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Abstract

In this article we consider Bertrand oligopoly TU-games with differentiated products.
We assume that the demand system is Shubik’s (1980) and that firms operate at a
constant and identical marginal and average cost. First, we show that the α and β-
characteristic functions (Aumann 1959) lead to the same class of Bertrand oligopoly
TU-games and we prove that the convexity property holds for this class of games.
Then, following Chander and Tulkens (1997) we consider the γ-characteristic func-
tion where firms react to a deviating coalition by choosing individual best reply
strategies. For this class of games, we show that the Equal Division Solution be-
longs to the core and we provide a sufficient condition under which such games are
convex.

Keywords: Bertrand oligopoly TU-games; Core; Convexity; Equal Division Solution
JEL Classifications: C71, D43

1 Introduction

Usually, oligopoly situations are modeled by means of non-cooperative games. Every
profit-maximizing firm pursues Nash strategies and the resulting outcome is not Pareto
optimal. Yet, it is known that firms are better off by forming cartels and that Pareto
efficiency is achieved when all the firms merge together. A problem faced by the members
of a cartel is the stability of the agreement and non-cooperative game theory predicts
that member firms have always an incentive to deviate from the agreed-upon decision.

However, in some oligopoly situations firms don’t always behave non-cooperatively
and if sufficient communication is feasible it may be possible for firms to sign agreements.
A question is then whether it is possible for firms to agree all together and coordinate their
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decision to achieve Pareto efficiency. For that, a cooperative approach for oligopoly situ-
ations can be considered by converting the normal form oligopoly game into an oligopoly
TU-game in which firms can form cartels acting as a single player. Since every individual
profit function depends on each firm’s decision, the profit of a cartel depends on out-
siders’ behavior. Hence, the determination of the profit that a cartel can obtain requires
to specify how the other firms react. Aumann (1959) proposes two approaches: according
to the first, every cartel computes the total profit which it can guarantee itself regardless
of what outsiders do; the second approach consists in computing the minimal profit for
which outsiders can prevent the firms in the cartel from getting more. These two assump-
tions lead to consider the α and β-characteristic functions respectively. However, these
two approaches can be questioned since outsiders probably cause substantial damages
upon themselves by minimizing the profit of the cartel. This is why Chander and Tulkens
(1997) propose to consider an alternative blocking rule where external firms choose their
strategy individually as a best reply to the coalitional action. This leads to consider the
"partial agreement characteristic function" or, for short, the γ-characteristic function.

Until now, many works have dealt with Cournot oligopoly TU-games. With or with-
out transferable technologies,1 Zhao (1999a,b) shows that the α and β-characteristic
functions lead to the same class of Cournot oligopoly TU-games. When technologies
are transferable, Zhao (1999a) provides a necessary and sufficient condition to establish
the convexity property in case the inverse demand function and cost functions are linear.
Although these games may fail to be convex in general, Norde et al. (2002) show they
are nevertheless totally balanced. When technologies are not transferable, Zhao (1999b)
proves that the core of such games is non-empty if every individual profit function is
continuous and concave.2 Furthermore, Norde et al. (2002) show that these games are
convex in case the inverse demand function and cost functions are linear, and Driessen
and Meinhardt (2005) provide economically meaningful sufficient conditions to guarantee
the convexity property in a more general case.
For the class of Cournot oligopoly TU-games in γ-characteristic function form, Lardon
(2009) shows that the differentiability of the inverse demand function ensures that these
games are well-defined and provides two core existence results. The first result establishes
that such games are balanced, and therefore have a non-empty core, if every individual
profit function is concave. When cost functions are linear, the second result provides a
single-valued allocation rule in the core, called NP(Nash Pro rata)-value, which is charac-
terized by four axioms: efficiency, null firm, monotonicity and non-cooperative fairness.3

In continuation of this work, Lardon (2010) shows that if the inverse demand function
is continuous but not necessarily differentiable, it is always possible to define a Cournot

1We refer to Norde et al. (2002) for a detailed discussion of this distinction.
2Zhao shows that the core is non-empty for general TU-games in β-characteristic function form in

which every strategy set is compact and convex, every utility function is continuous and concave, and
satisfying the strong separability condition that requires that the utility function of a coalition and each of
its members’ utility functions have the same minimizers. Zhao proves that Cournot oligopoly TU-games
satisfy this latter condition.

3We refer to Lardon (2009) for a precise description of these axioms.
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oligopoly interval game4 in γ-characteristic function form. This class of Cournot oligopoly
interval games includes the class of Cournot oligopoly TU-games in γ-characteristic func-
tion form. Lardon considers two extensions of the core, the interval core and the standard
core, and provides a necessary and sufficient condition for the non-emptiness of each of
these core solution concepts.

Unfortunately, few works have dealt with Bertrand oligopoly TU-games. Kaneko
(1978) considers a Bertrand oligopoly situation where a finite number of firms sell a ho-
mogeneous product to a continuum of consumers. Kaneko assumes that a subset of firms
and consumers can cooperate by trading the good among themselves. The main result
establishes that the core is empty when there are more than two firms. Deneckere and
Davidson (1985) consider a Bertrand oligopoly situation with differentiated products in
which the demand system is Shubik’s (1980) and firms operate at a constant and identical
marginal and average cost. They study the equilibrium distribution of prices and profits
among cartels and show that a merger of two cartels implies that all the firms charge
higher prices, and so benefits all the industry. They also prove that these games have a
superadditive property in the sense that a merger of two disjoint cartels results in a joint
after-merger profit for them which is greater than the sum of their pre-merger profits.
For the same model, Huang and Sjöström (2003) provide a necessary and sufficient con-
dition for the non-emptiness of the recursive core5 which requires that the substitutability
parameter must be greater than or equal to some number that depends on the size of
the industry. They conclude that the recursive core is empty when there are more than
ten firms.

As a counterpart to this lack of interest in the study of Bertrand oligopoly TU-games,
we consider the same model as Deneckere and Davidson (1985) and substantially extend
their results. In order to define Bertrand oligopoly TU-games, we consider successively
the α, β and γ-characteristic function as introduced above. As for Cournot oligopoly
TU-games, we show that the α and β-characteristic functions lead to the same class of
Bertrand oligopoly TU-games and we prove that the convexity property holds for this class
of games. Then, following Chander and Tulkens (1997) we consider the γ-characteristic
function where firms react to a deviating coalition by choosing individual best reply strate-
gies. For this class of games, we show that the Equal Division Solution belongs to the
core and we provide a sufficient condition under which such games are convex. This
finding generalizes the superadditivity result of Deneckere and Davidson (1985) and con-
trasts sharply with the negative core existence results of Kaneko (1978) and Huang and
Sjöström (2003). Note that these properties are also satisfied for Cournot oligopoly TU-
games in γ-characteristic function form.

In non-cooperative game theory, an important distinction between a normal form
Cournot oligopoly game and a normal form Bertrand oligopoly game is that the former has
strategic substitutabilities and the latter has strategic complementarities. Thus, although
Cournot and Bertrand oligopoly games are basically different in their non-cooperative

4Interval games are introduced by Branzei et al. (2003).
5The worth of a coalition is defined in a recursive procedure applying the core solution concept to a

"reduced game" in order to predict outsiders’ behavior.
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forms, it appears that their cooperative forms have the same core geometrical structure.6

The remainder of the article is structured as follows. In section 2 we introduce the
model and some notations. Section 3 establishes that the α and β-characteristic func-
tions lead to the same class of Bertrand oligopoly TU-games and shows that the convexity
property holds for this class of games. Section 4 proves that the Equal Division Solution
belongs to the core of Bertrand oligopoly TU-games in γ-characteristic function form and
provides a sufficient condition under which such games are convex. Section 5 gives some
concluding remarks.

2 The model

Consider a Bertrand oligopoly situation (N, (Di, Ci)i∈N ) where N = {1, 2, . . . , n}
is the finite set of firms, Di : Rn+ −→ R, i ∈ N , is firm i’s demand function and
Ci : R+ −→ R+, i ∈ N , is firm i’s cost function. Throughout this article, we assume
that:

(a) the demand system is Shubik’s (1980), i.e.

∀i ∈ N, Di(p1, . . . , pn) = V − pi − r
(
pi −

1

n

∑
j∈N

pj

)
,

where pj is the price charged by firm j, V ∈ R+ is the intercept of demand
and r ∈ R++ is the substitutability parameter.7 The quantity demanded of firm
i’s brand depends on its own price pi and on the difference between pi and the
average price in the industry

∑
j∈N pj/n. This quantity is decreasing with respect

to pi and increasing with respect to pj , j 6= i;

(b) firms operate at a constant and identical marginal and average cost, i.e.

∀i ∈ N, Ci(x) = cx,

where c ∈ R+ is firm i’s marginal and average cost, and x ∈ R+ is the quantity
demanded of firm i’s brand.

Given assumptions (a) and (b), a Bertrand oligopoly situation is summarized by the 4-
tuple (N,V, r, c).

The normal form Bertrand oligopoly game (N, (Xi, πi)i∈N ) associated with the
Bertrand oligopoly situation (N,V, r, c) is defined as follows:

1. the set of firms is N = {1, . . . , n};
6The convexity property ensures that the core is the convex combination of the marginal vectors

(Shapley 1971).
7When r approaches zero, products become unrelated, and when r approaches infinity, products

become perfect substitutes.
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2. for every i ∈ N , the individual strategy set is Xi = R+ where pi ∈ Xi represents
the price charged by firm i;

3. the set of strategy profiles is XN =
∏
i∈N Xi where p = (pi)i∈N is a representa-

tive element ofXN ; for every i ∈ N , the individual profit function πi : XN −→ R
is defined as

πi(p) = Di(p)(pi − c).

As mentioned above, we want to analyze the stability of cartels and the incentive for
merger in Bertrand oligopoly situations. To this end, we have to convert the normal form
Bertrand oligopoly game (N, (Xi, πi)i∈N ) into a Bertrand oligopoly TU-game. This is
the purpose of the following two sections. In the remainder of this section, we recall the
definition of a TU-game, the definition of the core and the notion of a convex TU-game.
We denote by 2N the power set of N and call a subset S ∈ 2N , S 6= ∅, a coalition.
The size s = |S| of coalition S is the number of players in S. A TU-game (N, v)
is a set function v : 2N −→ R with the convention that v(∅) = 0, which assigns a
number v(S) ∈ R to every coalition S ∈ 2N . The number v(S) is the worth of coalition
S. For a fixed set of players N , we denote by GN the set of TU-games where v is a
representative element of GN .
In a TU-game v ∈ GN , every player i ∈ N may receive a payoff σi ∈ R. A vector
σ = (σ1, . . . , σn) is a payoff vector. We say that a payoff vector σ ∈ Rn is acceptable
if for every coalition S ∈ 2N ,

∑
i∈S σi ≥ v(S), i.e. the payoff vector provides a total

payoff to the members of coalition S that is at least as great as its worth. We say that
a payoff vector σ ∈ Rn is efficient if

∑
i∈N σi = v(N), i.e. the payoff vector provides a

total payoff to all the players that is equal to the worth of the grand coalition N . The
core C(v) of a TU-game v ∈ GN is the set of payoff vectors that are both acceptable
and efficient, i.e.

C(v) =

{
σ ∈ Rn : ∀S ∈ 2N ,

∑
i∈S

σi ≥ v(S) and
∑
i∈N

σi = v(N)

}
.

Given a payoff vector in the core, the grand coalition can form and distribute its worth
as payoffs to its members in such a way that no coalition can contest this sharing by
breaking off from the grand coalition.
The notion of a convex TU-game is introduced by Shapley (1971) and provides a natural
way to formalize the idea that it is worthwhile for a player to join larger coalitions. A
TU-game v ∈ GN is convex if one of the following two equivalent conditions is satisfied:

∀S, T ∈ 2N , v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ),

or equivalently,

∀i, j ∈ N, ∀S ⊆ N\{i, j}, v(S ∪ {i})− v(S) ≤ v(S ∪ {i, j})− v(S ∪ {j}) (1)
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The convexity property means that the marginal contribution of a player to some coalition
increases if the coalition which he joins becomes larger. Thus, the convexity property can
be regarded as a strong incentive for large scale cooperation.

3 Bertrand oligopoly TU-games with pessimistic expec-
tations.

In this section, we convert a normal form Bertrand oligopoly game into a Bertrand
oligopoly TU-game in such a way that every coalition has pessimistic expectations on
its feasible profits. Traditionally, there are two main ways of converting a normal form
game into a cooperative game called game in α and β-characteristic function form re-
spectively (Aumann 1959). In the first case, the worth of a coalition is obtained by
computing the profit which its members can guarantee themselves regardless of what
outsiders do. In the second case, the worth of a coalition can be derived by computing
the minimal profit such that outsiders can prevent its members from getting more. First,
we show that the α and β-characteristic functions are well-defined and lead to the same
class of Bertrand oligopoly TU-games. This equality between the α and β-characteristic
functions is a useful property, as it relieves us of the burden of choosing between the α
and β-characteristic functions when describing collusive profits. Then, we prove that the
convexity property holds for this class of games, i.e. when every coalition has pessimistic
expectations on its feasible profits there exists a strong incentive to form the grand coali-
tion.

In order to define the α and β-characteristic functions, we denote by XS =
∏
i∈S Xi

the coalition strategy set of coalition S ∈ 2N and XN\S =
∏
i∈N\S Xi the set of

outsiders’ strategy profiles for which pS = (pi)i∈S and pN\S = (pi)i∈N\S are the
representative elements respectively. For every coalition S ∈ 2N , the coalition profit
function πS : XS ×XN\S −→ R is defined as

πS(pS , pN\S) =
∑
i∈S

πi(p).

Given the normal form Bertrand oligopoly game (N, (Xi, πi)i∈N ), the α and β-characteristic
functions are defined for every coalition S ∈ 2N as

vα(S) = max
pS∈XS

min
pN\S∈XN\S

πS(pS , pN\S) (2)

and

vβ(S) = min
pN\S∈XN\S

max
pS∈XS

πS(pS , pN\S) (3)

respectively. For a fixed set of firms N , we denote by GNo ⊆ GN the set of Bertrand
oligopoly TU-games.
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The following proposition states that Bertrand oligopoly TU-games in β-characteristic
function form are well-defined.

Proposition 3.1 Let (N, (Xi, πi)i∈N ) be a normal form Bertrand oligopoly game. Then,
for every coalition S ∈ 2N , it holds that

vβ(S) = πS(pS , pN\S),

where (pS , pN\S) ∈ XS ×XN\S is given by

∀i ∈ S, pi = max

{
c,

V

2
(
1 + r(n− s)/n

) +
c

2

}
(4)

and

∑
j∈N\S

pj = max

{
0,
n

r

(
c

(
1 + r

(n− s)
n

)
− V

)}
(5)

Proof: Take a coalition S ∈ 2N . Define bS : XN\S −→ XS the best reply function of
coalition S as

∀pN\S ∈ XN\S , ∀pS ∈ XS , πS(bS(pN\S), pN\S) ≥ πS(pS , pN\S) (6)

It follows from (6) that

vβ(S) = min
pN\S∈XN\S

πS(bS(pN\S), pN\S).

In order to compute the worth vβ(S) of coalition S, we have to successively solve the
maximization and the minimization problems defined in (3). First, for every pN\S ∈ XN\S
consider the profit maximization program of coalition S, i.e.

∀pN\S ∈ XN\S , max
pS∈XS

πS(pS , pN\S).

The first-order conditions for a maximum are

∀pN\S ∈ XN\S , ∀i ∈ S,
∂πS
∂pi

(pS , pN\S) = 0,

and imply that the unique maximizer bS(pN\S) is given by

∀pN\S ∈ XN\S , ∀i ∈ S, bi(pN\S) =
V + (r/n)

∑
j∈N\S pj

2
(
1 + r(n− s)/n

) +
c

2
(7)

Then, given bS(pN\S) ∈ XS consider the profit minimization program of the complemen-
tary coalition N\S, i.e.

min
pN\S∈XN\S

πS(bS(pN\S), pN\S).
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The first-order conditions for a minimum are

∀j ∈ N\S, ∂πS
∂pj

(bS(pN\S), pN\S) = 0,

which are equivalent, for all j ∈ N\S, to the following equality

∑
j∈N\S

pj =
n

r

(
c

(
1 + r

(n− s)
n

)
− V

)
.

Since for every i ∈ N , Xi = R+, it follows that any minimizer pN\S ∈ XN\S satisfies

∑
j∈N\S

pj = max

{
0,
n

r

(
c

(
1 + r

(n− s)
n

)
− V

)}
,

which proves (5). By substituting (5) into (7), we deduce that

∀i ∈ S, pi = bi(pN\S) = max

{
c,

V

2
(
1 + r(n− s)/n

) +
c

2

}
,

which proves (4) and completes the proof. �

Proposition 3.1 calls for some comments which will be useful for the sequel.

Remark 3.2

For every coalition S ∈ 2N , it holds that:

1. If V ≤ c
(
1 + r(n− s)/n

)
, then by (4) each member i ∈ S charges prices equal to

their marginal cost, pi = c, and by (5) the outsiders charge a non-negative average
price,

∑
j∈N\S pj/(n − s) ≥ 0. In this case, coalition S obtains a zero profit,

vβ(S) = 0.

2. If V > c
(
1 + r(n − s)/n

)
, then by (4) each member i ∈ S charges prices strictly

greater than their marginal cost, pi > c, and by (5) the outsiders charge a zero
average price,

∑
j∈N\S pj/(n− s) = 0. In this case, coalition S obtains a positive

profit, vβ(S) > 0.

3. The computation of the worth vβ(S) is consistent with the fact that the quantity
demanded of firm i’s brand, i ∈ S, is positive since for every i ∈ S, Di(p) ≥ 0.

By solving successively the minimization and the maximization problems defined in
(2), we can show that Bertrand oligopoly TU-games in α-characteristic function form are
well-defined. The proof is similar to the one for Proposition 3.1, and so it is not detailed.
A useful property is that the α and β-characteristic functions lead to the same class of
Bertrand oligopoly TU-games as enunciated in the following proposition.
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Proposition 3.3 Let (N, (Xi, πi)i∈N ) be a normal form Bertrand oligopoly game. Then,
for every coalition S ∈ 2N , it holds that

vα(S) = vβ(S).

Proof: First, for every coalition S ∈ 2N , it holds that

vα(S) = max
pS∈XS

min
pN\S∈XN\S

πS(pS , pN\S)

≤ min
pN\S∈XN\S

max
pS∈XS

πS(pS , pN\S)

= vβ(S).

Then, it remains to show that for every coalition S ∈ 2N , vβ(S) ≤ vα(S). We distinguish
two cases:
- assume that V ≤ c

(
1 + r(n − s)/n

)
. It follows from point 1 of Remark 3.2 that for

every i ∈ S, pi = c. Hence, for every pN\S ∈ XN\S it holds that πS(pS , pN\S) = 0.
- assume that V > c

(
1 + r(n − s)/n

)
. It follows from point 2 of Remark 3.2 that for

every i ∈ S, pi > c, and pN\S = 0N\S . Since for every i ∈ S, Di is increasing on XN\S
we deduce that for every pN\S ∈ XN\S , πS(pS , pN\S) ≥ πS(pS , 0N\S).
In both cases, it holds that

pN\S ∈ arg min
pN\S∈XN\S

πS(pS , pN\S) (8)

For every coalition S ∈ 2N , it follows from (8) that

vβ(S) = πS(pS , pN\S)

= min
pN\S∈XN\S

πS(pS , pN\S)

≤ max
pS∈XS

min
pN\S∈XN\S

πS(pS , pN\S)

= vα(S),

which completes the proof. �

Proposition 3.3 implies that outsiders’ strategy profile pN\S that best punishes coalition
S as a first mover (α-characteristic function) also best punishes S as a second mover
(β-characteristic function). Zhao (1999b) obtains a similar result for general TU-games
in which every strategy set is compact, every utility function is continuous, and satisfying
the strong separability condition that requires that the utility function of a coalition S
and each of its members’ utility functions have the same minimizers. We can use Zhao’s
result (1999b) in order to prove Proposition 3.3. First, we compactify the strategy sets
by assuming that for every i ∈ N , Xi = [0,p] where p is sufficiently large so that the
maximization/minimization problems defined in (2) and (3) have interior solutions. Then,
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it is clear that every individual profit function πi is continuous. Finally, since the demand
system is symmetric and firms operate at a constant and identical marginal and average
cost, we can verify that Bertrand oligopoly TU-games satisfy the strong separability
condition. In this article, in order to be shorter and perfectly rigorous we prefer to give
a constructive proof of Proposition 3.3 without using Zhao’s result (1999b). We deduce
from Proposition 3.3 the following corollary.

Corollary 3.4 Let vα ∈ GNo and vβ ∈ GNo be Bertrand oligopoly TU-games associated
with the Bertrand oligopoly situation (N,V, r, c). Then

C(vα) = C(vβ).

Now, we want to prove that Bertrand oligopoly TU-games in α or β-characteristic
function form are convex. Proposition 3.1 implies that Bertrand oligopoly TU-games in
β-characteristic function form are symmetric.8 It follows from (4) that the members of a
coalition S ∈ 2N charge identical prices, i.e. for every i ∈ S, there exists ps ∈ R+ such
that pi = ps. It follows from (5) that outsiders charge an average price p[n−s]/(n − s)
where p[n−s] =

∑
j∈N\S pj . Hence, the worth vβ(S) depends only on the size s of

coalition S, i.e. there exists a function fβ : N −→ R such that for every coalition
S ∈ 2N , it holds that

vβ(S) = fβ(s) = s(ps − c)

(
V − ps

(
1 + r

(n− s)
n

)
+
r

n
p[n−s]

)
.

For a symmetric TU-game v ∈ GN for which for every coalition S ∈ 2N , v(S) = f(s),
condition (1) becomes:

∀S ∈ 2N : s ≤ n− 2, f(s+ 1)− f(s) ≤ f(s+ 2)− f(s+ 1) (9)

The following theorem states that the convexity property holds for the class of Bertrand
oligopoly TU-games in β-characteristic function form.

Theorem 3.5 Every Bertrand oligopoly TU-game vβ ∈ GNo is convex.

Proof: We want to prove (9). Take a coalition S ∈ 2N of size s such that s ≤ n − 2.
First, we distinguish two cases:
- assume that V ≤ c

(
1 + r(n − s − 1)/n

)
. It follows from point 1 of Remark 3.2 that

ps+1 = c.
- assume that V > c

(
1 + r(n− s− 1)/n

)
. This implies that V > c

(
1 + r(n− s− 2)/n

)
,

and it follows from point 2 of Remark 3.2 that p[n−s−1] = p[n−s−2] = 0.
In both cases, it holds that

(ps+1 − c)p[n−s−2] = (ps+1 − c)p[n−s−1] (10)

8A TU-game v ∈ GN is symmetric if there exists a function f : N −→ R such that for every coalition
S ∈ 2N , v(S) = f(s).
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Since ps+2 is the unique maximizer for any coalition of size s+ 2 and from (10), it holds
that

fβ(s+ 2) = (s+ 2)(ps+2 − c)

(
V − ps+2

(
1 + r

(n− s− 2)

n

)
+
r

n
p[n−s−2]

)

≥ (s+ 2)(ps+1 − c)

(
V − ps+1

(
1 + r

(n− s− 2)

n

)
+
r

n
p[n−s−2]

)

= (s+ 2)(ps+1 − c)

(
V − ps+1

(
1 + r

(n− s− 2)

n

)
+
r

n
p[n−s−1]

)

= fβ(s+ 1) + (ps+1 − c)

(
V − ps+1

(
1 + r

(n− 2s− 3)

n

)
+
r

n
p[n−s−1]

)
(11)

Moreover, since ps is the unique maximizer for any coalition of size s and p[n−s] ≥
p[n−s−1], we deduce that

fβ(s) = s(ps − c)

(
V − ps

(
1 + r

(n− s)
n

)
+
r

n
p[n−s]

)

≥ s(ps+1 − c)

(
V − ps+1

(
1 + r

(n− s)
n

)
+
r

n
p[n−s]

)

≥ s(ps+1 − c)

(
V − ps+1

(
1 + r

(n− s)
n

)
+
r

n
p[n−s−1]

) (12)

It follows from the expression of fβ(s+ 1) and (12) that

fβ(s+ 1)− fβ(s) ≤ (ps+1 − c)

(
V − ps+1

(
1 + r

(n− 2s− 1)

n

)
+
r

n
p[n−s−1]

)
(13)

We conclude from (11) and (13) that

fβ(s+ 1)− fβ(s) ≤ (ps+1 − c)

(
V − ps+1

(
1 + r

(n− 2s− 1)

n

)
+
r

n
p[n−s−1]

)

≤ (ps+1 − c)

(
V − ps+1

(
1 + r

(n− 2s− 3)

n

)
+
r

n
p[n−s−1]

)
≤ fβ(s+ 2)− fβ(s+ 1),

which completes the proof. �
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The convexity property does not hold in Bertrand oligopoly TU-games in β-characteristic
function form when the firms operate at different marginal costs as illustrated in the
following example.

Example 3.6 Consider the Bertrand oligopoly situation (N,V, r, (ci)i∈N ) where N =
{1, 2, 3}, V = 2, r = 5, c1 = 1, c2 = 3 and c3 = 5. For every coalition S ∈ 2N , the
worth vβ(S) is given in the following table:

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
vβ(S) 0 0 0 3 12 3 12

Note that vβ({1, 2})+vβ({1, 3}) = 15 > 12 = vβ({1, 2, 3})+vβ({1}), and so vβ ∈ GNo
is not convex. �

When the firms have different marginal costs, Driessen et al. (2010) provide a sufficient
condition under which the convexity property holds for Bertrand oligopoly TU-games in
β-characteristic function form.

4 Bertrand oligopoly TU-games with rational expecta-
tions

In this section, we question the resorting to the α and β-characteristic functions in order
to define Bertrand oligopoly TU-games. Indeed, the reaction of outsiders to minimize
the profit of a deviating coalition probably implies substantial damages upon themselves.
As in Chander and Tulkens (1997), we consider the alternative blocking rule for which
outsiders choose their strategy individually as a best reply facing the deviating coalition.
Such an equilibrium is called a partial agreement equilibrium and leads to consider the
"partial agreement characteristic function" or, for short, the γ-characteristic function.
First, we show that the γ-characteristic function is well-defined and that the associated
core is included in the core associated with the β-characteristic function. Then, for this
class of games we prove that the core is non-empty by showing that the Equal Division
Solution belongs to the core and we provide a sufficient condition under which such games
are convex.

Given the normal form Bertrand oligopoly game (N, (Xi, πi)i∈N ) and a coalition
S ∈ 2N , a strategy profile (p∗S , p̃N\S) ∈ XS ×XN\S is a partial agreement equilibrium
under S if

∀pS ∈ XS , πS(p∗S , p̃N\S) ≥ πS(pS , p̃N\S) (14)

and

∀j ∈ N\S, ∀pj ∈ Xj , πj(p
∗
S , p̃N\S) ≥ πj(p∗S , p̃N\(S∪{j}), pj) (15)

The γ-characteristic function is defined for every coalition S ∈ 2N as

12
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vγ(S) = πS(p∗S , p̃N\S),

where (p∗S , p̃N\S) ∈ XS ×XN\S is a partial agreement equilibrium under S.

Throughout this section, in addition to assumptions (a) and (b) we assume that:

(c) the intercept of demand V ∈ R+ is strictly greater than the marginal cost c ∈ R+.

For every partial agreement equilibrium under S, assumption (c) ensures that the quantity
demanded of every firm’s brand is non-negative as discussed later.

Deneckere and Davidson (1985) study normal form Bertrand oligopoly games with
general coalition structures. A coalition structure P is a partition of the set of firms
N , i.e. P = {S1, . . . , Sk}, k ∈ {1, . . . , n}. An element of a coalition structure, S ∈ P,
is called an admissible coalition in P. We denote by Π(N) the set of coalition
structures on N . We introduce a binary relation ≤F on Π(N) defined as follows: we
say that a coalition structure P ′ ∈ Π(N) is finer than a coalition structure P ∈ Π(N)
(or P is coarser than P ′) which we write P ≤F P ′ if for every admissible coalition S in
P ′ there exists an admissible coalition T in P such that T ⊇ S. Note that (Π(N),≤F )
is a complete lattice.
Given P ∈ Π(N), the normal form Bertrand oligopoly game (P, (XS , πS)S∈P) associated
with the Bertrand oligopoly situation (N,V, r, c) is defined as follows:

1. the set of players (or admissible coalitions) is P;

2. for every S ∈ P, the coalition strategy set is XS =
∏
i∈S Xi;

3. for every S ∈ P, the coalition profit function is πS =
∑

i∈S πi.

The following proposition is a compilation of different results in Deneckere and David-
son (1985).

Proposition 4.1 (Deneckere and Davidson 1985)

- Let P ∈ Π(N) be a coalition structure and let (P, (XS , πS)S∈P) be the associated
normal form Bertrand oligopoly game. Then,

1. there exists a unique Nash equilibrium p∗ ∈ XN such that

∀S ∈ P, ∃p∗S ∈ R+ : ∀i ∈ S, p∗i = p∗S .

2. it holds that

∀S, T ∈ P : s ≤ t, p∗S ≤ p∗T ,

with strict inequality if s < t.

13
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- Let P,P ′ ∈ Π(N) be two coalition structures such that P ≤F P ′. Let p∗ ∈ XN and
p∗∗ ∈ XN be the unique Nash equilibria of the normal form Bertrand oligopoly games
(P, (XS , πS)S∈P) and (P ′, (XS , πS)S∈P ′) respectively. Then,

3. it holds that for every i ∈ N , p∗i ≥ p∗∗i .

Point 1 of Proposition 4.1 establishes the existence of a unique Nash equilibrium for every
normal form Bertrand oligopoly game (P, (XS , πS)S∈P) and stipulates that the members
of an admissible coalition S ∈ P charge identical prices. Point 2 of Proposition 4.1 char-
acterizes the distribution of prices within a coalition structure and states that if the size
t of an admissible coalition T ∈ P is greater than or equal to the size s of an admissible
coalition S ∈ P, then the firms in T charge higher prices than the firms in S. Point 3 of
Proposition 4.1 analyses the variations in equilibrium prices according to the coarseness
of the coalition structure and specifies that all the firms charge higher prices when the
coalition structure becomes coarser.

The following proposition states that Bertrand oligopoly TU-games in γ-characteristic
function form are well-defined.

Proposition 4.2 Let (N, (Xi, πi)i∈N ) be a normal form Bertrand oligopoly game. Then,
for every coalition S ∈ 2N , there exists a unique partial agreement equilibrium under S.

Proof: Take a coalition S ∈ 2N and consider the coalition structure PS = {S} ∪
{{j} : j ∈ N\S}. It follows from (14) and (15) that a strategy profile (p∗S , p̃N\S) ∈
XS ×XN\S is a partial agreement equilibrium for the normal form Bertrand oligopoly
game (N, (Xi, πi)i∈N ) if and only if it is a Nash equilibrium for the normal form Bertrand
oligopoly game (PS , (XT , πT )T∈PS ). By point 1 of Proposition 4.1 we conclude that
there exists a unique partial agreement equilibrium under S. �

By solving the maximization problems derived from (14) and (15), the unique partial
agreement equilibrium under S, (p∗S , p̃N\S) ∈ XS ×XN\S , is given by

∀i ∈ S, p∗i =
(V − c)

(
2n(1 + r)− r

)
n

2
(
2n+ r(n+ s− 1)

)(
n+ r(n− s)

)
− r2s(n− s)

+ c (16)

and

∀j ∈ N\S, p̃j =
(V − c)

(
2n(1 + r)− rs

)
n

2
(
2n+ r(n+ s− 1)

)(
n+ r(n− s)

)
− r2s(n− s)

+ c (17)

When c = 0, Deneckere and Davidson (1985) provide equivalent expressions of (16) and
(17). We deduce from (16) and (17) that Bertrand oligopoly TU-games in γ-characteristic
function form are symmetric. It follows from (16) that the members of a coalition S ∈ 2N

charge identical prices, i.e. for every i ∈ S, there exists p∗s ∈ R+ such that p∗i = p∗s.
It follows from (17) that outsiders charge identical prices, i.e. for every j ∈ N\S, there
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exists p̃s ∈ R+ such that p̃j = p̃s. Hence, the worth vγ(S) depends only on the size
s of coalition S, i.e. there exists a function fγ : N −→ R such that for every coalition
S ∈ 2N , it holds that

vγ(S) = fγ(s) = s(p∗s − c)
(
V − p∗s + r

(n− s)
n

(p̃s − p∗s)
)
.

With these notations in mind, Proposition 4.1 calls for some comments which will be
useful for the sequel.

Remark 4.3

1. For every coalition S ∈ 2N , we deduce from point 2 of Proposition 4.1 that
p∗s ≥ p̃s, i.e. the members of coalition S charge higher prices than the out-
siders.

2. For every coalition S, T ∈ 2N such that S ⊆ T , it follows from point 3 of Propo-
sition 4.1 that p∗s ≤ p∗t and p̃s ≤ p̃t.

3. For every coalition S ∈ 2N , let (p∗S , p̃N\S) ∈ XS ×XN\S be the unique partial
agreement equilibrium under S. If p∗s > c and p̃s > c then for every i ∈ N ,
Di(p

∗
S , p̃N\S) ≥ 0. In order to prove this result, for the sake of contradiction,

assume that there exists i ∈ N such that Di(p
∗
S , p̃N\S) < 0, and p∗s > c and

p̃s > c. We distinguish two cases:
- if i ∈ S then we deduce from point 1 of Proposition 4.1 that for every j ∈ S,
Dj(p

∗
S , p̃N\S) = Di(p

∗
S , p̃N\S) < 0. Hence, it follows from p∗s > c that coalition

S obtains a negative profit.
- if i ∈ N\S then it follows from p̃s > c that outsider i obtains a negative profit.
In both cases, since coalition S or every outsider can guarantee a non-negative
profit by charging p∗s = c or p̃s = c respectively, we conclude that (p∗S , p̃N\S) ∈
XS ×XN\S is not a partial agreement equilibrium under S, a contradiction.
By (16) and (17), note that p∗s > c and p̃s > c is satisfied if and only if V >
c, which corresponds to assumption (c). Thus, assumption (c) ensures that the
quantity demanded of every firm’s brand is non-negative.

The following proposition states that the core associated with the γ-characteristic
function is included in the core associated with the β-characteristic function.9

Proposition 4.4 Let vγ ∈ GNo and vβ ∈ GNo be Bertrand oligopoly TU-games associated
with the Bertrand oligopoly situation (N,V, r, c). Then

C(vγ) ⊆ C(vβ).
9Chander and Tulkens (1997) obtain this result for TU-games derived from an economy with multi-

lateral environmental externalities. Although their result can be easily generalized to general TU-games,
for the sake of completeness, we prefer to give the proof of this result for Bertrand oligopoly TU-games.
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Proof: By the definition of the core, we have to show that for every coalition S ∈
2N\{N}, vγ(S) ≥ vβ(S) and vγ(N) = vβ(N). Clearly,

vγ(N) = max
p∈XN

πN (p)

= vβ(N).

Moreover, for every coalition S ∈ 2N\{N}, it holds that

vγ(S) = πS(p∗S , p̃N\S)

= max
pS∈XS

πS(pS , p̃N\S)

≥ min
pN\S∈XN\S

max
pS∈XS

πS(pS , pN\S)

= vβ(S),

which completes the proof. �

Proposition 4.4 is illustrated in the following example.

Example 4.5 Consider the Bertrand oligopoly situation (N,V, r, c) where N = {1, 2, 3},
V = 5, r = 2 and c = 1. For every coalition S ∈ 2N , the worths vβ(S) and vγ(S) are
given in the following table:

s 1 2 3

fβ(s) 0.76 3.33 12

fγ(s) 3.36 7.05 12

It follows that the cores C(vβ) and C(vγ) are given by

C(vβ) =

{
σ ∈ R3 :

∑
i∈N

σi = 12 and ∀i ∈ {1, 2, 3}, 0.76 ≤ σi ≤ 8.67

}
,

and

C(vγ) =

{
σ ∈ R3 :

∑
i∈N

σi = 12 and ∀i ∈ {1, 2, 3}, 3.36 ≤ σi ≤ 4.95

}
.

The 2-simplex below represents these two core configurations:
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σ2 = 0.76

σ2 = 8.67

σ1 = 0.76

σ1 = 8.67

σ3 = 0.76

σ3 = 8.67

σ2 = 3.36σ2 = 4.95

σ1 = 3.36

σ1 = 4.95

σ3 = 3.36

σ3 = 4.95

•

(4, 4, 4)

Player 1

Player 2 Player 3

(12, 0, 0)

(0, 12, 0) (0, 0, 12)

C(vβ)

C(vγ)

Thus, from the Bertrand oligopoly TU-game vβ ∈ GNo to the Bertrand oligopoly TU-
game vγ ∈ GNo , we see that the core is substantially reduced. Two features must be
noticed. The first is that the payoff vector (4, 4, 4) ∈ R3 that distributes the worth of
the grand coalition equally among the players is the center of gravity of both cores. The
second is that the Bertrand oligopoly TU-game vγ ∈ GNo is convex. In the remainder
of this section, we show that these properties hold for some class of Bertrand oligopoly
TU-games. �

Now, we show that a single-valued allocation rule,10 the Equal Division Solution,
belongs to the core of Bertrand oligopoly TU-games in γ-characteristic function form.
For every TU-game v ∈ GN the Equal Division Solution denoted by ED(v) is defined
as

∀i ∈ N, EDi(v) =
v(N)

n
.

The Equal Division Solution distributes the worth of the grand coalition equally among the
players. In order to prove that Bertrand oligopoly TU-games in γ-characteristic function
form have a non-empty core, we show that the Equal Division Solution belongs to the
core as enunciated in the following theorem.

Theorem 4.6 Let vγ ∈ GNo be a Bertrand oligopoly TU-game. Then ED(vγ) ∈ C(vγ).
10A single-valued allocation rule on GN is a mapping ρ : GN −→ Rn that associates to every TU-game

v ∈ GN a payoff vector ρ(v) ∈ Rn.
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Proof: In order to prove that ED(vγ) ∈ C(vγ), we have to show that for every coalition
S ∈ 2N , vγ(N)/n ≥ vγ(S)/s. First, it follows from (16) that p∗n = (V + c)/2. Then,
take a coalition S ∈ 2N . We deduce from points 1 and 2 of Remark 4.3 that

vγ(N)

n
− vγ(S)

s
= (p∗n − c)(V − p∗n)− (p∗s − c)

(
V − p∗s + r

(n− s)
n

(p̃s − p∗s)
)

≥ (p∗n − c)(V − p∗n)− (p∗s − c)(V − p∗s)
= (p∗n − p∗s)(V + c− p∗n − p∗s)
≥ (p∗n − p∗s)(V + c− 2p∗n)

= (p∗n − p∗s)(V + c− V − c)
= 0,

which completes the proof. �

Then, we provide a sufficient condition under which Bertrand oligopoly TU-games in
γ-characteristic function form are convex. For any vγ ∈ GNo , this condition is defined as:

∀s ≤ n− 2,
(s+ 2)(n− s− 2)p̃s+2 + s(n− s)p̃s + 2p∗s+1

2(s+ 1)(n− s− 1)
≥ p̃s+1 (18)

By noting that (s+ 2)(n− s− 2) + s(n− s) + 2 = 2(s+ 1)(n− s− 1), condition (18)
means that the convex combination of p̃s+2, p̃s and p∗s+1 must be greater than or equal
to p̃s+1. It follows from point 1 of Remark 4.3 that p∗s+1 ≥ p̃s+1. It follows from point
2 of Remark 4.3 that p̃s+2 ≥ p̃s+1 ≥ p̃s. Hence, condition (18) holds if the difference
between p̃s+1 and p̃s is sufficiently small. For instance, condition (18) is satisfied in
Example 4.5.

Theorem 4.7 Let vγ ∈ GNo be a Bertrand oligopoly TU-game such that condition (18)
is satisfied. Then vγ is convex.

Proof: We want to prove (9), i.e. fγ(s + 2) + fγ(s) ≥ 2fγ(s + 1). Take a coalition
S ∈ 2N of size s such that s ≤ n − 2. Since p∗s+2 is the unique maximizer for any
coalition of size s+ 2, it holds that

fγ(s+ 2) = (s+ 2)(p∗s+2 − c)
(
V − p∗s+2 + r

(n− s− 2)

n
(p̃s+2 − p∗s+2)

)
≥ (s+ 2)(p∗s+1 − c)

(
V − p∗s+1 + r

(n− s− 2)

n
(p̃s+2 − p∗s+1)

)
.

Similarly, since p∗s is the unique maximizer for any coalition of size s, it holds that

fγ(s) = s(p∗s − c)
(
V − p∗s + r

(n− s)
n

(p̃s − p∗s)
)

≥ s(p∗s+1 − c)
(
V − p∗s+1 + r

(n− s)
n

(p̃s − p∗s+1)

)
.

18

ha
ls

hs
-0

05
44

05
6,

 v
er

si
on

 1
 - 

7 
D

ec
 2

01
0



For notational convenience, for all s ≤ n − 2, we denote by A(s) = (s + 2)(n − s −
2)p̃s+2 + s(n− s)p̃s + 2p∗s+1, and so condition (18) becomes

∀s ≤ n− 2, A(s) ≥ 2(s+ 1)(n− s− 1)p̃s+1 (19)

By the above two inequalities and (19) it holds that

fγ(s+ 2) + fγ(s) ≥ (p∗s+1 − c)
(

2(s+ 1)(V − p∗s+1) +
r

n

(
A(s)− 2(s+ 1)(n− s− 1)p∗s+1

))
≥ (p∗s+1 − c)

(
2(s+ 1)(V − p∗s+1) +

r

n

(
2(s+ 1)(n− s− 1)(p̃s+1 − p∗s+1)

))
= 2(s+ 1)(p∗s+1 − c)

(
V − p∗s+1 + r

(n− s− 1)

n
(p̃s+1 − p∗s+1)

)
= 2fγ(s+ 1),

which completes the proof. �

Note that condition (18) is not necessary for the convexity property as illustrated in the
following example.

Example 4.8 Consider the Bertrand oligopoly situation (N,V, r, c) whereN = {1, 2, 3, 4},
V = 5, r = 6 and c = 0. For every coalition S ∈ 2N , the worth vγ(S) is given in the
following table:

s 1 2 3 4

fγ(s) 3.25 6.96 12.58 25

Although vγ ∈ GNo is convex, condition (18) does not hold for s = 2 since A(2)− 2(2 +
1)(n− 2− 1)p̃2+1 = −0.03 where A(s) is defined as in the proof of Theorem 4.7. �

5 Concluding remarks

In this article, we have focused on Bertrand oligopoly situations where the demand system
is Shubik’s (1980) and firms operate at a constant and identical marginal and average
cost. In order to define Bertrand oligopoly TU-games we have considered successively
the α, β and γ-characteristic functions and we have showed that these functions are
well-defined. The first two are suggested by Aumann (1959) and the last one is proposed
by Chander and Tulkens (1997). First, we have showed that the α and β-characteristic
functions lead to the same class of Bertrand oligopoly TU-games. Moreover, we have
proved that the convexity property holds for this class of games. Then, for the class of
Bertrand oligopoly TU-games in γ-characteristic function form, we have showed that the
Equal Division Solution belongs to the core and we have provided a sufficient condition
under which such games are convex, which substantially extends the superadditivity result
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of Deneckere and Davidson (1985) and contrasts sharply with the negative core existence
results of Kaneko (1978) and Huang and Sjöström (2003). Thus, although Cournot and
Bertrand oligopoly games are basically different in their non-cooperative forms, it appears
that their cooperative forms have the same core geometrical structure. Hence, it follows
from the convexity property that there exists a strong incentive for large scale cooperation
in such games.
We have directly assumed that products are differentiated. Two other cases can be con-
sidered: when products are unrelated (r = 0) and when products are perfect substitutes
(r = +∞).
In the first case, the quantity demanded of firm i’s brand only depends on its own price.
Hence, the profit of a coalition does not depend on outsiders’ behavior, and so the α,
β and γ-characteristic functions are equal. Moreover, for every coalition S ∈ 2N , the
coalition profit function πS is separable, i.e.

∀xS ∈ XS , πS(xS) =
∑
i∈S

πi(xi).

Thus, for every coalition S ∈ 2N the unique Nash equilibrium p∗ ∈ XN of the normal form
Bertrand oligopoly game (N, (Xi, πi)i∈N ) is also the unique partial agreement equilibrium
under S. Hence, Bertrand oligopoly TU-games are additive,11 and so (v({i}))i∈N ∈ Rn
is the unique core element.
In the second case, firms sell a homogeneous product. It follows that firm i’s quantity
demanded is positive if and only if it charges the smallest price. Since firms operate at
a constant and identical marginal and average cost, for every coalition S ∈ 2N\{N},
outsiders charge prices equal to their marginal cost,12 and so coalition S obtains a zero
profit. By charging the monopoly price, the grand coalition obtains a non-negative profit,
and we conclude that the core is equal to the set of imputations.

Other alternative blocking rules can be considered. For instance, firms in N\S can
choose coalitional rather than individual best reply strategies. In this case, the worth of
coalition S is given by the unique Nash equilibrium of the normal form Bertrand duopoly
game ({S,N\S}, (XT , πT )T∈{S,N\S}). However, the following example shows that the
non-emptiness of the core crucially depends on the substitutability parameter.

Example 5.1 Consider the two Bertrand oligopoly situations (N,V, r1, c) and (N,V, r2, c)
where N = {1, 2, 3, 4}, V = 1, r1 = 1, r2 = 3 and c = 0. The two Bertrand oligopoly
TU-games associated with the Bertrand oligopoly situations (N,V, r1, c) and (N,V, r2, c)
are symmetric, and so the worths of every coalition S ∈ 2N are summarized by the func-
tions f r1 : N −→ R and f r2 : N −→ R respectively. The worths of every coalition
S ∈ 2N are given in the following table:

s 1 2 3 4

f r1(s) 0.252 0.480 0.719 1

f r2(s) 0.242 0.408 0.622 1

11A TU-game v ∈ GN is additive if for every coalition S ∈ 2N , v(S) =
∑
i∈S v({i}).

12This outsiders’ behavior is consistent with the α, β and γ-characteristic functions.
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For the Bertrand oligopoly TU-game associated with the Bertrand oligopoly situation
(N,V, r1, c), we have 4f r1(1) = 1.008 > 1 = f r1(4), and so the core is empty. For
the one associated with the Bertrand oligopoly situation (N,V, r2, c), the payoff vector
(0.25, 0.25, 0.25, 0.25) ∈ R4 is a core element, and so the core is non-empty. �

According to Example 5.1, it is easier to obtain a non-empty core when the substitutability
parameter increases. A similar argument is used by Huang and Sjöström (2003) in order
to guarantee the non-emptiness of the recursive core. They prove that the recursive core
is non-empty if and only if the substitutability parameter is greater than or equal to some
number that depends on the size of the industry. When firms in N\S choose coalitional
best reply strategies, we expect that a similar condition would ensure the non-emptiness
of the core. This is left for future work.
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