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Abstract 

We propose the Heterogeneous Autoregressive (HAR) model for the estimation and 

prediction of realized correlations. We construct a realized correlation measure where both 

the volatilities and the covariances are computed from tick-by-tick data. As for the realized 

volatility, the presence of market microstructure can induce significant bias in standard 

realized covariance measure computed with artificially regularly spaced returns. Contrary to 

these standard approaches we analyse a simple and unbiased realized covariance estimator 

that does not resort to the construction of a regular grid, but directly and efficiently employs 

the raw tick-by-tick returns of the two series. Montecarlo simulations calibrated on realistic 

market microstructure conditions show that this simple tick-by-tick covariance possesses no 

bias and the smallest dispersion among the covariance estimators considered in the study. In 

an empirical analysis on S&P 500 and US bond data we find that realized correlations show 

significant regime changes in reaction to financial crises. Such regimes must be taken into 

account to get reliable estimates and forecasts. 
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High frequency data; Realized Correlation; Market Microstructure; Bias correction; HAR; 

Regimes. 
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1 Introduction

Asset returns cross correlation is pivotal to many prominent financial problems such

as asset allocation, risk management and option pricing. Recently, for the measure of

the asset volatility, the use of high frequency data has been advocated to improve the

precision of the estimation: the so-called Realized Volatility (RV) approach proposed in

a series of breakthrough papers by Andersen, Bollerslev, Diebold and Labys (2001a,b),

Barndorff-Nielsen and Shephard (2001a,b 2002a,b, 2004)and Comte and Renault (1998).

As for the realized volatility approach, the idea of employing high frequency data in the

computation of covariances and correlations between two assets leads to the analogous

concept of realized covariance (or covariation) and realized correlation .

The standard way to compute the realized covariance is to first choose a time interval,

construct an artificially regularly spaced time series by means of some interpolation scheme

and then take the contemporaneous sample covariance of those regularly spaced returns.

But simulations and empirical studies indicate that such covariance measure presents a

bias toward zero which rapidly increases with the reduction of the time length of the

fixed interval chosen. As for the realized volatility, the presence of market microstructure

can induce significant bias in the standard realized covariance measure. However, the

microstructure effects responsible for this bias are different. In fact, bid-ask bouncing,

which is the major source of bias for the realized volatility, will just increase the vari-

ance of the covariance estimator but it will not induce any bias. On the contrary, the

so called non-synchronous trading effect (Lo and MacKinlay 1990) strongly affects the

estimation of the realized covariance and correlation. In fact, since the sampling from the

underlying stochastic process is different for different assets, assuming that two time series

are sampled simultaneously when, indeed, the sampling is non-synchronous gives rise to

the non-synchronous trading effect. As a result, covariances and correlations measured

with high frequency data will posses a bias toward zero which increases as the sampling

frequency increases. This effect of a dramatic drop of the absolute value of correlations

among stocks when increasing the sampling frequency was first reported by Epps (1979)

and hence called “the Epps effect”. Since then, the Epps effect has been confirmed on
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real data and simulations by many other authors, such as Dacorogna and Lundin (1999)

Renó (2003) and Martens (2004), among others.

Existing empirical studies on realized covariance usually compute the sample covari-

ance based on the 5 or 30 minutes return interval. Such frequencies are heuristically chosen

to try to avoid the bias and market microstructure effects. In some cases, a number of

leads and lags covariance are added to reduce the remaining bias. However, this type of

correction will increase the variance of the estimator. Though the optimal choice of the

frequency of the returns and the number of leads and lags would substantially lower the

RMSE compared to the heuristic choices, these optimal values are unknown in empirical

application (Martens 2004).

Instead, following the general statistical principles which tell us to never “throw data

away”, we analyse an unbiased realized covariance measure directly built on the raw tick-

by-tick data series. The tick-by-tick covariance estimator presented here, has been also

independently proposed and formally analysed under the assumption of no microstructure

noise by Hayashi and Yoshida (2005) and already appeared in Martens (2004) as a more

efficient version of the De Jong and Nijman estimator in the absence of true leads and

lags cross covariances1. This estimator has been recently investigated also by Griffin and

Oomen (2006), Palandri (2006) and Sheppard (2006).

This paper differs from the above mentioned studies and contributes to the litera-

ture on realized correlations along several aspects. First, we investigate through exten-

sive Monte Carlo simulations the behavior of the tick-by-tick covariance estimator under

market microstructure conditions analogous to that of the financial data studied in the

empirical part.

Second, combining tick-by-tick realized volatility and covariance estimators we ob-

tain a highly accurate measure of the daily correlation between S&P 500 and 30 years

Treasury Bond futures. Analyzing the time-varying dynamics of the constructed daily cor-

relations using models allowing for different regime specifications (like, for example, the

regime-switching models introduced by Hamilton and Susmel, 1994, or the tree-structured

threshold models introduced by Audrino and Bühlmann, 2001), we collect empirical evi-

1As a result of informal discussions with us, as kindly acknowledged by the author in his footnote 9.
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dence that correlations show drastic regime shifts. Other studies in the recent literature

on stock-bond correlations have already reported that stock-bond correlations have gone

from being positive to negative after 1997; see, for example, Ilmanen (2003). The reasons

advocated to explain this pattern are different. A first one is related to market uncer-

tainty and risk, introducing the “flight-to-quality” effect that suggests the phenomenon

of fleeing from stock to bond markets in times of worsening economic conditions (see,

for example, Ilmanen, 2003, or Connolly et al., 2005). Another reason advocated to ex-

plain the change of sign in bond-stock correlations is related to differences in inflation

expectation or in other macroeconomic announcements (see, for example, Li, 2002, or

Christiansen and Ranaldo, 2006). Finally, in their empirical study Pastor and Stam-

baugh (2003) found that changes in stock-bond correlations are related to different levels

of liquidity. In particular, they found that a kind of “flight-to-quality” effect appears in

months with exceptionally low liquidity, i.e. months in which liquidity drops severely tend

to be months in which stocks and fixed-income assets move in opposite directions.

Our result is different and adds another possible explanation for the changes in the

stock-bond correlation behavior. In our analysis we collect empirical evidence that regime

changes occur in reaction to big financial crises. In this context, the “flight-to-quality”

phenomenon seems to be a consequence of the bad economic conditions implied by finan-

cial crises. To our knowledge, this is the first study that empirically shows that there is a

relationship between changes in stock-bond correlations and financial crises like the West-

ern European monetary crisis of 1992-1993 or the Asian crisis of 1997-1999. Note that this

can be due to the fact that we use an highly accurate measure for correlations constructed

on tick-by-tick data. This allows us to identify not only the well-investigated change in

correlations that occurred at the end of 1997 (with stock-bond correlations moving from

positive to negative), but also other changes, in reaction to possible significant increases

in stock-bond correlations, too.

Third, we propose the Heterogeneous Autoregressive (HAR) model for the estimation

and prediction of the tick-by-tick realized correlations. The empirical results show that

the proposed model is able to mimic well the dynamic properties of the daily realized

correlation process and to provide accurate out of sample forecasts.
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The remainder of the paper is organized as follows: Section 2 defines the tick-by-tick

realized covariance estimator, Section 3 shows some simulation results and comparisons

with some existing methodologies and Section 4 presents an empirical application to

a bivariate series of S&P 500 and 30 years US Treasury Bond futures tick-by-tick data.

Section 5 proposes the HAR process as a simple and parsimonious model for the estimates

and forecasts of realized correlations. We summarize results and conclude in Section 6.

2 Realized Covariance tick-by-tick

Contrary to the existing standard approaches the simple realized covariance estimator

presented here does not resort on the construction of a regular grid, being based on the

whole tick-by-tick raw data series. This approach has the twofold advantage of exploiting

all the information available in the data and be able to avoid the bias toward zero of the

realized covariance. In fact, the claim is that the non-synchronous trading effect induces

a bias in the usual covariance measure as a consequence of the synchronization of the two

series i.e. as a consequence of the construction of a regular grid in physical time.

The bias of the covariance estimator based on fixed interval returns can be intuitively

seen as arising from two distinct effects. First, the absence of trading on one asset in

a certain interval produces a zero return for that interval and then artificially imposes

a zero value to the cross product of returns inducing a bias toward zero in the realized

covariance (which, in its standard version, is simply the sum of those cross products).

Secondly, the construction of a regular grid, depending on the frequency of tick arrivals,

affects the computation of the realized covariance. For the more liquid assets with higher

average arrival rates, the last tick falling in a certain grid interval is typically much closer

to the end point of the grid compared to that of a less liquid asset. Any difference in

the time stamps between these last ticks in grid for the two assets, will correspond to a

portion of the cross product returns which will not be accounted for in the computation

of the covariance. This is because for the more liquid asset, the (unobserved) returns

corresponding to this time difference will be imputed to the current grid interval while for

the less liquid asset such portion of returns will be ascribed to the next grid interval, so
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that the two will be no longer matched and their contribution to the cross products sum

will be lost. This lost portion of covariance in each interval also induces a downward bias

in the realized covariance computed with a regular grid; a bias which will also increase

with the number of intervals and hence with the frequency.

Under the assumption of no true leads and lags cross-covariance, an unbiased covari-

ance estimator can be computed by simply summing all the cross products of returns

which have a non zero overlapping of their respective time span. In other words, a given

tick-by-tick return on one asset is multiplied with any other tick-by-tick return of the

other asset which has a non zero overlap in time, i.e. which share (even for a very small

fraction) the same time interval.

Analytically, this tick-by-tick Realized Covariance estimator can be defined as

RCt =

Mi,t
∑

s=1

Mj,t
∑

q=1

ri,s rj,q I(τq,s > 0) (1)

with I(·) the indicator function and

τq,s = max(0, min(ns+1, nq+1 − max(ns, nq)) (2)

being the overlap in time between any two tick-by-tick returns ri,s and rj,q.

The simplest way to intuitively show the unbiasedness of this estimator, is by assuming

an underling discrete time process, with arbitrary clock time interval δ. In this setting,

the expectation of the cross product of two overlapping tick-by-tick returns ri,s, rj,q can be

expressed as a linear combination of the cross-covariances γ(h) = Cov(ri,s, rj,s−h·δ). But,

being all the cross-covariances with h 6= 0 equal to zero, it reduces to E [ri,s rj,q] = τq,sγ(0).

Therefore, the expectation of the tick-by-tick covariance estimator RCt, is

E [RCt] =





Mi,t
∑

s=1

Mj,t
∑

q=1

ri,s rj,q I(τq,s > 0)



 =

Mi,t
∑

s=1

Mj,t
∑

q=1

τq,sγ(0). (3)

and given that the sum of all the overlapping intervals τq,s in a day is the whole trading

day itself, we can conclude that RCt is an unbiased estimator of the daily covariance.

Hence, loosely speaking, this estimator is unbiased because no portion of covariance

will be lost while the portion of cross product which does not overlap will have zero mean.

Moreover, avoiding the noise and the discarding of price observations caused by the regular
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grid interpolation, will considerably reduce its variance. However, in the presence of a fix

amount of market microstructure noise, the estimator in this form will not be consistent

because, although unbiased, his variance will diverge as the number of observations tends

to infinity. For a nice and simple adjustment, based on sub sampling and averaging, that

makes this estimator consistent see Palandri (2006).

3 Simulations

In this section we evaluate the performance of different covariance estimators in a sim-

ulation environment based on the Lo and MacKinlay’s (1990) non-synchronous trading

model. In this model the true return of any asset i is given by a single factor model.

Considering only two assets, the two return series are then given by

ri,t = µi + βift + ǫi,t i = 1, 2 (4)

where βi is the factor loading of asset i, ǫi,t represents the idiosyncratic noise of asset i

and ft is the zero mean common factor.

Under the assumptions that the idiosyncratic noises ǫ1,t and ǫ2,t are mutually uncorre-

lated and both uncorrelated with the common factor ft, the true covariance between the

two assets is simply

σ1,2 = β1β2σ
2
f,t (5)

where σ2
f,t is the variance of the common factor ft.

In the Lo and MacKinlay’s model the common factor f is assumed to be a simple

homoskedastic process and, hence, the variance of f is a constant σ2
f . As a consequence,

also the true covariance remains constant. In the version adopted here, however, in order

to give more dynamics and realism to the DGP, the common factor f is assumed to follow

the stochastic volatility model of Heston (1993) so that, also the true covariance will

dynamically change through time.

Therefore, the dynamics of the common factor is given by the following continuous

time process

dft =
(

µ −
vt

2

)

dt + σf,t dBt (6)
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dvt = k(α − vt)dt + γv
1/2
t dWt (7)

where v = σ2
f and the initial value v(0) is drawn from the unconditional Gamma distri-

bution of v.

The values of the parameters are chosen so to have a process with zero mean, expected

annualized volatility of 15% and satisfying the Feller’s condition 2kα = γ2. Thus, the

following annualized values for the parameter are chosen: µ = 0, k = 8, α = 0.0225,

γ = 0.5 and a correlation coefficient between the two Brownian motions of ρ = −0.5.

Those parameter values, will remain constant throughout the simulations. The Heston

model for the factor and the true return process of the two assets will be simulated at the

usual Euler clock of one second.

In the Lo and MacKinlay’s model the prices are assumed to be observed with a certain

probability 1 − πi, where πi is the so called non-trading probability. We found more

convenient to express the frequency of the price observations in terms of the corresponding

average intertrade duration between ticks2 τi.

Each time a price is observed we simulate market microstructure noises by randomly

adding or subtracting half of the spread to the true price. The size of the spread is chosen

so to obtain an average level of the noise to signal ratio of the observed returns process

equal to one.

In addition to the proposed tick-by-tick estimator, the other covariance measures in-

cluded for comparison in the simulation are:

• The standard realized covariance computed with an interpolated regular grid of 1

minute returns.

• The standard realized covariance computed with a fix return time interval of 5

minutes.

• The Scholes and William (1977) covariance estimator, which add to the contempo-

raneous sample covariance of fix interval returns, one lead and lag cross covariance.

2For example, a non-trading probability of 90% corresponds to an exponential distribution of the

intertrade duration with a mean value of 10 seconds.

9



To improve the performance of this estimator we chose the frequency of the fix inter-

val returns which seems to provide the best results given the observation frequency

of the two assets.

• The estimator proposed by Cohen et al. (1983), which is a simple generalization

of the Scholes and Williams estimator, where more than one lead and lag are con-

sidered. Here, as in Bollerslev and Zhang (2003) we compute the Cohen et al.

estimators with 12 leads and lags and at the frequency which seems to be the best

performing given the corresponding simulation set up.

• The Lo and MacKinlay’s estimator given by

σ̂1,2 =
1 − π̂1π̂2

(1 − π̂1)(1 − π̂2)
Cov

[

rs
1,t, r

s
2,t

]

(8)

where Cov
[

rs
1,t, r

s
2,t

]

is the covariance between the observed 1 second returns rs
i,t.

Contrary to the highly noisy non-trading probability estimation proposed by Lo

and MacKinlay’s where π̂1 = Cov
[

rs
1,t, r

s
2,t+1

]

/Cov
[

rs
1,t, r

s
2,t

]

and analogously for π̂2,

we estimate those probabilities by simply counting the observed number of ticks in

each day and dividing it by the total number of seconds in the day.

We first simulate 25,000 paths at a moderate observation frequency of τ1 = 30 seconds

and τ2 = 1 minute. With the factor loadings β1 = 0.8 and β2 = 1.25, and an average

value for the volatility of the common factor of 15% per annum, the true covariance is,

on average, 2.25% per annum, which together with the volatilities of the idiosyncratic

noises σǫ,1 = 0.16 and σǫ,2 = 0.16535 implied an average correlation of 45%. Given the

relatively low frequency of the two series we compute the Scholes and Williams estimator

with 3 minutes returns and the Cohen et al., which is able to correct for higher level of

bias, at the 20 seconds interval (i.e. at the average frequency of the more liquid asset).

The results are reported in Figure 1 and in the left panel of Table 1.

Insert Figure 1 about here

Insert Table 1 about here
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With those observation frequencies the 1 minute realized covariance is highly biased:

on average it would correspond to a 20% correlation against the true value of 45%. Under

these conditions, the 5 minutes realized covariance gives better results both in terms of

dispersion and in terms of bias (though a significant bias still exists being the implied

correlation equal to 37.5%). Despite the direct estimation of the non-trading probabilities

the Lo and MacKinlay’s estimator (though unbiased) is extremely inaccurate, probably

because of the significant presence of market microstructure noise. With the carefully

chosen frequency both the Scholes and Williams and the Cohen et al. estimators are

almost unbiased and reasonably accurate. However, the best estimator is clearly the

proposed one (termed “All-Ticks” in figures and tables) with no bias and the smallest

dispersion.

We repeat the simulation with a higher observation frequency for the two assets,

choosing τ1 = 5 seconds and τ2 = 10 seconds. Now, the return frequency for the Scholes

and Williams estimator is chosen at 30 seconds and that of Cohen et al. at 5 seconds.

Figure 2 and the right panel of Table 1 report the results.

The 1 minute realized covariance, though less disperse now, is still significantly biased

with an implied average correlation of about 39%. The 5 minutes realized covariance,

instead, is unbiased but with a large variance. The higher number of price observations

seems to be of little help for the performance of the Lo and MacKinlay’s estimator in

the presence of market microstructure noise. As before, at the chosen frequencies both

the Scholes and Williams and the Cohen et al. estimators are almost unbiased, with the

second one being slightly more precise. But, again, the tick-by-tick covariance estimator

remains unbiased and the most precise among the estimators considered.

Summarizing the results of this simulation study, the simple tick-by-tick estimator

proposed results to be the best performing for both choices of trading frequencies of the

two assets. Surprisingly, it also performs favorably compared to the Scholes and Williams

and the Cohen et al. estimators even if their return frequency has been chosen according

to the simulation settings to give the best results. The proposed tick-by-tick estimator,

however, does not require any choice of return frequency or interpolation scheme since it

can be directly applied to the raw tick-returns series of any two assets, always providing
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unbiased results.

4 Empirical application

We apply the proposed tick-by-tick covariance estimator to the bivariate series of S&P

500 and 30 years US Treasury Bond futures. The data are from Price-data.com and we

consider the period from January 1990 to October 2003 for a total of 3,391 daily data

points. The tick frequency of the S&P 500 data is about two times that of the Bond,

the intertrade duration of the former being less than 10 seconds while that of the latter

almost 20 seconds.

Unfortunately, since the time stamps of the data in our disposal, are rounded at the

1 minute level, the proposed estimator can not be directly implemented in such a simple

way but it requires a slightly different scheme. In fact, the rounding of the seconds to the

minute, precludes the knowledge of the correct time ordering among the ticks of the two

series inside the 1 minute interval, which is necessary for the application of the tick-by-tick

estimator. To overcome this problem, we construct the tick-by-tick estimator by simply

considering only the first and last ticks of each 1 minute interval. This version will hence

be termed ”First-Last” tick-by-tick estimator.

Using a subsample of the total number of ticks employed by the “All-Ticks” estimator,

we expect the “First-Last” to be less efficient. In order to evaluate this loss of efficiency

of the modified tick-by-tick estimator on this type of data, we perform a simulation

study which tries to reproduce as much as possible the econometric properties of the two

empirical series, i.e. the parameters of the simulation will be chosen to match as closely

as possible the empirical observation frequencies, level of volatilities, noise structure and

intensities and so on.

Therefore, with asset 1 mimicking the S&P and asset 2 the US bond, the following

configuration of the parameters are chosen: τ1 = 8 seconds, τ2 = 18 seconds, an average

annualized volatility of about 20% for asset 1 and 10% for asset 2 and with a correlation

of 30% . From the empirical study of the tick-by-tick series of those assets, we found

significant departure from the standard i.i.d. assumption on the structure of the market
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microstructure noise. In fact, studying the autocorrelation of the tick-by-tick returns of

those series, more complex structures than those of a simple MA(1) expected under the

standard i.i.d assumption, were found. We suggest that such autocorrelation patterns of

the tick-by-tick returns could be explained by assuming more complex ARMA structure

for the microstructure noise. In particular, the noise structure is closely reproduced by

introducing an MA(2) for the asset 1 mimicking the S&P 500 with θ1 = 0.85, θ2 = 0.25

and a noise to signal of 0.45, and a strong oscillatory AR(1) with φ1 = −0.6 and noise to

signal of 0.6 for the asset 2 corresponding to the US bond.

Insert Figure 3 about here

Insert Table 2 about here

Figure 3 and Table 2 reports the results of the 25,000 simulations. As expected, the

First-Last estimator results to be less precise than the All-Ticks. However, this loss of

efficiency due to the lower number of ticks employed, is contained and the First-Last

remains the best performing measure compared to the other covariance estimators.

Insert Figure 4 about here

Applying to the S&P 500 and US bond series the First-Last estimator we obtain the

realized covariance time series shown in Figure 4. To better appreciate the remarkable

difference between the tick-by-tick realized covariance and the standard cross product

of daily returns (the usual proxy for daily covariance in standard multivariate volatility

models) both measures are plotted together on the same scale.

Combining the First-Last covariance measure together with a tick-by-tick realized

volatility estimator we are now able to obtain a realized correlation measure where both

the volatilities and the covariance are computed from tick-by-tick data. Here, we employ

the Multi-Scales DST realized volatility estimator proposed by Curci and Corsi (2006)3.

Figure 5 shows the time series of 3,391 daily tick-by-tick correlations from 1990 to 20034.

3 We also experiment with the Two Scales estimator of Zhang, Mykland and Aı̈t-Sahalia (2004)

obtaining very similar results.
4In two days (out of 3,391) the estimated realized correlation resulted to be slightly outside the [-1,

1] correlation boundary, in those two cases we arbitrary set the correlation absolute value to 0.9999.
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Insert Figure 5 about here

Simply looking at the correlation dynamics, there seems to be two important changes

of regime around the end of 1993 and the end of October 1997. In fact, the correlation

between the two series oscillates around a positive stable value of about 20% until ’94 and

around 40% from ’94 to ’97, while after the end of ’97 the correlation starts to exhibit a

stronger dynamics and becomes predominantly negative. Note that in the first case we

report a positive regime-shift, whereas in the second case a negative regime-shift.

Insert Figure 6 about here

These structural changes in the dynamics of the correlation between S&P and US bond

is also apparent from the different behavior of the autocorrelation function computed on

the three periods January 1990 to the end of 1993 (from now on called ’90-’94 period),

from the beginning of 1994 to the end of 1997 (’94-’98 period) and from the beginning

of 1998 to the end of the sample (’98-’03 period) (Figure 6). In the first ’90-’94 period

the level of the autocorrelation is very low and quickly decay. While in the second period

’94-’97 the autocorrelation level and its persistence significantly increase. Finally, after

the end of ’97 the memory of the process, in particular the short and medium one, rises

further. Hence, there seems to be a consistent increase in the memory persistence of

the stock-bond correlation in the most recent years. It should be noticed that this new

stylized fact of the stock-bond correlation wouldn’t be so easily identifiable without the

employment of high frequency data and a precise realized correlation measure.

Another interesting effect revealed by Figure 6 is how the structural change affects the

global autocorrelation function computed on the full sample inducing an artificially high

level in the autocorrelation coefficients. Nonetheless, even without this structural break

effect, the autocorrelation function of the realized correlation remains highly persistent

as shown by the separated sub sample autocorrelation functions.

To end this section, we provide some more statistical evidence and an economic intu-

ition to support the visual impression of regime changes in stock-bond correlations. To this

purpose, we estimate the time-varying dynamics of realized stock-bond correlations with

two different models allowing for regime changes: the regime-switching specification of
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Gray (1996), in the framework of regime-switches governed by an unobservable Markovian

state variable firstly introduced by Hamilton and Susmel (1994), and the tree-structured

model introduced by Audrino and Bühlmann (2001), in the framework of regimes defined

using thresholds for some relevant predictor variables.

Insert Table 3 about here

As it is shown in Table 3, using both models we find strong empirical evidence that

realized correlations are subjected to regime changes: both Akaike and Schwarz Bayesian

information criterium (AIC and BIC, respectively) clearly favor models allowing for differ-

ent regime specifications. In particular, using the tree-structured approach, where regimes

are better identifiable as particular cells of the predictor space, we identify approximately

the same three different regimes that were apparent by the visual inspection of the realized

correlation series. In fact, the most important predictor in the analysis of the realized

correlation series is time, and searching for breaks in time we find exactly the regimes

’90-’94, ’94-’98 and ’98-’03. Moreover, there seems to be some important predictive in-

formation included also in the original return series of S&P500 returns and 30 years US

Treasury Bond returns.5

The two significant regime changes we identified for realized stock-bond correlations

can be naturally associated with two big financial crises: the Western European monetary

crisis of 1992-1993, mere outcome of a self-fulling foreign financial panic against slowing

economies with rising unemployment, and the Asian crisis of 1997-1999. Stock-bond

correlation dynamics drastically changed in reaction to the different behavior of investors

during or after such bad economic conditions (“flight-to-quality” phenomenon, different

allocation between corporate and treasury bonds, different liquidity levels, ...). As a

consequence, in the first case we have a significant increase in stock-bond correlations,

whereas in the second case correlations between stocks and bonds drop severely, changing

sign from positive to negative.

5Detailed results of this analysis can be obtained from the authors upon request.
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5 Modeling realized correlations

Corsi (2004) and Corsi et al.(2006) recently proposed a class of time series models called

Heterogeneous Autoregressive (HAR) that seems to successfully achieve the purpose of

modelling the long memory behavior of financial variables in a very simple and parsimo-

nious way.

The basic idea stems from the so called ”Heterogeneous Market Hypothesis” (Müller et

al.1993), which explains the long memory observed in the volatility as the superimposition

of only few processes operating on different time scales. Hence, Corsi(2004) proposed a

stochastic additive cascade of three different realized volatility components corresponding

to the three main different time horizons operating in the market (daily, weekly and

monthly). This stochastic volatility cascade leads to a simple AR-type model in the

realized volatility with the feature of considering realized volatilities defined over different

time horizons (the HAR-RV model). Although the HAR model doesn’t formally belong to

the class of long-memory models, it is able to reproduce a memory decay which is almost

indistinguishable from that observed in the empirical data.

The HAR model for the daily realized volatility is defined by

E t

[

RV
(d)
t+1

]

= c + β(d)RV
(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t (9)

where RV
(d)
t , RV

(w)
t , and RV

(m)
t are respectively the daily, weekly and monthly annual-

ized realized volatilities obtained as simple averages of the daily realized volatility. The

notation E t [·] indicates as usual the conditional expectation given the information up to

time t.

The empirical evidence on the high degree of persistence of correlations, suggests that

the parsimonious HAR model could also be successfully applied to model the time series

of realized correlations

E t

[

RC
(d)
t+1

]

= a + b(d)RC
(d)
t + b(w)RC

(w)
t + b(m)RC

(m)
t (10)

where RC
(d)
t , RC

(w)
t , and RC

(m)
t are respectively the daily, weekly and monthly realized

correlations. Many extensions of this simple HAR model for realized correlations can be

envisaged: include realized volatilities at different frequencies as explanatory variables for

16



correlations or add matrices of cross-product returns measured over the three different

horizons with possibly different coefficients for the positive and negative values to account

for asymmetric effects.

Insert Table 4 about here

Insert Table 5 about here

To analyse the dynamic evolution of the realized correlation process, we first estimate

the HAR(3) model, together with a simple benchmark AR(1) model, on the full sample

and on the three different sub periods (regimes) ’90-’94, ’94-’98 and ’98-’03 to investigate

possible differences in (local) regime-dependent behavior. Table 4 reports the results of

the 1 day ahead in sample prediction in the different samples. A first thing to be noticed

is the significantly higher value of the R2 for the full sample compared to that of any of

the sub samples. This is true for both models and it is akin to the artificially high level

of the autocorrelation function induced by the structural breaks (as showed in Figure

6). Hence, the exceptionally high values of the R2 (75% for the AR(1) and 81% for the

HAR(3) ) should be considered with extreme caution.

It is also interesting to note that while the R2 in the three sub periods tends to

steadily increase also the RMSE and MAE tends to increase over time. This apparently

contradictory result could be due to an increase of the total variance of the process which

is however accompanied by an increase in the persistency of the process and hence in a

better ability of the models to explain and predict it (hence producing a larger R2). In

other words, although the total variance of the process increases, the noise to signal ratio

decreases.

Table 5 reports the values of the estimated coefficients of the HAR(3) process on the

full sample and sub periods, showing the high significance level of the three heteroge-

neous components (daily, weekly and monthly). Consistently with the increase of the

memory persistence depicted in Figure 6, the weights (i.e. the loadings of the different

time horizons) in the HAR(3) model change accordingly in the sub periods indicating

how this simple model is able to easily fit and reproduce very different degrees of memory

persistence.
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Insert Figure 7 about here

In order to study better the time evolution of the weights of the three different market

components, we estimate the HAR(3) model on a rolling window of 1,000 days. Note, that

this is a very simple strategy that allows us to take implicitly regime changes in realized

correlations into account. In the bottom panel of Figure 7, we show how already from the

beginning of the sample (which is now 1994 because the first 4 years are used in the burn

in of the 1,000 days rolling window) the weight of the daily component steadily increases

until 2002 going from about 10% (the smallest one of the three) to about 40% (the

highest one). Such an increment is only partially compensated by a decline in the weekly

component (from 40% to 30%), while the monthly component remains substantially the

same in the sub samples. The growth of the daily component weight could be responsible

for the increase in the short period memory observed in the autocorrelation function of

the last part of the sample. This analysis shows how the identification of the different

market components and the study of their dynamics, which is made possible by the HAR

model, can help explain (and maybe also predict) interesting properties and dynamics of

realized correlations.

Insert Table 6 about here

A comparison of the in sample and out of sample forecasting performance of the

HAR(3) model with respect to different standard models is shown in Table 6. The bench-

mark models are the random walk model (RW), the AR(1) and AR(3) processes and the

ARMA(1,1) model. Once gain, note that we implicitly take into account the presence of

structural breaks by estimating all the models on a rolling windows of 1,000 daily obser-

vations, making 1 day ahead predictions at each step. The results of the table clearly

show the better forecasting performance of the HAR(3) model which, in terms of the out

of sample RMSE and MAE, outperform the AR(1) by more than 20%, the AR(3) by more

than 12% and the ARMA(1,1) by more than 8%.

The last row of Table 6 reports a slight extension of the HAR(3) model where, in

the rolling window estimation, more weights are given to the more recent observations

with respect to the more distant ones. The idea is to have the estimated parameters of
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the HAR(3) to adapt faster to the structural changes of the process. This idea is simply

implemented by performing a rolling window WLS regression with exponentially decaying

weights in place of the equally weighted OLS. Moreover, a dynamical variance targeting

for the constant is also implemented to have the intercept to quickly adapt to the shifts

in the mean. We refer to this model as Weighted HAR (WHAR). The results of the

last row of Table 6 show that WHAR(3) outperforms HAR(3), although the performance

improvement is relatively small (around 1%).

6 Conclusions

In this paper we extend the approach of directly using all the available tick-by-tick data to

the realized covariance and realized correlation estimation. As for the realized volatility,

the presence of market microstructure can induce significant bias in standard realized

covariance measures computed with artificially regularly spaced returns. Contrary to these

standard approaches we adopt a very simple and unbiased realized covariance estimator

which does not resort to the construction of a regular grid, but directly and efficiently

employs the raw tick-by-tick returns of the two series. Montecarlo simulations calibrated

on realistic conditions show that this simple tick-by-tick covariance estimator possesses no

bias and the smallest dispersion, resulting to be the best performing measure among the

covariance estimators considered in the study. Combining this realized covariance measure

together with the tick-by-tick volatility estimator we obtain a realized correlation measure

where both the volatilities and the covariances are computed from tick-by-tick data.

In the empirical analysis performed on S&P 500 and US bond data, we investigate

the time-varying dynamics of the time series of realized correlations constructed using

tick-by-tick data finding empirical evidence that such dynamics are subjected to regime

changes in reaction to big financial crises. In a second step, we apply the Heterogeneous

Autoregressive HAR model to the tick-by-tick realized correlation series obtaining highly

significant coefficients for all the three heterogeneous components and remarkably good

out of sample forecasting performance.
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COVARIANCE ESTIMATION SIMULATION RESULTS

τ1 = 30 sec, τ2 = 1 min τ1 = 5 sec, τ2 = 10 sec

bias std RMSE bias std RMSE

1 min no correction -1.2438 1.1592 1.7002 -0.2921 0.4352 0.5241

5 min no correction -0.3786 0.8783 0.9564 -0.0599 0.7233 0.7258

All-Ticks 0.0095 0.6930 0.6931 0.0057 0.2988 0.2988

Scholes-Williams -0.0685 1.0148 1.0171 -0.0168 0.4229 0.4233

Cohen 12 leads-lags -0.0795 0.9925 0.9957 -0.0121 0.4919 0.4920

LoMac-Kinlay -0.0074 7.8983 7.8983 0.0143 1.4013 1.4014

Table 1: The table reports the mean, standard deviation and RMSE of the estimation errors on the

annualized covariance (on average 2.25%) obtained at different observation frequencies for the two

assets and a noise to signal ratio equal to one.
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CALIBRATED S&P-US BOND SIMULATION RESULTS

bias std RMSE

1 min no correction -0.1746 0.2729 0.3240

5 min no correction -0.0382 0.3385 0.3406

Scholes and Williams Cov -0.0076 0.2625 0.2626

10 sec Cohen 12 leads-lags -0.0061 0.2751 0.2752

First-Last Tick -0.0009 0.2018 0.2018

All Ticks 0.0019 0.1580 0.1581

Table 2: The table reports the mean, standard deviation and RMSE of the estimation errors on the

annualized covariance for a simulation set up which reproduces the statistical properties of the S&P

500 and US bond future data.

REGIME CHANGES IN STOCK-BOND CORRELATION

Model N◦ of Param AIC BIC

ARMA(1,1)-GARCH(1,1) 6 -3054.994 -3018.221

Regime-Switching with 2 regimes 16 -3164.220 -3066.158

Tree-structured GARCH(1,1) with 3 regimes 18 -3184.952 -3074.632

Table 3: Goodness-of-fit statistic results: number of parameters, Akaike information criterium (AIC)

and Schwarz Bayesian information criterium (BIC) for searching for regime changes in the daily real-

ized stock-bond correlation time series between 1990 and 2003. The models that we consider are a

Markovian regime-switching specification with two regimes, a tree-structured threshold regime spec-

ification with (an endogenously estimated number of) three regimes, corresponding to the different

time intervals ’90-’94, ’94-’98 and ’98-’03, and a global benchmark ARMA(1,1)-GARCH(1,1) model

with no regimes. Note that the local dynamics of the realized correlations in the different regimes

also follows an ARMA(1,1)-GARCH(1,1) process.
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S&P - US BOND CORRELATION IN SAMPLE RESULTS

AR(1)

full sample ’90 - ’94 ’94 - ’98 ’98 - ’03

Mincer-Zarnowitz R2 0.7511 0.0573 0.2129 0.5879

RMSE 18.0820 14.7759 16.3873 17.1867

MAE 13.9322 11.0718 12.5828 13.6263

HAR(3)

full sample ’90 - ’94 ’94 - ’98 ’98 - ’03

Mincer-Zarnowitz R2 0.8143 0.0953 0.2678 0.6622

RMSE 15.6271 14.5023 15.8050 15.5685

MAE 11.9408 10.8208 12.0230 12.2302

Table 4: 1 day ahead in sample forecast results of S&P500 and 30-years US Treasury bond realized

correlations in the period between 1990 and 2003. Results are reported for the full sample and the

three subperiods (regimes) identified in the in sample analysis.

HAR(3) ESTIMATED COEFFICIENTS

full sample ’90 - ’94 ’94 - ’98 ’98 - ’03

const 0.0002 (0.9438) 0.0708 (0.0000) 0.0862 (0.0006) -0.0149 (0.0238)

RC(d) 0.2667 (0.0000) 0.1198 (0.0338) 0.2600 (0.0000) 0.3245 (0.0000)

RC(w) 0.3646 (0.0000) 0.2394 (0.0019) 0.3163 (0.0000) 0.3317 (0.0000)

RC(m) 0.3489 (0.0000) 0.2818 (0.0039) 0.2028 (0.0345) 0.2919 (0.0000)

∑

RC(·) 0.9803 0.6411 0.7791 0.9483

Table 5: In sample estimation of the Newey-West adjusted least-squares regression of HAR(3) model

for the S&P and 30-years US Treasury bond realized correlation (p-values are given in parentheses).

25



COMPARATIVE FORECASTING RESULTS

In sample Out of sample

RMSE MAE MedianAE RMSE MAE MedianAE

RW 1.1981 1.2024 1.2201 1.4152 1.4046 1.3897

AR(1) 1.1571 1.1667 1.2010 1.2378 1.2591 1.2816

AR(3) 1.0470 1.0480 1.0756 1.1263 1.1317 1.1415

ARMA(1,1) 1.0102 1.0090 1.0250 1.0842 1.0868 1.0761

HAR(3) 1 1 1 1 1 1

(15.627) (11.941) (9.536) (16.151) (12.401) (9.996)

WHAR(3) 0.9909 0.9929 0.9868

Table 6: Comparative results of 1 day ahead forecasts of S&P - US Bond realized correlations ex-

pressed as ratios to the benchmark heterogeneous autoregressive HAR(3) values (reported in paren-

theses). The models considered in the analysis are a simple random walk RW, standard autoregressive

AR models of order 1 and 3, an autoregressive moving average ARMA(1,1) model and an extension

of the HAR model where more weights are given to more recent observations in the rolling window

WHAR(3). The forecasting time period is between 1994 to 2003. Out of sample forecasts are

computed using a rolling window of 1,000 days to implicitly take into account regime changes.
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Figure 1: Comparison of the pdf of the covariance estimation errors with noise to signal one and

average observation frequencies τ1 = 30 seconds and τ2 = 1 minute.
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Figure 2: Comparison of the pdf of the covariance estimation errors with noise to signal one and

average observation frequencies τ1 = 5 seconds and τ2 = 10 seconds.
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Figure 3: Comparison of the pdf of the covariance estimation errors for a simulation set up which

reproduces the statistical properties of the S&P 500 and US bond future data.

1990 1992 1994 1996 1998 2000 2002

−2000

−1500

−1000

−500

0

500

1000

Covariance between S&P and US bond from 1990 to 2003

Cov with daily returns
Daily Realized Cov

Figure 4: Time series of daily realized covariances constructed using tick-by-tick data and the daily

cross product returns of S&P 500 and 30-years US Treasury bond from 1990 to 2003.

28



1990 1992 1994 1996 1998 2000 2002

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Correlation between S&P and US bond from 1990 to 2003

Figure 5: Time series of daily S&P 500 and 30-years US Treasury bond realized correlations con-

structed using tick-by-tick data. The time period under investigation goes from 1990 to 2003.
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Figure 6: Autocorrelation functions of the S&P 500 and 30-years US Treasury bond realized cor-

relation for the full sample 1990-2003 and the three sub samples periods (regimes) ’90-’94, ’94-’98

and ’98-’03.
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Figure 7: Top: comparison of actual (dotted) and out of sample prediction (solid) of the HAR(3)

model for daily realized correlations. Middle: realized correlation residuals obtained from the HAR(3)

model fit. Bottom: time evolution of the regression coefficients (loadings) of the three different time

frequencies in the HAR(3) model.
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