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method for estimating vector autoregressions. The procedure is applied to
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casts relative to univariate equations. Although cross-variables responses

are damped by the prior, considerable interaction among the variables is

shown to be captured by the estimates.

We provide unconditional forecasts as of 1982:12 and 1983:3.

We also describe how a model such as this can be used to make conditional

projections and to analyze policy alternatives. As an example, we analyze

a Congressional Budget Office forecast made in 1982:12.

While no automatic causal interpretations arise from models
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cal interdependence of a set of economic variables, which may help in

evaluating causal hypotheses, without containing any such hypotheses
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Introduction

We approach the analysis of a group of economic time

series as the problem of using a prior joint distribution for the

observed values of the series with future values to obtain a

posterior distribution for future data conditional on observed

data. The methods we suggest are Bayesian in spirit. We do not,

however, attempt to make our prior distributions fully reflect our

personal a priori knowledge and uncertainty. Instead we aim at a

prior distribution which is easily standardized and reproduced by

other researchers and reflects aspects of prior distributions

which are likely to be similar across many researchers. The

posterior distribution produced by our analysis is, of course,

just the likelihood function weighted by the prior p.d.f. Our

methods can be thought of as a way of reporting the likelihood

function to other researchers; it provides a report more useful

than the unweighted likelihood function itself for researchers who

themselves put little prior probability on regions of the param-

eter space given low probability by our prior.

We regard conventional methods of developing probability

models for econometric time series as unreliable because they do

not give probabilistic treatment to the uncertainty arising from

researchers' inexact knowledge of the true ttmodel specifica—

tion." Conventional approaches produce models which can be help-

ful adjuncts to judgment in producing forecasts, but the implied

probability distributions about the forecast which such models

generate are almost invariably too optimistic. (The ideas in

these first two paragraphs are discussed at rrre length in Sims

(1982) and Litterman (1982).)
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Specifying a joint distribution over the hundreds or

thousands of interrelated data points available in most applica-.

tions is a complex task. Any explicit joint probability model we

may z-ite down is likely to contain hidden implications which we

would reject if we confronted them. Yet there is no joint distri-

bution representing fignoranceu on which we can rely as in some

sense conservative. For example, if we take a large—variance

joint normal prior on the coefficients of an unrestricted vector

autoregressive model for the data as representing ignorance, we

are in fact putting high probability on models with very large

coefficients. Such models produce erratic, poor forecasts and

imply explosive behavior of future data. Most researchers would

think it unlikely that such models actually characterize the data,

yet use of nonBayesian estimation methods is roughly equivalent to

use of the flat priors which put high probability on such mod-

els. This is why those making practical use of nonBayesian meth-

ods are forced to impose arbitrary or conventional restrictions to

simplify their models, eliminating many parameters which it rust

be admitted are not known to be zero.

Since we and the profession as a whole have little

experience with specifying joint distributions for these contexts,

in this paper we experiment with a range of prior distributions.

The range we consider is indexed by a set of eight parameters.

Our view is that a good standard public prior may well be some

weighted average of the priors indexed by these parameters. Since

the priors with all parameters fixed are naich more tractable than

would be a weighted integral over the parameters, our hope is that
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we will emerge with evidence that for many purposes it will be

possible to obtain good results with a single setting of the

parameters, without making the extensive explorations which under-

lie this paper's results. This would occur if over a wide range

of reasonable settings for the parameters the model generated

similar conditional distributions of the future given past values

of the variables in the system.

Another possibility is that, while conditional distri-

butions are sensitive to the parameter setting, the data are fit

well only by parameter values in a certain narrow range, and

within this range conditional distributions of the future are all

similar. This would imply that, though we need to search to find

a good parameter vector, we can then generate conditional distri-

butions with a single "good" vector. The inconvenience of having

to compute many such conditional distributions and then take

weighted averages of the results would be avoided.

While our explorations are in some ways like fitting the

parameters of a conventional model——we examine various points in a

parameter space and check how well the resulting models fit the

data——the motivation and implications of the results are different

in important respects. Our ideal conclusion would be that the

parameters are "ill—determined"——that the fit is similar across a

wide range of parameter settings which all have similar implica—

t ions.

Of course, there is a question as to what we mean by a

particular prior's "fitting" the data well or badly. The Bayesian

interpretation is that we have specified our prior incompletely.
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The usual Bayesian formulation has a model for the data y spec i—

fled as a density function p(yt3) for y conditional on parameters

3, yielding a joint density for y and 3 as the product p(yJ3)q(6),

where q is a prior density on the parameters 3. We are introduc-

ing an extra layer of parameterization. We specify a model for

the data conditional on parameters 3 which we call "coeffi-

cients". We specify a prior over U conditional on a second set of

parameters if, so that our joint density for the data and the

coefficients conditional on 11 is p(y3)q(OiT). We leave inexpli-

cit our prior over it, which we need to fully specify the proba-

bility distribution of the data. We can in principle integrate

p(yO) q(Ojit) with respect to U to obtain the marginal distribu-

tion for y given it, which we could call m(yjii). If we are not

directly interested in 3, we can treat m(yii) as our model for the

data. For a fixed set of observed data y, the behavior of

as a function of iT plays the formal role of a likelihood func-

tion. As usual in such a context, if our prior density is flat in
the region where m(y1T) is large, our posterior p.d.f. for it will

be proportional to m(yii) and we can think of ourselves as making

inferences about the likely values of it. But since here it is

interesting mainly for its implications about 3, we do not focus

inference on "estimating" ii.

Our posterior p.d.f. on 3, for a fully specified prior,

would be obtained by forming the marginal joint p.d.f. for U and y

by integrating over it, then applying Bayes' rule. In the case

where our prior p.d.f. on it is flat in the relevant region, this

leads to a posterior p.d.f. for S which is a weighted average of
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those obtained conditional on ri, with the relative weight on it

given by m(yIx). Thus, when we measure the fit of the model we

ought naturally to use the relative size of m(yrr). This is

formally much like using the likelihood function, and we will

occasionally henceforth refer to m(yir) as the likelihood, but it

is nonetheless a Bayesian notion, since it is derived by taking

the coefficients e as a priori random.

In fact, we shall see that this Bayesian notion of how

well a prior fits the data corresponds to measuring the fit by

forecasting performance. That is, with a particular setting of
ii,

we can generate recursively through the sample one—step—ahead

forecasts of data at t ÷ 1 given data up through t. The measure

of fit based on our Bayesian likelihood turns out under our as-

sumptions to be a weighted sum of squares of the one—step—ahead

forecast errors. Readers uncomfortable with the Bayesian termi—

nology can think of what we are doing as using it to index fore-

casting procedures, choosing among procedures by how well they

forecast in the sample period. From this perspective, we are

taking the large parameter space indexed by e and reducing it to a

smaller one indexed by it. What we are doing is quite different,

however, from the conventional "parsimonious parametrizationt'

approach, which would use some subspace of the U—space, judi-

ciously chosen, as if it were the whole parameter space. ir

approach will, for any given choice of it, allow the U used in

forecasting to be more and more strongly data—determined as data

accumulates through time, with no subspaces of the U—space ruled

out.
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The Forecasting Procedure

The procedures we are about to describe in detail were

developed in Litterrnan (1980, 1981, 1982) and Sims (1980, 1982).

Though the procedures are described in general terms, it may help

to bear in mind that we will be applying them to a specific set of

data. We consider a set of ten variables, measuring output,

prices, money, federal government revenues and outlays, stock

prices, interest rates, the value of the dollar, the flow of total

nonfinancial debt, and the change in business inventories. The

data are described fully in the Appendix. Observations begin in

19L8:i and end as of 1983:3. All variables are logged except

changes in business inventories and the interest rate; all vari-

ables are seasonally adjusted except the interest rate, stock

price index, and the trade—weighted dollar; none of which show

evidence of a seasonal pattern.

Starting from an unrestricted, time—varying, m'th—order

vector autoregressive representation for the n—vector, X,

(1)

where At(L) is for each t a polynomial of order m in strictly

positive powers of the lag operator L, we express our prior sepa—

rately for each equation as a distribution over the coefficients

in A and C. In principle we should also treat the variance of

as uncertain, but instead this is treated as one of the parameters

of our prior. Our approach can be thought of as imposing "fuzzy"

restrictions on the equation, striking a balance between decreas-

ing variance and increasing bias as the restrictions are tightened
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up. What we do thus has antecedents in the literature on shrink-

age estimation and its Bayesian interpretation, for examDle, the

works by ben and Kennard (1970), Stein (l97!), Shiller (1973)

and Learner (1972, 1978).

The prior is specified as a multivariate normal distri-

bution for the coefficients of the vector autoregression. We

refer to changes in the parameters of the prior which lead to

smaller (larger) variances of coefficients as tightening (loosen-

ing) the prior. The prior means for all coefficients are zero,

except for a mean of one at the first lag of the dependent vari-

able in each equation. Thus, in the limit as the prior is tight-

ened around its mean each equation takes the form of a random

walk.

(2) x = x1 +

Because most of the variables we use have persistent trends, we

always keep the prior for the constant in each equation flat in

the relevant region of the parameter space, so the limiting form

for each equation is essentially a random walk with drift fit to

the data.

(3) x = x1 + c +

While we recognize that a more accurate representation of our

prior beliefs would give less weight to systems with explosive

roots than is implied by our symmetric distributions around this

mean, we doubt that the gain that could be achieved by abandoning

the Gaussian form for our prior would be worth the price. In
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particular, the likelihood function for data which is not explod-

ing will be quite clear in its rejection of roots significantly

outside the unit circle.

We denote by @ the parameter vector obtained by stack-

ing up all the coefficients of the vector autoregression. The

initial vector 00 is given a iailtivariate normal prior density

function with mean • The covariance matrix of the prior, de-

noted E0, is generated as a function, F, of a vector of prior

parameters, i. Thus, at time 0, we have.

() = F()

We postulate change in the coefficients of the auto-

regression over time according to

(6) = * 0_ + (l_a) * +

The parameter 8 controls the rate of decay toward the

prior mean. When it is set to 1, as in a number of our experi-

ments, we are modeling the coefficient variation as a random

walk. The random change in the parameter vector, is assumed

to be drawn from a distribution with zero mean, and covariance

matrix proportional to E0..!J

-JExcept that the variance in changes in the constant
term is kept equal to the variance of changes in the coefficient
on the first own lag, rather than set proportional to the effec—
tively infinite prior variance on the constant term.
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The factor of proportionality, x7, which scales to

determine the covariance matrix of i, determines the amount of

time variation allowed in the parameter vector.

Having specified the probability model, we apply the

Kalman filter equation by equation to obtain recursively posterior

modes for based on data through tl. Whfl we have passed

through the full sample this way, we end up with a value for the

likelihood of the sample and a full—sample estimate of the param-

eter vector applying at the first post—sample date.

The Kalman filter is easiest to understand for the case

where the prior is normal with a fixed covariance matrix and the

equation disturbance terms have known variance. In practice,

of course, we do not know the equation disturbance variances a

priori. Our procedure is to use 2, • times the vector of vari-

ances of residuals in a univariate autoregressions of order 6, as

if it were exactly the vector of variances of equation distur-

bances for the nultivariate system. The results of the filter

depend only on the ratios of equation disturbance variances to the

elements of E0. We can examine how the likelihood.i value behaves

as a function of for equation i, keeping all parameter esti-

mates unchanged. At the highest value of the likelihood, we have

the modal estimate of equation disturbance variance for the fixed

ratio of to which generated our estimates, assiming a flat

prior on . We will also have an implied rescaling of both our

initial and our initial
1 0

The reader is reminded of our special use for the term
likelihood: the marginal p.d.f. for the data conditional on the
parameters IT.
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The value of the likelihood for the rescaled and E
1 0

at which the posterior p.d.f. is maximized provides a natural

measure of fit for individual equations. The likelihood measure

is a kind of estimate of the one—step ahead forecast standard

error. Scaled to have units of standard errors of one—step ahead

prediction errors, it is given by

() tti j
t=i

where is the one—step ahead forecast error; s is the

theoretical prediction error for equation i at t, s is the sample

geometric mean of s. It differs from the ordinary root mean

square forecast error in that it weights squared forecast errors

by the inverses of their theoretical variances. The theoretical

variances vary across observations because the component of fore-

cast error variance due to parameter change depends on the values

of the independent variables.

We have not seriously explored the potential gains from

treating the equations of the system jointly. Least squares

equation by equation is fully asymptotically efficient for an

unconstrained vector autoregression, because the same variables

appear on the right—hand side of each equation. The Bayesian

posterior mode is not correctly captured by single equation meth-

ods, however, even if priors are normal and independent across

equations, unless the prior covariance matrices are proportional

to one another and the same niiltiple of equation disturbance

variance in each equation. Furthermore, in a system as large (10
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variables) as the one we examine in this paper, there are many

(55) free parameters in the disturbance covariance matrix, all of

which affect the posterior distribution. It is likely that by

imposing an informative prior on the 600 coefficients on lagged

variables while using a "flat" prior on the 55 parameters of the

covariance matrix we are missing an avenue for improving reliabil-

ity of these methods.V

The single—equation measures of fit which emerge natu—

rally from the Kalman filter have a multivariate analogue, but it

cannot be computed without using a rrultivariate version of the

Kalman filter. We have therefore put primary emphasis on a dif-

ferent class of multivariate measures of fit, the log—determinants

of matrices of cross products of k—step ahead out—of—sample fore-

cast errors. The likelihood measure of fit would differ from one

based on the determinant of the cross product of one—step ahead

forecasts mainly in weighting the errors by the inverses of their

conditional variances.

The log—determinants of the matrices of summed cross—

products of k—step out—of—sample forecast errors which we rely on

as our primary measures of fit are defined by

I'We could parameterize the model initially in recursive
form, with the j 'th equation expressing a a linear function
of lagged Xt's and current X's for i < j and the covariance
matrix of equation disturbances specified as diagonal. In such a
model single—equation procedures would coincide with multiple—
equation procedures because of the diagonality of the disturbance
matrix, and most of the free parameters of the covariance matrix
of residuals would become coefficients on right—hand—side vari-
ables. The difficulty with this approach is that normal prior
distributions on coefficients in such a recursive system cannot be
chosen to treat variables symmetrically. The potential advantages
of including contemporaneous relations among disturbances in the
prior distribution are great enough that this approach should be
explored, however.
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(8) tt+k =
(txt+k - xt+k),

T
(9) Ek = (sCs+k ss+ks1

(10) k—step—ahead log—determinant = log (JEkI).

Six parameters determine the general form of our func-

tion, F. The parameters and their roles are as follows:

parameter controls:

relative tightness on own lags

it2 relative tightness on lags of
other variables

it3
relative tightness on constant
term

differential tightness among
other variables

if5
overall tightness

it6 tightness on sums of coeffici—
en t s

Let the 1th component of X, x1 have the scalar repre-

sentation:

(ii) x = a1x_1 + a2x2 + ... + amxm

i 2 i 2 i 2+ a21x1 + a22x_2 + ... ÷
a2mxt_m

I n I n I n I+a x +a x +... +a x +c +n,1 t—1 n,2 t—2 n,m t—m t

The first five components of it, together with the ele-

ments of 2 and a set of relative weights, w, for i=l,...,n;

j=1,...,n, define a diagonal matrix of variances for the coeffici-

ents. For coefficients of own lags, that is, ak, k = 1,2,...,rn,
we assume the variance is given by
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(12) Var (ak) = 51
k

exp(iw.)

For lags of other variables in a given equation, that is, ak k
= 1,2,...,ni, and I not equal to j, we assume the variance is given

by

2
TI 71 0'.1 521(13) Var (a )

= for not equal to j.J,k kexp(.w).a

For the constant term in each equation we assume the variance is

given by

1 2
(itt) Var (c ) = IT5 iT3 • TI2

The scale factors are nresent to take account of the1

units of the data in determining the prior tightness for coeffici-

ents on different variables.

The relative weights, , are a set of numbers which we

specify to reflect our a priori knowledge about the likelihood

that lags of variable j will have nonzero coefficients in equation

1. The larger is ,the closer to zero we feel that coefficient

is likely to be. For most of the variables we have specified

equal to 0 and w equal to 1 for i not equal to j. For the

interest rate and the trade—weighted dollar we specified w equal

to 1 and w equal to 2 for i not equal to j. These weights,

relative to the others, reflect our belief that these variables

are a priori more likely- to behave like random walks. Finally,

for the stock price index we specified v equal to 1 and equal

to 5 to reflect our strong belief that this variable behaves like

a random walk.
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Given the above tightnesses on individual coefficients,

based on iT1 through iT5, we also wished to impose a prior belief

that the sums of coefficients on own lags are close to 1, and on

lags of other variables are close to 0. This does not affect the

mean of our prior. Consider a diagonal block of variances, M, for

a vector of coefficients, 0, on lags of variable j in equation i,

defined by parameters 111 through it5. Let the vector S be defined

by

(15) S = 6
• [1 1 ... 1]

Then following the heuristic logic of Theil's mixed estimation

procedure, we can introduce a "dumniy observation" of the form

(16) S0=v

with the variance of v set to one, by modifying M to take the new

form

(i\ ,, j MSS'MT
/ —

1+S'MS5

Improving Forecast Accuracy

Before we search over the prior parameters, we generate

a set of benchmark univariate, fixed—coefficient, autoregres-

sions. Based on the results in Litterman (1982), which viewed

out—of—sample forecast performance as a ftnction of lag length for

many of these variables, we chose to include six lags in each

equation and a constant term. For this set of equations, and all

subsequent specifications, we calculate sets of 1, 3, 6, and 12—

step ahead forecast errors for each month from 1951:1 through
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1980:12. We compute log—determinant measures of fit as well as

standard errors for each variable, and we look at three ten—year

sub—periods, as well as the overall fit in order to gauge the

consistency of the results. The overall measure of forecast

accuracy to which we give primary attention is the full—period

log—determinant of the covariance matrix of one—step ahead fore-

cast errors. The univariate results are presented in Table 1.



Table 1

Univariate Forecasting Performance

Variable Period 1 Period 2 Period 3 Overall

1—Step Horizon

Standard Errors
Real GNP 0.965 0.796 0.818 0.863
GNP deflator 0.204 0.136 0.208 0.186
Ml 0.292 0.321 0.498 0.381
Stock Price Index 2.895 3.280 3.695 3.306
Treasury bill rate 0.231 0.233 0.871 0.537
Trade weighted dollar 0.295 0.355 1.981 1.174
Flow of total debt 18.863 8.945 7.155 12.741
Change in inventories 4.967 4.981 6.531 5.542
Federal outlays 5.209 3.839 4.383 4.512
Federal receipts 4.300 4.330 3.905 4.183

Log determinant —69.035 —70.741 —62.819 _614.395

3—Step Horizon

Standard Errors
Real GNP 1.492 1.059 1.337 1.309
GNP deflator 0.506 0.368 0.495 0.460
Ml o.6i 0.616 1.015 0.782
Stock Price Index 5.901 6.608 7.532 6.714
Treasury bill rate 0.502 0.588 1.849 1.157
Trade weighted dollar 0.562 0.753 4.429 2.614
Flow of total debt 40.328 16.797 i4.86 26.642
Change in inventories 5.868 5.507 8.185 6.627
Federal outlays 5.647 4.819 4.532 5.022
Federal receipts 5.279 5.263 4.178 4.934

Log determinant —58.277 —60.593 —52.840 —53.523

6—Step Horizon

Standard Errors
Real GNP 2.549 1.490 2.035 2.071
GNP deflator 0.968 0.673 0.885 0.851
Ml 1.151 1.137 1.303 1.208
Stock Price Index 9.598 10.751 11.487 10.641
Treasury bill rate 0.910 0.902 2.410 1.576
Trade weighted dollar 0.882 1.060 6.811 4.012
Flow of total debt 46.127 21.069 18.809 31.227
Change in inventories 6.700 5.866 9.282 7.427
Federal outlays 9.336 6.986 6.224 7.631
Federal receipts 8.073 6.090 4.932 6.496

Log determinant —50.336 —54.638 —46.909
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12—Step Horizon

Standard Errors
Real GNP 4.56)4 2.749 3.176 3.581
GNP deflator 2.880 1.349 1.722 2.088
Ml 2.335 2.041 1.875 2.093
Stock Price Index 17.924 14.725 15.505 16.109
Treasury bill rate 1.184 1.340 2.717 1.878
Trade weighted dollar 2.315 1.275 9.811 5.866
Flow of total debt 64.439 32.025 24.778 43.939
Change in inventories 7.680 6.562 10.340 8.346
Federal outlays 16.970 11.555 10.316 13.265
Federal receipts 19.904 10.006 7.516 13.574

Log determinant —39.560 —48.346 —42.100 —38.284

The extent of our investigation of different settings of

the vector was constrained by the expense of evaluating the

forecast performance for each value. Although our calculations

were performed on a Cray—i computer at the University of Minnesota

which is both extremely fast and inexpensive, each evaluation of

forecast performance for a given value of ir required approximately

60 seconds and cost about $30. About half of the time for a given

run was involved in the recursive estimation of the Os, the rest

was used in generating the 12—step ahead forecasts each period and

doing the accounting necessary to generate forecast accuracy

statistics.

We chose to focus primarily on two dimensions of the

prior, the overall tightness and the degree of time variation of

the parameters. Our previous experience with priors of this form

has suggested that the degree of parameterization of an equation

is an important determinant of forecast accuracy. Viewing the

specification of a forecasting equation as the construction of a

signal extraction filter, it is clear that equations with too many

free parameters tend to pick up excess noise and to generate poor
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out—of—sample forecasts. Equations with too few parameters fail

to pick up the signal. The specification of a prior provides a

flexible format through which one can confront the tradeoff be—

tween increasing signal extraction capabilities and over—fitting

the data. By adjusting the tightness of the prior, one can tune

the filter along this dimension.

We focus on the forecast performance as a function of

the amount of time variation in order to investigate the degree to

which results might be improved by relaxing the usual assumption

of constant coefficients. We hope not only to increase forecast

accuracy, but also to generate a more realistic description of the

uncertainty of forecasts, particularly of those at multi—step
horizons.

As a first step in this investigation we focused on how

much improvement in forecasting would be possible by searching

along these two dimensions. Taking as given the parameter values:

=1

.001

lO
2

we began by minimizing the one—step ahead log—determinant as a

function of 115 and iT7. An informal search requiring about 50

function evaluations led us to the values 1T = 1.14 and iT7 = .23 . 10.
Up to this point we had not yet begun to constrain the

sum of coefficients or to allow decay of the parameter esti—
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mates. In effect we had, by default, set = 0 and = 1. Over

the range we examined, forecast performance varied little as we

changed it5 and
it7.

It was clear, though, that for these parani—

eters we had found values in a neighborhood of no more than a few

percent from the point at which our one—step log—determinant

measure was minimized.

The amount of parameter variation allowed at this speci-

fication is small. The implied standard error of the change in

the first own lag, for example, over the entire sample is on the

order of .001. Since the prior mean of this parameter is 1,

parameter drift might be taken as negligible. This result may

seem surprising at first, but it should not be. In a model with

61 coefficients on the right—hand side, any very substantial

amount of parameter drift implies large standard errors of one—

step ahead forecasts. The fact that simple random walk models

forecast economic time series as well as they do over relatively

long time spans is inconsistent with large amounts of parameter

variability. One way to read our conclusion is that allowing for

parameter drift improves forecasts very little and that since

doing so is expensive, in many applications it will be reasonable

to use fixed—coefficient models.

However, in a model with 61 coefficients on the right—

hand side of each equation, even small amounts of variance in

parameter changes can contribute a substantial amount to forecast

error. Furthermore in multiple—step forecasts, niarkov parameter

drift of the type our model allows builds up very rapidly in the

estimated standard errors of forecast. Therefore, it is important
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to allow for parameter drift if one wants to obtain more than

point forecasts.

One puzzle we found was that the 12—step ahead log—

determinant reached a minimum with priors that were both tighter

and that allowed less time—variation than the prior which was best

at the shortest forecast horizon. Though the differences in fit

are small, the pattern of tighter priors leading to relatively

better performance at distant horizons motivated our making fur-

ther experiments with the form of the prior.

Since our conclusion about the amount of time variation

seems to us important, we examined the possibility that it is

dependent on the particular form in which we allow parameter

variation. We performed the following experiment: we compared

the forecasting performance of two constant—coefficient specifica-

tions, the first of which uses all available observations at each

point in time, and the second of which uses only the 120 most

recent observations (if that many are available). By the one—step

ahead log—determinant measure, the first specification performs

better. Thus, dropping observations, even those more than ten

years old, causes the log—determinant to rise. Interestingly, the

forecasting performance at longer horizons did improve with the

old observations dropped. The conclusion that time variation is

small relative to sampling error in coefficient estimates seems to

be upheld. Since dropping observations gives more weight to the

prior, it appears that long—horizon forecasts might be improved by

assuming decay of parameters toward their prior means.
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An additional restriction which we considered in the

hope that it would allow more time variation in parameters was to

impose that the sums of coefficients on lags of each variable in

each equation do not vary too much. We found that if this re-

striction was imposed very tightly, then considerably more time—

variation in individual coefficients was possible before the

forecasting performance worsened. However, none of these speci-

fications performed as well as those without the tight restric-

tion. The best performance along this added dimension was

achieved when was between 5. and 1., that is, with standard

deviations around sums of coefficients of between .2 and 1. In

choosing ir6 we also considered various values of 117, but the

returns to this search were not large. Of the combinations of

values that we tried, the best was It6 = 1 and = At this

specification the standard error of parameter change over the full

sample is approximately double what it was at the previous best—

fitting specification.

A second type of structure we imposed on the time—

variation of parameters was to specify that the coefficients

slowly decay toward the prior mean. This structure is implemented

by choosing values of the decay parameter, rr8, slightly less than

1.

In performing this experiment we reestimated the coef-

ficients with each new observation, but cost considerations pre-

vented us from revising the coefficient estimates at each step in

the forecasting recursion. In one sample forecast where we did

take account of parameter decay at the .9975 pe± period rate, we
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found that the forecasts changed only by about .1 percent at the

12—step horizon and about 1.5 percent at the 148—step horizon.

Letting 118 = .999 in this type of specification was

somewhat successful in terms of improving forecast performance,

but it did not provide much room for allowing a larger degree of

time variation. At this value for 118, doubling the time—variation

parameter, 117, to .2 io_6 marginally improved the one—step fore-

casts, but led to a much larger decrease in accuracy at longer

horizons. Increasing the rate of decay to .9975 caused the fore-

cast performance at a one—step horizon to worsen by about the same

amount as that at a 12—step horizon improved, with both changes

very small. Larger amounts of decay caused decreases in accuracy

at all horizons.

Based on these findings, we adopted as our preferred

specification the following parameter values:

.05

112 .005

7T3
105

11 2

1.0

117 =

718

The forecast accuracy statistics at this specification are given

in Table 2.
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Table 2

Final Specification Forecast Performance

Variable Period 1 Period 2 Period 3 Overall

1—Step Horizon

Standard Errors
Real GNP 0.925 0.800 0.759 0.831
GNP deflator 0.199 0.131 0.210 0.183
Ml 0.269 0.320 0.474 0.365
Stock Price Index 2.832 3.294 3.735 3.308
Treasury bill rate 0.229 0.251 0.847 0.525
Trade weighted dollar 0.319 0.323 1.957 1.160
Flow of total debt 18.087 8.258 6.694 12.110
Change in inventories 5.839 4.963 6.446
Federal outlays 4.879 3.500 4.485 4.327
Federal receipts 4.267 4.325 4.008 4.202

Log determinant —69.497 —71.310 —63.114 —64.829

3—Step Horizon

Standard Errors
Real GNP 1.355 1.083 1.178 1.211
GNP deflator 0.506 0.329 0.518 0.459
Ml 0.580 0.625 0.944 0.735
Stock Price Index 5.841 6.567 7.556 6.692
Treasury bill rate 0.493 0.560 1.746 1.096
Trade weighted dollar 0.670 0.677 5.339 2.565
Flow of total debt 36.154 13.336 13.101 23.499
Change in inventories 5.610 5.402 8.247 6.549
Federal outlays 5.568 5.204 4.416 4.767
Federal receipts 4.931 5.151 4.440 4.850

Log determinant —61.680 —53.379

6—Step Horizon

Standard Errors
Real GNP 2.172 1.677 1.729 1.872
GNP deflator 0.826 0.567 0.976 0.808
Ml 1.073 1.205 1.235 1.173
Stock Price Index 9.709 10.563 11.721 10.696
Treasury bill rate 0.810 0.793 2.273 1.466
Trade weighted dollar 1.135 0.990 6.666 3.946
Flow of total debt 39.045 15.522 15.429 25.649
Change in inventories 6.140 5.899 9.290 7.276
Federal outlays 8.794 5.145 5.539 6.696
Federal receipts 6.900 5.969 5.670 6.202

Log determinant —52.102 —55.858 —47.723 —48.051
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12—Step Horizon

Standard Errors
Real GNP 3.500 3.235 3.113 3.287GNP deflator 1.627 1.122 1.992 1.620Ml 2.150 2.339 1.925 2.145Stock Price Index 17.891 i4.46o 16.367 16.300
Treasury bill rate 1.033 1.108 2.469 1.672
Trade weighted dollar 1.9814 1.187 9.510 5.651Flow of total debt 53.879 20.877 8.594 35.045
Change in inventories 6.644 6.8oo 10.318 8.ioo
Federal outlays 17.870 7.174 8.06i 12.052
Federal receipts 14.370 9.269 9.113 11.187

Log determinant —44.207 —50.265 —41.723 —40.68o

In coxraring the performance of different systems it is

useful to note that, aside from covariance terms, changes in the

log—determinant represent a sum of the percent changes in the

variance of forecast errors from each equation. Multiplying the

change by five (divide by 20 to get standard errors for ten vari-

ables and nuitiply by 100 to get percent) gives a rough estimate

of the average percent change in forecast standard errors of the

equations. Thus, we observe an average of about 2 percent im-

provement in the one—step forecast errors in going from univariate

to the final specification, about 12 percent at the 12—step hori-
zon.

In searching informally over parameters of our prior we

were encouraged by our finding that forecast performance was

generally insensitive to the variation in parameters that we

looked at. All of the sets of parameter values we looked at had

log—determinants closer to our final choice than to the univari—

ate, indicating the lack of sensitivity of forecast performance

over the range of priors we investigated.
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In order to investigate this sensitivity more carefully,

however, we looked at forecast performance over a larger grid of

values for the overall tightness and time variation parameters of

our prior. The grid was chosen to cover a region several orders

of magnitude wide along both dimensions, far outside the range we

would consider reasonable.

Our preferred prior overall tightness of 1.4 represents

a scaling up of the variances of all coefficient prior distri-

butions by 40 percent from our original specification. For our

grid search we chose to look at the values: .01)4, .1)4, .7, 1.4,

2.8, and 14. The final value for our time variation parameter was

We chose a grid along this dimension of io'5, 1oT, io6,
and lO. The first value represents essentially no parameter

variation, while the last specifies an order of magnitude larger

than our preferred value.

The overall accuracy of forecasts generated by our

vector autoregressions turns out to be a well behaved function of

the prior parameters over which we searched. We present the

results of the grid search as a series of charts. The overall

forecast accuracy is shown from two different views in Charts 1

and 2. Here forecast accuracy is represented by the height of a

surface for each point on our grid. The height is given by

(18) 5 • [1ogE1 —
logfE1(1T5,7r7)fJ

where is the cross—product matrix of the one—step ahead fore-

cast errors for our preferred specification and E1(x5,ir7) is the

cross—product matrix of one—step ahead forecast errors for the

point on the grid (ir5,r7').



Charts I and 2

How Forecast Accuracy Varies
With Two Dimensions of the Prior

Chart 1. Front View Chart 2. Back View
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It can be clearly seen in these charts that the accuracy

surface is not sensitive to even order—of—magnitude changes in

these parameters of our prior. Because we would give low weight

to regions of our grid away from the center, we interpret this

result as indicating that if we think of ourselves as having a

prior which is a mixture of normal priors indexed by the values of

t, we would end up with a posterior much like that for our final

chosen specification.

A slightly more detailed picture of the forecast perfor-

mance over our grid is given in Charts 3 through 8. Here we

display the accuracy surfaces for each of our three nonoverlapping

sub—periods for the one—step ahead and the 12—step ahead hori-

zons. The consistency of the shape of this surface over the

different periods is reassuring. It would appear reasonable to

assume that any choice of values for
it5

and
it7

in a wide range

around the center of this grid would be likely to remain close to

the optimal choice, at least for one—step forecasts.

The results for the 12—step ahead horizon, displayed in

Charts 6 through 8 are less consistent over time. In general,

though, they reflect the finding that tighter priors with less

time variation of parameters appear to perform better at forecast—

ing over longer horizons.

What have we accomplished through this specification

search? By some standards, the answer would appear to be not

much. After a complex and somewhat expensive (the total computing

cost was about $3000) search we find a specification which gene-

rates out—of—sample forecast errors which average a few percent
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smaller than simple univariate autoregressions. On the other

hand, as we pointed out earlier, our search here has been aimed at

testing the usefulness of certain ways of specifying a prior.

Nearly all the advantage of the xailtivariate procedures over the

univariate procedures in forecasting performance could have been

obtained without allowing for parameter drift (a major source of

computational expense) and without searching over most of the

dimensions we explored. A more difficult question is whether by

searching as we have, we have ended up with a reliable probability

distribution for future data.

Despite the small absolute gain in forecast accuracy, it

is significant that we have documented a consistent gain from the

use of a formally explicit multivariate method in a system of this

size. This has not been done before, to our knowledge. The

difference in accuracy between multivariate and univariate methods

which we find is substantial relative to differences in forecast

accuracy ordinarily turned up in comparisons across methods, even

though it is not large relative to total forecast error. More—

over, if we think of a decomposition of movements in the data into

signal and noise, with noise being the dominant component, then a

2 percent increase in forecast accuracy must represent a much

larger percentage increase in the amount of signal that is being

captured. And with a rrultivariate probability model which has

some claim to accuracy, we can generate conditional distributions

of future time paths of a vector of economic variables which

capture the most important cross—variable relations.
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Forecasts and Conditional Projection

The main purpose of generating a model like ours is to

use data at a given date t to make assessments of what is likely

to happen after t. We describe here some ideas for making such

assessments which are in some ways new, yet which could be applied

to any time series model, not just models like that we have con-

structed.

Obviously one can construct a forecast of the most

likely path of the economy. For our model this is just a matter

of recursively forecasting one—step ahead with the autoregressive

equations, using forecast values as if they were actual data as

the date is advanced into the future. The appropriate procedure

is to use the most recent estimate of the randomly varying parain—

eters and vary them during the forecasting recursion according to

their equation of evolution (6), ignoring the random term in that

equation. Of course, when iT8 is 1.0, this amounts to holding the

parameters constant. Because the forecasts after the first period

data are nonlinear functions of the parameters, they are not

unbiased. That is, they do not represent the conditional expecta-

tion of future data. One can, at considerable expense, evaluate

the conditional expectation by stochastically simulating the model

and integrating the posterior distribution of forecasts by Monte
Carlo methods. In one experiment using data through 1982:12 we

found that the differences in forecasts based on time invariant

coefficients, coefficients decaying at the rate .999, and those

generated by Monte Carlo integration were quite small relative to

the uncertainty in the forecasts.
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We present in Charts 9 through 2L two forecasts from the

model for 1983 through 1986. The first is based on data through

December 1982, the second is based on data through March 1983.

The charts in both cases show a forecast of an extremely vigorous

recovery, conared to those published forecasts circulating in

February 1983. The Congressional Budget Office (CBO), for exam-

ple, forecast real GNP growth during calendar 1983 of only )4

percent, with inflation at )..7 percent and the Treasury bill rate

at 6.8 percent. As of December, the model forecast real GNP

growth at 8.8 percent combined with 5.9 percent inflation and an

interest rate of 8.7 percent. Data for the first quarter sug-

gested that the recovery began with less strength than the model

anticipated. These observations did not have a significant irract

on the forecast growth rates in future quarters, however.

Perhaps the most obvious first step beyond preparing a

forecast in using a model to evalutate future prospects is to ask

how likely are other possible paths. We can ask, for example, how

likely it is that the CBO's projected output and price level

growth rates and Treasury bill rates will be realized. In answer-

ing these questions, however, we will be taking seriously the

cross—variable relationships estimated by the model. Before doing

so, it is perhaps useful to investigate those aspects of the

model.

The favorable comparison between the forecast perfor—

mance of our final specification and that of the univariate equa-

tions suggests that the cross—variable interactions which are

captured by our equations represent predictable responses. More—
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over, it turns out that these responses explain a significant

proportion of the variation in most of the variables in the model

and, with a few exceptions, they renin fairly stable across

different sub—periods of the sample.

One measure of the size of the cross—variable interac-

tions is the proportion of the forecast error variance of a vari-

able explained by orthogonalized innovations in the other vari-

ables in the system. This measure is based on a decomposition of

the variance of the k—step forecast into a sum of components

associated with each of a set of orthogonal innovations. See Sims

(1980). Although the decomposition depends on the ordering chosen

for the orthogonalization, our point here is merely to demonstrate

the extent to which interactions amoung variables are captured.

We have looked at several orderings, and this aspect of the de-

composition is not affected.

For some variables, such as the stock price index, our

prior against cross—variable response is so strong that virtually

none is allowed. Own innovations explain over 95 percent of stock

price forecast errors, even at a 18 month horizon. For other

variables in the system, however, the cross—variable responses,

shown in Table 3, are significant.
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Table 3

Variance Decomposition

Below are the proportions of forecast variance at a 48—month

horizon explained by own innovations. The orthogonalization

order for this decomposition is the order shown.

Ml 29.2

Stock price index 95.1

Treasury bill rate 59.9

Flow of total debt 76.9

GNP deflator 28.4

Change in inventories 76.0

Real GNP 11.7

Federal outlays 79.7

Federal receipts 65.1

Trade Weighted Dollar 54.0

We next display the responses of real GNF to the ortho—

gonalized innovations. These responses also demonstrate the

extent to which the model is capable of incorporating multivariate

interactions, as well as the extent to which such responses are

stable over time. The responses, shown in Charts 25 through 31,

were estimated independently over three nonoverlapping sub—

periods, the same prior being imposed at the beginning of each.

Many of the responses are of substantial magnitude relative to the

size of the response to own innovations, and for the more signi-

ficant responses there appear to be strong similarities across the

time periods.
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The responses are scaled to show percent movements in

real GNP following orthogonalized innovations in each of the other

variables. The size of the shock, which is the same for each

period, is normalized to be one standard error of the distribution

of innovations over the entire period. The largest responses of

real GNP are to innovations in real GNP, the change in business

inventories and the stock price index. These responses are all

similar across the different sub—periods. The responses of output

to interest rates and money innovations are also substantial, and

also relatively similar in their dynamic pattern in different sub—

periods. The other responses are not particularly consistent over

time periods, but for the most part they are not large either.

With regard to the question of consistency across sub—

periods, some readers will undoubtedly be more impressed at first

glance by the variations in some of the responses than by the

similarities of others. Perhaps the most natural metric for

measuring the degree of stability of the responses through time,

though, is the out—of—sample forecasting accuracy metric which we

have already stressed. We know that our specification does well

by that measure. What we find encouraging in looking at these

response patterns, and the earlier decompositions of forecast

variance, is that the prior which led to relatively accurate

forecasts is also capable of capturing significant cross—variable

interaction, even in these three sub—periods, which each includes

only a very limited amount of data.

There is no unambiguously correct way to measure how

likely it is that a particular condition on the projected future
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path of the econonr will be realized. Of course the probability

that any set of equality restrictions will be exactly realized is

zero. When we ask how likely a projected path is we ordinarily

mean to ask how likely it is that the actual path will differ from

the model's most likely projection as much as the projected path

and "in the same direction". There is no mechanical way to deter-

mine, from the path alone, what paths "differing in the same

direction" might be. In our example, we might be interested in

the probability that real ON? growth will be at least as low as

CBO's 4 percent and inflation and the interest rate also at least

as low as their projections. But one might instead consider that

only the ON? growth rate differences are interesting, so that

forecasts differing in the same direction as CBO's are all those

with growth rates at least as low. Or one might suppose that the

critical thing about the CBO forecast is its lower real interest

rate and desire therefore to check the plausibility of its pro-

jected gap between inflation rates and interest rates.

If a class of future paths is specified, one can measure

the probability of the class directly——by stochastically simulat-

ing the model if no computationally cheaper analytic method is

available. The method is expensive, however, both in computer

time and in its requirement for careful thought about the class of

paths to be assessed. Instead, one can mechanically construct a

class of paths from specified restrictions. A natural way of

doing this is available when the joint density function of future

paths is unimodal and has convex level surfaces (like a normal

density). We can construct first the most likely path satisfying
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the restrictions, then consider the class of all paths lying on

the downhill side of the tangent plane to the level surface at

that point in the space of future paths. Chart 35 shows the

nature of the set of paths whose probability would be measured in

a two—dimensional special case.

For a normal p.d.f., this leads to using the square root

of the usual chi—squared statistic as if it were a normal random

variable and measuring plausibility by the probability in the

upper tail of the normal p.d.f. at the level of this statistic.

One might wonder why it is not best, for the case of a normal

distribution over future paths, to measure the plausibility of a

set of linear restrictions directly by the significance level of

its associated chi—squared statistic, using as degrees of freedom

the number of restrictions applied. This is, after all, how we

would "testtt whether the restrictions are "true" using classical

methods. Such a procedure treats as the class of paths whose

probability is to be measured all paths with lower likelihood than

the most likely path satisfying the restrictions. Thus, if the

model asserts that real growth will be at 8 percent and inflation

at 6 percent and someone claims that instead growth will be at 4

percent and inflation at 9 percent, the claim is in some sense

different from the model assertion in one direction——it is more

pessimistic. The standard use of the chi—squared statistic would

assess the likelihood of the pessimistic forecast by looking at

the probability of all paths at least as unlikely, including those

which are unlikely because they are ouch more optimistic than the

model. The index we use here instead looks only at paths lying on
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Construction of an Implausibility Index

The implausibility index is a measure of the probability the model gives to
outcomes on the downhill side of a tangent to the forecast's level curve at
the point of a conditional projection.
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"one side't of the claimed path. This includes some paths with

less inflation and such less real growth as well as paths with

more inflation and less real growth, so it is not so narrow a

class as that of paths with both less real growth and more infla-

tion. However, the tradeoff between inflation and real growth

implicit in defining the class of paths "more pessimistic" than

that claimed is constructed mechanically from the covariance

matrix of paths. This will at best approximate the way we would

construct a class of more pessimistic paths if we thought about it

carefully. nonetheless we apply this measure of plausibility

here.

To do so, we im.xst first find the model's projection of

the most likely future path for the econonrj subject to the condi-

tion that the CBO forecasts for annual average growth rates are

satisfied. Such conditional projections may be interesting in

their own right as part of a description of the likelihood func-

tion, and for other applications we will mention below.

The principle is that the model provides a joint condi-

tional density function for future paths of the process. We

simply use that function to find likelihood—maximizing paths

subject to certain restrictions on the future paths. These com-

putations cannot in general be carried out recursively forward in

time as can the point forecasts, because a constraint on future

values of a variable in the system can carry information about the

likely current value of all variables. If, for example, I know

that money stock will grow slowly between 12 and 18 months from

now, and if I know that money stock is negatively correlated with
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disturbances in the interest rate 12 to 18 months earlier, then I

should think it likely that interest rates will rise soon.

The computations are simplest when the model is sta-

tionary and concerned only with second—order proper-ties, so we

first describe our procedure within the confines of the prediction

problem for covariance stationary processes. The vector sto-

chastic process xt:
t = ...,—2,—l,O,l,2,... is assumed to be

covariance stationary and linearly regular. The moving average

representation (MAR) is

(19) =
ut_s

s=O

where the innovations ut are uncorrelated both across time and

contemporaneously. The MAR is normalized so that E(utu) + I.
A linear constraint upon future values of x is a linear

constraint upon future values of the innovations process u. The

constraint on x is transformed into the equivalent constraint on

u. This has some computational advantages when, as is likely for

models of this type, we have already computed the coefficients of

the MAR in any case. The least squares estimate of the con-

strained u's is computed, and the least squares projection of x

subject to this constraint is obtained by constructing the path

for x implied by the computed innovations.

Let [yJQJ denote the orthogonal projection of the random

variable y onto the closed subspace Q in the Hubert space of

finite variance random variables on the underlying probability

space. If y is a vector, the projection is done component by

component. H(t) is the closure of the subspace of finite linear
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combinations of x5 for s < t. Consider the projection of xt+k on

the information set consisting of H(t) and

(20) Sx = Sx1
where

(21) ss <
j =_co

Si is dimension qxn, where q is the number of constraints and n is

the dimension of xt. The sequence S contains the coefficients on

past and future x values in a set of constraints. The projection

we are considering can be thought of as the best linear predictor

of xt÷k given knowledge of x values up to time t and in addition

knowledge of the linear combinations of past and future x's whose

coefficients are in S. In practice, the S sequence will be zero

except for a finite number of terms. Applying the law of recur-

sive projections:

,*S.
(22) 1xt÷kJHt)+span(S x)J = xt+klH(t)J +

and

k—i
(23) xt+k_[xt+kIHX(tfl = Bsut÷ks

s=O

Now,

(2k) Sx-{SxIH(t)] = s*(x[xIH(t)J)

(25) x_[xfH(t)] = 0 for s t
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s—t+i
(26) x —Ix FH (t)1 = B.u for s > t

S S X JS—J
J—o

so

(27) S(x- Ix tH(t) D
1m(j0BjUt+m_j)

k—i
(28) =

( Ut+k
k=ij=03

(29) = R*u =

By linearity, the second projection in (22) can be written

k—i *
(30) B[ut 5!R ul

s=0

It can be verified, using the orthogonality principle

for projections, that the projection [ut+kjfR*ul is

(31)
Rjk{

These are the least squares projections of the future innova-

tions. The projection (22) is thus the sum of the unconstrained

forecast plus

k-i
(32) Bsut+ks

s=0

which can be obtained by simulating the model beginning at t+1,

using the u as the innovations. In a particular application, a

value for S*x is usually supplied; the equivalent value for *u is

the difference between S*x and the forecast value for S*x.

To see how this works in a simple case, suppose that

data on are available only with a two week delay, while inter-

est rate TB is available on a daily basis. We have a weekly model

which we wish to use to forecast, but at t have data on M5 only
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for s < t—l. Here, "purely for forecasting purposes, we need to

make a projection conditional on TBt1 and TBt.

With the VAR normalized so that B0 is lower triangular

and TB comes above Ml in the ordering of variables, the moving

average coefficients needed are the responses of R to orthogona—

lized shocks in itself at zero and one step and in Ml at one step;

call these bbo, bbl, and b. With vt and wt as the innovations

in TB and Ml at t,

(33) [TB1_B11 = [bbo
o

L TBtTBt J [1 bJ[w1
+ 0 0v

bba Ojwt

The 2x2 matrices in this are, respectively, B1 and

in the notation above. The most convenient way to do this com-

putation is to stack the set of innovations. With

(34) U = [viwivtwt}

00
(35) 0

(36)

the formula for the constrained U vector becomes U = Bt(RRT)1r,

which is the solution of the problem: mm UT subject to RU = r.

One important variant on this procedure is to add the

additional constraint that only certain innovations are allowed to

be nonzero. We might want to do this if we had in mind iriterpre—
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tations for certain innovations. For example, if we regarded

money and interest rates as "monetary policy variables", we might

suppose that innovations in those variables represented changes in

policy. Then a forecast conditional on low inflation and on

innovations being zero in all variables other than these monetary

policy variables would display the most likely way for monetary

policy to generate low inflation.!"

Holding certain innovations to zero in the conditional

projection can be accomplished simply by eliminating the columns

in the R matrix which correspond to the variables whose innova-

tions must be zero. For computing constrained paths, the normali-

zation of the MAR used to obtain orthonormal u's has no effect

except on the computational burden: if E(utut')
= , the formula,

using the stacking from above, is U = (E i)nfR(E @ I)R" where

a different R matrix is obtained using the nonorthogonalized

MAR. Orthogonalization eliminates the need for the I by incor-

porating a factorization of E into the MAR and thus into the F

matrix. However, when innovations for certain variables are

constrained to be zero orthogonalization is no longer innocuous,

since the definition of a variable's innovations depends on the

orthogonalization. For example, the least squares constrained

-iThere are a number of models in the literature which
identifr innovations in certain variables as generated by policy
or which go still further and treat certain policy variables as
exogenous, hence Granger causally prior, and as entirely deter-
mined by policy. In fact, this kind of assumption is probably the
norm in models which are used to generate implications for pol-
icy. We regard such assumptions as frequently being interesting
speculative hypotheses, but seldom solidly justifiable as "a
priori knowledge."
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path may prove to be obtained primarily through innovations in the

policy variables when one ordering is used, but through innova-

tions in the nonpolicy variables in another.

Though the proofs above were limited to covariance

stationary processes, the method will still work, e.g., if x has

an invariant autoregressive representation with unstable roots.

Our experience suggested that, though models with time—

invariant coefficients generate reasonable forecasts, they have a

tendency to generate unreasonably optimistic estimates of the

likely size of future forecast errors——even when sampling error in

the estimated coefficients (which we ignored above) is allowed

for. One of the objectives of our research has been to discover

whether our random parameter specification avoids this optimistic

tendency.

We will compare four different estimates of the covari—

ance matrix of forecast errors. The first matrix, F, is generated

from the usual innovation covariance matrix, E, estimated 'by

taking cross products of in—sample residuals based on a fixed—

coefficients model. The k—step forecast error covariance matrix

is given as

k—l

Ek
= E B E B

s=O

where the Be's are the coefficients in the MAR associated with the

fixed—coefficient model.

Our second estimate of the forecast error covariance

matrix is o, the estimate obtained by using a time—varying coeffi-

cient model, but taking the end—of—period coefficient estimater as
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fixed and using the out—of—sample one—step ahead forecast errors

to estimate to covariance matrix of innovations.

Another estimate of the forecast error covariance matrix

is obtained by a Monte Carlo simulation of the full random param-

eter model from the end—of—sample initial conditions. This esti-

mate we will call M.

Finally, another way to assess likely forecast accuracy

which is in some sense conservative is to recursively generate

forecasts over a range of horizons at each sample point, using

data only up to the forecast date in making each set of fore-

casts. Forming the sample covariance matrix, V, of realized

forecast errors at various horizons gives us a direct measure of

likely forecast error variances at those horizons. This procedure

assumes that the stochastic process for the vector of forecast

errors by horizon is jointly stationary, but requires no assump-

tion that the model justifying the forecast procedure is also

generating the data.

Our experiments with these four different ways of esti-

mating forecast error covariance matrices gave no clear ranking of

the methods. The estimated standard errors of forecasts at 12 and

!8 month horizons are shown in Table L. Each of our difference

estimates, F, 0, M, and V at times gives both the largest and the

smallest estimated standard errors. This result is certainly due

in part to the small samples we are using. In our Monte Carlo

estimates we used only 200 draws, and for the generation of his-

torical second moments in V we use 21O observations, which repre—

sent only 5 nonoverlapping 48—month periods.



— 43 —

Table 4

Standard errors of 12—month forecasts,
estimated various ways

Ml STOCKS TBILL DEBT PGNP CBI RGNP

F .0136 .1360 1.4113 .2666 .0120 1.9992 .0233

O .0111 .1130 1.3225 .2822 .0088 8.3999 .0188

V .0233 .1136 1.2549 .2394 .0202 7.2900 .0293

M .0129 .0999 1.3039 .2917 .0136 7.8663 .0206

OUTL RCPT TRDOL

F .0857 .0958 .0457

O .0890 .1008 .0400

V .0826 .0927 .0293

M .0949 .0952 .0412

Standard errors for 48—month forecasts
estimated various ways

Ml STOCKS TBILL DEBT PGNP CBI RGNP

F .0352 .2422 1.5)435 .3010 .02)45 8.2767 .0651

O .0277 .2399 1.5542 .3359 .0240 8.9611 .0612

V .0834 .1255 1.3493 .1906 .0871 7.1102 .0589

M .0882 .2191 1.8737 .4500 .0948 11.0070 .1083

OUTL RCPT TRDOL

F .io48 .1218 .0889

0 .1128 .135)4 .0891

V .1164 .1530 .0826

M .2054 .2136 .0344

F: Estimating fixed coefficient model, using in—sample residuals to estimate
innovation covariance matrix.
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0: Using end—of—sample time—varying coefficient estimates as if fixed, treat-
ing historical out—of—sample one—step forecast error second moment matrix
as if it were the innovation covariance matrix.

V: Historical second moments of out—of—sample forecast errors.

M: Monte—carlo estimates of forecast errors based on time—varying coeff i—
dents model started up from end—of—sample initial conditions.

Our original suspicion, that estimates of uncertainty,

such as F based on fixed coefficient models, would badly under-

estimate the average out—of—sample multi—step forecast errors as

measured in V. was only occasionally observed. At the )48—step

horizon F badly underestimates the size of observed errors only

for rrney and prices. In those two cases the Monte Carlo esti-

mates in M, based on the time—varying specifications, did give

estimates much closer to the observed results. More often, how-

ever, the estimates in F were larger than the observed forecast

variance, and the Monte Carlo estimate in some of those cases gave

even larger estimates. It is possible, of course, that the use of

V as a standard of comparison is inappropriate. When parameters

are varying through time the uncertainty also varies, and at a

given time it may be very different from an estimate based on

average errors in the past. For the trade—weighted dollar the

Monte Carlo estimate suggests much less uncertainty than the

others, and it is certainly conceivable that this is correct.

The time—varying parameters specification used in this

paper implies a conditionally heteroscedastic nongaussian distri-

bution for the forecast errors. If we form the sample covariance

matrix, V, of forecast errors and form conditional projections as

minimum mean square error predictions using V. we are therefore

contradicting the probability model which justifies our forecast—
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ing procedure. However, it is not clear whether that model is

more realistic than one which uses V to form conditional projec-

tions.

Using V to form conditional projections is only in a

sense conservative. It is unlikely to greatly underestimate the

magnitude of errors, even at long horizons. But when we estimate

the whole of V without applying Bayesian methods we are losing the

stability provided by Bayesian "shrinkage" toward a prior mean.

In particular when we start comparing conditional projections to

form conclusions about how imch variables respond to each other,

use of V may give an exaggerated view of how strong the interac-

tion among variables in the data is.

A Gaussian covariance—stationary process generates a

normal joint distribution for future paths given the past, with

some covariance matrix. However, that covariance matrix has a

special structure. To take the simplest case, consider the cc—

variance matrix of one— and two—step ahead forecasts for a uni—

variate process. If innovation variance is one, the variance of

two—step ahead forecast errors, s22, is 1 + b2, that for one—step

ahead forecast errors, S, is 1, and the covariance of one— and

two—step ahead forecasts, s12, is b, where 'o is the coefficient on

the first lagged innovation in the MAR. Thus, the square root of

22—1l is s12. But for a process such that minimum variance

forecasts are nonlinear functions of the data such a restriction

on the covariance matrix of forecast errors is not in general

satisfied. For example, suppose y(t) = e(t) + sgn(e(t—l)), where

e(t) is i.i.d. uniformly on (—.5,.5) and the function sgn has

value 1 if its argument is positive and —l if its argument is



negative. Clearly we can determine sgn(e(t—1)) from knowledge of

y(t—i), so the one—step ahead forecast error variance is the

variance of e(t), i.e., 1/12. The variance of the two—step ahead

forecast error is 1÷(1/12), and the covariance of one— and two—

step ahead forecasts is not = 1 but instead .25.

To find the best linear forecast for a given fixed V not

generated by a covariance stationary process therefore requires
some modification of our procedure. For this case the difference

between the constrained forecast and the unconstrained forecast is

VS(SVS)-r, where the matrix S is taken directly from the con-

straints on x. A restriction corresponding to the restriction

that only certain variables have nonzero innovations can be ob-

tained by examining the meaning of a Choleski factorization of V

into LL, L lower triangular. If EIJU' = I, then if W = LU, EWW =

V. The Choleski factorization transforms the forecast error W

into LU, where each component of U is created as that part of the

corresponding element of W which is uncorrelated with the pre-

viously defined U's. This is precisely how the orthogonalized

innovations decompose the forecast error in the covariance sta-

tionary case: the innovation for variable j at step k is the

(normalized) part of the forecast error which is orthogonal to the

innovations in all variables for steps < k and for variables < j
at step k. L describes an analog of the moving average repre—

sentation: each column gives the response of the system to a unit

shock in the corresponding component of U. If W = VS(SVS)1r,
then U = L1W, and if R is defined as SL, then U = R(RR)r.
Again, by cutting the appropriate columns out of the matrix R,

restrictions that certain innovations remain at zero can be imple-

ment e d.
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In this paper we have conditioned on constraints which

involve projections b8 periods into the future. Because of the

size of the system, a full V or M matrix would be l.8o x L8o.

Rather than attempt to operate with such a huge matrix we have

restricted ourselves to looking at the conditional projections for

a nonconsecutive sequence of horizons between 1 and b8 steps into

the future, with all constraints being put only on those included

horizons. That is, instead of forming the covariance matrix for 1

through 148 step ahead forecasts, we form the covariance matrix for

1, 2, 3, 6, 9, 12, 18, 214, 30, 36, and 148 step ahead forecasts.

The restrictions we consider on future paths must then be defined

in terms of these horizons.

Tables 5—8 show the unconditional forecast produced by

the model and forecasts conditional on the CEO's 1983 and 19814

averages for interest rates, inflation and real growth, using

three covariance matrices: M, V, and 0. Though they were not

constrained to match the CBO projections for the deficit, these

forecasts agree with it fairly closely. CEO projects 1914, 197,

2114, and 231 billion dollars for fiscal years 1983—86, and all the

model projections are in this same range.
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Table 5

Unconditional Forecast

Continuously compounded precentage change at
annual rate from previous period on table

with period previous to 83—i taken as 82—12.
Except that TRILL is in percent and CBI and DEFICIT

are in billions of dollars at annual rates.

Key to variable names

Ml Money Supply STOCKS Stock Price Index

TBILL Treasury Bill Rate DEBT Flow of Total Nonfinancial Debt

PGNF GNP deflator CR1 Change in Business Inventories

RGNP Real GNP OUTL Federal Outlays

RCPT Federal Receipts TRDOL Trade weighted dollar

DEFICIT Federal Deficit (Monthly figures at annual rates, in bill.)

YR MO Ml STOCKS TBILL DEBT FGNP CR1

83 1 9.38 1)4.38 8.01 1)414.5J4 4.08 —15.61

83 2 9.46 15.70 8.13 iii.6 4.26 —13.49

83 3 9.60 11.86 8.27 59.06 4.97 —7.70

83 6 9.81 7.47 8.59 37.94 .48 —3.11

83 9 9.36 6.38 8.85 30.21 5.91 .49

83 12 9.11 6.03 9.08 16.31 6.33 3.24

84 6 8.86 6.01 9.44 9.60 6.78 6.04

84 12 8.66 6.08 9.74 6.80 7.20 7.19

85 6 8.57 6.17 9.98 7.84 7.47 7.57

85 12 8.56 6.28 10.20 9.96 7.66 7.63

86 12 8.61 6.45 10.60 12.93 7.85 7.48
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RGNP OUTL RCPT TRDOL DEFICIT

83 1 9.77 —35.014 —145.36 —.13 201.214

83 2 8.38 .12 —3.96 14.02 203.22

83 3 10.62 7.08 10.32 5.60 202.86

83 6 9.00 2.56 2.72 5.81 203.93

83 9 8.147 i.14o 5.614 14.214 198.140

83 12 7.83 14.014 8.140 3.23 193.86

814 6 7.06 5.614 10.30 2.23 1814.75

814 12 6.33 7.80 11.1414 1.141 179.95

85 6 5.85 9.38 ii.88 .97 179.71

85 12 5.53 10.58 12.06 .714 183.87

86 12 5.28 11.75 12.19 .59 203.03

Table 6

Using the Simulated Random Coefficients M Matrix:

Model Forecast Conditional on CEO Average Real Growth,
Inflation, and Bill Rate for 1983 and 19814.

Percentage Growth Rates at Annual Rates Between Listed Dates

(Except TBILL, CBI and DEFICIT)

YR MO Ml STOCKS TBILL DEBT PGNP CBI

83 1 7.56 -11.52 7.89 1314.16 14.32 -15.83

83 2 7.20 .214 7.63 91.68 3.814 —114.26

83 3 7.68 6.00 7.143 82.68 14.1414 —11.10

83 6 8.72 —i5.08 6.96 29.68 .o14 —7.214

83 9 8.148 12.60 6.56 i8.oo 5.20 —7.50

83 12 io.o8 —.614 6.214 10.12 14.36 —7.05

814 6 8.68 2.6O 7.06 14o.i6 14.06 2.1414

84 12 7.18 8.914 7.714 19.142 5.114 .12

85 6 6.72 13.96 8.78 —12.52 14.74 3.55

85 12 6.34 9.18 9.76 —5.68 5.46 6.87

86 12 14.02 11.03 -11.47 5.614 5.314
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RGNP OUTL RCPT TRDOL DEFICIT

83 1 4.68 —65.40 —63.24 3.24 190.34

83 2 6.60 2.40 42.00 .12 171.62

83 3 4.20 15.60 8.40 6.12 177.43

83 6 6.16 6.00 —7.60 3.04 200.22

83 9 1.92 4.80 —7.20 2.28 220.02

83 12 2.76 12.00 5.20 —2.60 236.64

84 6 6.56 —1.60 4.80 .14 216.09

84 12 2.84 4.00 —2.00 .44 238.32

85 6 5.20 3.80 6.60 2.08 234.46

85 12 3.90 —1.20 12.80 2.80 189.37

86 12 2.37 12.70 9.30 4.51 239.55

Table 7

Using the Empirically Estimated V Matrix:
Model Forecast Conditional on CBO Average Real Growth,

Inflation, and Bill Rate for 1983 and 1984.
Percentage Growth Rates at Annual Rates Between Listed Dates

(Except TEILL, CBI and DEFICIT).

YR MO Ml STOCKS TBILL DEBT PGNP CBI

83 i 4.6 —3.00 7.73 155.76 4.08 —15.22

83 2 5.28 5.40 7.38 113.64 4.08 —13.82

83 3 7.08 9.84 7.04 49.8cY 4.68 —9.12

83 6 8.20 6.52 6.56 30.84 4.68 —6.93

83 9 7.56 9.72 6.79 24.76 4.92 5.214

83 12 7.24 6.64 6.81 23.96 4.92 —2.09

84 6 6.66 8.42 7.42 25.04 4.46 3.34

84 12 6.68 12.68 7.38 15.68 4.74 1.78

85 6 5.56 8.50 8.04 11.76 5.54 8.81
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85 12 6.32 13.54 8.57 —3.32 6.08 9.17

86 12 5.40 8.84 9.85 —3.95 6.40 7.69

RGNP OUTL RCPT TRDOL DEFICIT

83 1 2.28 —34.20 —46.44 .84 202.31

83 2 1.44 —3.60 —12.00 2.64 205.71

83 3 4.80 —1.20 7.20 3.12 201.50

83 6 3.20 1.60 —.40 4.32 205.18

83 9 4.44 —5.60 1.60 i.o4 192.06

83 12 5.52 2.00 4.40 .40 189.54

84 6 5.00 6.00 3.80 2.00 201.87

84 12 4.40 4.80 6.20 —3.36 202.51

85 6 6.50 .20 4.20 2.96 190.35

85 12 5.86 2.80 6.60 .26 180.88

86 12 4.44 8.50 11.30 .58 176.97

Table 8

Using the Fixed Coefficients 0 Matrix:
Model Forecast Conditional on CEO Average Real Growth,

Inflation, and Bill Rate for 1983 and 1984.
Percentage Growth Rates at Annual Rates Between Listed Dates

(Except TBILL, CBI and DEFICIT).

YR MO Ml STOCKS TBILL DEBT PGNP CEI

83 1 6.48 —14.i6 7.76 109.20 3.72 —15.71

83 2 6.48 -13.20 7.53 76.08 3.60 -13.97

83 3 7.32 —15.24 7.28 24.48 4.32 —8.84

83 6 8.36 —18.64 6.81 18.64 4.56 —6.78

83 9 8.32 —1)4.56 6.54 28.32 4.92 —5.16

83 12 8.44 —8.88 6.57 27.36 5.44 —5.04

84 6 7.72 —2.76 7.24 15.46 4.36 .48
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84 12 7.78 5.06 7.56 13.62 4.84 —.22

85 6 9.06 8.30 8.39 16.96 7.90 5.48

85 12 8.58 8.48 9.04 5.16 8.12 7.50

86 12 8.43 8.52 9.91 6.44 8.26 8.09

RGNP OIJTL RCPT TRDOL DEFICIT

83 1 4.92 —39.00 —4i.64 .24 196.89

83 2 4.08 —1.20 —3.60 3.48 197.85

83 3 6.36 6.00 8.40 4.32 197.68

83 6 4.16 1.20 0.00 4.48 200.02

83 9 3.88 —.40 1.20 2.32 197.49

83 12 2.84 .80 2.00 1.20 196.13

84 6 5.58 6.00 3.40 .72 209.90

84 12 3.82 6.20 4.40 —1.18 222.01

85 6 8.32 5.20 11.00 —.48 209.48

85 12 6.82 8.00 12.80 —.66 201.77

86 12 5.58 10.70 13.50 —.28 202.89

The "implausibility index" for the fixed coefficients

forecast, generated as the root sum of squares of the standardized

shocks required to generate the forecast, is 4.4, improbable if

treated as a one—tailed normal or t test statistic. For the

forecast generated from the V matrix the index is 3.0 and for the

M matrix it is 3.3——both smaller than for the fixed coefficients

model, but still in the range of implausibility.

All the conditional forecasts show an initial sharp

contraction in both outlays and receipts, and all show slower

money growth than the unconditional forecast. On the other hand,
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the degree to which money growth is reduced is much larger in the

V forecast than in either of the other two, and the reduction ir

stock prices is much greater in the fixed—coefficients model than

in the other two. We should note that the results from the simu-

lation—based M matrix differ noticeably between an M matrix based

on 200 random draws and one based on 100 random draws, and because

the empirical V matrix is also based on a sample of only a few

hundred highly dependent observed forecast errors, it too is

probably infected by substantial sampling error. Thus, though

noticeable differences exist, they may be inherent statistical

error rather than fundamental differences in the results based on

these different approaches.

To understand why it emerges as implausible, it may help

to examine the time sequence of standardized shocks implied by the

forecast, as displayed in Table 9 for the empirical V version.

Note that there are no standardized shocks after l98L.12 because

the constraints involved no dates after that.



— 5)4 —

Table 9

Standardized Shocks Generating the Table 7 Projection

YR MO Ml STOCKS TBILL DEBT PGNP CR1

83 i —0.9 —0.4 —0.6 0.1 0.3 —0.0

83 2 —0.4 —0.3 —0.6 0.1 0.3 —0.0

83 3 —0.3 —0.3 —0.5 0.1 0.3 —0.0

83 6 —0.3 —0.3 —0.9 0.3 0.4 0.1

83 9 —0.3 —0.3 —0.6 0.2 0.3 —0.1

83 12 —0.4 —0.2 —0.4 —0.0 0.2 —0.0

8)4 6 —0.7 —0.2 0.1 —0.1 —0.1 —0.2

84 12 —0.3 —0.1 —0.2 —0.1 0.1 —0.4

RGNP OUTL RCPT TEDOL

83 1 —0.8 0.0 —0.0 0.2

83 2 —0.7 0.0 —0.0 0.1

83 3 —0.5 0.0 0.0 0.2

83 6 —0.8 —0.1 0.0 0.2

83 9 —0.6 —0.2 0.1 0.2

83 12 —0.4 —0.0 0.1 0.0

8)4 6 —0.6 0.0 0.0 0.0

84 12 —0.5 0.0 0.0 0.0

Because the model shows a strong connection of VD. inno—

vations and stock price innovations to subsequent output and (to a

lesser extent) price movements, both these variables show a se-

quence of fairly large negative standardized shocks. One possible

interpretation of the projection is an "irrational monetarist"

one. A less expansionary monetary policy than the model's uncon—
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strained forecast leads to correct anticipations of lower future

inflation and to lower nominal interest rates. Because of some

kind of price rigidity or money illusion (perhaps an inability of

wage contracts to lower their rates of increase fast enough) the

lower inflation rate leads to persistently lower output.

As one of us (Sims (1983)) has recently argued, though,

the practice of identifying policy actions with innovations in

policy variables, which underlies mich standard manipulation of

econometric models for policy analysis as well as some rational

expectations macroeconomics, requires justification, which may not

be easy to find. One could interpret Tables 7 and 8 as showing

the response of the econorrr to public recognition that capacity

utilization is likely to remain low and unemployment high, due to

continued slow adaptation of the industrial economies to high

enerr prices and to the nominal inertia of the wage and price

setting mechanism. On this interpretation new information appears

first in the financial variables money, the bill rate, and the

stock price index because all three (with a partially accommoda-

tive monetary policy) react quickly to the public's anticipations

of the future. They therefore do not reflect policy decisions and

the difference between the CBO and the central model projection

cannot be read as displaying the effect of contractionary monetary

policy.

One interpretation which is not consistent with the

model is the idea that deficits might be critical to the differ-

ence between the model's expansionary central forecast and the

less vigorous CEO forecast. Differences between the deficit
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predictions for these conditional projections and those for the

models central forecast are slight. Furthermore in an experiment

we do not report in detail we tried imposing a constraint that the

deficit be down to 2 percent of G&P by 198)4.12. That projection

showed expenditures lower and revenues higher, with hardly any

other change in the forecast relative to the model's unconstrained

forecast. The implausibility index for this forecast ranged from

.62 to 1.2 for the three methods, indicating that it is not at all

unlikely.

In a more extreme experiment, the deficit was con-

strained to reach zero at 198)4.6 and stay there. This conditional

projection, and the shock associated with it, based on the M

covariance matrix are shown in Tables 10 and 11. This projection

has an implausibility index ranging from 3.6 to 12, with the

lowest value coming from this variable—parameters projection.

This range is large, but of course all put the constraint in the

region of great implausibility.
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Table 10

Projection Constrained to Produce Deficit of Zero for 1984.6
and Thereafter Percent Changes from Previous Date
(Except TBILL CBI and DEFICIT), Using Matrix M

YR MO Ml STOCKS TBILL DEBT PGNP CBI

83 1 9.48 13.80 8.05 130.08 4.20 —15.27

83 2 9.48 18.84 8.09 113.52 4.144 —12.49

83 3 10.08 26.40 8.28 93.36 5.04 —7.14

83 6 10.24 16.92 8.56 42.24 5.76 —3.20

83 9 9.92 9.00 8.72 —6.12 6.08 —.12

83 12 9.96 12.64 8.93 18.92 7.52 4.68

84 6 9.22 7.66 9.70 18.20 8.34 8.8y

84 12 9.22 4.34 9.85 —9.40 9.06 9.76

85 6 9.62 7.18 9.93 10.60 9.00 8.68

85 12 9.42 5.64 10.34 15.08 9.04 7.50

86 12 9.40 4.87 10.58 10.08 9.31 7.82

RGNP OUTL RCPT TRDOL DEFICIT

-,O. .yo —jj.UU —.JO

83 2 6.96 —7.20 —7.20 3.96 198.42

83 3 n.88 1.20 7.20 1.92 195.73

83 6 9.48 3.60 5.20 5.40 195.16

83 9 9.04 —4.80 12.00 4.80 167.95

83 12 9.44 —18.00 11.60 2.40 n6.i4

84 6 8.04 —4.40 29.80 2.44 0.00

84 12 6.72 11.60 11.60 2.12 0.00

85 6 5.08 10.20 10.20 2.34 0.00

85 12 5.40 12.20 12.20 1.08 0.00

86 12 5.29 15.60 15.60 1.58 0.00
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Table 11

Standardized Shocks Generating the Table 10 Projection

YR MO Ml STOCKS TBILL DEBT PGNP CEI

83 1 0.0 —0.0 0.1 —0.1 0.0 0.0

83 2 0.0 0.1 —0.2 —0.0 0.1 0.1

83 3 0.1 0.3 0.2 0.1 —0.0 0.1

83 6 0.2 0.3 —0.1 0.1 0.1 —0.0

83 9 0.1 0.1 —0.1 _O.t —0.0 —0.1

83 12 0.3 0.1 —0.1 —0.2 0.3 0.3

8b 6 0.0 0.2 0.3 0.1 0.3 0.0

81 12 —0.0 0.1 —0.0 —0.1 0.2 0.1

85 6 —0.0 0.0 —0.1 —0.1 0.1 —0.0

85 12 0.0 0.0 0.0 —0.1 0.1 0.0

86 12 —0.0 0.0 0.0 —0.0 0.0 —0.0

RGNP OUTL RCPT TRDOL

83 1 —0.0 0.1 0.1 —0.1

83 2 —0. —0.0 0.0 —0.0

83 3 0.0 —0.1 0.0 —0.3

83 6 0.0 —0.0 0.1 —0.0

83 9 0.1 —0.1 0.1 0.1

83 12 —0.0 —0.6 0.3 —0.1

8L 6 —0.1 —0.7 0.9 —0.0

8L 12 0.0 —0.3 o.b —0.0

85 6 0.0 —0.1 0.2 0.0

85 12 0.0 —0.2 0.3 —0.0

86 12 0.0 —0.0 0.0 0.0

The constraint of a zero deficit by 198)4.6 produces

noticeable effects on the projections for other variables, with

even more rapid expansion than in the central forecast in the

period before 198)4.6, followed by a sharp reduction in output

growth rate and a rise in interest rates when the deficit takes

its sharpest drop. This is consistent with a "Keynesian" inter—
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pretation that expansion tends to reduce deficits by raising the

tax base faster than it raises government spending plans, at least

in the short run, and that when taxes are raised and expenditure

reduced, there are subsequent contractionary effects on the econ—

on'y. The model then can be interpreted as saying that the most

likely way- to arrive at a zero deficit is to have a lucky expan-

sion in output soon, combined with an unusually- large rise in

taxes and decline in expenditures later.

It should also be noted that there are several ways to

model the effects of a correctly anticipated future reduction in

the deficit which imply that it would have current expansionary

effects on demand, combined with contractionary effects when it

actually occurs. Since there is more than one way to get such a

result and none of them are simple, we omit laying out such a

theory. We only point out that it is possible to interpret the

initial expansion in the projection with small future deficit as

directly produced by anticipations of the small future deficit.

The model shows less impact of drastic changes in future

deficits than many economists would think likely. Though the

modest implausibility index for the drastic deficit reduction of

Tables 10 and II shows that the modeFs deficit forecasts have

shown substantial error in the historical sample, probably an-

nounced and believed changes of such magnitude have not occurred

before. In that case the conditional forecast in these Tables

would not be a good guide to the likely effects of an announced

and believed change. On the other hand, if changes of this magni-

tude have not been announced and believed before, that is reason
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to question whether a believable announcement of this type is

possible.

The model does systematically associate the lower growth

path of the CBO forecast with a sharp initial reduction in the

total size of the federal budget, with expenditures and receipts

moving down together. This kind of effect suggests either a

substantial short run balanced budget multiplier, or real inter-

actions of federal expenditures with the private sector——phenomena

which play a minor role in currently fashionable approaches to

macroeconomics.

As a kind of consistency check of these results, we also

investigated the posterior distribution directly using the Monte

Carlo method to integrate various regions and to evaluate condi-

tional expectations. For example, to judge the plausibility of

the CBO forecast in another way, we counted how many of our 200

simulations had real GNP growth lower than the CBO projected in

1983 and 198k. There were only four such simulations, confirming

the implausibility of the CBO forecast according to our model. In

a similar experiment we found 37 simulations had the price level

growing less rapidly than the CBO forecast. There was only one

simulation which had both real GNP and price level growth lower

than the CEO.

A forecast conditioned on low deficits was formed by

averaging the 60 simulations with the lowest deficit forecasts for

the period l984:6 to 1986:12. The average deficit path for this

group was negative for the period, smoothly declining from current

levels to zero in March 1985, and ending the period with a 100
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billion dollar surplus. Consistent with the conditional projec-

tions above, this subset of the simulations had lower interest

rates, higher stock prices, and more rapid growth of money, prices

and output. The deficit forecast here is not forced to zero as in

the earlier experiment, and growth in output stays above the

overall average until late in 1986.

Conc lusion

As is clear from these examples, when models like this

one are used for policy analysis they yield no automatic causal

interpretations. They provide a detailed characterization of

dynamic statistical interdependence of a set of economic vari-

ables, which may help in evaluating causal hypotheses, without

containing any such hypotheses themselves.
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Data Appendix

The data for this study consist of ten series of monthly

observations for the period 19)48:1 through 1983:3. Some of the

series were taken directly from sources given below, others were

constructed by interpolating quarterly data. Where data was

published in seasonally adjusted form, it was used. In other

cases, in which only not seasonally adjusted data was published

and where there was evidence of a seasonal pattern, the data was

adjusted by us prior to use. Details of the data construction

procedures are given below. The data set itself, which is based

on data published as of May 1983, is available from Litterman for

a nominal charge.

The four series which rely on interpolation are real

GNP, the Change in Business Inventories, the GNP deflator, and the

Flow of Total Nonfinancial Debt. Real GNP is generated as the sum

of nine components, three of which are components of consumption

and are available on a monthly basis. The other six components,

one of which, the Change in Business Inventories, is included

separately, and the GNP deflator are based on interpolation of the

quarterly National Income and Product Accounts. The Flow of Total

Nonfinancial Debt is an interpolation of a quarterly series in-

cluded in the Federal Reserve Flow of Funds accounts. The inter-

polations use related monthly series following the procedures of

Chow—Lin [19721 and Litterman [l983J.

Seasonal adjustment was required for federal government

receipts and expenditures and for several of the monthly series

used in the interpolations. Below we describe the interpolation
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and seasonal adjustment procedures and the steps used for con-

struction of each of the individual series.

Interpolation

Two interpolation procedures are used; one is the Chow

Lin [19721 procedure where errors are assumed to follow a first—

order narkov process, the other is a variation of Chow—Lin when

the error process follows a random walk with a first—order markov

driving process. The latter method, denoted RW below, was tried

first when interpolation was required. It is based on the assump-

tion that the unobserved monthly series of interest, t' is re-

lated to a vector of observed monthly series, xt, by the relation:

yt = x + Ut

The error process ut is assumed to follow a random walk:

ut = u1 + et,

where et is a first—order markoy process:

e = c e1 +

Litterman {19831 shows how to estimate c, and the monthly values

of y, given quarterly averages of y and the monthly values of x.

He finds that relative to other standard approaches, this proce-

dure reduces the interpolation error in several cases where quar-

terly averages of observed monthly data were considered. In cases

where the estimated markov parameter, ct, for this procedure was

negative, however, the RW procedure did not perform well. For

this reason, where we encountered negative estimates of c, we used



the Chow—Lin procedure, denoted CL below. In the CL model the

error term, ut, itself follows a first—order markov process.

Seasonal Adjustment

Where seasonal adjustment was necessary the procedure we

followed was a frequency domain method based on Nerlove [19641 and

Geweke [19T81. In brief, the steps were as follows:

1. Deterministic constant, trend and monthly seasonals

were removed.

2. A short order autoregressive representation with

seasonal lags was used to forecast and backcast two

years of data..ii

3. The series with deterministic part removed and exten-

sions appended is fourier transformed and the spec-

trum is estimated.

4. The fourier transform of the data is divided at

seasonal frequencies by the ratio of the estimated

spectrum to an estimate of the nonseasonal spectrum

at that frequency. The estimate of the nonseasonal

spectrum is obtained as a quadratic curve fit across

seasonal frequencies to periodograni ordinates at each

end of the seasonal band.

i/Early versions of the data set, including thoses used
for the out—of—sample forecasting experiments left this step out
and padded with zeros rather than forecasts. The seasonally
adjusted series generated without this step suffered at the ends
of the data from a detectable modulation of the seasonal pattern
which led to our adoption of this procedure.
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5. The adjusted fourier transform is transformed back to

the time domain and constant and trend are added.

Individual Series

Money Supply

Seasonally adjusted monthly values for the money supply,

Ml, as published by the Federal Reserve Board were used for the

period 1959:1 to 1983:3. Values for Ml during the period of

1948:1 through 1958:12 were generated by scaling the old Ml series

by the ratio of the new to the old value for 1959:1.

Treasury Bill Rate

This series is monthly averages of yields on 3—month

Treasury securities.

Stock Price Index

This series is monthly averages of the Standard and

Poor's Index of 500 securities prices.

Flow of Total Nonfinancial Debt

This is an interpolated version of the quarterly Flow of

Total Nonfinancial Debt published in the Flow of Funds data set by

the Federal Reserve Board. The quarterly series was constructed

by summing seasonally adjusted Nonfinancial Sector Credit Market

Debt and Foreign Corporate Equities and subtracting Credit Market

Funds Raised by Foreigners. These series are labeled F391101i-005,

F26316L003, and F264102oo5, respectively, in the Flow of Funds

accounts.
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The related monthly series used in the CL interpolation
were commercial and industrial loans; the change in consumer

credit outstanding; the consumer price index, seasonally adjusted;

T—Bills; Ni; stocks; and a constant and trend.

Because Flow of Funds data are released with essentially

a one—quarter lag, the equation relating monthly variables to the

quarterly variable together with the projected residuals was used

to extend the data set through the first quarter of 1983, for

which no quarterly observation was yet available. Also, the flow

of debt series begins in 1952, requiring the use of the equation

in a similar manner to extend observations back over the first

four years of our sample.

Trade—weighted Value of the U.S. Dollar

The Commerce Department's Index of the Weighted Average

Exchange Value of the U.S. Dollar was used for the period in which

it is available, 1967:1 through 1983:3. For the earlier period a

trade—weighted dollar was constructed following the usual formula

and weights, except that it was based on only the exchange rates

between the U.S. and Germany, France, and the United Kingdom,

rather than on the ten countries in the current index. The con—

structed series was scaled so that the value for 1967:1 coincides

with the current index. Over the period 1967:1 through 1969:12

the actual and the constructed indices were observed to move quite

closely, differing at any point by less than .3 percent.
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Federal Government Outlays

Federal government budget outlays on a unified basis are

available from the Treasury Department monthly, not seasonally

adjusted from 1968:2. Annual values are published for the prior

years in our sample. The earlier annual data was linearly inter-

polated using the monthly outlays series on a cash basis, which is

available for this period. The entire monthly series was then

seasonally adjusted as described above.

Federal Government Receipts

The federal government budget receipts series was con-

structed using data analogous to that available for outlays, and

was also seasonally adjusted as described above.

GT'TP Deflator

The monthly GNP deflator was based on a RW interpolation

using monthly data on the Consumer Price Index, the Producer Price

Index, and a constant and trend. The two monthly price indices

are published in level form on a not seasonally adjusted basis,

and thus were seasonally adjusted as described above prior to use
in the interpolation.

Change in Business Inventories

The monthly Change in Business Inventories was generated

by summing monthly Nondurable and Durable Changes in Business

Inventories series which were each separately interpolated. The

Nondurable inventories was based on a CL interpolation. The

related monthly series were the Net Change in inventories on Hand

and on Order. Wholesale Inventories on Nondurable Goods, Total
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Inventories of Nondurable Goods, Finished Inventories of Non-

durable Goods, and a constant, trend and dummies for constant and

trend over the period l9!8:l through 1957:12, during which the

finished goods inventories are not available.

The Change in Business Inventories of Durable Goods

series was generated using a CL interpolation. The related month—

3.y series were the Net Change in inventories on Hand and on Order

and the series for durable goods corresponding to those used in

the nondurables interpolation.

Real GNP

In addition to the change in business inventories, five

other components of Real GNP were interpolated: Real Business

Fixed Investment, Residential Investment, Government Purchases,

Exports, and Imports. Real Business Fixed Investment was inter-

polated using the CL method. Related monthly series included the

Index of Industrial Production, the level of Contracts and Orders

for Plant and Equipment in 1972 dollars, the Composite Index of

Capital Investment Commitments, New Orders for Capital Goods, the

Treasury Bill Rate, Commercial and Industrial Loans, and a con-

stant and trend.

The interpolation of Residential Investment used the RW

method. Related monthly series were New Private Construction in

constant dollars; Total Private Construction Put in Place, which

was seasonally adjusted and deflated using the GNP deflator;

Expenditures on Private Construction of Residential Buildings,

which was deflated using the GNP deflator; and a constant, trend

and dummies for periods over which the rnthly series were not

available.
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The interpolation of Government Purchases presented a

bit of a problem -because we could not find series which would

explain its movements. We ended up using the RW interpolation

method with a constant and trend.

Exports and Imports were interpolated using the CL

method. The related series were Merchandise Trade Exports and

Imports, respectively, with constant and trend. Both trade series

were deflated using the GNP deflator.
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