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ABSTRACT
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1. Introduction

Numerous studies in the last two decades have asked whether stock returns can be predicted

by financial variables such as the dividend-price ratio, the earnings-price ratio, and various

measures of the interest rate.1 The econometric method used in a typical study is an ordinary

least squares (OLS) regression of stock returns onto the lag of the financial variable. The

main finding of such regressions is that the t-statistic is typically greater than two and

sometimes greater than three. Using conventional critical values for the t-test, one would

conclude that there is strong evidence for the predictability of returns.

This statistical inference of course relies on first-order asymptotic distribution theory,

where the autoregressive root of the predictor variable is modeled as a fixed constant less than

one. First-order asymptotics implies that the t-statistic is approximately standard normal in

large samples. However, both simulation and analytical studies have shown that the large-

sample theory provides a poor approximation to the actual finite-sample distribution of test

statistics when the predictor variable is persistent and its innovations are highly correlated

with returns (see Elliott and Stock, 1994; Mankiw and Shapiro, 1986; Stambaugh, 1999).

To be concrete, suppose the log dividend-price ratio is used to predict returns. Even if we

were to know on prior grounds that the dividend-price ratio is stationary, a time-series plot

(more formally, a unit root test) shows that it is highly persistent, much like a nonstationary

process. Since first-order asymptotics fails when the regressor is nonstationary, it provides

a poor approximation in finite samples when the regressor is persistent. Elliott and Stock

(1994, Table 1) provide Monte Carlo evidence which suggests that the size distortion of the

one-sided t-test is approximately 20 percentage points for plausible parameter values and

sample sizes in the dividend-price ratio regression.2 They propose an alternative asymptotic

1See, for example, Campbell (1987), Campbell and Shiller (1988), Fama and French (1988, 1989), Fama
and Schwert (1977), Hodrick (1992), and Keim and Stambaugh (1986). The focus of these papers, as well
as this one, is classical hypothesis testing. Other approaches include out-of-sample forecasting (Goyal and
Welch, 2003) and Bayesian inference (Kothari and Shanken, 1997; Stambaugh, 1999).

2We report their result for the one-sided t-test at the 10% level when the sample size is 100, the regressor
follows an AR(1) with an autoregressive coefficient of 0.975, and the correlation between the innovations to
the dependent variable and the regressor is −0.9.
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framework in which the regressor is modeled as having a local-to-unit root, an autoregressive

root that is within 1/T -neighborhood of one where T denotes the sample size. Local-to-

unity asymptotics provides an accurate approximation to the finite-sample distribution of

test statistics when the predictor variable is persistent.

These econometric problems have led some recent papers to reexamine (and even cast

serious doubt on) the evidence for predictability using tests that are valid even if the predictor

variable is highly persistent or contains a unit root. Torous et al. (2004) develop a test

procedure, extending the work of Richardson and Stock (1989) and Cavanagh et al. (1995),

and find evidence for predictability at short horizons but not at long horizons. By testing

the stationarity of long-horizon returns, Lanne (2002) concludes that stock returns cannot

be predicted by a highly persistent predictor variable. Building on the finite-sample theory

of Stambaugh (1999), Lewellen (2004) finds some evidence for predictability with valuation

ratios.

A difficulty with understanding the rather large literature on predictability is the sheer

variety of test procedures that have been proposed, which have led to different conclusions

about the predictability of returns. The first contribution of this paper is to provide an

understanding of the various test procedures and their empirical implications within the

unifying framework of statistical optimality theory. When the degree of persistence of the

predictor variable is known, there is a uniformly most powerful (UMP) test conditional on

an ancillary statistic. Although the degree of persistence is not known in practice, this

provides a useful benchmark for thinking about the relative power advantages of the various

test procedures. In particular, Lewellen’s (2004) test is UMP when the predictor variable

contains a unit root.

Our second contribution is to propose a new Bonferroni test, based on the infeasible

UMP test, that has three desirable properties for empirical work. First, the test can be

implemented with standard regression methods, and inference can be made through an

intuitive graphical output. Second, the test is asymptotically valid under fairly general
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assumptions on the dynamics of the predictor variable (i.e., a finite-order autoregression

with the largest root less than, equal to, or even greater than one) and on the distribution of

the innovations (i.e., even heteroskedastic). Finally, the test is more efficient than previously

proposed tests in the sense of Pitman efficiency (i.e., requires fewer observations for inference

at the same level of power); in particular, it is more powerful than the Bonferroni t-test of

Cavanagh et al. (1995).

The intuition for our approach, similar to that underlying the work by Lewellen (2004)

and Torous et al. (2004), is as follows. A regression of stock returns onto a lagged financial

variable has low power because stock returns are extremely noisy. If we can eliminate some

of this noise, we can increase the power of the test. When the innovations to returns and

the predictor variable are correlated, we can subtract off the part of the innovation to the

predictor variable that is correlated with returns to obtain a less noisy dependent variable

for our regression. Of course, this procedure requires us to measure the innovation to the

predictor variable. When the predictor variable is highly persistent, it is possible to do so in

a way that retains power advantages over the conventional regression.

Although tests derived under local-to-unity asymptotics, such as Cavanagh et al. (1995) or

the one proposed in this paper, lead to valid inference, they can be somewhat more difficult

to implement than the conventional t-test. A researcher might therefore be interested in

knowing when the conventional t-test leads to valid inference. Our third contribution is to

develop a simple pretest based on the confidence interval for the largest autoregressive root

of the predictor variable. If the confidence interval indicates that the predictor variable is

sufficiently stationary, for a given level of correlation between the innovations to returns and

the predictor variable, one can proceed with inference based on the t-test with conventional

critical values.

Our final contribution is empirical. We apply our methods to annual, quarterly, and

monthly U.S. data, looking first at dividend-price and smoothed earnings-price ratios. Using

the pretest, we find that these valuation ratios are sufficiently persistent for the conventional
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t-test to be misleading (Stambaugh, 1999). Using our test that is robust to the persistence

problem, we find that the earnings-price ratio reliably predicts returns at all frequencies

in the sample period 1926–2002. The dividend-price ratio also predicts returns at annual

frequency, but we cannot reject the null hypothesis at quarterly and monthly frequencies.

In the post-1952 sample, we find that the dividend-price ratio predicts returns at all

frequencies if its largest autoregressive root is less than or equal to one. However, since

statistical tests do not reject an explosive root for the dividend-price ratio, we have evidence

for return predictability only if we are willing to rule out an explosive root based on prior

knowledge. This reconciles the “contradictory” findings by Torous et al. (2004, Table 3),

who report that the dividend-price ratio does not predict monthly returns in the postwar

sample, and Lewellen (2004, Table 2), who reports strong evidence for predictability.

Finally, we consider the short-term nominal interest rate and the long-short yield spread

as predictor variables in the sample period 1952–2002. Our pretest indicates that the con-

ventional t-test is valid for these interest rate variables since their innovations have low

correlation with returns (Torous et al., 2004). Using either the conventional t-test or our

more generally valid test procedure, we find strong evidence that these variables predict

returns.

The rest of the paper is organized as follows. In Section 2, we review the predictive

regressions model and discuss the UMP test of predictability when the degree of persistence

of the predictor variable is known. In Section 3, we review local-to-unity asymptotics in

the context of predictive regressions, then introduce the pretest for determining when the

conventional t-test leads to valid inference. We also compare the asymptotic power and

finite-sample size of various tests of predictability. We find that our Bonferroni test based on

the UMP test has good power. In Section 4, we apply our test procedure to U.S. equity data

and reexamine the empirical evidence for predictability. We reinterpret previous empirical

studies within our unifying framework. Section 5 concludes. A separate note (Campbell and

Yogo, 2005), available from the authors’ webpages, provides self-contained user guides and
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tables necessary for implementing the econometric methods in this paper.

2. Predictive regressions

2.1. The regression model

Let rt denote the excess stock return in period t, and let xt−1 denote a variable observed

at t − 1 which could have the ability to predict rt. For instance, xt−1 could be the log

dividend-price ratio at t− 1. The regression model that we consider is

rt = α+ βxt−1 + ut, (1)

xt = γ + ρxt−1 + et, (2)

with observations t = 1, . . . , T . The parameter β is the unknown coefficient of interest. We

say that the variable xt−1 has the ability to predict returns if β �= 0. The parameter ρ is

the unknown degree of persistence in the variable xt. If |ρ| < 1 and fixed, xt is integrated of

order zero, denoted as I(0). If ρ = 1, xt is integrated of order one, denoted as I(1).

We assume that the innovations are independently and identically distributed (i.i.d.)

normal with a known covariance matrix.

Assumption 1 (Normality). wt = (ut, et)
′ is independently distributed N(0,Σ), where

Σ =

⎡⎢⎣ σ2
u σue

σue σ2
e

⎤⎥⎦
is known. x0 is fixed and known.

This is a simplifying assumption that we maintain throughout the paper in order to

facilitate discussion and to focus on the essence of the problem. It can be relaxed to more

realistic distributional assumptions as demonstrated in Appendix A. We also assume that

6



the correlation between the innovations, δ = σue/(σuσe), is negative. This assumption is

without loss of generality since the sign of β is unrestricted; redefining the predictor variable

as −xt flips the signs of both β and δ.

The joint log likelihood for the regression model is given by

L(β, ρ, α, γ) = − 1

1 − δ2

T∑
t=1

[
(rt − α− βxt−1)

2

σ2
u

− 2δ
(rt − α− βxt−1)(xt − γ − ρxt−1)

σuσe

+
(xt − γ − ρxt−1)

2

σ2
e

]
, (3)

up to a multiplicative constant of 1/2 and an additive constant. The focus of this paper is

the null hypothesis β = β0. We consider two types of alternative hypotheses. The first is

the simple alternative β = β1, and the second is the one-sided composite alternative β > β0.

The hypothesis testing problem is complicated by the fact that ρ is an unknown nuisance

parameter.

2.2. The t-test

One way to test the hypothesis of interest in the presence of the nuisance parameter ρ is

through the maximum likelihood ratio test (LRT). Let xµ
t−1 = xt−1 − T−1

∑T
t=1 xt−1 be the

de-meaned predictor variable. Let β̂ be the OLS estimator of β, and let

t(β0) =
β̂ − β0

σu(
∑T

t=1 x
µ2
t−1)

−1/2
(4)

be the associated t-statistic. The LRT rejects the null if

max
β,ρ,α,γ

L(β, ρ, α, γ) − max
ρ,α,γ

L(β0, ρ, α, γ) = t(β0)
2 > C, (5)

for some constant C. (With a slight abuse of notation, we use C to denote a generic constant

throughout the paper.) In other words, the LRT corresponds to the t-test.
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Note that we would obtain the same test (5) starting from the marginal likelihood

L(β, α) = −∑T
t=1(rt − α − βxt−1)

2. The LRT can thus be interpreted as a test that ig-

nores information contained in Eq. (2) of the regression model. Although the LRT is not

derived from statistical optimality theory, it has desirable large-sample properties when xt

is I(0) (see Cox and Hinkley, 1974, Chapter 9). For instance, the t-statistic is asymptotically

pivotal, that is, its asymptotic distribution does not depend on the nuisance parameter ρ.

The t-test is therefore a solution to the hypothesis testing problem when xt is I(0) and ρ is

unknown, provided that the large-sample approximation is sufficiently accurate.

2.3. The optimal test when ρ is known

To simplify the discussion, assume for the moment that α = γ = 0. Now suppose that ρ

were known a priori. Since β is then the only unknown parameter, we denote the likelihood

function (3) as L(β). The Neyman-Pearson Lemma implies that the most powerful test

against the simple alternative β = β1 rejects the null if

σ2
u(1 − δ2)(L(β1) − L(β0)) = 2(β1 − β0)

T∑
t=1

xt−1[rt − βue(xt − ρxt−1)]

−(β2
1 − β2

0)
T∑

t=1

x2
t−1 > C, (6)

where βue = σue/σ
2
e . Since the optimal test statistic is a weighted sum of two minimal

sufficient statistics with the weights depending on the alternative β1, there is no UMP test.

However, the second statistic
∑T

t=1 x
2
t−1 is ancillary, that is, its distribution does not

depend on β. Hence, it is natural to restrict ourselves to tests that condition on the ancillary

statistic. Since the second term in Eq. (6) can then be treated as a “constant,” the optimal

conditional test rejects the null if

T∑
t=1

xt−1[rt − βue(xt − ρxt−1)] > C, (7)
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for any alternative β1 > β0. Therefore, the optimal conditional test is UMP against one-

sided alternatives when ρ is known. It is convenient to recenter and rescale test statistic (7)

so that it has a standard normal distribution under the null. The UMP test can then be

expressed as ∑T
t=1 xt−1[rt − β0xt−1 − βue(xt − ρxt−1)]

σu(1 − δ2)1/2(
∑T

t=1 x
2
t−1)

1/2
> C. (8)

Note that this inequality is reversed for left-sided alternatives β1 < β0.

Now suppose that ρ is known, but α and γ are unknown nuisance parameters. Then

within the class of invariant tests, the test based on the statistic

Q(β0, ρ) =

∑T
t=1 x

µ
t−1[rt − β0xt−1 − βue(xt − ρxt−1)]

σu(1 − δ2)1/2(
∑T

t=1 x
µ2
t−1)

1/2
(9)

is UMP conditional on the ancillary statistic
∑T

t=1 x
µ2
t−1. For simplicity, we refer to this

statistic as the Q-statistic, and the (infeasible) test based on this statistic as the Q-test.

Note that the only change from statistic (8) to (9) is that xt−1 has been replaced by its

de-meaned counterpart xµ
t−1.

The class of invariant tests refers to those tests whose test statistics do not change with

additive shifts in rt and xt (see Lehmann, 1986, Chapter 6). Or equivalently, the value of

the test statistic is the same regardless of the values of α and γ. (The reader can verify

that the value of the Q-statistic does not depend on α and γ.) The reason to restrict

attention to invariant tests is that the magnitudes of α and γ depend on the units in which

the variables are measured. For instance, there is an arbitrary scaling factor involved in

computing the dividend-price ratio, which results in an arbitrary constant shifting the level

of the log dividend-price ratio. Since we do not want inference to depend on the units in

which the variables are measured, it is natural to restrict attention to invariant tests.

When β0 = 0, Q(β0, ρ) is the t-statistic that results from regressing rt − βue(xt − ρxt−1)

onto a constant and xt−1. It collapses to the conventional t-statistic (4) when δ = 0. Since

et +γ = xt −ρxt−1, knowledge of ρ allows us to subtract off the part of innovation to returns
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that is correlated with the innovation to the predictor variable, resulting in a more powerful

test. If we let ρ̂ denote the OLS estimator of ρ, then the Q-statistic can also be written as

Q(β0, ρ) =
(β̂ − β0) − βue(ρ̂− ρ)

σu(1 − δ2)1/2(
∑T

t=1 x
µ2
t−1)

−1/2
. (10)

Drawing on the work of Stambaugh (1999), Lewellen (2004) motivates the statistic by in-

terpreting the term βue(ρ̂ − ρ) as the “finite-sample bias” of the OLS estimator. Assuming

that ρ ≤ 1, Lewellen tests the predictability of returns using the statistic Q(β0, 1).

3. Inference with a persistent regressor

Fig. 1 is a time-series plot of the log dividend-price ratio for the NYSE/AMEX value-weighted

index and the log smoothed earnings-price ratio for the S&P 500 index at quarterly frequency.

Following Campbell and Shiller (1988), earnings are smoothed by taking a backwards moving

average over ten years. Both valuation ratios are persistent and even appear to be nonsta-

tionary, especially toward the end of the sample period. The 95% confidence intervals for ρ

are [0.957, 1.007] and [0.939, 1.000] for the dividend-price ratio and the earnings-price ratio,

respectively (see Panel A of Table 4).

The persistence of financial variables typically used to predict returns has important im-

plications for inference about predictability. Even if the predictor variable is I(0), first-order

asymptotics can be a poor approximation in finite samples when ρ is close to one because of

the discontinuity in the asymptotic distribution at ρ = 1 (note that σ2
x = σ2

e/(1−ρ2) diverges

to infinity at ρ = 1). Inference based on first-order asymptotics could therefore be invalid

due to size distortions. The solution is to base inference on more accurate approximations to

the actual (unknown) sampling distribution of test statistics. There are two main approaches

that have been used in the literature.

The first approach is the exact finite-sample theory under the assumption of normality

(i.e., Assumption 1). This is the approach taken by Evans and Savin (1981, 1984) for
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autoregression and Stambaugh (1999) for predictive regressions. The second approach is

local-to-unity asymptotics, which has been applied successfully to approximate the finite-

sample behavior of persistent time series in the unit root testing literature; see Stock (1994)

for a survey and references. Local-to-unity asymptotics has been applied to the present

context of predictive regressions by Elliott and Stock (1994), who derive the asymptotic

distribution of the t-statistic. This has been extended to long-horizon t-tests by Torous

et al. (2004).

This paper uses local-to-unity asymptotics. For our purposes, there are two practical

advantages to local-to-unity asymptotics over the exact Gaussian theory. The first advantage

is that the asymptotic distribution of test statistics does not depend on the sample size, so

the critical values of the relevant test statistics do not have to be recomputed for each sample

size. (Of course, we want to check that the large-sample approximations are accurate, which

we do in Section 3.6.) The second advantage is that the asymptotic theory provides large-

sample justification for our methods in empirically realistic settings that allow for short-run

dynamics in the predictor variable and heteroskedasticity in the innovations.

Although local-to-unity asymptotics allows us to considerably relax the distributional

assumptions, we continue to work in the text of the paper with the simple model (1) and

(2) under the assumption of normality (i.e., Assumption 1) to keep the discussion simple.

Appendix A works out the more general case when the predictor variable is a finite-order

autoregression and the innovations are a martingale difference sequence with finite fourth

moments.

3.1. Local-to-unity asymptotics

Local-to-unity asymptotics is an asymptotic framework where the largest autoregressive root

is modeled as ρ = 1 + c/T with c a fixed constant. Within this framework, the asymptotic

distribution theory is not discontinuous when xt is I(1) (i.e., c = 0). This device also allows

xt to be stationary but nearly integrated (i.e., c < 0) or even explosive (i.e., c > 0). For

11



the rest of the paper, we assume that the true process for the predictor variable is given by

Eq. (2), where c = T (ρ− 1) is fixed as T becomes arbitrarily large.

An important feature of the nearly integrated case is that sample moments (e.g., mean

and variance) of the process xt do not converge to a constant probability limit. However,

when appropriately scaled, these objects converge to functionals of a diffusion process. Let

(Wu(s),We(s))
′ be a two-dimensional Weiner process with correlation δ. Let Jc(s) be the

diffusion process defined by the stochastic differential equation dJc(s) = cJc(s)ds + dWe(s)

with initial condition Jc(0) = 0. Let Jµ
c (s) = Jc(s) −

∫
Jc(r)dr, where integration is over

[0, 1] unless otherwise noted. Let ⇒ denote weak convergence in the space D[0, 1] of cadlag

functions (see Billingsley, 1999, Chapter 3).

Under first-order asymptotics, the t-statistic (4) is asymptotically normal. Under local-

to-unity asymptotics, the t-statistic has the null distribution

t(β0) ⇒ δ
τc
κc

+ (1 − δ2)1/2Z, (11)

where κc = (
∫
Jµ

c (s)2ds)1/2, τc =
∫
Jµ

c (s)dWe(s), and Z is a standard normal random variable

independent of (We(s), Jc(s)) (see Elliott and Stock, 1994). Note that the t-statistic is not

asymptotically pivotal. That is, its asymptotic distribution depends on an unknown nuisance

parameter c through the random variable τc/κc, which makes the test infeasible.

The Q-statistic (9) is normal under the null. However, this test is also infeasible since

it requires knowledge of ρ (or equivalently c) to compute the test statistic. Even if ρ were

known, the statistic (9) also requires knowledge of the nuisance parameters in the covariance

matrix Σ. However, a feasible version of the statistic that replaces the nuisance parameters

in Σ with consistent estimators has the same asymptotic distribution. Therefore, there is no

loss of generality in assuming knowledge of these parameters for the purposes of asymptotic

theory.
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3.2. Relation to first-order asymptotics and a simple pretest

In this section, we first discuss the relation between first-order and local-to-unity asymp-

totics. We then develop a simple pretest to determine whether inference based on first-order

asymptotics is reliable.

In general, the asymptotic distribution of the t-statistic (11) is nonstandard because of

its dependence on τc/κc. However, the t-statistic is standard normal in the special case

δ = 0. The t-statistic should therefore be approximately normal when δ ≈ 0. Likewise, the

t-statistic should be approximately normal when c � 0 because first-order asymptotics is

a satisfactory approximation when the predictor variable is stationary. Formally, Phillips

(1987, Theorem 2) shows that τc/κc ⇒ Z̃ as c→ −∞, where Z̃ is a standard normal random

variable independent of Z.

Fig. 2 is a plot of the asymptotic size of the nominal 5% one-sided t-test as a function of

c and δ. More precisely, we plot

p(c, δ; 0.05) = Pr

(
δ
τc
κc

+ (1 − δ2)1/2Z > z0.05

)
, (12)

where z0.05 = 1.645 denotes the 95th percentile of the standard normal distribution. The

t-test that uses conventional critical values has approximately the correct size when δ is

small in absolute value or c is large in absolute value.3 The size distortion of the t-test

peaks when δ = −1 and c ≈ 1. The size distortion arises from the fact that the distribution

of τc/κc is skewed to the left, which causes the distribution of the t-statistic to be skewed

to the right when δ < 0. This causes a right-tailed t-test that uses conventional critical

values to over-reject, and a left-tailed test to under-reject. When the predictor variable is a

valuation ratio (e.g., the dividend-price ratio), δ ≈ −1 and the hypothesis of interest is β = 0

against the alternative β > 0. Thus, we might worry that the evidence for predictability is

a consequence of size distortion.

3The fact that the t-statistic is approximately normal for c 	 0 corresponds to asymptotic results for
explosive AR(1) with Gaussian errors. See Phillips (1987) for a discussion.
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In Table 1, we tabulate the values of c ∈ (cmin, cmax) for which the size of the right-tailed

t-test exceeds 7.5%, for selected values of δ. For instance, when δ = −0.95, the nominal

5% t-test has asymptotic size greater than 7.5% if c ∈ (−79.318, 8.326). The table can be

used to construct a pretest to determine whether inference based on the conventional t-test

is sufficiently reliable.

Suppose a researcher is willing to tolerate an actual size of up to 7.5% for a nominal 5%

test of predictability. To test the null hypothesis that the actual size exceeds 7.5%, we first

construct a 100(1 − α1)% confidence interval for c and estimate δ using the residuals from

regressions (1) and (2).4 We reject the null if the confidence interval for c lies strictly below

(or above) the region of the parameter space (cmin, cmax) where size distortion is large. The

relevant region (cmin, cmax) is determined by Table 1, using the value of δ that is closest to

the estimated correlation δ̂. As emphasized by Elliott and Stock (1994), the rejection of the

unit root hypothesis c = 0 is not sufficient to assure that the size distortion is acceptably

small. Asymptotically, this pretest has size α1.

In our empirical application, we construct the confidence interval for c by applying the

method of confidence belts as suggested by Stock (1991). The basic idea is to compute a

unit root test statistic in the data and to use the known distribution of that statistic under

the alternative to construct the confidence interval for c. A relatively accurate confidence

interval can be constructed by using a relatively powerful unit root test (Elliott and Stock,

2001). We therefore use the Dickey-Fuller generalized least squares (DF-GLS) test of Elliott

et al. (1996), which is more powerful than the commonly used augmented Dickey-Fuller

(ADF) test. The idea behind the DF-GLS test is that it exploits the knowledge ρ ≈ 1 to

obtain a more efficient estimate of the intercept γ.5 We refer to Campbell and Yogo (2005)

for a detailed description of how to construct the confidence interval for c using the DF-GLS

4When the predictor variable is generalized to an AR(p), the residual is that of regression (23) in Appendix
A.

5A note of caution regarding the DF-GLS confidence interval is that the procedure might not be valid
when ρ � 1 (since it is based on the assumption that ρ ≈ 1). In practical terms, this method should not be
used on variables that would not ordinarily be tested for an autoregressive unit root.
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statistic.

3.3. Making tests feasible by the Bonferroni method

As discussed in Section 3.1, both the t-test and the Q-test are infeasible since the procedures

depend on an unknown nuisance parameter c, which cannot be estimated consistently. Intu-

itively, the degree of persistence, controlled by the parameter c, influences the distribution

of test statistics that depend on the persistent predictor variable. This must be accounted

for by adjusting either the critical values of the test (e.g., t-test) or the value of the test

statistic itself (e.g., Q-test). Cavanagh et al. (1995) discuss several (sup-bound, Bonferroni,

and Scheffe-type) methods of making tests that depend on c feasible.6 Here, we focus on the

Bonferroni method.

To construct a Bonferroni confidence interval, we first construct a 100(1−α1)% confidence

interval for ρ, denoted as Cρ(α1). (We parameterize the degree of persistence by ρ rather

than c since this is the more natural choice in the following.) For each value of ρ in the

confidence interval, we then construct a 100(1 − α2)% confidence interval for β given ρ,

denoted as Cβ|ρ(α2). A confidence interval that does not depend on ρ can be obtained by

Cβ(α) =
⋃

ρ∈Cρ(α1)

Cβ|ρ(α2). (13)

By Bonferroni’s inequality, this confidence interval has coverage of at least 100(1 − α)%,

where α = α1 + α2.

In principle, one can use any unit root test in the Bonferroni procedure to construct the

confidence interval for ρ. Based on work in the unit root literature, reasonable choices are

the ADF test and the DF-GLS test. The DF-GLS test has the advantage of being more

powerful than the ADF test, resulting in a tighter confidence interval for ρ.

In the Bonferroni procedure, one can also use either the t-test or the Q-test to construct

6These are standard parametric approaches to the problem. For a nonparametric approach, see Campbell
and Dufour (1991, 1995).
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the confidence interval for β given ρ. We know that the Q-test is a more powerful test than

the t-test when ρ is known. In fact, it is UMP conditional on an ancillary statistic in that

situation. This means that the conditional confidence interval Cβ|ρ(α2) based on the Q-test

is tighter than that based on the t-test at the true value of ρ. Without numerical analysis,

however, it is not clear whether the Q-test retains its power advantages over the t-test at

other values of ρ in the confidence interval Cρ(α1).

In practice, the choice of the particular tests in the Bonferroni procedure should be

dictated by the issue of power. Cavanagh et al. (1995) propose a Bonferroni procedure

based on the ADF test and the t-test. Torous et al. (2004) have applied this procedure

to test for predictability in U.S. data. In this paper, we examine a Bonferroni procedure

based on the DF-GLS test and the Q-test. While there is no rigorous justification for our

choice, our Bonferroni procedure turns out to have better power properties, which we show

in Section 3.5.

Because the Q-statistic is normally distributed, and the estimate of β declines linearly in

ρ when δ is negative, the confidence interval for our Bonferroni Q-test is easy to compute.

The Bonferroni confidence interval for β runs from the lower bound of the confidence interval

for β, conditional on ρ equal to the upper bound of its confidence interval, to the upper bound

of the confidence interval for β, conditional on ρ equal to the lower bound of its confidence

interval. More formally, an equal-tailed α2-level confidence interval for β given ρ is simply

Cβ|ρ(α2) = [β(ρ, α2), β(ρ, α2)], where

β(ρ) =

∑T
t=1 x

µ
t−1[rt − βue(xt − ρxt−1)]∑T

t=1 x
µ2
t−1

, (14)

β(ρ, α2) = β(ρ) − zα2/2σu

(
1 − δ2∑T
t=1 x

µ2
t−1

)1/2

, (15)

β(ρ, α2) = β(ρ) + zα2/2σu

(
1 − δ2∑T
t=1 x

µ2
t−1

)1/2

, (16)

and zα2/2 denotes the 1 − α2/2 quantile of the standard normal distribution. Let Cρ(α1) =
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[ρ(α1), ρ(α1)] denote the confidence interval for ρ, where α1 = Pr(ρ < ρ(α1)), α1 = Pr(ρ >

ρ(α1)), and α1 = α1 + α1. Then the Bonferroni confidence interval is given by

Cβ(α) = [β(ρ(α1), α2), β(ρ(α1), α2)]. (17)

In Campbell and Yogo (2005), we lay out the step-by-step recipe for implementing this

confidence interval in the empirically relevant case when the nuisance parameters (i.e., σu,

δ, and βue) are not known.

3.4. A refinement of the Bonferroni method

The Bonferroni confidence interval can be conservative in the sense that the actual coverage

rate of Cβ(α) can be greater than 100(1 − α)%. This can be seen from the equality

Pr(β �∈ Cβ(α)) = Pr(β �∈ Cβ(α)|ρ ∈ Cρ(α1)) Pr(ρ ∈ Cρ(α1))

+ Pr(β �∈ Cβ(α)|ρ �∈ Cρ(α1)) Pr(ρ �∈ Cρ(α1)).

Since Pr(β �∈ Cβ(α)|ρ �∈ Cρ(α1)) is unknown, the Bonferroni method bounds it by one as

the worst case. In addition, the inequality Pr(β �∈ Cβ(α)|ρ ∈ Cρ(α1)) ≤ α2 is strict unless

the conditional confidence intervals Cβ|ρ(α2) do not depend on ρ. Because these worst case

conditions are unlikely to hold in practice, the inequality

Pr(β �∈ Cβ(α)) ≤ α2(1 − α1) + α1 ≤ α

is likely to be strict, resulting in a conservative confidence interval.

Cavanagh et al. (1995) therefore suggest a refinement of the Bonferroni method that

makes it less conservative than the basic approach. The idea is to shrink the confidence

interval for ρ so that the refined interval is a subset of the original (unrefined) interval. This

consequently shrinks the Bonferroni confidence interval for β, achieving an exact test of the
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desired significance level. Call this significance level α̃, which we must now distinguish from

α = α1 +α2, the sum of the significance levels used for the confidence interval for ρ (denoted

α1) and the conditional confidence intervals for β (denoted α2).

To construct a test with significance level α̃, we first fix α2. Then, for each δ, we

numerically search to find the α1 such that

Pr(β(ρ(α1), α2) > β) ≤ α̃/2 (18)

holds for all values of c on a grid, with equality at some point on the grid. We then repeat

the same procedure to find the α1 such that

Pr(β(ρ(α1), α2) < β) ≤ α̃/2. (19)

We use these values α1 and α1 to construct a tighter confidence interval for ρ. The resulting

one-sided Bonferroni test has exact size α̃/2 for some permissible value of c. The resulting

two-sided test has size at most α̃ for all values of c.

In Table 2, we report the values of α1 and α1 for selected values of δ when α̃ = α2 = 0.10,

computed over the grid c ∈ [−50, 5]. The table can be used to construct a 10% Bonferroni

confidence interval for β (equivalently, a 5% one-sided Q-test for predictability). Note that

α1 and α1 are increasing in δ, so the Bonferroni inequality has more slack and the unrefined

Bonferroni test is more conservative the smaller is δ in absolute value. In order to implement

the Bonferroni test using Table 2, one needs the confidence belts for the DF-GLS statistic.

Campbell and Yogo (2005, Tables 2–11) provide lookup tables that report the appropriate

confidence interval for c, Cc(α1) = [c(α1), c(α1)], given the values of the DF-GLS statistic

and δ. The confidence interval Cρ(α1) = 1+Cc(α1)/T for ρ then results in a 10% Bonferroni

confidence interval for β.

Our computational results indicate that in general the inequalities (18) and (19) are

close to equalities when c ≈ 0 and have more slack when c � 0. For right-tailed tests, the
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probability (18) can be as small as 4.0% for some values of c and δ. For left-tailed tests, the

probability (19) can be as small as 1.2%. This suggests that even the adjusted Bonferroni

Q-test is conservative (i.e., undersized) when c < 5. The assumption that the predictor

variable is never explosive (i.e., c ≤ 0) would allow us to further tighten the Bonferroni

confidence interval. In our judgment, however, the magnitude of the resulting power gain

is not sufficient to justify the loss of robustness against explosive roots. (The empirical

relevance of allowing for explosive roots is discussed in Section 4.)

3.5. Power under local-to-unity asymptotics

Any reasonable test, such as the Bonferroni t-test, rejects alternatives that are a fixed dis-

tance from the null with probability one as the sample size becomes arbitrarily large. In

practice, however, we have a finite sample and are interested in the relative efficiency of test

procedures. A natural way to evaluate the power of tests in finite samples is to consider

their ability to reject local alternatives.7 When the predictor variable contains a local-to-

unit root, OLS estimators β̂ and ρ̂ are consistent at the rate T (rather than the usual
√
T ).

We therefore consider a sequence of alternatives of the form β = β0 + b/T for some fixed

constant b. The empirically relevant region of b for the dividend-price ratio, based on OLS

estimates of β, appears to be the interval [8, 10], depending on frequency of the data (annual

to monthly). Details on the computation of the power functions are in Appendix B.

3.5.1. Power of infeasible tests

We first examine the power of the t-test and Q-test under local-to-unity asymptotics. Al-

though these tests assume knowledge of c and are thus infeasible, their power functions

provide benchmarks for assessing the power of feasible tests.

Fig. 3 plots the power functions for the t-test (using the appropriate critical value that

depends on c) and the Q-test. Under local-to-unity asymptotics, power functions are not

7See Lehmann (1999, Chapter 3) for a textbook treatment of local alternatives and relative efficiency.
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symmetric in b. We only report the power for right-tailed tests (i.e., b > 0) since this is the

region where the conventional t-test is size distorted (recall the discussion in Section 3.2).

The results, however, are qualitatively similar for left-tailed tests (available from the authors

on request). We consider various combinations of c (−2 and −20) and δ (−0.95 and −0.75),

which are in the relevant region of the parameter space when the predictor variable is a

valuation ratio (see Table 4). The variances are normalized as σ2
u = σ2

e = 1.

As expected, the power function for the Q-test dominates that for the t-test. In fact, the

power function for the Q-test corresponds to the Gaussian power envelope for conditional

tests when ρ is known. In other words, the Q-test has the maximum achievable power when ρ

is known and Assumption 1 holds. The difference is especially large when δ = −0.95. When

the correlation between the innovations is large, there are large power gains from subtracting

the part of the innovation to returns that is correlated with the innovation to the predictor

variable.

To assess the importance of the power gain, we compute the Pitman efficiency, which

is the ratio of the sample sizes at which two tests achieve the same level of power (e.g.,

50%) along a sequence of local alternatives. Consider the case c = −2 and δ = −0.95. To

compute the Pitman efficiency of the t-test relative to the Q-test, note first that the t-test

achieves 50% power when b = 4.8. On the other hand, the Q-test achieves 50% power when

b = 1.8. Following the discussion in Stock (1994, p. 2775), the Pitman efficiency of the t-test

relative to the Q-test is 4.8/1.8 ≈ 2.7. This means that to achieve 50% power, the t-test

asymptotically requires 170% more observations than the Q-test.

3.5.2. Power of feasible tests

We now analyze the power properties of several feasible tests that have been proposed. Fig. 3

reports the power of the Bonferroni t-test (Cavanagh et al., 1995) and the Bonferroni Q-test.8

8The refinement procedure described in Section 3.4 for the Bonferroni Q-test with DF-GLS is also applied
to the Bonferroni t-test with ADF. The significance levels α1 and α1 used in constructing the ADF confidence
interval for ρ are chosen to result in a 5% one-sided test for β, uniformly in c ∈ [−50, 5].

20



In all cases considered, the Bonferroni Q-test dominates the Bonferroni t-test. In fact, the

power of the Bonferroni Q-test comes very close to that of the infeasible t-test. The power

gains of the Bonferroni Q-test over the Bonferroni t-test are larger the closer is c to zero and

the larger is δ in absolute value. When c = −2 and δ = −0.95, the Pitman efficiency is 1.24,

which means that the Bonferroni t-test requires 24% more observations than the Bonferroni

Q-test to achieve 50% power.

In addition to the Bonferroni tests, we also consider the power of Lewellen’s (2004)

test. In our notation (17), Lewellen’s confidence interval corresponds to [β(1, α2), β(1, α2)].

Formally, this test can be interpreted as a sup-bound Q-test, that is, the Q-test that sets ρ

equal to the value that maximizes size. The value ρ = 1 maximizes size, provided that the

parameter space is restricted to ρ ≤ 1, since Q(β0, ρ) is decreasing in ρ when δ < 0. By

construction, the sup-bound Q-test is the most powerful test when c = 0. When c = −2

and δ = −0.95, the sup-bound Q-test is undersized when b is small and has good power

when b 	 0. When c = −2 and δ = −0.75, the power of the sup-bound Q-test is close to

that of the Bonferroni Q-test. When c = −20, the sup-bound Q-test has very poor power.9

In some sense, the comparison of the sup-bound Q-test with the Bonferroni tests is unfair

because the size of the sup-bound test is greater than 5% when the true autoregressive root

is explosive (i.e., c > 0), while the Bonferroni tests have the correct size even in the presence

of explosive roots.

We conclude that the Bonferroni Q-test has important power advantages over the other

feasible tests. Against right-sided alternatives, it has better power than the Bonferroni t-

test, especially when the predictor variable is highly persistent, and it has much better power

than the sup-bound Q-test when the predictor variable is less persistent.

9Lewellen (2004, Section 2.4) proposes a Bonferroni procedure to remedy the poor power of the sup-
bound Q-test for low values of ρ. Although the particular procedure that he proposes does not have correct
asymptotic size (see Cavanagh et al., 1995), it can be interpreted as a combination of the Bonferroni t-test
and the sup-bound Q-test.
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3.5.3. Where does the power gain come from?

The last section showed that our Bonferroni Q-test is more powerful than the Bonferroni

t-test. In this section, we examine the sources of this power gain in detail. We focus our

discussion of power to the case δ = −0.95 since the results are similar when δ = −0.75.

We first ask whether the power gain comes from the use of the DF-GLS test rather than

the ADF test, or the Q-test rather than the t-test. To answer this question, we consider the

following three tests:

1. A Bonferroni test based on the ADF test and the t-test.

2. A Bonferroni test based on the DF-GLS test and the t-test.

3. A Bonferroni test based on the DF-GLS test and the Q-test.

Tests 1 and 3 are the Bonferroni t-test and Q-test, respectively, whose power functions

are discussed in the last section. Test 2 is a slight modification of the Bonferroni t-test,

whose power function appears in an earlier version of this paper (Campbell and Yogo, 2002,

Fig. 5). By comparing the power of tests 1 and 2, we quantify the marginal contribution to

power coming from the DF-GLS test. By comparing the power of tests 2 and 3, we quantify

the marginal contribution to power coming from the Q-test.

When c = −2 and δ = −0.95, the Pitman efficiency of test 1 relative to test 2 is 1.03,

which means that test 1 requires 3% more observations than test 2 to achieve 50% power.

The Pitman efficiency of test 2 relative to test 3 is 1.20 (i.e., test 2 requires 20% more

observations). This shows that when the predictor variable is highly persistent, the use

of the Q-test rather than the t-test is a relatively important source of power gain for the

Bonferroni Q-test.

When c = −20 and δ = −0.95, the Pitman efficiency of test 1 relative to test 2 is 1.07

(i.e., test 1 requires 7% more observations). The Pitman efficiency of test 2 relative to test

3 is 1.03 (i.e., test 2 requires 3% more observations). This shows that when the predictor
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variable is less persistent, the use of the DF-GLS test rather than the ADF test is a relatively

important source of power gain for the Bonferroni Q-test.

We now ask whether the refinement to the Bonferroni test, discussed in Section 3.4, is

an important source of power. To answer this question, we recompute the power functions

for the Bonferroni t-test and Q-test, reported in Fig. 3, without the refinement. Although

these power functions are not directly reported here to conserve space, we summarize our

findings.

When c = −2 and δ = −0.95, there is essentially no difference in power between the

unrefined and refined Bonferroni t-test. However, the Pitman efficiency of the unrefined

relative to the refined Bonferroni Q-test is 1.62. When c = −20 and δ = −0.95, the Pitman

efficiency of the unrefined relative to the refined Bonferroni t-test is 1.23. For the Bonferroni

Q-test, the corresponding Pitman efficiency is 1.55. This shows that the refinement is an

especially important source of power gain for the Bonferroni Q-test. Since the Q-test explic-

itly exploits information about the value of ρ, its confidence interval for β given ρ is very

sensitive to ρ, resulting in a rather conservative Bonferroni test without the refinement.

3.6. Finite-sample rejection rates

The construction of the Bonferroni Q-test in Section 3.3 and the power comparisons of

various tests in the previous section are based on local-to-unity asymptotics. In this section,

we examine whether the asymptotic approximations are accurate in finite samples through

Monte Carlo experiments.

Table 3 reports the finite-sample rejection rates for four tests of predictability: the con-

ventional t-test, the Bonferroni t-test, the Bonferroni Q-test implemented as described in

Campbell and Yogo (2005), and the sup-bound Q-test. All tests are evaluated at the 5%

significance level, where the null hypothesis is β = 0 against the alternative β > 0. The rejec-

tion rates are based on 10,000 Monte Carlo draws of the sample path using the model (1)–(2),

with the initial condition x0 = 0. The nuisance parameters are normalized as α = γ = 0
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and σ2
u = σ2

e = 1. The innovations have correlation δ and are drawn from a bivariate normal

distribution. We report results for three levels of persistence (c = {0,−2,−20}) and two

levels of correlation (δ = {−0.95,−0.75}). We consider fairly small sample sizes of 50, 100,

and 250 since local-to-unity asymptotics are known to be very accurate for samples larger

than 500 (e.g., see Chan, 1988).

The conventional t-test (using the critical value 1.645) has large size distortions, as re-

ported in Elliott and Stock (1994) and Mankiw and Shapiro (1986). For instance, the

rejection probability is 27.2% when there are 250 observations, ρ = 0.992, and δ = −0.95.

On the other hand, the finite-sample rejection rate of the Bonferroni t-test is no greater than

6.5% for all values of ρ and δ considered, which is consistent with the findings reported in

Cavanagh et al. (1995).

The Bonferroni Q-test has a finite-sample rejection rate no greater than 6.4% for all

levels of ρ and δ considered, as long as the sample size is at least 100. The test does seem

to have higher rejection rates when the sample size is as small as 50, especially when the

degree of persistence is low (i.e., c = −20). Practically, this suggests caution in applying the

Bonferroni Q-test in very small samples such as postwar annual data, although the test is

satisfactory in sample sizes typically encountered in applications. The sup-bound Q-test is

undersized when c < 0, which translates into loss of power as discussed in the last section.

To check the robustness of our results, we repeat the Monte Carlo exercise under the

assumption that the innovations are drawn from a t-distribution with five degrees of freedom.

The excess kurtosis of this distribution is nine, chosen to approximate the fat tails in returns

data; the estimated kurtosis is never greater than nine in annual, quarterly, or monthly data.

The rejection rates are essentially the same as those in Table 3, implying robustness of the

asymptotic theory to fat-tailed distributions. The results are available from the authors on

request.

As an additional robustness check, we repeat the Monte Carlo exercise under different

assumptions about the initial condition. With c = −20 and the initial condition x0 =
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{−2, 2}, the Bonferroni Q-test is conservative in the sense that its rejection probability is

lower than those reported in Table 3. With c = {−2,−20} and the initial condition x0

drawn from its unconditional distribution, the Bonferroni Q-test has a rejection probability

that is slightly lower (at most 2% lower) than those reported in Table 3. To summarize, the

Bonferroni Q-test has good finite-sample size under reasonable assumptions about the initial

condition.

4. Predictability of stock returns

In this section, we implement our test of predictability on U.S. equity data. We then relate

our findings to previous empirical findings in the literature.

4.1. Description of data

We use four different series of stock returns, dividend-price ratio, and earnings-price ratio.

The first is annual S&P 500 index data (1871–2002) from Global Financial Data since 1926

and from Shiller (2000) before then. The other three series are annual, quarterly, and

monthly NYSE/AMEX value-weighted index data (1926–2002) from the Center for Research

in Security Prices (CRSP).

Following Campbell and Shiller (1988), the dividend-price ratio is computed as dividends

over the past year divided by the current price, and the earnings-price ratio is computed as a

moving average of earnings over the past ten years divided by the current price. Since earn-

ings data are not available for the CRSP series, we instead use the corresponding earnings-

price ratio from the S&P 500. Earnings are available at a quarterly frequency since 1935,

and an annual frequency before then. Shiller (2000) constructs monthly earnings by linear

extrapolation. We instead assign quarterly earnings to each month of the quarter since 1935

and annual earnings to each month of the year before then.

To compute excess returns of stocks over a risk-free return, we use the one-month T-bill
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rate for the monthly series and the three-month T-bill rate for the quarterly series. For the

annual series, the risk-free return is the return from rolling over the three-month T-bill every

quarter. Since 1926, the T-bill rates are from the CRSP Indices database. For our longer

S&P 500 series, we augment this with U.S. commercial paper rates (New York City) from

Macaulay (1938), available through NBER’s webpage.

For the three CRSP series, we consider the subsample 1952–2002 in addition to the full

sample. This allows us to add two additional predictor variables, the three-month T-bill

rate and the long-short yield spread. Following Fama and French (1989), the long yield used

in computing the yield spread is Moody’s seasoned Aaa corporate bond yield. The short

rate is the one-month T-bill rate. Although data are available before 1952, the nature of

the interest rate is very different then due to the Fed’s policy of pegging the interest rate.

Following the usual convention, excess returns and the predictor variables are all in logs.

4.2. Persistence of predictor variables

In Table 4, we report the 95% confidence interval for the autoregressive root ρ (and the

corresponding c) for the log dividend-price ratio (d− p), the log earnings-price ratio (e− p),

the three-month T-bill rate (r3), and the long-short yield spread (y − r1). The confidence

interval is computed by the method described in Section 3.2. The autoregressive lag length

p ∈ [1, p] for the predictor variable is estimated by the Bayes Information Criterion (BIC).

We set the maximum lag length p to four for annual, six for quarterly, and eight for monthly

data. The estimated lag lengths are reported in the fourth column of Table 4.

All of the series are highly persistent, often containing a unit root in the confidence

interval. An interesting feature of the confidence intervals for the valuation ratios (d − p

and e− p) is that they are sensitive to whether the sample period includes data after 1994.

The confidence interval for the subsample through 1994 (Panel B) is always less than that

for the full sample through 2002 (Panel A). The source of this difference can be explained

by Fig. 1, which is a time-series plot of the valuation ratios at quarterly frequency. Around
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1994, these valuation ratios begin to drift down to historical lows, making the processes look

more nonstationary. The least persistent series is the yield spread, whose confidence interval

never contains a unit root.

The high persistence of these predictor variables suggests that first-order asymptotics,

which implies that the t-statistic is approximately normal in large samples, could be mis-

leading. As discussed in Section 3.2, whether conventional inference based on the t-test is

reliable also depends on the correlation δ between the innovations to excess returns and

the predictor variable. We report point estimates of δ in the fifth column of Table 4. As

expected, the correlations for the valuation ratios are negative and large. This is because

movements in stock returns and these valuation ratios mostly come from movements in the

stock price. The large magnitude of δ suggests that inference based on the conventional

t-test leads to large size distortions.

Suppose δ = −0.9, which is roughly the relevant value for the valuation ratios. As

reported in Table 1, the unknown persistence parameter c must be less than −70 for the size

distortion of the t-test to be less than 2.5%. That corresponds to ρ less than 0.09 in annual

data, less than 0.77 in quarterly data, and less than 0.92 in monthly data. More formally,

we fail to reject the null hypothesis that the size distortion is greater than 2.5% using the

pretest described in Section 3.2. For the interest rate variables (r3 and y − r1), δ is much

smaller. For these predictor variables, the pretest rejects the null hypothesis, which suggests

that the conventional t-test leads to approximately valid inference.

4.3. Testing the predictability of returns

In this section, we construct valid confidence intervals for β through the Bonferroni Q-test

to test the predictability of returns. In reporting our confidence interval for β, we scale it

by σ̂e/σ̂u. In other words, we report the confidence interval for β̃ = (σe/σu)β instead of β.

Although this normalization does not affect inference, it is a more natural way to report

the empirical results for two reasons. First, β̃ has a natural interpretation as the coefficient

27



in Eq. (1) when the innovations are normalized to have unit variance (i.e., σ2
u = σ2

e = 1).

Second, by the equality

β̃ =
σ(Et−1rt − Et−2rt)

σ(rt − Et−1rt)
, (20)

β̃ can be interpreted as the standard deviation of the change in expected returns relative to

the standard deviation of the innovation to returns.

Our main findings can most easily be described by a graphical method. Campbell and

Yogo (2005) provide a detailed description of the methodology. In Fig. 4, we plot the

Bonferroni confidence interval, using the annual and quarterly CRSP series (1926–2002),

when the predictor variable is the dividend-price ratio or the earnings-price ratio. The thick

lines represent the confidence interval based on the Bonferroni Q-test, and the thin lines

represent the confidence interval based on the Bonferroni t-test. Because of the asymmetry

in the null distribution of the t-statistic, the confidence interval for ρ used for the right-tailed

Bonferroni t-test differs from that used for the left-tailed test (see also footnote 8). This

explains why the length of the lower bound of the interval, corresponding to the right-tailed

test, can differ from the upper bound, corresponding to the left-tailed test. The application

of the Bonferroni Q-test is new, but the Bonferroni t-test has been applied previously by

Torous et al. (2004). We report the latter for the purpose of comparison.

For the annual dividend-price ratio in Panel A, the Bonferroni confidence interval for β

based on the Q-test lies strictly above zero. Hence, we can reject the null β = 0 against the

alternative β > 0 at the 5% level. The Bonferroni confidence interval based on the t-test,

however, includes β = 0. Hence, we cannot reject the null of no predictability using the

Bonferroni t-test. This can be interpreted in light of the power comparisons in Fig. 3. From

Table 4, δ̂ = −0.721 and the confidence interval for c is [−7.343, 3.781]. In this region of the

parameter space, the Bonferroni Q-test is more powerful than the Bonferroni t-test against

right-sided alternatives, resulting in a tighter confidence interval.

For the quarterly dividend-price ratio in Panel C, the evidence for predictability is weaker.

In the relevant range of the confidence interval for ρ, the confidence interval for β contains
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zero for both the Bonferroni Q-test and t-test, although the confidence interval is again

tighter for the Q-test. Using the Bonferroni Q-test, the confidence interval for β lies above

zero when ρ ≤ 0.988. This means that if the true ρ is less than 0.988, we can reject the

null hypothesis β = 0 against the alternative β > 0 at the 5% level. On the other hand, if

ρ > 0.988, the confidence interval includes β = 0, so we cannot reject the null. Since there

is uncertainty over the true value of ρ, we cannot reject the null of no predictability.

In Panel B, we test for predictability in annual data using the earnings-price ratio as

the predictor variable. We find that stock returns are predictable with the Bonferroni Q-

test, but not with the Bonferroni t-test. In Panel D, we obtain the same results at the

quarterly frequency. Again, the Bonferroni Q-test gives tighter confidence intervals due to

better power, which is empirically relevant for detecting predictability.

In Fig. 5, we repeat the same exercise as Fig. 4, using the quarterly CRSP series in

the subsample 1952–2002. We report the plots for all four of our predictor variables: (A)

the dividend-price ratio, (B) the earnings-price ratio, (C) the T-bill rate, and (D) the yield

spread.

For the dividend-price ratio, we find evidence for predictability if ρ ≤ 1.004. This means

that if we are willing to rule out explosive roots, confining attention to the area of the

figure to the left of the vertical line at ρ = 1, we can conclude that returns are predictable

with the dividend-price ratio. The confidence interval for ρ, however, includes explosive

roots, so we cannot impose ρ ≤ 1 without using prior information about the behavior of the

dividend-price ratio.

The earnings-price ratio is a less successful predictor variable in this subsample. We

find that ρ must be less than 0.997 before we can conclude that the earnings-price ratio

predicts returns. Taking account of the uncertainty in the true value of ρ, we cannot reject

the null hypothesis β = 0. The weaker evidence for predictability in the period since 1952

is partly due to the fact that the valuation ratios appear more persistent when restricted to

this subsample. The confidence intervals therefore contain rather large values of ρ that were

29



excluded in Fig. 4.

For the T-bill rate, the Bonferroni confidence interval for β lies strictly below zero for

both the Q-test and the t-test over the entire confidence interval for ρ. For the yield spread,

the evidence for predictability is similarly strong, with the confidence interval strictly above

zero over the entire range of ρ. The power advantage of the Bonferroni Q-test over the

Bonferroni t-test is small when δ is small in absolute value, so these tests result in very

similar confidence intervals.

In Table 5, we report the complete set of results in tabular form. In the fifth column of

the table, we report the 90% Bonferroni confidence intervals for β using the t-test. In the

sixth column, we report the 90% Bonferroni confidence interval using the Q-test. In terms

of Figs. 4–5, we simply report the minimum and maximum values of β for each of the tests.

Focusing first on the full-sample results in Panel A, the Bonferroni Q-test rejects the null

of no predictability for the earnings-price ratio (e− p) at all frequencies. For the dividend-

price ratio (d − p), we fail to reject the null except for the annual CRSP series. Using

the Bonferroni t-test, we always fail to reject the null due to its poor power relative to the

Bonferroni Q-test.

In the subsample through 1994, reported in Panel B, the results are qualitatively similar.

In particular, the Bonferroni Q-test finds predictability with the earnings-price ratio at all

frequencies. Interestingly, the Bonferroni t-test also finds predictability in this subsample, al-

though the lower bound of the confidence interval is lower than that for the Bonferroni Q-test

whenever the null hypothesis is rejected. In this subsample, the evidence for predictability

is sufficiently strong that a relatively inefficient test can also find predictability.

In Panel C, we report the results for the subsample since 1952. In this subsample, we

cannot reject the null hypothesis for the valuation ratios (d − p and e − p). For the T-bill

rate and the yield spread (r3 and y − r1), however, we reject the null hypothesis except

at annual frequency. For the interest rate variables, the correlation δ is sufficiently small

that conventional inference based on the t-test leads to approximately valid inference. This
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is confirmed in Panel C, where inference based on the conventional t-test agrees with that

based on the Bonferroni Q-test.

As we have seen in Fig. 5, the weak evidence for predictability in this subsample arises

from the fact that the confidence intervals for ρ contain explosive roots. If we could obtain

tighter confidence intervals for ρ that exclude these values, the lower bound of the confidence

intervals for β would rise, strengthening the evidence for predictability. In the last column

of Table 5, we report the lower bound of the confidence interval for β at ρ = 1. This

corresponds to Lewellen’s (2004) sup-bound Q-test, which restricts the parameter space to

ρ ≤ 1. In terms of Figs. 4–5, this is equivalent to discarding the region of the plots where

ρ > 1. Under this restriction, the lower bound of the confidence interval for the dividend-

price ratio lies above zero at all frequencies. The dividend-price ratio therefore predicts

returns in the subsample since 1952 provided that its autoregressive root is not explosive,

consistent with Lewellen’s findings.

In Table 4, we report that the estimated autoregressive lag length for the predictor

variable is one for most of our series. Therefore, the inference for predictability would have

been the same had we imposed an AR(1) assumption for these predictor variables, as in

the empirical work by Lewellen (2004) and Stambaugh (1999). For the series for which BIC

estimated p > 1, we repeated our estimates imposing an AR(1) model to see if that changes

inference. We find that the confidence intervals for β are essentially the same except for

the S&P 500 dividend-price ratio, for which the estimated lag length is p = 3. Imposing

p = 1, the 95% confidence interval based on the Bonferroni Q-test is [−0.002, 0.190] in the

full sample and [0.037, 0.317] in the subsample through 1994. These confidence intervals

under the AR(1) model show considerably more predictability than those under the AR(3)

model, reported in Table 5. This can be explained by the fact that the predictor variable

appears more stationary under the AR(1) model; the 95% confidence interval for ρ is now

[0.784, 0.973] for the full sample and [0.563, 0.856] for the subsample through 1994. These

findings suggest that one does not want to automatically impose an AR(1) assumption on
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the predictor variable.

To summarize the empirical results, we find reliable evidence for predictability with the

earnings-price ratio, the T-bill rate, and the yield spread. The evidence for predictability with

the dividend-price ratio is weaker, and we do not find unambiguous evidence for predictability

using our Bonferroni Q-test. The Bonferroni Q-test gives tighter confidence intervals than

the Bonferroni t-test due to better power. The power gain is empirically important in the

full sample through 2002.

4.4. Connection to previous empirical findings

The empirical literature on the predictability of returns is rather large, and in this section,

we attempt to interpret the main findings in light of our analysis in the last section.

4.4.1. The conventional t-test

The earliest and most intuitive approach to testing predictability is to run the predictive

regression and to compute the t-statistic. One would then reject the null hypothesis β = 0

against the alternative β > 0 at the 5% level if the t-statistic is greater than 1.645. In the

third column of Table 5, we report the t-statistics from the predictive regressions. Using

the conventional critical value, the t-statistics are mostly “significant,” often greater than

two and sometimes greater than three. Comparing the full sample through 2002 (Panel

A) and the subsample through 1994 (Panel B), the evidence for predictability appears to

have weakened in the last eight years. In the late 1990s, stock returns were high when the

valuation ratios were at historical lows. Hence, the evidence for predictability “went in the

wrong direction.”

However, one may worry about statistical inference that is so sensitive to the addition

of eight observations to a sample of 115 (for the S&P 500 data) or 32 observations to a

sample of 273 (for the quarterly CRSP data). In fact, this sensitivity is evidence of the

failure of first-order asymptotics. Intuitively, when a predictor variable is persistent, its
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sample moments can change dramatically with the addition of a few data points. Since the

t-statistic measures the covariance of excess returns with the lagged predictor variable, its

value is sensitive to persistent deviations in the predictor variable from the mean. This is

what happened in the late 1990s when valuation ratios reached historical lows. Tests that

are derived from local-to-unity asymptotics take this persistence into account and hence lead

to valid inference.

Using the Bonferroni Q-test, which is robust to the persistence problem, we find that the

earnings-price ratio predicts returns in both the full sample and the subsample through 1994.

There appears to be some empirical content in the claim that the evidence for predictability

has weakened, with the Bonferroni confidence interval based on the Q-test shifting toward

zero. Using the Bonferroni confidence interval based on the t-test, we reject the null of

no predictability in the subsample through 1994, but not in the full sample. The “weak-

ened” evidence for predictability in the recent years puts a premium on the efficiency of test

procedures.

As additional evidence of the failure of first-order asymptotics, we report the OLS point

estimates of β in the fourth column of Table 5. As Eqs. (15)–(16) show, the point estimate

β̂ does not necessarily lie in the center of the robust confidence interval for β. Indeed, β̂

for the valuation ratios is usually closer to the upper bound of the Bonferroni confidence

interval based on the Q-test, and in a few cases (dividend-price ratio in Panel C), β̂ falls

strictly above the confidence interval. This is a consequence of the upward finite-sample bias

of the OLS estimator arising from the persistence of these predictor variables (see Lewellen,

2004; Stambaugh, 1999).

4.4.2. Long-horizon tests

Some authors, notably Campbell and Shiller (1988) and Fama and French (1988), have

explored the behavior of stock returns at lower frequencies by regressing long-horizon returns

onto financial variables. In annual data, the dividend-price ratio has a smaller autoregressive
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root than it does in monthly data and is less persistent in that sense. Over several years,

the ratio has an even smaller autoregressive root. Unfortunately, this does not eliminate the

statistical problem caused by persistence because the effective sample size shrinks as one

increases the horizon of the regression.

Recently, a number of authors have pointed out that the finite-sample distribution of the

long-horizon regression coefficient and its associated t-statistic can be quite different from the

asymptotic distribution due to persistence in the regressor and overlap in the returns data;

see Ang and Bekaert (2001), Hodrick (1992), and Nelson and Kim (1993) for computational

results, and Torous et al. (2004) and Valkanov (2003) for analytical results. Accounting for

these problems, Torous et al. (2004) find no evidence for predictability at long horizons using

many of the popular predictor variables. In fact, they find no evidence for predictability at

any horizon or time period, except at quarterly and annual frequencies in the period 1952–

1994.

Long-horizon regressions can also be understood as a way to reduce the noise in stock

returns, because under the alternative hypothesis that returns are predictable, the variance

of the return increases less than proportionally with the investment horizon (see Campbell,

2001; Campbell et al., 1997, Chapter 7). The procedures developed in this paper and in

Lewellen (2004) have the important advantage that they reduce noise not only under the

alternative but also under the null. Thus, they increase power against local alternatives,

while long-horizon regression tests do not.

4.4.3. More recent tests

In this section, we discuss more recent papers that have taken the issue of persistence seriously

to develop tests with the correct size even if the predictor variable is highly persistent or

I(1).

Lewellen (2004) proposes to test the predictability of returns by computing theQ-statistic

evaluated at β0 = 0 and ρ = 1 (i.e., Q(0, 1)). His test procedure rejects β = 0 against the
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one-sided alternative β > 0 at the α-level if Q(0, 1) > zα. Since the null distribution of

Q(0, 1) is standard normal under local-to-unity asymptotics, Lewellen’s test procedure has

correct size as long as ρ = 1. If ρ �= 1, this procedure does not in general have the correct

size. However, Lewellen’s procedure is a valid (although conservative) one-sided test as long

as δ ≤ 0 and ρ ≤ 1. As we have shown in Panel C of Table 5, the 5% one-sided test using the

monthly dividend-price ratio rejects when ρ = 1, confirming Lewellen’s empirical findings.

Based on finance theory, it is reasonable to assume that the dividend-price ratio is mean

reverting, at least in the very long run. However, we might not necessarily want to impose

Lewellen’s parametric assumption that the dividend-price ratio is an AR(1) with ρ ≤ 1. In

the absence of knowledge of the true data-generating process, the purpose of a parametric

model is to provide a flexible framework to approximate the dynamics of the predictor vari-

able in finite samples, such as in Eqs. (21)–(22) in Appendix A. Allowing for the possibility

that ρ > 1 can be an important part of that flexibility, especially in light of the recent

behavior of the dividend-price ratio. In addition, we allow for possible short-run dynamics

in the predictor variable by considering an AR(p), which Lewellen rules out by imposing a

strict AR(1).

Another issue that arises with Lewellen’s test is that of power. As discussed in Lewellen

(2004) and illustrated in Fig. 3, the test can have poor power when the predictor variable is

stationary (i.e., ρ < 1). For instance, the annual earnings-price ratio for the S&P 500 index

has a 95% confidence interval [0.768, 0.965] for ρ. As reported in Panel A of Table 5, the lower

bound of the confidence interval for β using the Bonferroni Q-test is 0.043, rejecting the null

of no predictability. However, the Q-test at ρ = 1 results in a lower bound of −0.023, failing

to reject the null. Therefore, the poor power of Lewellen’s test understates the strength of

the evidence that the earnings-price ratio predicts returns at annual frequency. Similarly,

Lewellen’s procedure always leads to wider confidence intervals than the Bonferroni Q-test

in the subsample through 1994, when the valuation ratios are less persistent.

Torous et al. (2004) develop a test of predictability that is conceptually similar to ours,
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constructing Bonferroni confidence intervals for β. One difference from our approach is

that they construct the confidence interval for ρ using the ADF test, rather than the more

powerful DF-GLS test of Elliott et al. (1996). The second difference is that they use the

long-horizon t-test, instead of the Q-test, for constructing the confidence interval of β given

ρ. Their choice of the long-horizon t-test is motivated by their objective of highlighting the

pitfalls of long-horizon regressions.

A key insight in Torous et al. (2004) is that the evidence for the predictability of returns

depends critically on the unknown degree of persistence of the predictor variable. Because

we cannot estimate the degree of persistence consistently, the evidence for predictability can

be ambiguous. This point is illustrated in Figs. 4–5, where we find that the dividend-price

ratio predicts returns if its autoregressive root ρ is sufficiently small. In this paper, we have

confirmed their finding that the evidence for predictability by the dividend-price ratio is

weaker once its persistence has been properly accounted for.

A different approach to dealing with the problem of persistence is to ignore the data

on predictor variables and to base inference solely on the returns data. Under the null

that returns are not predictable by a persistent predictor variable, returns should behave

like a stationary process. Under the alternative of predictability, returns should have a

unit or a near-unit root. Using this approach, Lanne (2002) fails to reject the null of no

predictability. However, his test is conservative in the sense that it has poor power when the

predictor variable is persistent but not close enough to being integrated.10 Lanne’s empirical

finding agrees with ours and those of Torous et al. (2004). From Figs. 4–5, we see that the

valuation ratios predict returns provided that their degree of persistence is sufficiently small.

In addition, we find evidence for predictability with the yield spread, which has a relatively

low degree of persistence compared to the valuation ratios. Lanne’s test would fail to detect

predictability by less persistent variables like the yield spread.

As revealed by Fig. 3, all the feasible tests considered in this paper are biased. That

10In fact, Campbell et al. (1997, Chapter 7) construct an example in which returns are univariate white
noise but are predictable using a stationary variable with an arbitrary autoregressive coefficient.
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is, the power of the test can be less than the size, for alternatives sufficiently close to zero.

Jansson and Moreira (2003) have made recent progress in the development of unbiased tests

for predictive regressions. They characterize the most powerful test in the class of unbiased

tests, conditional on ancillary statistics. In principle, their test is useful for testing the

predictability of returns, but in practice, implementation requires advanced computational

methods; see Polk et al. (2003) for details. Until these tests become easier to implement

and are shown to be more powerful in Monte Carlo experiments, we see our procedure as a

practical alternative.

5. Conclusion

The hypothesis that stock returns are predictable at long horizons has been called a “new

fact in finance” (Cochrane, 1999). That the predictability of stock returns is now widely

accepted by financial economists is remarkable given the long tradition of the “random

walk” model of stock prices. In this paper, we have shown that there is indeed evidence

for predictability, but it is more challenging to detect than previous studies have suggested.

The most popular and economically sensible candidates for predictor variables (such as

the dividend-price ratio, earnings-price ratio, or measures of the interest rate) are highly

persistent. When the predictor variable is persistent, the distribution of the t-statistic can

be nonstandard, which can lead to over-rejection of the null hypothesis using conventional

critical values.

In this paper, we have developed a pretest to determine when the conventional t-test leads

to misleading inferences. Using the pretest, we find that the t-test leads to valid inference

for the short-term interest rate and the long-short yield spread. Persistence is not a problem

for these interest rate variables because their innovations have sufficiently low correlation

with the innovations to stock returns. Using the t-test with conventional critical values, we

find that these interest rate variables predict returns in the post-1952 sample.
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For the dividend-price ratio and the smoothed earnings-price ratio, persistence is an issue

since their innovations are highly correlated with the innovations to stock returns. Using

our pretest, we find that the conventional t-test can lead to misleading inferences for these

valuation ratios. In this paper, we have developed an efficient test of predictability that

leads to valid inference regardless of the degree of persistence of the predictor variable. Over

the full sample, our test reveals that the earnings-price ratio reliably predicts returns at

various frequencies (annual to monthly), while the dividend-price ratio predicts returns only

at annual frequency. In the post-1952 sample, the evidence for predictability is weaker, but

the dividend-price ratio predicts returns if we can rule out explosive autoregressive roots.

Taken together, these results suggest that there is a predictable component in stock

returns, but one that is difficult to detect without careful use of efficient statistical tests.
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Appendix A. Generalizing the model and the distribu-

tional assumptions

The AR(1) model for the predictor variable (2) is restrictive since it does not allow for short-

run dynamics. Moreover, the assumption of normality (i.e., Assumption 1) is unlikely to

hold in practice. This appendix therefore generalizes the asymptotic results in Section 3 to

a more realistic case when the dynamics of the predictor variable are captured by an AR(p),

and the innovations satisfy more general distributional assumptions.

Let L be the lag operator, so that Lixt = xt−i. We generalize model (2) as

xt = γ + ρxt−1 + vt, (21)

b(L)vt = et, (22)

where b(L) =
∑p−1

i=0 biL
i with b0 = 1 and b(1) �= 0. All the roots of b(L) are assumed to be

fixed and less than one in absolute value. Eqs. (21) and (22) together imply that

∆xt = τ + θxt−1 +

p−1∑
i=1

ψi∆xt−i + et, (23)

where θ = (ρ− 1)b(1), ψi = −∑p−1
j=i aj, and a(L) = L−1[1 − (1 − ρL)b(L)]. In other words,

the dynamics of the predictor variable are captured by an AR(p), which is written here in

the augmented Dickey-Fuller form.

We assume that the sequence of innovations satisfies the following fairly weak distribu-

tional assumptions.

Assumption A.1 (Martingale Difference Sequence). Let Ft = {ws|s ≤ t} be the

filtration generated by the process wt = (ut, et)
′. Then

1. E[wt|Ft−1] = 0,

2. E[wtw
′
t] = Σ,

39



3. supt E[u4
t ] <∞, supt E[e4

t ] <∞, and E[x2
0] <∞.

In other words, wt is a martingale difference sequence with finite fourth moments. The

assumption allows the sequence of innovations to be conditionally heteroskedastic as long as

it is covariance stationary (i.e., unconditionally homoskedastic). Assumption 1 is a special

case when the innovations are i.i.d. normal and the covariance matrix Σ is known.

We collect known asymptotic results from Phillips (1987, Lemma 1) and Cavanagh et al.

(1995) and state them as a lemma for reference.

Lemma A.1 (Weak Convergence). Suppose ρ = 1+c/T and Assumption A.1 holds. The

following limits hold jointly.

1. T−3/2
∑T

t=1 x
µ
t ⇒ ω

∫
Jµ

c (s)ds,

2. T−2
∑T

t=1 x
µ2
t−1 ⇒ ω2

∫
Jµ

c (s)2ds,

3. T−1
∑T

t=1 x
µ
t−1vt ⇒ ω2

∫
Jµ

c (s)dWe(s) + 1
2
(ω2 − σ2

v),

4. T−1
∑T

t=1 x
µ
t−1ut ⇒ σuω

∫
Jµ

c (s)dWu(s),

where ω = σe/b(1) and σ2
v = E[v2

t ].

When the predictor variable is an AR(1), the Q-statistic (9) has a standard normal

asymptotic distribution under the null. Under the more general model (21)–(22) which allows

for higher-order autocorrelation, the statistic (9) is not asymptotically pivotal. However, a

suitably modified statistic

Q(β0, ρ) =

∑T
t=1 x

µ
t−1[rt − β0xt−1 − σue

σeω
(xt − ρxt−1)] + T

2
σue

σeω
(ω2 − σ2

v)

σu(1 − δ2)1/2(
∑T

t=1 x
µ2
t−1)

1/2
(24)

has a standard normal asymptotic distribution by Lemma A.1. Eq. (14) in the confidence

interval for the Bonferroni Q-test becomes

β(ρ) =

∑T
t=1 x

µ
t−1[rt − σue

σeω
(xt − ρxt−1)] + T

2
σue

σeω
(ω2 − σ2

v)∑T
t=1 x

µ2
t−1

. (25)

40



In the absence of short-run dynamics (i.e., b(1) = 1 so that ω2 = σ2
v = σ2

e), the Q-statistic

reduces to (9). The correction term involving (ω2 − σ2
v) is analogous to the correction of the

Dickey-Fuller (1981) test by Phillips and Perron (1988).

Appendix B. Asymptotic power of the t-test and the

Q-test

This appendix derives the asymptotic distribution of the t-statistic and the Q-statistic under

the local alternative β = β0 + b/T . These asymptotic representations are used to compute

the power functions of the various test procedures in Section 3.5. The underlying model and

distributional assumptions are the same as in Appendix A.

The t-statistic can be written as

t(β0) =
b(T−2

∑T
t=1 x

µ2
t−1)

1/2

σu

+
T−1

∑T
t=1 x

µ
t−1ut

σu(T−2
∑T

t=1 x
µ2
t−1)

1/2
.

By Lemma A.1 (see also Cavanagh et al., 1995),

t(β0) ⇒ bωκc

σu

+ δ
τc
κc

+ (1 − δ2)1/2Z, (26)

where Z is a standard normal random variable independent of (We(s), Jc(s)). Note that

the asymptotic distribution of the t-statistic is not affected by heteroskedasticity in the

innovations. Intuitively, the near nonstationarity of the predictor variable dominates any

stationary dynamics in the variables.

The three types of Q-test considered in Section 3.5 correspond to Q(β0, ρ̃) (see Eq. (24))

for particular choices of ρ̃:

1. Infeasible Q-test: ρ̃ = 1 + c/T , where c is the true value assumed to be known.

2. Bonferroni Q-test: ρ̃ = 1 + c/T , where c depends on the DF-GLS statistic and δ.
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3. Sup-bound Q-test: ρ̃ = 1.

Under the local alternative, the Q-statistic is

Q(β0, ρ̃) =
b(T−2

∑T
t=1 x

µ2
t−1)

1/2

σu(1 − δ2)1/2
+
δ(c̃− c)(T−2

∑T
t=1 x

µ2
t−1)

1/2

ω(1 − δ2)1/2

+
T−1

∑T
t=1 x

µ
t−1(ut − σue

σeω
vt) + 1

2
σue

σeω
(ω2 − σ2

v)

σu(1 − δ2)1/2(T−2
∑T

t=1 x
µ2
t−1)

1/2
,

where c̃ = T (ρ̃− 1). By Lemma A.1,

Q(β0, ρ̃) ⇒ bωκc

σu(1 − δ2)1/2
+
δ(c̃− c)κc

(1 − δ2)1/2
+ Z, (27)

where c̃ is understood to be the joint asymptotic limit (with slight abuse of notation). Let

Φ(z) denote one minus the standard normal cumulative distribution function, and let zα

denote the 1 − α quantile of the standard normal. The power function for the right-tailed

test (i.e., b > 0) is therefore given by

πQ(b) = E

[
Φ

(
zα − bωκc

σu(1 − δ2)1/2
− δ(c̃− c)κc

(1 − δ2)1/2

)]
, (28)

where the expectation is taken over the distribution of (We(s), Jc(s)).

Following Stock (1991, Appendix B), the limiting distributions (26) and (27) are approx-

imated by Monte Carlo simulation. We generate 20,000 realizations of the Gaussian AR(1)

(i.e., model (2) under Assumption 1, γ = 0, and σ2
e = 1) with T = 500 and ρ = 1 + c/T .

The distribution of κc is approximated by (T−2
∑T

t=1 x
µ2
t−1)

1/2, and τc is approximated by

T−1
∑T

t=1 x
µ
t−1et.
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Table 1: Parameters Leading to Size Distortion of the One-Sided t-test

This table reports the regions of the parameter space where the actual size of the nominal
5% t-test is greater than 7.5%. The null hypothesis is β = β0 against the alternative β > β0.
For a given δ, the size of the t-test is greater than 7.5% if c ∈ (cmin, cmax). Size is less than
7.5% for all c if δ ≤ −0.125.

δ cmin cmax δ cmin cmax

-1.000 -83.088 8.537 -0.550 -28.527 6.301
-0.975 -81.259 8.516 -0.525 -27.255 6.175
-0.950 -79.318 8.326 -0.500 -25.942 6.028
-0.925 -76.404 8.173 -0.475 -23.013 5.868
-0.900 -69.788 7.977 -0.450 -19.515 5.646
-0.875 -68.460 7.930 -0.425 -17.701 5.435
-0.850 -63.277 7.856 -0.400 -14.809 5.277
-0.825 -59.563 7.766 -0.375 -13.436 5.111
-0.800 -58.806 7.683 -0.350 -11.884 4.898
-0.775 -57.618 7.585 -0.325 -10.457 4.682
-0.750 -51.399 7.514 -0.300 -8.630 4.412
-0.725 -50.764 7.406 -0.275 -6.824 4.184
-0.700 -42.267 7.131 -0.250 -5.395 3.934
-0.675 -41.515 6.929 -0.225 -4.431 3.656
-0.650 -40.720 6.820 -0.200 -3.248 3.306
-0.625 -36.148 6.697 -0.175 -1.952 2.800
-0.600 -33.899 6.557 -0.150 -0.614 2.136
-0.575 -31.478 6.419 -0.125 — —
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Table 2: Significance Level of the DF-GLS Confidence Interval for the Bonferroni Q-test

This table reports the significance level of the confidence interval for the largest autore-
gressive root ρ, computed by inverting the DF-GLS test, which sets the size of the one-
sided Bonferroni Q-test to 5%. Using the notation in Eq. (17), the confidence interval
Cρ(α1) = [ρ(α1), ρ(α1)] for ρ results in a 90% Bonferroni confidence interval Cβ(0.1) for β
when α2 = 0.1.

δ α1 α1 δ α1 α1

-0.999 0.050 0.055 -0.500 0.080 0.280
-0.975 0.055 0.080 -0.475 0.085 0.285
-0.950 0.055 0.100 -0.450 0.085 0.295
-0.925 0.055 0.115 -0.425 0.090 0.310
-0.900 0.060 0.130 -0.400 0.090 0.320
-0.875 0.060 0.140 -0.375 0.095 0.330
-0.850 0.060 0.150 -0.350 0.100 0.345
-0.825 0.060 0.160 -0.325 0.100 0.355
-0.800 0.065 0.170 -0.300 0.105 0.360
-0.775 0.065 0.180 -0.275 0.110 0.370
-0.750 0.065 0.190 -0.250 0.115 0.375
-0.725 0.065 0.195 -0.225 0.125 0.380
-0.700 0.070 0.205 -0.200 0.130 0.390
-0.675 0.070 0.215 -0.175 0.140 0.395
-0.650 0.070 0.225 -0.150 0.150 0.400
-0.625 0.075 0.230 -0.125 0.160 0.405
-0.600 0.075 0.240 -0.100 0.175 0.415
-0.575 0.075 0.250 -0.075 0.190 0.420
-0.550 0.080 0.260 -0.050 0.215 0.425
-0.525 0.080 0.270 -0.025 0.250 0.435
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Table 3: Finite-Sample Rejection Rates for Tests of Predictability

This table reports the finite-sample rejection rates of one-sided, right-tailed tests of pre-
dictability at the 5% significance level. From left to right, the tests are the conventional
t-test, Bonferroni t-test, Bonferroni Q-test, and sup-bound Q-test. The rejection rates are
based on 10,000 Monte Carlo draws of the sample path from the model (1)–(2), where the
innovations are drawn from a bivariate normal distribution with correlation δ.

c δ Obs. ρ t-test Bonf. t-test Bonf. Q-test Sup Q-test
0 -0.95 50 1.000 0.412 0.060 0.091 0.062

100 1.000 0.418 0.055 0.062 0.059
250 1.000 0.411 0.051 0.051 0.051

-0.75 50 1.000 0.300 0.065 0.091 0.062
100 1.000 0.294 0.057 0.063 0.055
250 1.000 0.295 0.053 0.051 0.052

-2 -0.95 50 0.960 0.272 0.048 0.090 0.004
100 0.980 0.283 0.047 0.064 0.002
250 0.992 0.272 0.041 0.046 0.001

-0.75 50 0.960 0.215 0.044 0.085 0.017
100 0.980 0.208 0.039 0.061 0.015
250 0.992 0.205 0.034 0.048 0.011

-20 -0.95 50 0.600 0.096 0.048 0.117 0.000
100 0.800 0.102 0.050 0.059 0.000
250 0.920 0.109 0.052 0.037 0.000

-0.75 50 0.600 0.091 0.048 0.108 0.000
100 0.800 0.088 0.046 0.051 0.000
250 0.920 0.091 0.045 0.037 0.000
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Table 4: Estimates of the Model Parameters

This table reports estimates of the parameters for the predictive regression model. Returns
are for the annual S&P 500 index and the annual, quarterly, and monthly CRSP value-
weighted index. The predictor variables are the log dividend-price ratio (d − p), the log
earnings-price ratio (e− p), the three-month T-bill rate (r3), and the long-short yield spread
(y − r1). p is the estimated autoregressive lag length for the predictor variable, and δ is the
estimated correlation between the innovations to returns and the predictor variable. The
last two columns are the 95% confidence intervals for the largest autoregressive root (ρ) and
the corresponding local-to-unity parameter (c) for each of the predictor variables, computed
using the DF-GLS statistic.

Series Obs. Variable p δ DF-GLS 95% CI: ρ 95% CI: c
Panel A: S&P 1880–2002, CRSP 1926–2002

S&P 500 123 d− p 3 -0.845 -0.855 [0.949,1.033] [-6.107,4.020]
e− p 1 -0.962 -2.888 [0.768,0.965] [-28.262,-4.232]

Annual 77 d− p 1 -0.721 -1.033 [0.903,1.050] [-7.343,3.781]
e− p 1 -0.957 -2.229 [0.748,1.000] [-19.132,-0.027]

Quarterly 305 d− p 1 -0.942 -1.696 [0.957,1.007] [-13.081,2.218]
e− p 1 -0.986 -2.191 [0.939,1.000] [-18.670,0.145]

Monthly 913 d− p 2 -0.950 -1.657 [0.986,1.003] [-12.683,2.377]
e− p 1 -0.987 -1.859 [0.984,1.002] [-14.797,1.711]
Panel B: S&P 1880–1994, CRSP 1926–1994

S&P 500 115 d− p 3 -0.835 -2.002 [0.854,1.010] [-16.391,1.079]
e− p 1 -0.958 -3.519 [0.663,0.914] [-38.471,-9.789]

Annual 69 d− p 1 -0.693 -2.081 [0.745,1.010] [-17.341,0.690]
e− p 1 -0.959 -2.859 [0.591,0.940] [-27.808,-4.074]

Quarterly 273 d− p 1 -0.941 -2.635 [0.910,0.991] [-24.579,-2.470]
e− p 1 -0.988 -2.827 [0.900,0.986] [-27.322,-3.844]

Monthly 817 d− p 2 -0.948 -2.551 [0.971,0.998] [-23.419,-1.914]
e− p 2 -0.983 -2.600 [0.970,0.997] [-24.105,-2.240]

Panel C: CRSP 1952–2002
Annual 51 d− p 1 -0.749 -0.462 [0.917,1.087] [-4.131,4.339]

e− p 1 -0.955 -1.522 [0.773,1.056] [-11.354,2.811]
r3 1 0.006 -1.762 [0.725,1.040] [-13.756,1.984]
y − r1 1 -0.243 -3.121 [0.363,0.878] [-31.870,-6.100]

Quarterly 204 d− p 1 -0.977 -0.392 [0.981,1.022] [-3.844,4.381]
e− p 1 -0.980 -1.195 [0.958,1.017] [-8.478,3.539]
r3 4 -0.095 -1.572 [0.941,1.013] [-11.825,2.669]
y − r1 2 -0.100 -2.765 [0.869,0.983] [-26.375,-3.347]

Monthly 612 d− p 1 -0.967 -0.275 [0.994,1.007] [-3.365,4.451]
e− p 1 -0.982 -0.978 [0.989,1.006] [-6.950,3.857]
r3 2 -0.071 -1.569 [0.981,1.004] [-11.801,2.676]
y − r1 1 -0.066 -4.368 [0.911,0.968] [-54.471,-19.335]
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Table 5: Tests of Predictability

This table reports statistics used to infer the predictability of returns. Returns are for the
annual S&P 500 index and the annual, quarterly, and monthly CRSP value-weighted index.
The predictor variables are the log dividend-price ratio (d− p), the log earnings-price ratio
(e− p), the three-month T-bill rate (r3), and the long-short yield spread (y− r1). The third

and fourth columns report the t-statistic and the point estimate β̂ from an OLS regression
of returns onto the predictor variable. The next two columns report the 90% Bonferroni
confidence intervals for β using the t-test and Q-test, respectively. Confidence intervals that
reject the null are in bold. The final column reports the lower bound of the confidence
interval for β based on the Q-test at ρ = 1.

Series Variable t-stat β̂ 90% CI: β Low CI β
t-test Q-test (ρ = 1)

Panel A: S&P 1880–2002, CRSP 1926–2002
S&P 500 d− p 1.967 0.093 [-0.040,0.136] [-0.033,0.114] -0.017

e− p 2.762 0.131 [-0.003,0.189] [0.042,0.224] -0.023
Annual d− p 2.534 0.125 [-0.007,0.178] [0.014,0.188] 0.020

e− p 2.770 0.169 [-0.009,0.240] [0.042,0.277] 0.002
Quarterly d− p 2.060 0.034 [-0.014,0.052] [-0.009,0.044] -0.010

e− p 2.908 0.049 [-0.001,0.068] [0.010,0.066] 0.002
Monthly d− p 1.706 0.009 [-0.006,0.014] [-0.005,0.010] -0.005

e− p 2.662 0.014 [-0.001,0.019] [0.002,0.018] 0.001
Panel B: S&P 1880–1994, CRSP 1926–1994

S&P 500 d− p 2.233 0.141 [-0.035,0.217] [-0.048,0.183] -0.081
e− p 3.321 0.196 [0.062,0.272] [0.093,0.325] -0.030

Annual d− p 2.993 0.212 [0.025,0.304] [0.056,0.332] 0.011
e− p 3.409 0.279 [0.048,0.380] [0.126,0.448] 0.012

Quarterly d− p 2.304 0.053 [-0.004,0.083] [-0.006,0.076] -0.027
e− p 3.506 0.079 [0.018,0.107] [0.027,0.109] 0.005

Monthly d− p 1.790 0.013 [-0.004,0.022] [-0.007,0.017] -0.013
e− p 3.185 0.022 [0.002,0.030] [0.005,0.028] 0.000

Panel C: CRSP 1952–2002
Annual d− p 2.289 0.124 [-0.023,0.178] [-0.007,0.183] 0.020

e− p 1.733 0.114 [-0.078,0.178] [-0.031,0.229] -0.025
r3 -1.143 -0.095 [-0.229,0.045] [-0.231,0.042] —
y − r1 1.124 0.136 [-0.087,0.324] [-0.075,0.359] -0.156

Quarterly d− p 2.236 0.036 [-0.011,0.051] [-0.010,0.030] 0.005
e− p 1.777 0.029 [-0.019,0.044] [-0.012,0.042] -0.003
r3 -1.766 -0.042 [-0.084,-0.004] [-0.084,-0.004] -0.086
y − r1 1.991 0.090 [0.009,0.162] [0.006,0.158] -0.002

Monthly d− p 2.259 0.012 [-0.004,0.017] [-0.004,0.010] 0.001
e− p 1.754 0.009 [-0.006,0.014] [-0.004,0.012] -0.001
r3 -2.431 -0.017 [-0.030,-0.006] [-0.030,-0.006] -0.030
y − r1 2.963 0.047 [0.020,0.072] [0.020,0.072] 0.016
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Figure 1: Time-Series Plot of the Valuation Ratios

This figure plots the log dividend-price ratio for the CRSP value-weighted index and the log
earnings-price ratio for the S&P 500. Earnings are smoothed by taking a ten-year moving
average. The sample period is 1926:4–2002:4.
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Figure 2: Asymptotic Size of the One-Sided t-test at 5% Significance

This figure plots the actual size of the nominal 5% t-test when the largest autoregressive
root of the predictor variable is ρ = 1 + c/T . The null hypothesis is β = β0 against the
one-sided alternative β > β0. δ is the correlation between the innovations to returns and the
predictor variable. The dark shade indicates regions where the size is greater than 7.5%.
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Figure 3: Local Asymptotic Power of the Q-test and the t-test

This figure plots the power of the infeasible Q-test and t-test that assume knowledge of
the local-to-unity parameter, the Bonferroni Q-test and t-test, and the sup-bound Q-test.
The null hypothesis is β = β0 against the local alternatives b = T (β − β0) > 0. c =
{−2,−20} is the local-to-unity parameter, and δ = {−0.95,−0.75} is the correlation between
the innovations to returns and the predictor variable.
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Figure 4: Bonferroni Confidence Interval for the Valuation Ratios

This figure plots the 90% confidence interval for β over the confidence interval for ρ. The
significance level for ρ is chosen to result in a 90% Bonferroni confidence interval for β. The
thick (thin) line is the confidence interval for β computed by inverting the Q-test (t-test).
Returns are for the annual and quarterly CRSP value-weighted index (1926–2002). The
predictor variables are the log dividend-price ratio and the log earnings-price ratio.
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Figure 5: Bonferroni Confidence Interval for the Post-1952 Sample

This figure plots the 90% confidence interval for β over the confidence interval for ρ. The
significance level for ρ is chosen to result in a 90% Bonferroni confidence interval for β.
The thick (thin) line is the confidence interval for β computed by inverting the Q-test (t-
test). Returns are for the quarterly CRSP value-weighted index (1952–2002). The predictor
variables are the log dividend-price ratio, the log earnings-price ratio, the three-month T-bill
rate, and the long-short yield spread.
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