups due to varying labor productivity, but is identical for all agents within the same

group. Importantly, it does not depend on life-cycle history α which is generally different

for people in the same age group.

3.1 The Last Age Group

With perfect foresight, today’s decisions must anticipate the consequences for future in-

come and welfare. To take account of this interdependency, we start with the last age

group and solve the model backwards. The last group is conceptually different from ear-

lier ones because no further aging is possible (ωA = 1). Consequently, the set of possible

events reduces to two. A person may either survive to the next period within the same

age group, or die. The decisions of the last age group basically follow the principles of

the perpetual youth model as in Blanchard (1985) albeit with one important difference.

Since the last is only one of several age groups, average time spent in this group is rather

limited. The mortality rate must thus be chosen much larger.

A member of the last age group is retired and receives an old age pension of yAt = pt per

capita. Given current asset and pension income, agents choose consumption and savings

and accumulate assets,

γAAA
α,t+1 = Rt+1

£
AA
α,t + yAt − CA

α,t

¤
, (9)
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where C stands for consumption, A for assets, and R = 1+ r for the interest factor equal

to one plus the annual interest rate. The value of assets is measured at the end of the

period and earns, together with new savings y −C, an interest rt+1 until the end of next

period. The term γA on the left-hand side arises due to the assumption of reverse life-

insurance. The agent wants to get compensated during her life-time for any accidental

bequests that she leaves upon death. Such compensation is assumed to be available from

a competitive insurance sector. The same demand for insurance arises for any age group.

Suppose an agent has assets of Sa
α,t at the end of period t, equal to the square bracket in

(9). Aggregate end of period assets of this group are Sa =
P

α∈Na Sa
αN

a
α. Since a fraction

1−γa dies, insurance firms collect assets (1− γa)Sa, but premiums must be paid to those

who survive, adding up to πaγaSa. The insurance sector breaks even with a premium of

πa = (1− γa) /γa or 1 + πa = 1/γa. If such insurance is available, an agent’s assets next

period are Aa
α,t+1 = Rt+1 (1 + πat )S

a
α,t if she survives, or γ

AAA
α,t+1 = Rt+1S

A
α,t as in (9).

Preferences are represented by the CES non-expected utility theory proposed by

Farmer (1990) and Weil (1990) which restrict individuals to be risk neutral with respect

to variations in income but allow for an arbitrary intertemporal elasticity of substitution.

Let β be a subjective discount factor reflecting the pure rate of time preference, and σ

the intertemporal elasticity of substitution. Agents maximize expected welfare over the

remaining life-time. The recursive formulation of intertemporally separable preferences

yields the Bellmann equation

V
¡
AA
α,t

¢
= max

CA
α,t

£¡
CA
α,t

¢ρ
+ γAβ · ¡V A

α,t+1

¢ρ¤1/ρ
, σ ≡ 1/ (1− ρ) . (10)

As always in intertemporal models, we derive the familiar Euler equation of consumption

growth. A higher interest tilts the consumption profile towards the future, relative to

a given life-cycle income profile, and thus implies higher savings. The sensitivity with

respect to interest depends on the intertemporal elasticity of substitution. One can now

obtain a closed form solution for consumption and indirect utility. At any date, agents

consume a fraction of their financial and human wealth where the marginal propensity to

consume out of total wealth reflects present and future interest rates. Human wealth is
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the present value of expected pension benefits of retirees as stated in (8).

Proposition 2 (a) The consumption function is

CA
α,t =

¡
1/∆A

t

¢ · ¡AA
α,t +HA

α,t

¢
. (11)

The inverse of the marginal propensity to consume, ∆A
t , and human wealth equal to the

present value of pension benefits, HA
α,t, are given by

∆A
t = 1 + βσRσ−1

t+1 · γA∆A
t+1, HA

α,t = yAt + γAHA
α,t+1/Rt+1. (12)

(b) Indirect utility over remaining life-time is

V A
α,t =

¡
∆A

t

¢1/ρ
CA
α,t =

¡
∆A

t

¢1/(σ−1) · ¡AA
α,t +HA

α,t

¢
. (13)

Proof. See Grafenhofer et al. (2006).

One may verify that the solution satisfies the intertemporal budget constraint that is

obtained by solving forward the periodic budget in (9). The economics of intertemporal

choice in the last age group is well known from the standard perpetual youth model.

3.2 Other Age Groups

The key difference to the last age group is that members of groups a < A, be it active

workers or retired persons, are subject to the risk of aging while the last group is not. If

hit by an aging shock, the agent will inherit a different vector of life-cycle characteristics¡
θa+1, γa+1, ωa+1

¢
. The mortality rate increases, labor productivity changes, or work in-

come is replaced by a pension when switching into retirement. Hence, a person’s expected

utility next period, conditional on surviving, is

V̄ a
α,t+1 ≡ ωaV a

α,t+1 + (1− ωa)V a+1
α0,t+1. (14)

With probability ωa, the agent is not aging and expects welfare V a
α,t+1 next period. With

probability 1 − ωa, she ages, switches to the next higher age group and expects welfare

13



V a+1
α0,t+1. In this event, the agent’s biography must be updated as in (2) with an extra

entry t + 1. The Bellmann equation, referring to the optimization problem of an agent

belonging to group a < A, becomes

V
¡
Aa
α,t

¢
= max

Ca
α,t

£¡
Ca
α,t

¢ρ
+ γaβ

¡
V̄ a
α,t+1

¢ρ¤1/ρ
. (15)

It is assumed, as in (9), that an actuarially fair, group specific insurance scheme is available

also to younger age groups. Hence, maximization is subject to asset accumulation

γaAa
α,t+1 = Rt+1

£
Aa
α,t + yat − Ca

α,t

¤
, Aa

α,t+1 = Aa+1
α0,t+1. (16)

The value of assets is measured at the end of the period and earns, together with new

savings y − C, an interest rt+1 until the end of next period. Note that a person inherits

the same asset wealth in period t+ 1 from savings in period t irrespective of whether he

ages or not.

We derive a modified Euler equation of consumption growth. It states that desired

consumption growth is a function of the expected interest rate relative to the subjective

discount rate implicit in β. The interpretation is similar to that for the old age group. A

higher interest tilts the consumption profile towards the future, relative to the life-cycle

income profile ya, and thus implies higher savings. A key difference to the last group

is the risk of aging, giving rise to a marginal rate of intertemporal substitution (MRS)

between two consecutive age states. Economic aging thus introduces a magnification

Ωa = ωa (1 +MRSa) of the interest factor when discounting forward looking variables.

The following closed form solution for consumption and welfare is obtained.

Proposition 3 Optimal consumption policy Ca
α,t and indirect utility V

a
α,t are

(i) Ca
α,t = (1/∆a

t )
¡
Aa
α,t +Ha

α,t

¢
, σ = 1/ (1− ρ) ,

(ii) V a
α,t = (∆a

t )
1/ρCa

α,t,

(iii) ∆a
t = 1 + γaβσ

¡
Ωa
t+1Rt+1

¢σ−1
∆a

t+1,

(iv) Ωa
t+1 = ωa + (1− ωa)

¡
Λa
t+1

¢1−ρ
, Λa

t+1 =
¡
∆a+1

t+1 /∆
a
t+1

¢1/ρ
,

(v) Ha
α,t = yat + γaH̄a

α,t+1/
¡
Ωa
t+1Rt+1

¢
,

(vi) H̄a
α,t+1 = ωaHa

α,t+1 + (1− ωa)
¡
Λa
t+1

¢1−ρ
Ha+1

α0,t+1.

(17)
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The marginal propensity to consume is 1/∆ and H denotes human capital equal to the

present value of future wages and pension benefits.

Proof. See Grafenhofer et al. (2006).

Note that an agent cannot age any further, ωA = 1, if she is in the last age state. In

that case, ΩA = 1 which yields the solution for the last age group as in proposition 2.

Second, if all age classes face the same survival probability γa = γ and thereby differ only

in their earnings, then the marginal propensity to consume is invariant across age classes.

This is most easily seen in case of a unit elasticity σ = 1 which yields 1/∆ = 1− βγ by

(17.iii), but is also true more generally. If ∆a+1 = ∆a, then Λa as well as Ωa are both

equal to one, implying ∆a
t = 1+ γβσ (Rt+1)

σ−1∆a
t+1. Hence, ∆

a must indeed be the same

for all groups. Age classes then differ only in terms of human wealth and consumption

levels but all choose the same intertemporal consumption structure. This shows that the

change in the marginal propensity to consume from one age class to the next exclusively

reflects a change in the mortality rate.

Consider the most realistic case that the mortality rate increases between any two

consecutive groups. Again, the Cobb Douglas case shows most transparently that the

marginal propensity to consume 1/∆a = 1 − γaβ rises with a lower survival rate γa.

Given that the ratio ∆a+1/∆a falls below unity, and that ρ < 0 for an intertemporal

substitution elasticity σ < 1, the factor Λa exceeds one and thereby raises Ωa above one

as well. Agents start to discount the future more heavily, at an effective rate ΩaR, as the

end of life becomes a more probable event. With a higher probability of extinction, agents

are less inclined to wait and thus consume a larger fraction of resources immediately. The

marginal propensity to consume thus increases as the last age state is approached which

is a key feature of life-cycle model in the tradition of Auerbach and Kotlikoff (1987). In

fact, our model becomes identical to the Auerbach Kotlikoff model when the number of

economic states of age approaches the number of life-cycle periods (set ωa = 0, see again

Grafenhofer et al., 2006, for a proof).
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In the EAmodel, all agents in a given state of economic age move to the next state with

the same transition rate ωa, and face the same survival rate γa. As in the perpetual youth

model in the line of Blanchard (1985) and Yaari (1965), a critical assumption necessary

for analytical aggregation below is that these rates are independent of how long agents

already spent in state a. This creates a large heterogeneity of economic aging patterns

with some agents moving very fast to retirement and others remaining in a productive

young state for many periods. It might be considered a weakness that the EA model

can produce quite unrealistic individual aging trajectories. However, the applications

are not concerned with individual trajectories but with the aggregate behavior of age

groups. In the aggregate, an age group replicates the average of the cohorts which define

the characteristics of this group as is emphasized in the calibration principles applied

in section 4 below. Another limitation might be that transition probabilities are not

shaped by individual behavior and that the demographic subsystem is independent of

economic decisions. While the analysis of the demographic scenarios in section 5 rests on

the assumption of exogenous fertility shocks, it should be possible to endogenize fertility,

for example, along the lines of Weil (2006). A final restriction of the model is that all

characteristics of economic age such as wage and mortality rate change at the same time.

One might also question that individuals sharing the same wage in a given age group would

also share the same mortality rate. However, one might again argue that the value of the

model for macroeconomic analysis is in describing average life-cycle patterns resulting

from the aggregate behavior of age groups rather than tracing out the full heterogeneity

of individual life-cycle patterns.

3.3 Aggregation

The simplicity and tractability of the simple perpetual youth with a constant mortality

rate rests on the fact that it allows for analytical aggregation. The same applies to the

EA (economic aging) model. The advantage of approximating actual demographic and

life-cycle properties with a low dimensional system is possible only if age groups can be
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aggregated analytically. In section 2, we have argued that agents are uniquely identified by

their biography α which also includes the date of birth as a first entry. In age group a, one

records at date t a mass of agents Na
α,t with the same life-cycle history. These agents are

economically identical and all consume the same quantity Ca
α,t. Aggregate consumption

of age group a is obtained by summing over all possible biographies. Economy wide

consumption is then the sum of age group specific aggregates,

Ca
t ≡

P
α∈Na

t

Ca
α,tN

a
α,t, Ct ≡

AP
a=1

Ca
t . (18)

The same principle applies to other static variables. When aggregating expressions

that multiply with variables identical within an age group, or identical over the entire

population, these constant terms drop out of the summation. For example, aggregating

wage related income in (8) yields
P

α y
a
tN

a
α,t = yatN

a
t . Denoting labor supply in efficiency

units by LS and the retirees by NR, one obtains

Y a
t = yatN

a
t , Yt =

¡
1− tW

¢
wtL

S
t + ptN

R
t , (19)

where LS
t ≡

P
a<aR θ

aNa
t and NR

t ≡
P

a≥aR N
a
t . Similarly, when aggregating the con-

sumption function of age group a stated in (11) and (17.i), we observe that the terms

∆a
t , Λ

a
t and Ωa

t are identical within each group. They implicitly depend on the common

interest rate and demographic parameters that differ across age groups due to different

mortality rates. Being forward looking, they are independent of history within each group.

Hence, aggregate consumption is simply Ca
t = (A

a
t +Ha

t ) /∆
a
t .

The aggregation of human capital is particularly simple in this basic model since wage

related income and, thus, human capital per capita is the same for all persons within each

group. This is most easily seen by solving forward (12) which yields the same present

value of future income, discounted at a common rate, for all retirees. Writing the per

capita value as HA
α,t = hAt , aggregate human capital is simply HA

t = hAt N
A
t . The same

holds for all earlier age groups as is obvious from (17.v). Hence,

Ha
t = hatN

a
t , hat ≡ Ha

α,t, hat = yat + γa
ωahat+1 + (1− ωa)

¡
Λa
t+1

¢1−ρ
ha+1t+1

Ωa
t+1Rt+1

. (20)
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The law of motion for human capital per capita is repeated from (17.v-vi). The law of

motion for the oldest age group follows on account of the restriction ωA = 1, implying

ΩA = 1, and corresponds to the equation in (12).

Aggregate asset accumulation of age group a is

Aa
t+1 = Rt+1

£
ωaSa

t +
¡
1− ωa−1¢Sa−1

t

¤
, A1t+1 = Rt+1ω

1S1t , (21)

where Sa
t ≡ Aa

t + Y a
t − Ca

t denotes end of period assets. The proof is in Grafenhofer et

al. (2006). Note that the newborns entering the first age group are bare of any assets

since the unborn members of age group 0 cannot save by definition. Finally, total asset

accumulation amounts to

At+1 = Rt+1 [At + Yt − Ct] , At =
P

aA
a
t , (22)

where Y is aggregate wage related income.

3.4 General Equilibrium

Production of output Qt is subject to a linear homogeneous, quasiconcave technology

F using capital Kt and efficiency units of labor Lt as inputs. For realistic dynamics

of investment in a small open economy, investment costs IC are assumed to increase

progressively with the rate of gross investment, reflecting installation costs of capital. The

capital installation technology is again assumed linear homogeneous, leading to investment

costs IC = φ (I,K), where I is the amount of gross investment, and φI > 0, φII > 0,

and φK < 0. As a normalization, we may specify δ = φ (δ, 1), implying that IC = I in a

steady state. Dividends χt are

χt = Qt − wtLt − ICt , Qt = F (Kt, Lt) , IC = φ (I,K) . (23)

Defining the end of period, cum dividend value of capital by V K , optimal investment

and employment policies follow from

V K (Kt) = max
It,Lt

χt + V K (Kt+1) /Rt+1 s.t. Kt+1 = It + (1− δ)Kt. (24)
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Discounting with the households’ interest factor Rt+1 assures that the no arbitrage-

condition of investors is satisfied, i.e. the return on dividend generating capital must

equal the market rate of interest available on alternative assets. Denoting the shadow

price of capital by λKt ≡ ∂Vt/∂Kt, the optimality and envelope conditions are

φI = λKt+1/Rt+1, wt = FL, λKt = FK − φK + (1− δ)λKt+1/Rt+1. (25)

It is well known since Hayashi (1982) that the marginal and average shadow prices of

capital are identical, V K
t ≡ λKt Kt. Finally, note that in a steady state, I = δK. Due to

our normalization of the adjustment cost function φ, we have φI = 1 and φK = 0 in a

steady state which yields the familiar condition FK = r + δ.

The model is closed by imposing the consolidated government budget constraint. Wage

taxes must finance public consumption G which is kept constant per capita of the total

population, and PAYG pension spending where LS and NR are given in (19),

tWwtL
S
t = ptN

R
t +Gt, Gt = g ·Nt. (26)

In equilibrium, demand for efficiency units of labor must correspond to household

sector labor supply, scaled by worker productivity. Further, accumulated private financial

wealth must absorb the value of domestically issued equity, Vt+1, and foreign bonds Dt+1,

Lt = LS
t , At+1 = V K

t+1 +Dt+1. (27)

When assets are perfectly substitutable, they must earn an identical rate of return equal

to the market interest rt+1. Given optimal household and firm behavior, and with all

budget constraints fulfilled, Walras’ Law implies the current account

Dt+1 = Rt+1

£
Dt +Qt − ICt −Gt − Ct

¤
, (28)

where the stock of foreign net assets Dt is measured at the end of the period.
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4 Calibration to Life-Cycle Data

In standard OLG models with an annual aging process the population is divided into

different vintages or cohorts identified by the year of birth. In these “cohort” models,

individuals age every single period. There are thus as many age groups as cohorts, 55 as

in the original Auerbach and Kotlikoff (1987) model. The purpose of this section is to

show how the EA model incorporates life-cycle features even if one distinguishes only a

few age groups. The degree of approximation depends on the number of age groups and,

therefore, on the number of state variables. By drastically reducing the state space in this

way, one can greatly simplify the quantitative, empirical analysis of life-cycle economies.

In the end, one must decide on a trade-off between life-cycle accuracy and the dimensions

of the numerical model. In all cases, however, the EA model allows for a period length of

one year, independent of the number of age groups chosen which is important for short-run

and transitional dynamics.

4.1 Demography and Wage Profiles

The empirical implementation of the EA model on real population data rests on the fact

that it contains the annual cohort model as a special case. For simplicity, we consider a

demographic stationary state and, thus, ignore time indices. Setting ωa = 0 in equation

(4) implies that an aging event occurs with probability one in each period, leading to

Ñ t = γ̃t−1Ñ t−1. The concept of an age group thus becomes identical with a cohort or

vintage where age t is measured by time since birth. The tilde indicates the decomposition

in annual cohorts or population vintages Ñ t. We now take the age dependent survival rates

γ̃t from official mortality tables and construct the cohort composition of the population

in a demographic steady state. Recursively applying Ñ t = γ̃t−1Ñ t−1 yields the size of

cohort t relative to the size of a new cohort. Summing up over all cohorts fixes the size

of the new cohort compared to total population size N ,

Ñ t = Ñ1
t−1Q
s=1

γ̃s, Ñ1 = N

Á
TP
t=1

t−1Q
s=1

γ̃s . (29)
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Taking a total length of life of T years, and based on actual survival rates, we have thus

found the stationary decomposition of the population into a total of T cohorts or vintages.

Alternatively, the total population may be decomposed into broader age groups Na with

each one containing several vintages,

TP
t=1

Ñ t = N =
AP
a=1

Na. (30)

For the sake of concreteness, assume that total life-time consists of T = 70 periods as

in Table 1 which considers the active population starting at age 20 and living until age 90.

The total population is divided into a cross section of eight age groups. The first six are

equally spaced and contain 10 cohorts each, the very old are subdivided into two smaller

groups with five cohorts each. The first group contains vintages N1 =
P29

t=20 Ñ
t. Line 3

of Table 1 lists the population shares that obtain from actual, non-stationary population

data. Line 4 reports the shares that result from a stationary population distribution.

Table 1: Demographic and Life-Cycle Parameters

1. Age groups 1 2 3 4 5 6 7 8

2. Cohorts 20-29 30-39 40-49 50-59 60-69 70-79 80-84 85-89

3. Data Na/N 0.168 0.222 0.192 0.168 0.120 0.089 0.025 0.016

4. Model Na/N 0.179 0.177 0.175 0.168 0.148 0.107 0.031 0.016

5. Labor prod. θa 1.000 1.362 1.561 1.582 1.295 0.000 0.000 0.000

6. Prob. 1− γa 0.001 0.001 0.004 0.012 0.028 0.042 0.096 0.200

7. Prob. 1− ωa 0.099 0.099 0.096 0.089 0.074 0.061 0.115 0.000

8. Factor Ωa 1.017 1.024 1.032 1.039 1.040 1.063 1.080 1.000

9. Propens. 1/∆a 0.045 0.049 0.056 0.067 0.083 0.108 0.166 0.227
Notes: θa life-cycle labor productivity determines wage wa = wθa, 1−γa probabil-
ity of dying, 1−ωa probability of aging, Ωa magnification interest factor reflecting
increase in mortality, 1/∆a marginal propensity to consume. Data sources: BFS
(2004a), and own calculations.

Calibration must assure that the average behavior of age groups in the EA model

(line 1 in Table 1) replicates the average behavior of the cohorts that define these age
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groups (line 2). Line 2 defines an aggregation key which collects cohorts in corresponding

age groups. This aggregation key corresponds to a particular life-cycle biography α =

(20, 30, 40, . . . , 80, 85) where α1 = 20 is the date of birth, i.e. the true age when an agent

starts economic life. The first requirement is that that the total mass of the age groups

is identical to the mass of cohorts in line 4 which define these groups. Therefore, the

parameters ωa and γa of the EA model must be set so that its demographic steady state

fulfills (4-5),

(1− γaωa) ·Na =
¡
γa−1 − γa−1ωa−1¢ ·Na−1,

¡
1− γ1ω1

¢ ·N1 = n. (31)

At any date in time, the instantaneous probability of staying in group a is ωaγa which

implies an expected duration of 1/ (1− ωaγa) in group a. To pin down the remaining

degrees of freedom, we impose as a second restriction that the expected number of years

spent in group a is equal to the number of life-cycle cohorts that are collected in this

group. Taking the aggregation key α = (20, 30, 40, . . . , 80, 85), we have

αa+1 − αa = 1/ (1− ωaγa) . (32)

Knowing Na from aggregated population data and γaωa from age group duration

as implied by the chosen aggregation key, one can pin down demographic parameters

by the following recursive procedure. Knowing γa and ωa, equations (31-32) are solved

simultaneously for γa−1 and ωa−1. We start the recursion with the last group where γA

follows directly from (31) on account of the restriction ωA = 1. Lines 6 and 7 of Table

1 list the resulting values of the exit probabilities. Figure 1 illustrates how these values

approximate the true mortality rates from demographic data. The step function reflects

the fact that mortality rates are assumed identical for all agents within an age class.
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Fig. 1: Actual and Calibrated Mortality Rates

As a next step, one uses actual wage data to find the life-cycle productivity parameters

θa. For any given wage per efficiency unit of labor one obtains wages wa = wθa. The life-

cycle profiles of annual wages w̃t are readily available from cohort data. We now require

that the uniform, group specific wage wa is equal to the average of cohort specific wages

w̃t, taking the shares Ñ t/Na of the cohorts in that age group as weights:

wa =
αa+1−1P
t=αa

w̃t · Ñ t/Na. (33)

Figure 2 illustrates how (33) approximates the empirical wage profile. The solid, ragged

line shows actual wage data for each cohort in Switzerland 2000. The solid step function

with 10 year intervals corresponds to line 5 in Table 1. Note that the wage of group 5

is an average of a relatively high wage prior to and a zero wage after retirement when

people are in their late sixties. The dashed line with 20 year intervals represents only 4 age

groups with the first three comprising 20 cohorts and the last one 10 cohorts. Obviously,

the approximation is crude for periods early and late in the life-cycle while it makes not
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much difference for agents in their mid-life. Finally, the dashed line with 5 year intervals

comes much closer to the true wage profile by taking averages over fewer cohorts. The

gains in empirical approximation are highest for the youngest cohorts facing a steep wage

profile, and for the cohorts close to retirement.
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Fig. 2: Life-Cycle Wages. Data source: BFS (2004)

Line 8 in Table 1 lists the factor Ωa which reflects the agents’ response to increasing

finiteness of life over the life-cycle. The discussion of proposition 3 showed that the

marginal propensity to consume rises as the end of life, in the sense of a shorter remaining

expected life-time, approaches. Agents are less inclined to postpone consumption when

mortality is high and when the fruits of savings might thus not be enjoyed. Consequently,

agents value current consumption in state a + 1 relatively more than in state a where

mortality is still low. The marginal rate of substitution, measuring the amount of income

to be given up in state a for an extra Euro of consumption and income in state a+ 1, is

thus large when mortality in state a+1 is high compared to state a. This higher value of
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the marginal rate of substitution works like a magnification Ωa > 1 of the interest factor.

Intuitively, agents start to discount the future more heavily, at an effective rate ΩaR, as the

end of life becomes a more probable event. Inspecting the marginal propensity to consume

in a steady state, 1/∆a = 1 − γaβσ (ΩaR)σ−1, one finds that the increasing finiteness of

life raises it for two reasons. First, the declining survival probability γa directly raises

the consumption propensity. Second, this effect is magnified by the presence of Ωa > 1.

If 1/∆a rises for older groups, then ∆a+1/∆a < 1, implying Λa > 1 and Ωa > 1. Lines 8

and 9 of Table 1 clearly illustrate these life-cycle features. As is typical for OLG models,

consumption propensities increase substantially as agents move to higher age groups,

reflecting a shorter remaining expected life-time.

4.2 Economic Parameters

Table 2 states key parameters that characterize preferences and technology. These are

commonly used values as in Altig et al. (2001) and Blundell et al. (2003), for example,

or in the real business cycle literature as in Baxter and King (1993) or King, Plosser, and

Rebelo (1988). To keep the discussion short, we refer to these papers for a discussion

and review of the econometric literature. The subjective discount rate is calibrated to

replicate savings. The replacement rate gives the size of the pension compared to the

last net wage income. While in many European countries with generous PAYG old age

insurance systems, a replacement rate of around 70% would be typical, the PAYG system

plays a much smaller role in Switzerland where it is complemented by a substantial asset

backed, funded component. The replacement rate of the PAYG part is thus only 38%. Tax

revenue is used to finance government consumption and pension payments and requires a

wage tax rate of 30%.

To capture the labor market effects of demographic change in more detail, we have

extended the basic EA model in the Appendix to include endogenous labor supply. These

extensions refer to the intensive (hours worked) and extensive margins (retirement, or

participation decision of workers near retirement) of labor supply. Essentially, workers
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supply more hours if the net of tax wage increases. The participation/retirement decision

of workers in age group 5, corresponding to people in their sixties, reflects the difference

between work and retirement income. The larger the difference, the more agents find it

worthwhile to postpone retirement so that the participation rate in this group increases.

The retirement elasticity is taken from empirical studies. Börsch-Supan (2000) estimates

that a decrease in benefits by 12% would reduce the retirement probability of the 60 years

old from 39.3% to 28.1%. The corresponding increase in the participation rate amounts

to a semi-elasticity of retirement equal to one.

Table 2: Taste and Technology Parameters

Real interest rate r 0.050

Depreciation rate δ 0.100

Output elasticity of capital α 0.350

Subjective discount factor β 0.983

Intertemporal elasticity of substitution σ 0.400

Wage elasticity of labor supply εL 0.400

Semi-elasticity of retirement εR 1.000

Proportional wage tax rate tW 0.308

Pension replacement rate ζ 0.381

Notes: The labor supply elasticity is εL ≡ ϕ0/(lϕ00),
the pension replacement rate ζ = p/[(1−tW )wθaR−1],
and the production function Q = XKα(ZL)1−α.

5 Demographic Change

5.1 Baby Boom

To demonstrate the usefulness and flexibility of the EAmodel, we choose two key scenarios

of demographic change where the standard perpetual youth model is most restrictive. The

first scenario mimics the consequences of a temporary baby boom. We raise the inflow of

newborns by 30 percent over a 20 year period, and then set it back to the original value
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in the initial demographic steady state. A demographic shock of this scale is not without

precedent. According to Russell (1982), the number of births in the US amounted to

76 million over the period 1946-64 which is 17 million or 28.9% more than over the 18

years preceding the baby boom. With no other disturbances, the economy will eventually

return to the initial equilibrium over a prolonged adjustment period.

Figure 3 illustrates how the EA model captures the demographic impact of the tem-

porary baby boom. The first age group which collects all agents with characteristics of

people in their twenties, rapidly grows larger. It attains its maximum size in period 2020

where it exceeds its initial size by 26%. Some of these newcomers move rather early to

the next group of economic age. With some delay, age group two with characteristics of

people in their thirties starts to grow as well. This group attains maximum size somewhat

later in period 2023 when it is 19% larger than in the initial equilibrium. As is evident

from Figure 3, higher age groups grow even slower and take much longer to reach max-

imum size, and the increase compared to the initial steady state becomes smaller. The

total population peaks in period 20 when the baby boom ends.
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Fig. 3: Demographic Impact of a Baby Boom

Figure 4 shows how a temporary baby boom might result in large swings in the net

foreign asset position. In an open economy, net foreign assets D = A− V K as in (27) are

equal to the stock of household sector financial wealth minus the value of the domestic

capital stock (firm value), and thus reflect the imbalance between domestic savings and
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investment. Since the net foreign asset position is a predetermined variable, it starts out

from zero. The instantaneous decline in domestic financial assets reflects a windfall loss

in firm values V K . Given a predetermined value of net foreign assets, this leads to an

instantaneous decline of household sector assets in exactly the same amount, as Figure 4

illustrates. As the baby boom continues, aggregate labor supply grows over a prolonged

period and gets reversed again when the baby boom ends. Capital accumulation, and

therefore the value of the capital stock as plotted in Figure 4, follow closely the same

hump shaped pattern. However, due to the slow demographic process, it takes much longer

until the increased labor income actually translates into an increase in aggregate financial

wealth A. Since the value of capital outpaces accumulated savings of domestic households,

the difference must be borrowed on world capital markets, leading to a prolonged period

of current account deficits and increasing net foreign debt. After the baby boom ends

and the birth rate is back to normal, the domestic capital stock declines again to follow

the shrinking labor force. Aggregate assets continue to increase on account of the savings

of the baby boomers which reverses the growth of net foreign assets. After slightly more

than four decades, the net asset position turns positive and reaches a maximum after

about two more decades. Thereafter, the economy monotonously returns to the initial

stationary equilibrium.
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Fig. 4: Baby Boom and Net Foreign Assets.
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5.2 Higher Life-Expectancy

The second scenario is an aging scenario where people become older on average and

potentially live longer. The two statements are not identical. The first one means that

the mass of people in their 80s becomes larger if more of the younger agents make it to

their 80s. The second one means that the life-time horizon becomes longer. To implement

the scenario, we raise the survival rates of age groups 5 to 8 by the factors given in line

4 of Table 3 but keep the expected duration in each age group constant. When people

in their seventies become less mortal, they have a higher chance of reaching the next age

group of people in their eighties.5 Comparing columns 6 in Tables 1 and 3 shows that the

mortality rate 1 − γa of this group declines from .042 to .023 which necessarily implies

that a larger fraction of this group moves to the next one, instead of dying. The transition

rate of aging 1 − ωa increases from .061 to .079. Finally, since the last group becomes

less mortal, 1− γ8 falling from .2 to .12, expected duration in that group rises from 5 to

(1− γ8)
−1
= 8.3 years. The representative agent lives longer, 93.3 instead of 90 years.6

Table 3: Aging and Life-Expectancy

1. Age groups 1 2 3 4 5 6 7 8

2. Initial Na .179 .177 .175 .168 .148 .107 .031 .016

3. New Na .167 .165 .163 .156 .138 .113 .044 .054

4. Factor ×γa 1 1 1 1 1.01 1.02 1.05 1.1

5. Prob. 1− γa .001 .001 .004 .012 .018 .023 .050 .120

6. Prob. 1− ωa .099 .099 .096 .089 .083 .079 .158 0

Notes: 1− γa mortality rate, 1− ωa probability of economic aging.

5People in group 6 are not literally in their seventies. Strictly speaking, group 6 consists of all young

and old agents who share the economic characteristics of people in their seventies. However, the mass

of people in group 6 is equal to the total mass of people belonging to cohorts 70-79 who define the

characteristics of group 6. See the discussion in section 4.1 and, in particular, equations (30) and (33).
6This last part corresponds to the aging scenario in Kalemli-Ozcan, Ryder and Weil (2000) who discuss

the implications of longevity in a model with a single mortality rate.
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Since this aging scenario keeps the inflow of newborns constant and a larger number

of them makes it to their eighties or even nineties, the scenario also implies an increase

in overall population size of 7.2 percent.7 According to official projections, the Swiss

population is expected to largely remain constant in the long-run on account of a parallel

decline in fertility. We suppress this part in order to observe the consequences of aging in

isolation. Instead, we compare the aging scenario for different assumptions with regard

to international capital mobility. For this purpose, we have calibrated the model with net

foreign debt equal to zero. In a small open economy, the real interest rate is fixed on world

markets. Any imbalance between domestic savings and investment is thus reflected in a

change in the net foreign asset position. In a closed economy, the domestic real interest

rate adjusts to keep net foreign assets to zero. This second scenario is interesting as aging

is a worldwide phenomenon that might lead to a decline in the real interest rate.8

This aging scenario highlights the life-cycle properties of the model quite clearly. We

first turn to the open economy case. Table 4 column 4 reports the long-run effects in

the baseline scenario. With a constant real interest rate, the capital labor ratio and

gross wages per efficiency unit of labor remain constant as well. Aging results in a larger

number of old people which contributes to a larger population. In the absence of an

offsetting decline in fertility, the mass of younger age groups remains almost unchanged,

leading to a largely constant workforce and GDP. By assumption, the increased number

of retirees erodes pensions per capita to an extent that keeps the pensions to GDP ratio

constant. Note, however, that the increase in overall population by about 7% inflates

government consumption and thereby necessitates a moderate increase in the wage tax

by 1.3 percentage points.9

7The absolute number of people in younger groups does not change. However, because of the increase

in the overall population, the population shares of worker groups, shown on the third line in Table 3, are

now smaller.
8For example, computations by Börsch-Supan, Ludwig and Winter (2004, p.27) yield a decline in the

return to capital by roughly one percentage point as a result of worldwide aging.
9Pension spending is a constant ratio of GDP, pNR = p0Y , while public consumption is constant per

capita, G = gN . Dividing (A.3) by the wage sum yields tW = p0/ (1− α) +Ng/ (wL). With wL largely
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The higher tax erodes the net wage and thereby discourages hours worked at the

intensive margin of labor supply.10 This in itself would lead to lower employment and

output. However, the large reduction in per capita pensions makes retirement less attrac-

tive compared to continued work. With x rising from .45 to .57, postponed retirement

raises aggregate labor supply at the extensive margin. For this reason, the aggregate

workforce expands by 2.3%. This translates in a small increase in effective labor supply

for two reasons. First, active people work fewer hours and, second, the expansion of the

work force occurs with the least productive people in age group 5. The net effect is a

small increase in effective labor supply which is accompanied by an equally small increase

in capital to keep the capital labor ratio constant.11

The last line in Table 4 clearly demonstrates the life-cycle savings response. When

people must expect a much reduced pension from the PAYG system (-18%), they must

substantially increase their savings for retirement even though the interest rate remains

constant. Assets per capita increase by 22%. Since higher survival rates among older

agents swells the population size by about 7.2%, aggregate assets would grow by roughly

30%. In the absence of domestic investment opportunities, this extra wealth is invested

abroad and leads to a net foreign asset position of 71% of GDP in the long-run. The

additional asset income from abroad allows for an increase in aggregate consumption by

roughly five and a half percent, much higher than the increase in GDP. Consumption per

capita, in contrast, falls by 1.6% which results from population growth due to aging. In

column 5 we report the results from a simulation using a retirement semi-elasticity of

constant, the wage tax rate must rise due to increasing N .
10The appendix introduces endogenous labor supply by allowing for variable hours worked and variable

retirement. In age group 5, agents choose the “retirement date” x which determines the participation

rate in this group. Average income y5 = x
¡
1− tW

¢
wθ5l5 + (1− x) p thus reflects the extensive margin

of labor supply.
11Jaag, Keuschnigg and Keuschnigg (2007) emphasize the life-cycle labor supply and unemployment

incidence of younger and older age groups of workers as a result of pension reform. These authors also

introduce an explicite welfare analysis and report the intergenerational redistribution as well as aggregate

welfare consequences of policy reform.
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0.3, compared to 1 in the baseline case. Consequently, retirement is still postponed but

to a smaller degree. The participation rate in age group 5 corresponding to workers in

their 60s rises only to 49%, instead of 57%. The weaker participation response leads to

an overall decline in effective employment. Compared to column 4, the increase in the

number of workers is now overcompensated by the decrease in individual labor supply

due to lower net wages.

Table 4: Long-Run Impact of Aging

Key Macro Variables in % Closed Open Open†

r real interest* ( 0.050 ) 0.040 0.050 0.050

Df/Y debt GDP ratio* ( 0.000 ) 0.000 0.710 0.864

x retirement date* ( 0.450 ) 0.632 0.569 0.493

tW contribution rate* ( 0.308 ) 0.304 0.321 0.325

p pension per capita -8.469 -17.737 -22.060

(1− tW )w net wage 4.444 -1.918 -2.488

l labor supply 1.754 -0.772 -1.003

NW workers 3.519 2.297 0.831

NR retirees 19.274 23.250 28.019

LD employment (effective) 5.150 1.390 -0.222

K capital stock 17.057 1.390 -0.222

Y gross dom.prod, GDP 9.173 1.390 -0.222

C consumption per capita -0.522 -1.582 -2.427

A assets per capita 8.120 21.953 25.862
Note: Pension/GDP ratio and public consumption per capita con-
stant. %) Percent changes relative to ISS. *) Absolute values, initial
values in brackets. †) Simulation with εR = 0.3.

Adjustment in the closed economy would be much different, as column “Closed” in

Table 4 demonstrates. If the excess savings cannot be invested abroad, the real interest

must decline, by 1 percentage point, to balance savings and investment. With production

much more capital intensive, wages rise substantially by 4.4% in the long-run and thereby
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stimulate labor supply both on the intensive and extensive margins. People work more

hours (+1.8%), and they postpone retirement as work becomes more attractive relative

to pension income. The expansion of effective employment in combination with higher

capital intensity boosts the capital stock by 17.1% in the long-run, leading to an output

gain of more than 9%. Keeping the pension to GDP ratio constant, the country thus

affords an overall increase in pension expenditure which substantially cushions the decline

in per capita pensions of 8.5%, instead of 17.7% in the open economy. The decline in

the real interest rate in combination with a smaller decline in pensions per capita much

reduces savings incentives, leading to a quite impressive long-run reduction in accumulated

assets. Consequently, income from savings falls relative to the open economy scenario.

Yet, aggregate consumption per capita now shrinks by only halve a percent, compared to

1.6% in the open economy. Higher disposable wages substitute for lower capital income.

6 Conclusions

The notion of economic aging separates economic age from time since birth. Economic

age is defined by a set of personal characteristics such as labor productivity, mortality,

tastes, health, etc. that change less frequently over the life-cycle than periods since birth.

People can retain their characteristics over several periods before they change as a result

of aging. Economic aging occurs stochastically. Identifying a person with her biography

which is the sequence of discrete aging events since birth, allows to analytically aggregate

a multitude of different generations into a low number of age groups. The EA model is

thus a generalized OLG model.

In standard OLG models such as the most recent versions of the Auerbach and Kot-

likoff (1987) framework, aging occurs every period and the probability of dying is unity

in the last period of life. The number of life-cycle periods corresponds to the number of

age groups or cohorts. As Laitner (1990) has shown, typical models with 55 generations

operate in a state space of 108 dimensions and are thus very expensive to implement. If
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aging occurs less frequently, the number of age groups becomes smaller than the number

of cohorts. In this paper, we approximated the life-cycle with eight age states. Counting

as in Laitner (1990), the state space would be 14 instead of 108 dimensions. This low

dimensionality greatly facilitates the empirical implementation and numerical solution

of the model. First applications relating to a temporary baby boom and an increased

longevity of life have demonstrated that the EA model is a much more powerful tool for

quantitative empirical analysis of demographic change, compared to the perpetual youth

model due to Blanchard (1985) and Yaari (1968) as well as the recent extension by Gertler

(1998) with two age groups. These models are popular because of analytical tractability

and their simple empirical implementation. Yet they are quite limited when it comes

to trace out the life-cycle implications of certain shocks or to investigate demographic

change. The EA model is in between the Auerbach-Kotlikoff and Blanchard-Yaari mod-

els, allowing for analytical aggregation to a low number of age groups combined with a

realistic modeling of the life-cycle and demographic change. It would be an interesting

and important research topic to investigate how the choice of more or fewer states of

economic age affects the quality of life-cycle approximation and the short- and long-run

dynamic properties of the general equilibrium model.

Appendix: Endogenous Labor Supply and Retirement

Consider age group a = aR with characteristics of people in their sixties. Assume that

a fraction x of this group is still active while the rest is retired. To retain symmetry, we

assume that each agent receives a share x of her labor income as wages and a share 1− x

as an old age pension. A higher value of x means postponed retirement and therefore

a higher participation rate in this mixed group which reflects the extensive margin of

labor supply. We refer to x as the retirement date since postponed retirement raises the

share of wages in average labor income in that period. If actively employed, agents may

work a variable number of la hours, reflecting the intensive margin. They trade off the

income and consumption against disutility of work, both on the intensive and extensive
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margins. A particularly simple and yet realistic approach is to exclude income effects.12

We thus assume an additively separable subutility over consumption and foregone leisure,

C̄a ≡ Ca − xϕ (la)− ψ (x), where ϕ (l) and ψ (x) stand for convex disutility of work and

postponed retirement, ϕ0, ψ0 > 0 and ϕ00, ψ00 > 0. Appropriately expanding (9) and (16)

yields

(i) V
¡
Aa
α,t

¢
= max

Ca
α,t,l

a
α,t,x

a
α,t

£¡
C̄a
α,t

¢ρ
+ γaβ

¡
V̄ a
α,t+1

¢ρ¤1/ρ
s.t.

(ii) γaAa
α,t+1 = Rt+1

£
Aa
α,t + ȳaα,t − C̄a

α,t

¤
,

(iii) C̄a
α,t = Ca

α,t − xα,tϕ
¡
laα,t
¢− ψ (xα,t) ,

(iv) ȳaα,t = max
laα,t,xα,t

xα,t
£
wa
t l
a
α,t − ϕ

¡
laα,t
¢¤
+ (1− xα,t) pt − ψ (xα,t) ,

(v) yaα,t = xα,tw
a
t l
a
α,t + (1− xα,t) pt, wa

t ≡
¡
1− tW

¢
wtθ

a
t .

(A.1)

A simple solution in three stages is possible. First, choose intensive and extensive labor

supply to maximize effort adjusted wage income in (A.1.iv), yielding

wa
t = ϕ0 (lat ) , wa

t l
a
t − ϕ (lat )− pt = ψ0 (xt) . (A.2)

Intensive labor supply exclusively depends on the current wage. The wage elasticity is

determined by the curvature of ϕ. On the extensive margin, the chosen retirement date

reflects the difference between utility adjusted wages and alternative pension income. The

more generous pensions are relative to net wages, the less people are inclined to incur the

utility cost of postponed retirement, and the earlier they choose to retire. The share of

wages in average labor income declines. Since wages and pensions are independent of

history, labor supply and the retirement date are symmetric, laα,t = lat and xα,t = xt. The

same holds for average and effort adjusted labor income, yat and ȳat , respectively.

The second step solves the intertemporal problem in (A.1.i-ii) of allocating subutility

C̄a
α,t over time exactly as in Proposition 3, except that C is replaced by C̄ and y by ȳ.

12Excluding income effects is quite common in the literature on optimal income taxation or on real

business cycles. See, for example, Heijdra (1998) and Greenwood et al. (1988) in intertemporal macroeco-

nomics, Saez (2002) and Immervoll et al. (2004) on optimal income taxation, and Cremer and Pestieau

(2003) for modeling postponed retirement this way.
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The solution of the first two steps give optimal values for C̄, l and x. As a last step, it

remains to compute optimal commodity consumption Ca
α,t by inverting (A.1.iii).

For all age groups a < aR, the labor supply is reduced to the intensive dimension only.

Consequently, x = 1 in (A.1) and ψ is a constant that is set to zero. Finally, age groups

a > aR are fully retired. Endogenous labor supply also leads to modification of fiscal

budget balance tWwtL
S
t = ptN

R
t +Gt and labor market equilibrium L = LS where

LS
t = θa

R

la
R

t · xtNaR

t +
aR−1P
a=1

θalatN
a
t , NR

t = (1− xt)N
aR

t +
AP

a=aR+1

Na
t . (A.3)
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