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Abstract 

This paper compares the inverse-probability-of-selection-weighting estimation principle with 

the matching principle and derives conditions for weighting and matching to identify the 

same and the true distribution, respectively. This comparison improves the understanding of 

the relation of these estimation principles and allows constructing new estimators.  
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1 Introduction
* 

This paper considers the estimation problem that occurs when the distribution of a random vari-

able Y in population t cannot be directly observed but must be learned from its distribution in 

population o. Such a situation is typical in the so-called treatment evaluation literature: For ex-

ample in an evaluation of the effects of a public training programme for unemployed, we can 

learn the post-programme labour market outcome (Y) of programme participants (population t) 

directly from the data (see the survey Heckman, LaLonde, and Smith, 1999). However, the out-

come they would have realized had they not participated in the programme is not observable and 

has to be learned from 'comparable' non-participants (population o). For this purpose, the popula-

tion of nonparticipants has to be adjusted (reweighted) to become 'comparable' to the participants 

in some dimensions. For strategies that are based on adjustments leading to similar distributions 

of observables for populations t and o, matching methods as well as inverse-of-selection-prob-

ability weighting schemes (IPW) are very popular. Imbens (2004) provides an excellent review of 

many aspects and variants of these classes of estimators. 

In this paper, we compare the IPW estimation principle with the matching principle. Conditions 

on the properties of the respective weights are derived such that weighting and matching on those 

weights identify the same distribution. Further conditions are provided such that the distribution 

identified is indeed the distribution of interest. The objective of this paper is not to analyse the 

small sample (e.g. Frölich, 2004) or large sample (e.g. Abadie and Imbens, 2006, Firpo, 2007) 

properties of the different estimators that are applicable in such a context, but to investigate the 

conditions the weights have to fulfil in the population (or in an indefinitely large i.i.d. sample). 

                                                           
* I am also affiliated with ZEW, Mannheim, CEPR and PSI, London, IZA, Bonn, and IAB, Nuremberg.  
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Under suitable regularity conditions, estimators using consistent estimators of such weights ap-

propriately will usually be consistent as well. 

This comparison does not only deepen the understanding of the relation of those two important 

and frequently used estimation principles, but does also allow constructing new consistent esti-

mators. For example, if a weighting estimator is known to be consistent and its weights fulfil the 

conditions derived in this paper, then a consistent matching-type estimator can be constructed 

solely based on such weights.  

A comparison of these estimation principles from this population perspective has not yet received 

much attention in the literature. There are some estimator specific asymptotic and small sample 

results of estimators based on IPW and stratification, which is very similar to matching, by 

Lunceford and Davidian (2004). However, their comparison is for a case when both estimation 

principles necessarily identify the same density. Furthermore, there are formal comparisons (e.g. 

Ichimura and Taber, 2001, Frölich and Lechner, 2004), as well as more informal comparisons 

(e.g. Hogan and Lancaster, 2004), of instrumental variable methods with weighting and matching 

approaches. However, they use a different perspective and the method of instrumental variables is 

not the focus of this paper. 

In the next section same notation is introduced, the objects of interest are defined, and regularity 

conditions are imposed to simplify the subsequent analysis. Section 3 defines the estimation prin-

ciples and Sector 4 compares the matching and weighting estimators. Section 5 concludes. 
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2 Notation, targets for the estimation and sampling frame  

There are two subpopulations depending on the value of the random variable S, namely the target 

population (S=t) and the observed population (S=o).1 Realisations of Y, which is the random vari-

able of interest, are only observed in the target population, whereas realisations of a set of con-

founding variables X and weights W are observed in both subpopulations. We are interested in 

learning the distribution of Y in the subpopulation in which it is not observed, i.e. | ( , )Y SF y t . To 

do so, the information in X and W will be combined with the corresponding distributions of Y in 

the population in which realisation of Y are observable. 

In Assumption 1, the sampling scheme is formalized and enough regularity and support is as-

sumed to concentrate on the key issues of comparing the two estimation principles. 

Assumption 1 (sampling frame, common support, regularity) 

(a) Sampling: There is a random sample of size N ( 1{ , , }N

i i i is x y = ) from the joint distribution of the 

random variables (S, X, Y). In the subsample with is t= , the values of iy  are not observable.  

(b) Support and regularity: Assume that all densities and moments that are of interest are finite 

and nonzero.  

Two remarks are in order concerning Assumption 1: First, the i.i.d. sampling assumption is not 

important for what follows. What is important is that iy  is observed in one subsample, but not in 

the other. Second, part b) is obviously overly restrictive, but it allows concentrating on the main 

issues in this paper without additional notation.  

                                                           
1  As a convention, capital letters denote random variables and small letters denote either realisations or specific 

values of those random variables. Furthermore, 
| ( , )A BF a b  denotes the cumulative distribution functions of A 
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Having defined the general model, which is very simple, the following section presents the dif-

ferent population problems that matching and direct weighting estimators solve. 

3 Principles of direct weighting and a matching estimation 

It is the idea of the weighting estimator to take the empirical mean in the observable population 

over an individual specific weight times a function of the observed random variables of interest in 

the subpopulation in which y is observed. This idea is formalized in Definition 1. 

Definition 1 (estimation principle of weighting estimator) 

The estimation principle of the weighting estimator is defined for a one dimensional random vari-

able W such that: | | ,
|

( , ) ( , , )W

Y S Y W S
W S o

F y t E wF y w o
=
 =   . 

At this stage of generality, | ( , )W

Y SF y t  may or may not be equal to the true distribution | ( , )Y SF y t  

and w may or may not correspond to some function of selection probabilities. The idea of using 

inverse selection probability weighting is probably due to Horowitz and Thomson (1952), but has 

since then been analysed by many others. 

A second set of weights define a matching-type estimator, which, like all estimators, has an inter-

pretation as a weighting estimator as well. The difference between direct weighting and matching 

is how the weights are defined. For direct weighting, the weights are directly defined such that 

their expectation over the observable population fulfils a certain restriction. For matching, the 

weights are implicitly determined from the distribution of some variables in the population for 

which Y is not observable. We call those variables X. 

                                                                                                                                                                                              
conditional on B evaluated at the value a for B = b. 

| ( , )A Bf a b  is the corresponding density. If A discrete, 

| ( , )A Bf a b  is the corresponding mass function. 
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Definition 2a (matching principle based on covariates) 

The vector of random variables X defines the principle of matching estimating such that: 

|

( )

| ,
|

( , ) ( , , )
Y S

M x

Y X S
X S t

F y t E F y x o
=
 =   . 

As for weighting, at this level of generality there is no need to assume that ( )

| ( , )M x

Y SF y t  = 

| ( , )Y SF y t . The idea of adjusting observed (confounding) variables directly can at least be traced 

back to Fechner (1860), and is discussed in Wilks (1932) and Rubin (1979). The conditions re-

quired for ( )

| ( , )M x

Y SF y t  = | ( , )Y SF y t  are intensively discussed in the literature as well. They typi-

cally come under the heading of the conditional independence or no confounding assumption 

(e.g., see Cochrane and Chambers, 1965, Rubin, 1974). Estimation methods for matching esti-

mation as well as weighting under no confounding are extensively discussed by Imbens (2004). 

Analogously to the weighting principle, Definition 2b) defines a matching estimator that is based 

on a one-dimensional covariate, which we call W as before. 

Definition 2b (matching principle based on weights) 

The random variable W (weight) defines the principle of weight-based matching estimating such 

that: 
|

( )

| ,
|

( , ) ( , , )
Y S

M w

Y W S
W S t

F y t E F y w o
=
 =   . 

The key distinction between these three definitions is the different dimension of the random vari-

ables W and X and how they are used to adjust the distribution. A particular example in which a 

matching estimator is consistent for a one-dimensional conditioning variable (the so-called pro-

pensity score, defined as ( | , { , })P S t X x S t o= = ∈ ) has been discussed by Rosenbaum and 

Rubin (1983). 

The following analysis sheds more light on the relation between these estimation principles. 
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4 The relation of the estimation principles 

The first question we analyse in this section is whether there are weights for which both estima-

tion principles identify the same distribution. Theorem 1 establishes that such weights exist (un-

der suitable support and regularity conditions) and that they have a well-known form. 

Theorem 1 (weights that lead to equivalence of weighting and matching) 

a) If Assumption 1 holds, then the following weights lead to | ( , )W

Y SF y t  = ( )

| ( , )M x

Y SF y t : 

|

|

( , )( | ) ( )
( )

( | ) ( ) ( , )

X S

X S

f x tP S t X x P S o
w w x

P S o X x P S t f x o

= = =
= = =

= = =
. 

b) If Assumption 1 holds, then the following weights lead to | ( , )W

Y SF y t  = ( )

| ( , )M w

Y SF y t : 

|

|

( , )( | ) ( )

( | ) ( ) ( , )

W S

W S

f w tP S t W w P S o
w

P S o W w P S t f w o

= = =
= =

= = =
. 

The proof of this theorem is relegated to Appendix A.1. 

Note that this theorem does not establish that either a matching or a weighting estimator based on 

these weights identifies the true distribution of interest. However, if one of the estimation princi-

ples leads to the true distribution using such weights, then Theorem 1 implies that the other esti-

mation principle recovers the true distribution as well. 

The weights appearing in Theorem 1a) and 1b) are so-called inverse probability of selection 

(IPW) weights either as function of X or of the summary measure W. One such summary measure 

that fulfils this criterion in the binary treatment model under the unconfoundedness (Rubin, 1974) 

assumption is the already mentioned propensity score (see Rosenbaum and Rubin, 1983). 
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Next, Theorem 2 provides conditions under which the matching and weighting principles identify 

the true distribution. 

Theorem 2 (weights leading to consistent matching estimation) 

a) If the vector X fulfils the following condition, then the matching principle identifies | ( , )Y SF y t : 

!

| , | ,
|

( , , ) ( , , ) 0Y X S Y X S
X S t
E F y x t F y x o
=
 − =  , or 

!

| , | ,
|

( | ) ( )
( , , ) ( , , ) 0

( | ) ( )
Y X S Y X S

X S o

P S t X x P S o
E F y x t F y x o

P S o X x P S t=

 = = =
 − =  = = = 

. 

b) If the weights W fulfil the following condition, then the matching principle identifies | ( , )Y SF y t : 

!

| , | ,
|

( , , ) ( , , ) 0Y W S Y W S
W S t
E F y w t F y w o
=
 − =  , or 

!

| , | ,
|

( | ) ( )
( , , ) ( , , ) 0

( | ) ( )
Y W S Y W S

W S o

P S t W w P S o
E F y w t F y w o

P S o W w P S t=

 = = =
 − =  = = = 

. 

Noting that | ( , )W Sf w t  = 
( | )

( | )

P S t W w

P S o W w

= =

= =
 

( )

( )

P S o

P S t

=

=
 | ( , )W Sf w o  and | ( , )X Sf x t  = 

( | )

( | )

P S t X x

P S o X x

= =

= =
 

( )

( )

P S o

P S t

=

=
 | ( , )X Sf x o ,2 the proof is direct. It is therefore omitted for the sake of brevity. Note that 

these conditions are less restrictive than directly requiring | , ( , , )Y X SF y x t  = | , ( , , )Y X SF y x o  or 

| , ( , , )Y W SF y w t  = | , ( , , )Y W SF y w o . However, any difference between | , ( , , )Y X SF y x t  and 

                                                           
2  This result follows directly from | |, ,

| | '| |

( , ) ( ) ( , ') ( ')( , ) ( ', )
( )

( , ) ( , ) ( ', ) ( ', )

B A A B A AA B A B

B

A B A B A B A B

f b a f a f b a f af a b f a b
f b

f a b f a b f a b f a b
= = = = . 
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| , ( , , )Y X SF y x o , or between | , ( , , )Y W SF y w t  and | , ( , , )Y W SF y w o , has to be averaged away in the 

respective distribution of X or W.  

For further comparisons with the weighting principle to be discussed below it is interesting to 

reformulate | , ( , , )Y W SF y w t  in terms of | , ( , , )Y W SF y w o , i.e. | , ( , , )Y W SF y w t  = 
( | , )

( | , )

P S t Y y W w

P S o Y y W w

= = =

= = =
 

( | )

( | )

P S o W w

P S t W w

= =

= =
 | , ( , , )Y W SF y w o . From this property, we restate the conditions of Theorem 2b): 

Theorem 2b' 

If the weights W fulfil the following condition, then the matching principle identifies | ( , )Y SF y t : 

| ,
|

!

| ,
|

( ) ( | , ) ( | )
( , , )

( ) ( | , ) ( | )

( | ) ( | , )
1 ( , , ) 0.

( | ) ( | , )

Y W S
W S o

Y W S
W S t

P S o P S t Y y W w P S t W w
E F y w o

P S t P S o Y y W w P S o W w

P S o W w P S t Y y W w
E F y w o

P S t W w P S o Y y W w

=

=

  = = = = = =
− =  = = = = = =  

  = = = = =
= − =  = = = = =  

 

If the classical matching assumption is fulfilled conditional on the weights (i.e. 

( | , )P S t Y y W w= = =  = ( | )P S t W w= =  and ( | , )P S o Y y W w= = =  = ( | )P S o W w= = ), or if 

( | )

( | )

P S o W w

P S t W w

= =

= =
 = 

( | , )

( | , )

P S o Y y W w

P S t Y y W w

= = =

= = =
, then the true distribution of interest is identified. 

Note that if the conditions of Theorem 2b) or 2b') are satisfied and if the weights have the form as 

in Theorem 1b), then the weighting principle based on such weights identifies the true distribu-

tion of interest as well. 

Next, in Theorem 3 we consider the condition such that weighting identifies the true distribution. 

Theorem 3 (weights leading to consistent weighting estimation) 

If the weights W fulfil the following condition, then the weighting principle identifies | ( , )Y SF y t : 
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| ,
|

!

| ,
|

( | , ) ( )
( , , )

( | , ) ( )

( | ) ( | , ) ( )
( , , ) 0.

( | ) ( | , ) ( )

Y W S
W S o

Y W S
W S t

P S t Y y W w P S o
E w F y w o

P S o Y y W w P S t

P S o W w P S t Y y W w P S t
E w F y w o

P S t W w P S o Y y W w P S o

=

=

  = = = =
− =  = = = =  

  = = = = = =
= − =  = = = = = =  

 

The proof of Theorem 3 is contained in Appendix A.2. Clearly, if w  = 
( | , )

( | , )

P S t Y y W w

P S o Y y W w

= = =

= = =
 

( )

( )

P S o

P S t

=

=
, this criterion is fulfilled. However, since ( | , )P S t Y y W w= = =  cannot be directly 

learned from the data,3 more assumptions are needed. They could be of the different types exten-

sively discussed in the literature (e.g. Heckman, LaLonde, and Smith, 1999). For example, if 

( | , )

( | , )

P S t Y y W w

P S o Y y W w

= = =

= = =
 is equal to 

( | )

( | )

P S t W w

P S o W w

= =

= =
, which follows from the matching assump-

tion, then the weights fulfil the conditions for the equality of matching and weighting and 

matching leads to consistent estimation as well. Note again that the matching and weighting con-

ditions are identical for IPW-selection on observables weights: w  =  
( | ) ( )

( | ) ( )

P S t W w P S o

P S o W w P S t

= = =

= = =
. 

5 Conclusion 

We compare the inverse-probability-of-selection-weighting principle with the matching principle. 

Conditions on the properties of the respective weights are derived such that weighting and 

matching on those weights identify the same distribution. Further conditions are provided such 

that this distribution is the true one. Under suitable regularity conditions, estimators using con-

sistent estimators of such weights appropriately will usually be consistent.  

                                                           
3  Obviously if ( | , )P S t Y y W w= = =  cannot be consistently estimated, ( | , )P S o Y y W w= = =  cannot be learned 

from the data either. 
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This comparison deepens the understanding of the relation of these estimation principles and al-

lows constructing new consistent estimators. For example, if a weighting estimator is consistent 

and its weights fulfil the conditions derived in this paper, then a consistent matching-type esti-

mator can be constructed based solely on such weights.  
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Appendix A: Proof of Lemmas and Theorems 

A.1 Proof of Theorem 1 

Start the proof of Theorem 1a) by rewriting both estimation principles using iterated expectations 

(I.E.) to make them more easily comparable: 

. .
( )

| | , | , ,
| | | ,

( , ) ( , , ) ( , , , )
I E

M x

Y S Y X S Y W X S
X S t X S t W X S o

F y t E F y x o E E F y w x o
= = =

  = =    
. 

Applying Bayes' Law to the densities of X conditional on S, we get the following equality:  

| |

( | ) ( )
( , ) ( , )

( | ) ( )
X S X S

P S t X x P S o
f x t f x o

P S o X x P S t

= = =
=

= = =
. 

Therefore, we can change expectation in the first part of the previous equation to ease compari-

son between the estimation principles: 
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| , , | , ,
| | , | | ,

| , ,
| | ,

, |

( | ) ( )
( , , , ) ( , , , )

( | ) ( )

( | ) ( )
( , , , )

( | ) ( )

(

Bayes Law

Y W X S Y W X S
X S t W X S o X S o W X S o

Y W X S
X S o W X S o

W X S o

P S t X x P S o
E E F y w x o E E F y w x o

P S o X x P S t

P S t X x P S o
E E F y w x o

P S o X x P S t

P S t
E

= = = =

= =

=

 = = =  = =    = = = 

 = = =
=  = = = 

=
= | , ,

| ) ( )
( , , , ) .

( | ) ( )
Y W X S

X x P S o
F y w x o

P S o X x P S t

 = =
 = = = 

 

Next, iterated expectations are applied to the weighting principle: 

. .

| | , | , ,
| | | ,

| , ,
, |

( , ) ( , , ) ( , , , )

( , , , ) .

I E
W

Y S Y W S Y W X S
W S o W S o X W w S o

Y W X S
W X S o

F y t E wF y w o E E wF y w x o

E wF y w x o

= = = =

=

  = = =    

 =  

 

Therefore, the difference between the distributions identified by the two estimation principles is: 

( )

| | | , ,
, |

( | ) ( )
( , ) ( , ) ( , , , )

( | ) ( )

M x W

Y S Y S Y W X S
W X S o

P S t X x P S o
F y t F y t E w F y w x o

P S o X x P S t=

  = = =
− = −  = = =  

. 

Therefore, if 
( | ) ( )

( )
( | ) ( )

P S t X x P S o
w w x

P S o X x P S t

= = =
= =

= = =
, both estimation principles have the same limit 

(sufficient condition). Since 
|,
( , ) ( )( , )

( | )
( ) ( )

X SX S

X X

f x t P S tf x t
P S t X x

f x f x

=
= = = =  and 

( | )P S o X x= =  = 
| ( , ) ( )

( )

X S

X

f x o P S o

f x

=
, we obtain the second representation of the weights as w  

= ( )w x  = 
|

|

( , )

( , )

X S

X S

f x t

f x o
 shown in Theorem 1a).        q.e.d. 

The proof of Theorem 1b) proceeds along the same lines as the previous one, but without the 

explicit conditioning on X that is not necessary in this case. Thus, we get: 
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( )

| | , | ,
| |

( | ) ( )
( , ) ( , , ) ( , , )

( | ) ( )

Bayes Law
M w

Y S Y W S Y W S
W S t W S o

P S t W w P S o
F y t E F y w o E F y w o

P S o W w P S t= =

 = = =
 = =    = = = 

.  

Therefore, if 
|

|

( , )( | ) ( )

( | ) ( ) ( , )

W S

W S

f w tP S t W w P S o
w

P S o W w P S t f w o

= = =
= =

= = =
, both estimation principles have the same 

limit.             q.e.d. 

A.2 Proof of Theorem 3 

In the proof of this theorem the law of total probability will be frequently applied, i.e. 

, ,

| '|

( , ) ( ', )
( )

( , ) ( ', )

A B A B

B

A B A B

f a b f a b
f b

f a b f a b
= = , with A, B being random variables. From this property, we get 

three conditions that are helpful in the proof of this theorem (as well as of Theorem 2b'): 

| , ( , , )Y W SF y w t  = | ,

( | , ) ( | )
( , , )

( | , ) ( | )
Y W S

P S t Y y W w P S o W w
F y w o

P S o Y y W w P S t W w

= = = = =

= = = = =
; (A.1) 

| |

( | ) ( )
( , ) ( , )

( | ) ( )
W S W S

P S t W w P S o
f w t f w o

P S o W w P S t

= = =
=

= = =
; (A.2) 

| |

( | ) ( )
( , ) ( , )

( | ) ( )
W S W S

P S o W w P S t
f w o f w t

P S t W w P S o

= = =
=

= = =
. (A.3) 

Using those properties, the proof of the first part of Theorem 3 is direct: 

| , | ,
| |

( .3)

| , | ,
| |

( .1)

| ,
|

( , , ) ( , , )

( | ) ( )
( , , ) ( , , )

( | ) ( )

( ) ( | , )
( , , )

( ) ( | , )

Y W S Y W S
W S t W S o

A

Y W S Y W S
W S o W S o

A

Y W S
W S o W

E F y w t E wF y w o

P S t W w P S o
E F y w t E wF y w o

P S o W w P S t

P S o P S t Y y W w
E F y w o E

P S t P S o Y y W w

= =

= =

=

− =

 = = =
= − = = = = 

 = = = =
= − = = = = 

| ,
|

!

| ,
|

( , , )

( ) ( | , )
( , , ) 0.

( ) ( | , )

Y W S
S o

Y W S
W S o

wF y w o

P S o P S t Y y W w
E w F y w o

P S t P S o Y y W w

=

=

=

  = = = =
= − =  = = = =  
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We get the second part of Theorem 3 by combining the last line above with property (A.2): 

| ,
|

( .2)

| ,
|

|

( ) ( | , )
( , , )

( ) ( | , )

( | ) ( ) ( ) ( | , )
( , , )

( | ) ( ) ( ) ( | , )

( |

Y W S
W S o

A

Y W S
W S t

W S t

P S o P S t Y y W w
E w F y w o

P S t P S o Y y W w

P S o W w P S t P S o P S t Y y W w
E w F y w o

P S t W w P S o P S t P S o Y y W w

P S o W
E

=

=

=

  = = = =
− =  = = = =  

  = = = = = = =
= − =  = = = = = = =  

=
=

!

| ,

) ( | , ) ( )
( , , ) 0.

( | ) ( | , ) ( )
Y W S

w P S t Y y W w P S t
w F y w o

P S t W w P S o Y y W w P S o

  = = = = =
− =  = = = = = =  

 

            q.e.d. 


