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ABSTRACT

This paper characterizes optimal monetary policy for a range of alternative economic models

in terms of a flexible inflation targeting rule, with a target criterion that depends on the model

specification. It shows which forecast horizons should matter, and which variables besides inflation

should be taken into account, for each specification.

The likely quantitative significance of the various factors considered in the general

discussion is then assessed by estimating a small, structural model of the U.S. monetary transmission

mechanism with explicit optimizing foundations. An optimal policy rule is computed for the

estimated model, and shown to correspond to a multi-stage inflation-forecast targeting procedure.

The degree to which actual U.S. policy over the past two decades has conformed to the optimal

target criteria is then considered.
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An increasingly popular approach to the conduct of monetary policy, since the early

1990s, has been inflation-forecast targeting. Under this general approach, a central bank is

committed to adjust short-term nominal interest rates periodically so as to ensure that its

projection for the economy’s evolution satisfies an explicit target criterion — for example, in

the case of the Bank of England, the requirement that the RPIX inflation rate be projected

to equal 2.5 percent at a horizon two years in the future (Vickers, 1998). Such a commitment

can overcome the inflationary bias that is likely to follow from discretionary policy guided

solely by a concern for social welfare, and can also help to stabilize medium-term inflation

expectations around a level that reduces the output cost to the economy of maintaining low

inflation.

Another benefit that is claimed for such an approach (e.g., King, 1997; Bernanke et

al., 1999)— and an important advantage, at least in principle, of inflation targeting over

other policy rules, such as a k-percent rule for monetary growth, that should also achieve

a low average rate of inflation — is the possibility of combining reasonable stability of the

inflation rate (especially over the medium to long term) with optimal short-run responses

to real disturbances of various sorts. Hence Svensson (1999) argues for the desirability of

“flexible” inflation targeting, by which it is meant1 that the target criterion involves not only

the projected path of the inflation rate, but one or more other variables, such as a measure

of the output gap, as well.

We here consider the question of what sort of additional variables ought to matter —

and with what weights, and what dynamic structure — in a target criterion that is intended

to implement optimal policy. We wish to use economic theory to address questions such as

which measure of inflation is most appropriately targeted (an index of goods prices only, or

wage inflation as well?), which sort of output gap, if any, should justify short-run departures

of projected inflation from the long-run target rate (a departure of real GDP from a smooth

1Svensson discusses two alternative specifications of an inflation-targeting policy rule, one of which (a
“general targeting rule”) involves specification of a loss function that the central bank should use to evaluate
alternative paths for the economy, and the other of which (a “specific targeting rule”) involves specification
of a target criterion. We are here concerned solely with policy prescriptions of the latter sort. On the
implementation of optimal policy through a “general targeting rule,” see Svensson and Woodford (2003).
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trend path, or from a “natural rate” that varies in response to a variety of disturbances?),

and how large a modification of the acceptable inflation projection should result from a given

size of projected output gap. We also consider how far in the future the inflation and output

projections should extend upon which the current interest-rate decision is based, and the

degree to which an optimal target criterion should be history-dependent, i.e., should depend

on recent conditions, and not simply on the projected paths of inflation and other target

variables from now on.

In a recent paper (Giannoni and Woodford, 2002a), we expound a general approach

to the design of an optimal target criterion. We show, for a fairly general class of linear-

quadratic policy problems, how it is possible to choose a target criterion that will satisfy

several desiderata. First, the target criterion has the property that insofar as the central

bank is expected to ensure that it holds at all times, this expectation will imply the existence

of a determinate rational-expectations equilibrium. Second, that equilibrium will be optimal,

from the point of view of a specified quadratic loss function, among all possible rational-

expectations equilibria, given one’s model of the monetary transmission mechanism.2 Thus

the policy rule implements the optimal state-contingent evolution of the economy, in the

sense of giving it a reason to occur if the private sector is convinced of the central bank’s

commitment to the rule and fully understands its implications.

Third, the rule is robustly optimal, in the sense that the same target criterion brings about

an optimal state-contingent evolution of the economy regardless of the assumed statistical

properties of the exogenous disturbances, despite the fact that the target criterion makes

no explicit reference to the particular types of disturbances that may occur (except insofar

as these may be involved in the definition of the target variables — the variables appearing

2Technically, the state-contingent evolution that is implemented by commitment to the policy rule is
optimal from a “timeless perspective” of the kind proposed in Woodford (1999b), which means that it would
have been chosen as part of an optimal commitment at a date sufficiently far in the past for the policymaker
to fully internalize the implications of the anticipation of the specified policy actions, as well as their effects
at the time that they are taken. This modification of the concept of optimality typically used in Ramsey-
style analyses of optimal policy commitments allows a time-invariant policy rule to be judged optimal, and
eliminates the time inconsistency of optimal policy. See Giannoni and Woodford (2002a) and Svensson and
Woodford (2003) for further discussion.
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in the loss function which defines the stabilization objectives). This robustness greatly

increases the practical interest in the computation of a target criterion that is intended

to implement optimal state-contingent responses to disturbances; for actual economies are

affected by an innumerable variety of types of disturbances, and central banks always have

a great deal of specific information about the ones that have most recently occurred. The

demand that the target criterion be robustly optimal also allows us to obtain much sharper

conclusions as to the form of an optimal target criterion. For while there would be a very

large number of alternative relations among the paths of inflation and other variables that

are equally consistent with the optimal state-contingent evolution in the case of a particular

type of assumed disturbances, only relations of a very special sort continue to describe

the optimal state-contingent evolution even if one changes the assumed character of the

exogenous disturbances affecting the economy.

Our general characterization in Giannoni and Woodford (2002a) is in terms of a fairly

abstract notation, involving eigenvectors and matrix lag polynomials. Here we offer examples

of the specific character of the optimally flexible inflation targets that can be derived using

that theory. Our results are of two sorts. First, we illustrate the implications of the theory in

the context of a series of simple models that incorporate important features of realistic models

of the monetary transmission mechanism. Such features include wage and price stickiness,

inflation inertia, habit persistence, and predeterminedness of pricing and spending decisions.

In the models considered, there is a tension between two or more of the central bank’s

stabilization objectives, that cannot simultaneously be achieved in full; in the simplest case,

this is a tension between inflation and output-gap stabilization, but we also consider models

in which it is reasonable to seek to stabilize interest rates or wage inflation as well. These

results in the context of very simple models are intended to give insight into the way in which

the character of the optimal target criterion should depend on one’s model of the economy,

and should be of interest even to readers who are not persuaded of the empirical realism of

our estimated model.

Second, we apply the theory to a small quantitative model of the U.S. monetary transmis-
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sion mechanism, the numerical parameters of which are fit to VAR estimates of the impulse

responses of several aggregate variables to identified monetary policy shocks. While the

model remains an extremely simple one, this exercise makes an attempt to judge the likely

quantitative significance of the types of effects that have previously been discussed in more

general terms. It also offers a tentative evaluation of the extent to which U.S. policy over the

past two decades has differed from what an optimal inflation-targeting regime would have

called for.

1 Model Specification and Optimal Targets

Here we offer a few simple examples of the way in which the optimal target criterion will

depend on the details of one’s model of the monetary transmission mechanism. (The optimal

target criterion also depends, of course, on one’s assumed stabilization objectives. But

here we shall take the view that the appropriate stabilization objectives follow from ones

assumptions about the way in which policy affects the economy, though the welfare-theoretic

stabilization objectives implied by our various simple models are here simply asserted rather

than derived.) The examples that we select illustrate the consequences of features that are

often present in quantitative optimizing models of the monetary transmission mechanism.

They are also features of the small quantitative model presented in section 2; hence our

analytical results in this section are intended to provide intuition for the numerical results

presented for the empirical model in section 3.

The analysis of Giannoni and Woodford (2002a) derives a robustly optimal target crite-

rion from the first-order conditions that characterize the optimal state-contingent evolution

of the economy. Here we illustrate this method by directly applying it to our simple examples,

without any need to recapitulate the general theory.

1.1 An Inflation-Output Stabilization Tradeoff

We first consider the central issue addressed in previous literature on flexible inflation target-

ing, which is the extent to which a departure from complete (and immediate) stabilization of
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inflation is justifiable in the case of real disturbances that prevent joint stabilization of both

inflation and the (welfare-relevant) output gap.3 We illustrate how this question would be

answered in the case of a simple optimizing model of the monetary transmission mechanism

that allows for the existence of such “cost-push shocks” (to use the language of Clarida et

al., 1999).

As is well known, a discrete-time version of the optimizing model of staggered price-

setting proposed by Calvo (1983) results in a log-linear aggregate supply relation of the

form

πt = κxt + βEtπt+1 + ut, (1.1)

sometimes called the “New Keynesian Phillips curve” (after Roberts, 1995).4 Here πt denotes

the inflation rate (rate of change of a general index of goods prices), xt the output gap (the

deviation of log real GDP from a time-varying “natural rate”, defined so that stabilization of

the output gap is part of the welfare-theoretic stabilization objective5), and the disturbance

term ut is a “cost-push shock”, collecting all of the exogenous shifts in the equilibrium relation

between inflation and output that do not correspond to shifts in the welfare-relevant “natural

rate” of output. In addition, 0 < β < 1 is the discount factor of the representative household,

and κ > 0 is a function of a number of features of the underlying structure, including both

the average frequency of price adjustment and the degree to which Ball-Romer (1990) “real

rigidities” are important.

We shall assume that the objective of monetary policy is to minimize the expected value

3Possible sources of disturbances of this sort are discussed in Giannoni (2000), Steinsson (2002), and
Woodford (2003, chap. 6).

4See Woodford (2003, chap. 3) for a derivation in the context of an explicit intertemporal general equi-
librium model of the transmission mechanism. Equation (1.1) represents merely a log-linear approximation
to the exact equilibrium relation between inflation and output implied by this pricing model; however, un-
der circumstances discussed in Woodford (2003, chap. 6), such an approximation suffices for a log-linear
approximate characterization of the optimal responses of inflation and output to small enough disturbances.
Similar remarks apply to the other log-linear models presented below.

5See Woodford (2003, chaps. 3 and 6) for discussion of how this variable responds to a variety of types of
real disturbances. Under conditions discussed in chapter 6, the “natural rate” referred to here corresponds
to the equilibrium level of output in the case that all wages and prices were completely flexible. However,
our results in this section apply to a broader class of model specifications, under an appropriate definition
of the “output gap”.
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of a loss function of the form

W = E0

{ ∞∑

t=0

βtLt

}
, (1.2)

where the discount factor β is the same as in (1.1), and the loss each period is given by

Lt = π2
t + λ(xt − x∗)2, (1.3)

for a certain relative weight λ > 0 and optimal level of the output gap x∗ > 0. Under

the same microfoundations as justify the structural relation (1.1), one can show (Woodford,

2003, chap. 6) that a quadratic approximation to the expected utility of the representative

household is a decreasing function of (1.2), with

λ = κ/θ (1.4)

(where θ > 1 is the elasticity of substitution between alternative differentiated goods) and

x∗ a function of both the degree of market power and the size of tax distortions. However,

we here offer an analysis of the optimal target criterion in the case of any loss function of

the form (1.3), regardless of whether the weights and target values are the ones that can be

justified on welfare-theoretic grounds or not. (In fact, a quadratic loss function of this form

is frequently assumed in the literature on monetary policy evaluation, and is often supposed

to represent the primary stabilization objectives of actual inflation-targeting central banks

in positive characterizations of the consequences of inflation targeting.)

The presence of disturbances of the kind represented by ut in (1.1) creates a tension

between the two stabilization goals reflected in (1.3) of inflation stabilization on the one hand

and output-gap stabilization (around the value x∗) on the other; under an optimal policy,

the paths of both variables will be affected by cost-push shocks. The optimal responses

can be found by computing the state-contingent paths {πt, xt} that minimize (1.2) with loss

function (1.3) subject to the sequence of constraints (1.1).6 The Lagrangian for this problem,

6Note that the aggregate-demand side of the model does not matter, as long as a nominal interest-rate
path exists that is consistent with any inflation and output paths that may be selected. This is true if, for
example, the relation between interest rates and private expenditure is of the form (1.15) assumed below, and
the required path of nominal interest rates is always non-negative. We assume here that the non-negativity
constraint never binds, which will be true, under the assumptions of the model, in the case of any small
enough real disturbances {ut, r

n
t }.
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looking forward from any date t0, is of the form

Lt0 = Et0

∞∑

t=t0

βt−t0

{
1

2
[π2

t + λx(xt − x∗)2] + ϕt[πt − κxt − βπt+1]
}

, (1.5)

where ϕt is a Lagrange multiplier associated with constraint (1.1) on the possible inflation-

output pairs in period t. In writing the constraint term associated with the period t AS

relation, it does not matter that we substitute πt+1 for Etπt+1; for it is only the conditional

expectation of the term at date t0 that matters in (1.5), and the law of iterated expectations

implies that

Et0 [ϕtEtπt+1] = Et0 [Et(ϕtπt+1)] = Et0 [ϕtπt+1]

for any t ≥ t0.

Differentiating (1.5) with respect to the levels of inflation and output each period, we

obtain a pair of first-order conditions

πt + ϕt − ϕt−1 = 0, (1.6)

λ(xt − x∗)− κϕt = 0, (1.7)

for each period t ≥ t0. These conditions, together with the structural relation (1.1), have

a unique non-explosive solution7 for the inflation rate, the output gap, and the Lagrange

multiplier (a unique solution in which the paths of these variables are bounded if the shocks

ut are bounded), and this solution (which therefore satisfies the transversality condition)

indicates the optimal state-contingent evolution of inflation and output.

As an example, Figure 1, plots the impulse responses to a positive cost-push shock, in

the simple case that the cost-push shock is purely transitory, and unforecastable before the

period in which it occurs (so that Etut+j = 0 for all j ≥ 1). Here the assumed values of β, κ,

7Obtaining a unique solution requires the specification of an initial value for the Lagrange multiplier ϕt0−1.
See Woodford (2003, chap. 7) for the discussion of alternative possible choices of this initial condition and
their significance. Here we note simply that regardless of the value chosen for ϕt0−1, the optimal responses
to cost-push shocks in period t0 and later are the same.
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Figure 1: Optimal responses to a positive cost-push shock under commitment, in the case
of Calvo pricing.

and λ are those given in Table 1,8 and the shock in period zero is of size u0 = 1; the periods

represent quarters, and the inflation rate is plotted as an annualized rate, meaning that

what is plotted is actually 4πt. As one might expect, in an optimal equilibrium inflation is

allowed to increase somewhat in response to a cost-push shock, so that the output gap need

not fall as much as would be required to prevent any increase in the inflation rate. Perhaps

less intuitively, the figure also shows that under an optimal commitment, monetary policy

remains tight even after the disturbance has dissipated, so that the output gap returns to

8These parameter values are based on the estimates of Rotemberg and Woodford (1997) for a slightly
more complex variant of the model used here and in section 1.3. The coefficient λ here corresponds to λx in
the table. Note also that the value of .003 for that coefficient refers to a loss function in which πt represents
the quarterly change in the log price level. If we write the loss function in terms of an annualized inflation
rate, 4πt, as is conventional in numerical work, then the relative weight on the output-gap stabilization term
would actually be 16λx, or about .048. Of course, this is still quite low compared the relative weights often
assumed in the ad hoc stabilization objectives used in the literature on the evaluation of monetary policy
rules.
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Table 1: Calibrated parameter values for the examples in section 1.

Structural parameters
β 0.99
κ .024

θ−1 0.13
σ−1 0.16

Shock processes
ρu 0
ρr 0.35

Loss function
λx .003
λi .236

zero only much more gradually. As a result of this, while inflation overshoots its long-run

target value at the time of the shock, it is held below its long-run target value for a time

following the shock, so that the unexpected increase in prices is subsequently undone. In

fact, as the bottom panel of the figure shows, under an optimal commitment, the price level

eventually returns to exactly the same path that it would have been expected to follow if

the shock had not occurred.

This simple example illustrates a very general feature of optimal policy once one takes

account of forward-looking private-sector behavior: optimal policy is almost always history-

dependent. That is, it depends on the economy’s recent history and not simply on the set

of possible state-contingent paths for the target variables (here, inflation and the output

gap) that are possible from now on. (In the example shown in the figure, the set of pos-

sible rational-expectations equilibrium paths for inflation and output from period t onward

depends only on the value of ut; but under an optimal policy, the actually realized inflation

rate and output gap depend on past disturbances as well.) This is because a commitment to

respond later to past conditions can shift expectations at the earlier date in a way that helps

to achieve the central bank’s stabilization objectives. In the present example, if price-setters

are forward-looking, the anticipation that a current increase in the general price level will
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predictably be “undone” soon gives suppliers a reason not to increase their own prices cur-

rently as much as they otherwise would. This leads to smaller equilibrium deviations from

the long-run inflation target at the time of the cost-push shock, without requiring such a

large change in the output gap as would be required to stabilize inflation to the same degree

without a change in expectations regarding future inflation. (The impulse responses under

the best possible equilibrium that does not involve history-dependence are shown by the

dashed lines in the figure.9 Note that a larger initial output contraction is required, even

though both the initial price increase and the long-run price increase caused by the shock

are greater.)

It follows that no purely forward-looking target criterion — one that involves only the

projected paths of the target variables from the present time onward, like the criterion that

is officially used by the Bank of England — can possibly determine an equilibrium with the

optimal responses to disturbances. Instead, a history-dependent target criterion is necessary,

as stressed by Svensson and Woodford (2003).

A target criterion that works is easily derived from the first-order conditions (1.6) – (1.7).

Eliminating the Lagrange multiplier, one is left with a linear relation

πt + φ(xt − xt−1) = 0, (1.8)

with a coefficient φ = λ/κ > 0, that the state-contingent evolution of inflation and the output

gap must satisfy. Note that this relation must hold in an optimal equilibrium regardless of

the assumed statistical properties of the disturbances. One can also show that a commitment

to ensure that (1.8) holds each period from some date t0 onward implies the existence of a

determinate rational-expectations equilibrium,10 given any initial output gap xt0−1. In this

equilibrium, inflation and output evolve according to the optimal state-contingent evolution

9See Woodford (2003, chap. 7) for derivation of this “optimal non-inertial plan.” In the example shown in
Figure 1, this optimal non-inertial policy corresponds to the Markov equilibrium resulting from discretionary
optimization by the central bank. That equivalence would not obtain, however, in the case of serially
correlated disturbances.

10The characteristic equation that determines whether the system of equations consisting of (1.1) and (1.8)
has a unique non-explosive solution is the same as for the system of equations solved above for the optimal
state-contingent evolution.
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characterized above.

This is the optimal target criterion that we are looking for: it indicates that deviations of

the projected inflation rate πt from the long-run inflation target (here equal to zero) should

be accepted that are proportional to the degree to which the output gap is projected to

decline over the same period that prices are projected to rise. Note that this criterion is

history-dependent, because the acceptability of a given projection (πt, xt) depends on the

recent past level of the output gap; it is this feature of the criterion that will result in the

output gap’s returning only gradually to its normal level following a transitory cost-push

shock, as shown in Figure 1.

How much of a projected change in the output gap is needed to justify a given degree

of departure from the long-run inflation target? If λ is assigned the value that it takes in

the welfare-theoretic loss function, then φ = θ−1, where θ is the elasticity of demand faced

by the typical firm. The calibrated value for this parameter given in Table 1 (based on the

estimates of Rotemberg and Woodford, 1997) implies that φ = .13. If we express the target

criterion in terms of the annualized inflation rate (4πt) rather than the quarterly rate of price

change, the relative weight on the projected quarterly change in the output gap will instead

be 4φ, or about 0.51. Hence a projection of a decline in real GDP of two percentage points

relative to the natural rate of output over the coming quarter would justify an increase in

the projected (annualized) rate of inflation of slightly more than one percentage point.

1.2 Inflation Inertia

A feature of the “New Keynesian” aggregate-supply relation (1.1) that has come in for

substantial criticism in the empirical literature is the fact that past inflation rates play no

role in the determination of current equilibrium inflation. Instead, empirical models of the

kind used in central banks for policy evaluation often imply that the path of the output

gap required in order to achieve a particular path for the inflation rate from now onward

depends on what rate of inflation has already been recently experienced; and this aspect

of one’s model is of obvious importance for the question of how rapidly one should expect
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that it is optimal to return inflation to its normal level, or even to “undo” past unexpected

price-level increases, following a cost-push shock.

A simple way of incorporating inflation inertia of the kind that central-bank models

often assume into an optimizing model of pricing behavior is to assume, as Christiano et

al. (2001) propose, that individual prices are indexed to an aggregate price index during

the intervals between re-optimizations of the individual prices, and that the aggregate price

index becomes available for this purpose only with a one-period lag. When the Calvo model

of staggered price-setting is modified in this way, the aggregate-supply relation (1.1) takes

the more general form11

πt − γπt−1 = κxt + βEt[πt+1 − γπt] + ut, (1.9)

where the coefficient 0 ≤ γ ≤ 1 indicates the degree of automatic indexation to the aggregate

price index. In the limiting case of complete indexation (γ = 1), the case assumed by

Christiano et al. and the case found to best fit US data in our own estimation results below,

this relation is essentially identical to the aggregate-supply relation proposed by Fuhrer and

Moore (1995), which has been widely used in empirical work.

The welfare-theoretic stabilization objective corresponding to this alternative structural

model is of the form (1.2) with the period loss function (1.3) replaced by

Lt = (πt − γπt−1)
2 + λ(xt − x∗)2, (1.10)

where λ > 0 is again given by (1.4), and x∗ > 0 is similarly the same function of underlying

microeconomic distortions as before.12 (The reason for the change is that with the automatic

indexation, the degree to which the prices of firms that re-optimize their prices and those

that do not are different depends on the degree to which the current overall inflation rate

πt differs from the rate at which the automatically adjusted prices are increasing, i.e., from

γπt−1.) If we consider the problem of minimizing (1.2) with loss function (1.10) subject to

11See Woodford (2003, chap. 3) for a derivation from explicit microeconomic foundations.
12See Woodford (2003, chap. 6) for derivation of this loss function as an approximation to expected utility.
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Figure 2: Optimal responses to a positive cost-push shock under commitment, for alternative
degrees of inflation inertia.

the sequence of constraints (1.9), the problem has the same form as in the previous section,

except with πt everywhere replaced by the quasi-differenced inflation rate

πqd
t ≡ πt − γπt−1. (1.11)

The solution is therefore also the same, with this substitution.

Figure 2 shows the impulse responses of inflation, the output gap, and the price level to

the same kind of disturbance as in Figure 1, under optimal policy for economies with alter-

native values of the indexation parameter γ. (The values assumed for β, κ, and λ are again

as in Table 1.) Once again, under an optimal commitment, the initial unexpected increase

in prices is eventually undone, as long as γ < 1; and this once again means that inflation

eventually undershoots its long-run level for a time. However, for any large enough value

of γ, inflation remains greater than its long-run level for a time even after the disturbance
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has ceased, and only later undershoots its long-run level; and the larger is γ, the longer this

period of above-average inflation persists. In the limiting case that γ = 1, the undershooting

never occurs; inflation is simply gradually brought back to the long-run target level.13 In

this last case, a temporary disturbance causes a permanent change in the price level, even

under optimal policy. However, the inflation rate is eventually restored to its previously

anticipated long-run level under an optimal commitment, even though the rate of inflation

(as opposed to the rate of acceleration of inflation) is not welfare-relevant in this model.

(Note that the optimal responses shown in Figure 2 for the case γ = 1 correspond fairly well

to the conventional wisdom of inflation-targeting central banks; but our theoretical analysis

allows us to compute an optimal rate at which inflation should be projected to return to its

long-run target value following a disturbance.)

As in the previous section, we can derive a target criterion that implements the optimal

responses to disturbances regardless of the assumed statistical properties of the disturbances.

This optimal target criterion is obtained by replacing πt in (1.8) by πqd
t , yielding

πt − γπt−1 + φ(xt − xt−1) = 0, (1.12)

where φ > 0 is the same function of model parameters as before. This indicates that the

acceptable inflation projection for the current period should depend not only on the projected

change in the output gap, but also (insofar as γ > 0) on the recent past rate of inflation: a

higher existing inflation rate justifies a higher projected near-term inflation rate, in the case

of any given output-gap projection.

In the special case that γ = 1, the optimal target criterion adjusts the current inflation

target one-for-one with increases in the existing rate of inflation — the target criterion

actually involves only the rate of acceleration of inflation. But this does not mean that

disturbances are allowed to permanently shift the inflation rate to a new level, as shown in

Figure 2. In fact, in the case of full indexation, an alternative target criterion that also leads

13Note that the impulse response of inflation (for γ = 1) in panel 1 of Figure 2 is the same as the impulse
response of the price level (under optimal policy) in panel 3 of Figure 1. The scales are different because the
inflation rate plotted is an annualized rate, 4πt rather than πt.
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to the optimal equilibrium responses to cost-push shocks is the simpler criterion

πt + φxt = π̄, (1.13)

where again φ > 0 is the same coefficient as in (1.12), and the value of the long-run inflation

target π̄ is arbitrary (but not changing over time). Note that (1.12) is just a first-differenced

form of (1.13), and a commitment to ensure that (1.12) holds in each period t ≥ t0 is

equivalent to a commitment to ensure that (1.13) holds, for a particular choice of π̄, namely

π̄ = πt0−1 +φxt0−1. But the choice of π̄ has no effect on either the determinacy of equilibrium

or the equilibrium responses of inflation and output to real disturbances (only on the long-

run average inflation rate), and so any target criterion of the form (1.13) implements the

optimal responses to disturbances.14 Note that this optimal target criterion is similar in form

to the kind that Svensson (1999) suggests as a description of the behavior of actual inflation-

targeting central banks, except that the inflation and output-gap projections in (1.13) are

not so far in the future (they refer only to the coming quarter) as in the procedures of actual

inflation targeters.

The result that the long-run inflation target associated with an optimal target criterion

is indeterminate depends, of course, on the fact that we have assumed a model in which

no distortions depend on the inflation rate, as opposed to its rate of change. This is log-

ically possible, but unlikely to be true in reality. (Distortions that depend on the level of

nominal interest rates, considered in the next section, would be one example of a realistic

complication that would break this result, even in the case of full indexation.) Because the

model considered here with γ = 1 does not determine any particular optimal long-run infla-

tion target (it need not vary with the initially existing inflation rate, for example), even a

small perturbation of these assumptions is likely to determine an optimal long-run inflation

14Any such policy rule is also optimal from a timeless perspective, under the definition given in Giannoni
and Woodford (2002a). Note that alternative rules, that result in equilibria that differ only in a transitory,
deterministic component of the path of each of the target variables, can each be considered optimal in this
sense. This ambiguity as to the initial behavior of the target variables cannot be resolved if our concept of
optimal policy is to be time-consistent. In the present case, ambiguity about the required initial behavior
of the target variable, inflation acceleration, implies ambiguity about the required long-run average level of
the inflation rate, though there is no ambiguity about how inflation should respond to shocks.
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target, and this will generally be independent of the initially existing rate of inflation. (The

monetary frictions considered in the next subsection provide an example of this.)

It is worth noting that even though the optimal dynamic responses shown in Figure 2

for the case of large γ confirm the conventional wisdom of inflation-targeting central bankers

with regard the desirability of a gradual return of the inflation rate to its long-run target level

following a cost-push shock, the optimal target criterion for this model does not involve a

“medium-term” inflation forecast rather than a shorter-run projection. Even in the case that

we suppose that the central bank will often have advance information about disturbances

that will shift the aggregate-supply relation only a year or more in the future, the robust

description of optimal policy is one that indicates how short-run output-gap projections

should modify the acceptable short-run inflation projection, rather than one that checks

only that some more distant inflation forecast is still on track. Of course, a commitment to

the achievement of the target criterion (1.12) each period does imply that the projection of

inflation several quarters in the future should never depart much from the long-run inflation

target; but the latter stipulation is not an equally useful guide to what should actually be

done with interest rates at a given point in time.

1.3 An Interest-Rate Stabilization Objective

The policy problems considered above assume that central banks care only about the paths

of inflation and the output gap, and not about the behavior of nominal interest rates that

may be required to bring about a given evolution of inflation and output that is consistent

with the aggregate-supply relation. However, actual central banks generally appear to care

about reducing the volatility of nominal interest rates as well (Goodfriend, 1991). Such a

concern can also be justified in terms of microeconomic foundations that are consistent with

the kind of aggregate-supply relations assumed above, as discussed in Woodford (2003, chap.

6).

For example, the transactions frictions that account for money demand imply a distortion

that should be an increasing function of the nominal interest rate, as stressed by Friedman
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(1969); the deadweight loss resulting from a positive opportunity cost of holding money

should also be a convex function of the interest rate, at least for interest rates close enough

to the optimal one (the interest rate paid on base money). Alternatively, the existence of a

zero lower bound on nominal interest rates can make it desirable to accept somewhat greater

variability of inflation and the output gap for the sake of reducing the required variability of

nominal interest rates, given that the smaller range of variation in the nominal interest rate

allows the average nominal interest rate (and hence the average inflation rate) to be lower.

A quadratic penalty for deviations of the nominal interest rate from a target level may then

be justified as a proxy for a constraint that links the feasible average level of nominal interest

rates to the variability of the nominal interest rate.

For any of these reasons, we may be interested in a policy that minimizes a loss function

of the form

Lt = π2
t + λx(xt − x∗)2 + λi(it − i∗)2, (1.14)

where λx > 0 is the same function of underlying parameters as λ in (1.3), it is a short-term

nominal interest rate, λi > 0 for one of the reasons discussed above, and i∗ is the level around

which the nominal interest rate would ideally be stabilized. In this case, the aggregate-supply

relation is not the only relevant constraint in our optimal policy problem; it also matters

what interest-rate path is required in order to induce a given evolution of aggregate demand.

In a simple optimizing model that has been used in many recent analyses of optimal

monetary policy (e.g., McCallum and Nelson, 1999; Clarida et al., 1999; and Woodford,

1999a), the aggregate-supply relation (1.1) is combined with an intertemporal Euler equation

for the timing of private expenditure of the form

xt = Etxt+1 − σ(it − Etπt+1 − rn
t ), (1.15)

where σ > 0 represents the intertemporal elasticity of substitution and rn
t exogenous variation

in Wicksell’s “natural rate of interest.” Real disturbances that cause the natural rate of

interest to vary are now another reason why (if λi > 0) it will be impossible for the central

bank to completely stabilize all of its target variables simultaneously, and hence for transitory
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Figure 3: Optimal responses to an increase in the natural rate of interest.

variations in the inflation rate to be optimal, even in the absence of cost-push shocks.

This leads us to consider the problem of finding the state-contingent evolution of inflation,

output and interest rates to minimize the expected discounted value of (1.14) subject to the

constraints (1.1) and (1.15). A similar Lagrangian method as in section 1.1 leads to first-

order conditions of the form

πt − β−1σϕ1t−1 + ϕ2t − ϕ2t−1 = 0, (1.16)

λx(xt − x∗) + ϕ1t − β−1ϕ1t−1 − κϕ2t = 0, (1.17)

λi(it − i∗) + σϕ1t = 0, (1.18)
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where ϕ1t is the multiplier associated with constraint (1.15) and ϕ2t the one associated with

constraint (1.1). We can once again solve this system of equations for unique bounded

paths for the endogenous variables in the case of any bounded processes for the exogenous

disturbances {rn
t , ut}. The implied optimal responses to an exogenous increase in the natural

rate of interest are shown in Figure 3. Here the model parameters are calibrated as in Table

1, and the natural rate of interest is assumed to be a first-order autoregressive process with

serial correlation coefficient ρr = 0.35.15

A notable feature of Figure 3 is that once again optimal policy must be history-dependent,

for the optimal responses to the disturbance are more persistent than the disturbance itself.

As discussed in Woodford (1999a), optimal interest-rate policy is inertial, in the sense that

interest rates are both raised only gradually in response to an increase in the natural rate

of interest, and then returned to their normal level more gradually than the natural rate

itself as well. (The impulse response of the natural rate is shown by the dotted line in panel

1 of the figure.) Because spending responds to expected future interest rates and not only

current short rates, it is possible to achieve a given degree of stabilization of demand (relative

to the natural rate) in response to disturbances with less volatility of short-term interest

rates if short rates are moved in a more inertial fashion. (The optimal responses among

those achievable using a purely forward-looking target criterion are shown, for purposes of

comparison, by the dashed lines in the figure.)

A history-dependent target criterion that can bring about the desired impulse responses,

again regardless of the statistical properties of the disturbances rn
t and ut (including any

assumptions about the degree of correlation between these disturbances), can be derived

once more from the first-order conditions (1.16) – (1.18). Using the last two equations to

substitute for the two Lagrange multipliers in the first equation, we are left with a linear

15The real disturbances that cause the natural rate of interest to vary are assumed to create no variation in
the cost-push term ut; that is, they shift the equilibrium relation between inflation and output only through
possible shifts in the natural rate of output. A variety of examples of real disturbances with this property
are discussed in Woodford (2003, chap. 6).
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relation of the form

A(L)(it − i∗) = φππt + φx(xt − xt−1) (1.19)

that must be satisfied each period under an optimal policy. Here the coefficients of the lag

polynomial are

A(L) ≡ 1−
(

1 +
κσ

β

)
L− β−1 L(1− L),

and the inflation and output response coefficients are

φπ =
κσ

λi

> 0, φx =
σλx

λi

> 0. (1.20)

One can furthermore show that this is not only a necessary feature of an optimal equilibrium,

but also suffices to characterize it, in the sense that the system consisting of equation (1.19)

together with the structural equations (1.1) and (1.15) has a unique non-explosive solution,

in which the equilibrium responses to shocks are optimal.16

Requirement (1.19) can be interpreted as an inertial Taylor rule, as discussed in Giannoni

and Woodford (2002b). However, this requirement can also be equivalently expressed in a

forward-integrated form, that more directly generalizes the optimal target criterion derived

in section 1.1. It is easily seen that our sign assumptions on the model parameters imply

that A(L) can be factored as

A(L) ≡ (1− λ1 L)(1− λ2 L),

where 0 < λ1 < 1 < λ2. It then follows that (1.19) is equivalent to

(1− λ1L)(it−1 − i∗) = −λ−1
2 Et[(1− λ−1

2 L−1)−1(φππt + φx∆xt)], (1.21)

in the sense that bounded stochastic processes {it, πt, xt} satisfy (1.19) for all t ≥ t0 if and

only if they satisfy (1.21) for all t ≥ t0.
17 Hence a commitment to ensure that (1.21) is satisfied

at all times implies a determinate rational-expectations equilibrium in which the responses to

shocks are optimal. This conclusion is once again independent of any assumption about the

statistical properties of the disturbances, so that (1.21) is a robustly optimal target criterion.

16See Giannoni and Woodford (2002b), Proposition 6.
17See Giannoni and Woodford (2002b), Proposition 7.
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This optimal target criterion can be expressed in the form

Ft(π) + φFt(x) = θxxt−1 − θi(it−1 − i∗)− θ∆∆it−1, (1.22)

where for each of the variables z = π, x we use the notation Ft(z) for a conditional forecast

Ft(z) ≡
∞∑

j=0

αz,jEtzt+j

involving weights {αz,j} that sum to one. Thus the criterion specifies a time-varying target

value for a weighted average of an inflation forecast and an output-gap forecast, where each

of these forecasts is in fact a weighted average of forecasts at various horizons, rather than a

projection for a specific future date. The coefficients of this representation of optimal policy

are given by

φ = θx = (1− λ−1
2 )

λx

κ
> 0,

θi = λ2(1− λ1)(1− λ−1
2 )

λi

κσ
> 0,

θ∆ = λ1λ2(1− λ−1
2 )

λi

κσ
> 0,

while the optimal weights in the conditional forecasts are

απ,j = αx,j = (1− λ−1
2 )λ−j

2 .

Thus the optimal conditional forecast is one that places positive weight on the projection for

each future period, beginning with the current period, with weights that decline exponentially

as the horizon increases. The mean distance in the future of the projections that are relevant

to the target criterion is equal to

∞∑

j=0

αz,jj = (λ2 − 1)−1

for both the inflation and output-gap forecasts.
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In the case of the calibrated parameter values in Table 1, the rate at which these weights

decay per quarter is λ−1
2 = .68, so that the mean forecast horizon in the optimal target

criterion is 2.1 quarters. Thus while the optimal target criterion in this case involves pro-

jections of inflation and output beyond the current quarter, the forecast horizon remains

quite short compared to the actual practice of inflation forecast-targeting central banks.

For these same parameter values, the optimal relative weight on the output-gap forecast is

φ = .04,18 indicating that the target criterion is largely an inflation target. The remaining

optimal coefficients are θx = .04, θi = .24, and θ∆ = .51, indicating a substantial degree of

history-dependence of the optimal flexible inflation target. The fact that θx = φ indicates

that it is the forecasted increase in the output gap relative to the previous quarter’s level,

rather than the absolute level of the gap, that should modify the inflation target, just as in

section 1.1. The signs of θi and θ∆ imply that policy will be made tighter (in the sense of

demanding a lower modified inflation forecast) when interest rates have been high and/or

increasing in the recent past; this is a way of committing to interest-rate inertia of the kind

shown in Figure 3.

Note that in the limiting case in which λi = 0, this target criterion reduces to (1.8). In

that limit, θi, θ∆ and the decay factor λ−1
2 become equal to zero, while φ and θx have a

well-defined (common) positive limit. Thus in this limiting case, the optimal targeting rule

is one in which the inflation target must be modified in proportion to the projected change in

the output gap, but it is no longer also dependent on lagged interest rates, and the relevant

inflation and output-gap projections do not involve periods beyond the current one. This

will also be nearly true in the case of small enough positive values of λi.

We may similarly introduce an interest-rate stabilization objective in the case of the

model with inflation inertia considered in section 1.2. In this case, the loss function (1.10)

is generalized to

Lt = (πt − γπt−1)
2 + λx(xt − x∗)2 + λi(it − i∗)2, (1.23)

18If we write the target criterion in terms of a forecast for the annualized inflation rate (4πt), the relative
weight on the output-gap forecast will instead be 4φ, or about .15.
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for some λi > 0 and some desired interest rate i∗. In this generalization of the problem just

considered, the first-order condition (1.16) becomes instead

πqd
t − βγEtπ

qd
t+1 − β−1σϕ1t−1 − βγEtϕ2,t+1 + (1 + βγ)ϕ2t − ϕ2t−1 = 0, (1.24)

where πqd
t is again defined in (1.11). Conditions (1.17) – (1.18) remain as before.19

Again using the latter two equations to eliminate the Lagrange multipliers, we obtain a

relation of the form

Et[A(L)(it+1 − i∗)] = −Et[(1− βγL−1)qt] (1.25)

for the optimal evolution of the target variables. Here A(L) is a cubic lag polynomial

A(L) ≡ βγ − (1 + γ + βγ)L + (1 + γ + β−1(1 + κσ))L2 − β−1L3, (1.26)

while qt is a function of the projected paths of the target variables, defined by

qt ≡ κσ

λi

[
πqd

t +
λx

κ
∆xt

]
.

The lag polynomial A(L) can be factored as A(L) = (1 − λ1L)L2B(L−1), where B(L−1)

is a quadratic polynomial, and under our sign assumptions one can further show 20 that

0 < λ1 < 1, while both roots of B(L) are outside the unit circle. Relation (1.25) is then

equivalent21 to a relation of the form

(1− λ1L)(it−1 − i∗) = −Et[B(L−1)−1(1− βγL−1)qt], (1.27)

which generalizes (1.21) to the case γ 6= 0.

This provides us with a robustly optimal target criterion that can be expressed in the

form

Ft(π) + φFt(x) = θππt−1 + θxxt−1 − θi(it−1 − i∗)− θ∆∆it−1, (1.28)

19One easily sees that in the case that γ = 1, the only long-run average inflation rate consistent with these
conditions is π̄ = i∗ − r̄, where r̄ is the unconditional mean of the natural rate of interest. This is true for
any λi > 0, no matter how small. Hence even a slight preference for lower interest-rate variability suffices
breaks the indeterminacy of the optimal long-run inflation target obtained for the case γ = 1 in section 1.2.

20See Giannoni and Woodford (2002b), Proposition 8.
21See Giannoni and Woodford (2002b), Proposition 11.
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generalizing (1.22). Under our sign assumptions, one can show22 that

φ = θx > 0,

0 < θπ ≤ 1,

and

θi, θ∆ > 0.

Furthermore, for fixed values of the other parameters, as γ → 0, θπ approaches zero and the

other parameters approach the non-zero values associated with the target criterion (1.22).

Instead, as γ → 1, θπ approaches 1, so that the target criterion involves only the projected

change in the rate of inflation relative to its already existing level, just as we found in section

1.2 when there was assumed to be no interest-rate stabilization objective.

The effects of increasing γ on the coefficients of the optimal target criterion (1.28) is

illustrated in Figure 4, where the coefficients are plotted against γ, assuming the same

calibrated values for the other parameters as before. It is interesting to note that each of

the coefficients indicating history-dependence (θπ, θx, θi, and θ∆) increases with γ (except

perhaps when γ is near one). Thus if there is substantial inflation inertia, it is even more

important for the inflation-forecast target to vary with changes in recent economic conditions.

It is also worth noting that the degree to which the inflation target should be modified in

response to changes in the output-gap projection (indicated by the coefficient φ) increases

with γ. While our conclusion for the case γ = 0 above (φ = .04) might have suggested

that this sort of modification of the inflation target is not too important, we find that a

substantially larger response is justified if γ is large. The optimal coefficient is φ = 0.13, as

in sections 1.1 and 1.2, if γ = 1; and once again this corresponds to a weight of 0.51 if the

inflation target is expressed as an annualized rate.

The panels of Figure 5 correspondingly show the relative weights αz,j/αz,0 on the forecasts

at different horizons in the optimal target criterion (1.28), for each of several alternative

values of γ. As above, the inclusion of an interest-rate stabilization objective makes the

22See Giannoni and Woodford (2002b), Proposition 10.
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Figure 4: Coefficients of the optimal targeting rule (1.28) as functions of γ.

optimal target criterion more forward-looking than was the case in section 1.2. Indeed, we

now find, at least for high enough values of γ, that the optimal target criterion places non-

negligible weight on forecasts more than a year in the future. But it is not necessarily true

that a greater degree of inflation inertia justifies a target criterion with a longer forecast

horizon. Increases in γ increase the optimal weights on the current-quarter projections of

both inflation and the output gap (normalizing the weights to sum to one), and instead

make the weights on the projections for quarters more than two quarters in the future less

positive. At least for low values of γ (in which case the weights are all non-negative), this

makes the optimal target criterion less forward-looking.

For higher values of γ, increases in γ do increase the absolute value of the weights on

forecasts for dates one to two years in the future (these become more negative). But even
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in this case, the existence of inflation inertia does not justify the kind of response to longer-

horizon forecasts that is typical of inflation-targeting central banks. An increase in the

forecast level of inflation and/or the output gap during the second year of a bank’s current

projection should justify a loosening of current policy, in the sense of a policy intended to

raise projected inflation and/or the output gap in the next few quarters. This is because

in the model with large γ, welfare losses result from inflation variation rather than high

inflation as such; a forecast of higher inflation a year from now is then a reason to accept

somewhat higher inflation in the nearer term than one otherwise would.

1.4 Wages and Prices Both Sticky

A number of studies have found that the joint dynamics of real and nominal variables are

best explained by a model in which wages as well as prices are sticky (e.g., Amato and

Laubach, 2001b; Christiano et al., 2001; Smets and Wouters, 2002; Altig et al., 2002; and
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Woodford, 2003, chap. 3). This is often modeled in the way suggested by Erceg et al. (2000),

with monopolistic competition among the suppliers of different types of labor, and staggered

wage setting analogous to the Calvo (1983) model of price setting. The structural equations

of the supply side of this model can be written in the form

πt = κp(xt + ut) + ξp(wt − wn
t ) + βEtπt+1, (1.29)

πw
t = κw(xt + ut) + ξw(wn

t − wt) + βEtπ
w
t+1, (1.30)

together with the identity

wt = wt−1 + πw
t − πt, (1.31)

generalizing the single equation (1.1) for the flexible-wage model. Here πw
t represents nominal

wage inflation, wt is the log real wage, wn
t represents exogenous variation in the “natural

real wage”, and the coefficients ξp, ξw, κp, κw are all positive. The coefficient ξp indicates

the sensitivity of goods-price inflation to changes in the average gap between marginal cost

and current prices; it is smaller the stickier are prices. Similarly, ξw indicates the sensitivity

of wage inflation to changes in the average gap between households’ “supply wage” (the

marginal rate of substitution between labor supply and consumption) and current wages,

and measures the degree to which wages are sticky.23

We note furthermore that κp ≡ ξpωp and κw ≡ ξw(ωw +σ−1), where ωp > 0 measures the

elasticity of marginal cost with respect to the quantity supplied, at a given wage; ωw > 0

measures the elasticity of the supply wage with respect to quantity produced, holding fixed

households’ marginal utility of income; and σ > 0 is the same intertemporal elasticity of

substitution as in (1.15). In the limit of perfectly flexible wages, ξw is unboundedly large,

and (1.30) reduces to the contemporaneous relation wt − wn
t = (ωw + σ−1)(xt + ut). Using

this to substitute for wt in (1.29), the latter relation then reduces to (1.1), where

κ ≡ ξp(ωp + ωw + σ−1) (1.32)

23For further discussion of these coefficients, and explicit formulas for them in terms of the frequency of
wage and price adjustment, see section 2 below.
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and the cost-push shock ut has been rescaled.

Given the proposed microeconomic foundations for these relations, Erceg et al. show

that the appropriate welfare-theoretic stabilization objective is a discounted criterion of the

form (1.2), with a period loss function of the form

Lt = λpπ
2
t + λwπw2

t + λx(xt − x∗)2. (1.33)

Here the relative weights on the various stabilization objectives are given by

λp =
θpξ

−1
p

θpξ
−1
p + θwφ−1ξ−1

w

> 0, λw =
θwφ−1ξ−1

w

θpξ
−1
p + θwφ−1ξ−1

w

> 0, (1.34)

λx = λp
κ

θp

> 0, (1.35)

as functions of the underlying model parameters. Note that we have normalized the weights

so that λp +λw = 1, and that (1.35) generalizes the previous expression (1.4) for the flexible-

wage case.

Here we again abstract from the motives for interest-rate stabilization discussed in the

previous section. As a result, we need not specify the demand side of the model. We then

wish to consider policies that minimize the criterion defined by (1.2) and (1.33), subject to

the constraints (1.29) – (1.31).

The Lagrangian method illustrated above now yields a system of first-order conditions

λpπt + ϕpt − ϕp,t−1 + υt = 0, (1.36)

λwπw
t + ϕwt − ϕw,t−1 − υt = 0, (1.37)

λx(xt − x∗)− κpϕpt − κwϕwt = 0, (1.38)

υt = ξpϕpt − ξwϕwt + βEtυt+1, (1.39)

where ϕpt, ϕwt, υt are the Lagrange multipliers associated with constraints (1.29), (1.30) and

(1.31) respectively. We can again use three of the equations to eliminate the three Lagrange

multipliers, obtaining a target criterion of the form

(κw − κp)π
asym
t + (ξp + ξw)qt + (κw − κp) {Et[βqt+1 − qt]− Et−1[βqt − qt−1]} = 0, (1.40)

28



where

πasym
t ≡ λpξpπt − λwξwπw

t

is a measure of the asymmetry between price and wage inflation,

πsym
t ≡ λpκpπt + λwκwπw

t

λpκp + λwκw

is a (weighted) average of the rates of price and wage inflation, and

qt ≡ (λpκp + λwκw)

[
πsym

t +
λx

λpκp + λwκw

(xt − xt−1)

]
. (1.41)

In the special case that κw = κp = κ > 0, which empirical studies such as that of Amato

and Laubach (2001b) find to be not far from the truth,24 the optimal target criterion (1.40)

reduces simply to qt = 0, or

πsym
t + φ(xt − xt−1) = 0, (1.42)

with φ = λx/κ as in section 1.1.25 More generally, the optimal target criterion is more com-

plex, and slightly more forward-looking (as a result of the inertia in the real-wage dynamics

when both wages and prices are sticky26). But it still takes the form of an output-adjusted

inflation target, involving the projected paths of both price and wage inflation; and since all

terms except the first one in (1.40) are equal to zero under a commitment to ensure that

qt = 0 at all times, the target criterion (1.42) continues to provide a fairly good approxima-

tion to optimal policy even when κw is not exactly equal to κp.

This is of the same form as the optimal target criterion (1.8) for the case in which only

prices are sticky, with the exception that the index of goods price inflation πt is now replaced

by an index πsym
t that takes account of both price and wage inflation. Of course, the weight

24See the discussion in Woodford (2003), chapter 3. In this case, the structural equations (1.29) – (1.30)
imply that the real wage will be unaffected by monetary policy, instead evolving as a function of the real
disturbances alone. Empirical studies often find that the estimated response of the real wage to an identified
monetary policy shock is quite weak, and not significantly different from zero. Indeed, it is not significantly
different from zero in our own analysis in section 2, though the point estimates for the impulse response
function suggest that wages are not as sticky as prices.

25Here we assume a normalization of the loss function weights in (1.33) in which λp+λw = 1, corresponding
to the normalization in (1.3).

26This only affects the optimal target criterion, of course, to the extent that the evolution of the real wage
is endogenous, which requires that κw 6= κp.
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that should be placed on wages in the inflation target depends on the relative weight on wage

stabilization in the loss function (1.33). If one assumes a “traditional” stabilization objective

of the form (1.3), so that λw = 0, then (1.42) is again identical to (1.8). However, one can

show that expected utility maximization corresponds to minimization of a discounted loss

criterion in which the relative weight on wage-inflation stabilization depends on the relative

stickiness of wages and prices, as discussed by Erceg et al. (2000).27

1.5 Habit Persistence

In the simple models thus far, the intertemporal IS relation (1.15) implies that aggregate

demand is determined as a purely forward-looking function of the expected path of real inter-

est rates and exogenous disturbances. Many empirical models of the monetary transmission

mechanism instead imply that the current level of aggregate real expenditure should depend

positively on the recent past level of expenditure, so that aggregate demand should change

only gradually even in the case of an abrupt change in the path of interest rates. A simple

way of introducing this is to assume that private expenditure exhibits “habit persistence” of

the sort assumed in the case of consumption expenditure by authors such as Fuhrer (2000),

Edge (2000), Christiano et al. (2001), Smets and Wouters (2002), and Altig et al. (2002).

Here, as in the models above, we model all interest-sensitive private expenditure as if it

were non-durable consumption; that is, we abstract from the effects of variations in private

expenditure on the evolution of productive capacity.28 Hence we assume habit persistence in

the level of aggregate private expenditure, and not solely in consumption, as in the models of

Amato and Laubach (2001a) and Boivin and Giannoni (2003). This might seem odd, given

that we do not really interpret the “Ct” in our model as referring mainly to consumption

expenditure. But quantitative models that treat consumption and investment spending

separately often find that the dynamics of investment spending are also best captured by

27See also Woodford (2003, chap. 6), which modifies the derivation of Erceg et al. to take account of the
discounting of utility.

28See McCallum and Nelson (1999) and Woodford (2003, chap. 4) for further discussion of this simplifi-
cation.
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specifications of adjustment costs that imply inertia in the rate of investment spending (e.g.,

Edge, 2000; Christiano et al., 2001; Altig et al., 2002; Basu and Kimball, 2002). The

“habit persistence” assumed here should be understood as a proxy for adjustment costs in

investment expenditure of that sort, and not solely (or even primarily) as a description of

household preferences with regard to personal consumption.29

Following Boivin and Giannoni (2003), let us suppose that the utility flow of any house-

hold h in period t depends not only on its real expenditure Ch
t in that period, but also on

that household’s level of expenditure in the previous period.30 Specifically, we assume that

the utility flow from expenditure is given by a function of the form

u
(
Ch

t − ηCh
t−1; ξt

)
,

where ξt is a vector of exogenous taste shocks, u(·; ξ) is an increasing, concave function for

each value of the exogenous disturbances, and 0 ≤ η ≤ 1 measures the degree of habit

persistence. (Our previous model corresponds to the limiting case η = 0 of this one.) The

household’s budget constraint remains as before.

In this extension of our model, the marginal utility for the representative household of

additional real income in period t is no longer equal to the marginal utility of consumption

in that period, but rather to

λt = uc(Ct − ηCt−1; ξt)− βηEt[uc(Ct+1 − ηCt; ξt+1)]. (1.43)

The marginal utility of income in different periods continues to be linked to the expected

return on financial assets in the usual way, so that equilibrium requires that

λt = βEt[λt+1(1 + it)Pt/Pt+1]. (1.44)

Using (1.43) to substitute for the λ’s in (1.44), we obtain a generalization of the usual Euler

equation for the intertemporal allocation of aggregate expenditure given expected rates of

return.
29For further discussion, see Woodford (2003, chapter 5, sec. 1.2).
30Note that the consumption “habit” is assumed here to depend on the household’s own past level of

expenditure, and not on that of other households.
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Log-linearization of this Euler equation yields a generalization of our previous IS relation

(1.15), of the form

x̃t = Etx̃t+1 − ϕ−1[it − Etπt+1 − rn
t ], (1.45)

where

x̃t ≡ (xt − ηxt−1)− βηEt(xt+1 − ηxt),

ϕ−1 ≡ (1− βη)σ > 0,

and σ ≡ −uc/(Ȳ ucc) as before. Here xt is again the log gap between actual output and the

flexible-price equilibrium level of output in the absence of markup fluctuations, and rn
t is

again the flexible-price equilibrium real interest rate in the absence of markup fluctuations,

i.e., the real interest rate associated with an equilibrium in which xt = 0 at all times. Note

that when η = 0, ϕ reduces to σ−1, x̃t reduces to xt, and (1.45) reduces to (2.7). In the

general case, the log marginal utility of real income is negatively related to x̃t, rather than

to xt, which is why x̃t appears in the generalized IS relation (1.45).

This modification of preferences changes the form of the aggregate-supply relation (1.1)

as well. (For simplicity, we here consider only the case of a model with flexible wages and

Calvo pricing.) In the derivation of (1.1), we have assumed that the log marginal utility of

real income (which affects real supply costs owing to its effect on real wage demands) can be

replaced by a linear function of xt; but just as in the case of the IS relation, this now must

be written as a linear function of x̃t instead. We then obtain an aggregate-supply relation

of the form

πt = ξp[ωxt + ϕx̃t] + βEtπt+1 + ut, (1.46)

where ξp > 0 is the same coefficient as in (1.29), and ω ≡ ωp + ωw > 0. The relation can

equivalently be rewritten in the form

πt = κ[(xt − δxt−1)− βδEt(xt+1 − δxt)] + βEtπt+1 + ut, (1.47)

where 0 ≤ δ ≤ η is the smaller root of the quadratic equation

ηϕ(1 + βδ2) = [ω + ϕ(1 + βη2)]δ, (1.48)
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and31

κ ≡ ξpηϕ/δ > 0. (1.49)

Again taking a second-order Taylor series expansion of the expected utility of the rep-

resentative household,32 we again obtain a discounted criterion of the form (1.2), but now

with a period loss function of the form

Lt = π2
t + λ(xt − δxt−1 − x̂∗)2, (1.50)

generalizing (1.3). Here λ is again defined as in (1.4), the parameters κ, δ are the same as

in the aggregate-supply relation (1.47), and the size of x̂∗ > 0 depends once more on both

the degree of market power and the size of tax distortions. As in the analysis of Amato and

Laubach (2001a), habit persistence implies that the period loss function should depend on

the lagged output gap as well as the present gap. However, we note that both the inflationary

pressures indicated in (1.47) and the deadweight losses measured by (1.50) depend on the

quasi-differenced output gap xt − δxt−1, where δ is the smaller root of (1.48). And while δ

is an increasing function of η, it may be much smaller than it; if ω is large relative to ϕ,

then δ may be quite small even in the presence of substantial habit persistence. This is the

case that our estimates below suggest is empirically realistic: while the best empirical fit is

obtained for the extreme value η = 1, the implied value of δ is only 0.14.

An optimal target criterion is easily derived, even in the presence of habit persistence, in

the case that there are no transactions frictions, nor any other grounds for an interest-rate

stabilization objective. In this case an optimal policy seeks to minimize the discounted sum

of losses (1.50) subject to the sequence of constraints (1.47). The same Lagrangian method

as above yields first-order conditions

πt + ϕt − ϕt−1 = 0, (1.51)

λ(xt − δxt−1 − x̂∗)− κϕt + δκϕt−1 = 0, (1.52)

31In the limiting case in which η = 0, δ = 0, while δ/η approaches the well-defined limit ϕ/(ω + ϕ), so
that κ = ξp(ω +ϕ) = ξp(ω +σ−1). Thus in this limit, (1.47) reduces to (1.1), where κ is defined as in (1.32).

32For details of the calculation, see the derivation in the appendix for the full model, incorporating habit
persistence, that is introduced in section 2.
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generalizing (1.6) – (1.7). An optimal target criterion is again obtained by eliminating the

Lagrange multiplier. In the case that δ < 1, as is necessarily true (even in the extreme

case where η = 1) given ω > 0, (1.52) implies that a time-invariant way of identifying the

Lagrange multiplier is

ϕt = (λ/κ)(xt − x∗),

where x∗ ≡ x̂∗/(1− δ). Substituting this into (1.51), we obtain

πt +
λx

κ
(xt − xt−1) = 0. (1.53)

Thus the optimal target criterion is exactly the same as in our baseline model, and

is unaffected by the estimated value of η. The estimated degree of habit persistence does

matter for the central bank’s judgment about which inflation/output paths are feasible, and

also about the interest-rate path that will be necessary in order to achieve them. But it

has no consequences for the target criterion that should be used to judge whether a given

inflation/output projection is acceptable.

The degree of habit persistence does matter for the optimal target criterion in the case of

an interest-rate stabilization objective. Suppose that the loss function (1.50) is generalized

to the form

Lt = π2
t + λx(xt − δxt−1 − x̂∗)2 + λi(it − i∗)2, (1.54)

where λi > 0 for any of the reasons discussed in section 1.3. In this case the relevant

constraints on possible equilibrium paths of the target variables include both (1.45) and

(1.47) each period. In the resulting system of first-order conditions, (1.16) and (1.18) are

again exactly as in section 1.3, but (1.17) generalizes to

λxEt[(1− βδL−1)−1(1− δL)(xt−x∗)] + Et[B(L)ϕ1,t+1]−κEt[(1− βδL−1)−1(1− δL)ϕ2t] = 0,

(1.55)

where

B(L) ≡ (1− β−1L)(1− ηL)(L− βη).
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Using two of these relations to eliminate the Lagrange multipliers from the other, we obtain

a target criterion of the form

(1− δL)[φππt + φx(xt − xt−1)] = (1−L)Et[(1− βδL−1)−1B(L)it+1]− κ

βϕ
(1− δL)(it−1 − i∗),

(1.56)

generalizing (1.19), where the definitions of φπ and φx are as in (1.20), but with ϕ replacing

σ−1 in the previous expressions. Here we see that the presence of habit persistence introduces

additional dynamics into the form of the optimal target criterion. Nonetheless, it is inter-

esting to note that once again, the optimal target criterion involves only the rate of change

of the output gap, rather than its absolute level, even when the utility-based stabilization

objective instead indicates a concern to stabilize the value of xt − δxt−1.

2 A Small Quantitative Model of the U.S. Economy

We now turn to the question of the likely quantitative importance of the various considera-

tions discussed in section 1 in the actual conduct of monetary policy. In order to do this, we

first estimate the numerical parameters of a model that, while still very stylized, is intended

to capture important features of the monetary transmission mechanism in the U.S. economy.

We present an updated version of the analysis in Rotemberg and Woodford (1997), incor-

porating a number of additional complications — habit persistence, wage stickiness, and

inflation inertia — that have been argued in the subsequent empirical literature to afford

important improvements in the realism of this sort of optimizing model of the transmission

mechanism, as discussed in section 1. The model that we use is similar the one estimated

by Boivin and Giannoni (2003), extended to allow for sticky wages.

Our approach to estimation of the model parameters follows the lines proposed in Rotem-

berg and Woodford (1997) and also used in Boivin and Giannoni (2003). First, we estimate

an unconstrained vector autoregression model of a small number of U.S. aggregate time

series. This VAR is used (along with weak identifying assumptions) both to identify the

coefficients of the Fed’s reaction function in the historical period, and to estimate the im-
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pulse responses of our variables to an identified monetary policy shock under that historical

policy. In a second step, we develop a simple optimizing model that can replicate the effects

of identified monetary policy shocks, as implied by the VAR. We estimate the structural

parameters of the model by minimizing the weighted distance between the estimated VAR

impulse responses to a monetary policy shock and the model’s predicted responses to the

same shock. We are then able to recover the historical sequence of structural disturbances

and to estimate a law of motion for them, which we use for certain exercises in section 3.

However, for purposes of the sort of characterization of optimal policy offered here (as op-

posed to those proposed by Rotemberg and Woodford, 1997, 1999), our conclusions about

the character of the historical disturbance processes are much less important than our con-

clusions about the coefficients of the structural relations that relate the endogenous variables

to one another.

In a third step, discussed in section 3, we derive a welfare-theoretic loss function for the

evaluation of alternative monetary policy rules, by computing a second-order approximation

to the expected utility of the representative household in our model. We then proceed along

the lines of Giannoni and Woodford (2002a, 2002b) to derive a robustly optimal inflation-

targeting rule for monetary policy.

2.1 The Effects of Monetary Disturbances

Here we briefly present the VAR that we use to estimate the actual monetary policy rule as

well as the effects of monetary policy disturbances. We assume that the recent U.S. monetary

policy can be described by the following feedback rule for the Federal funds rate

it = ı̄ +
ni∑

k=1

φik (it−k − ı̄) +
nw∑

k=0

φwkŵt−k +
nπ∑

k=0

φπk (πt−k − π̄) +
ny∑

k=0

φykŶt−k + εt (2.1)

where it is the Federal funds rate in period t, πt denotes the rate of inflation between periods

t−1 and t, ŵt is the deviation of the log real wage from trend at date t, Ŷt is the deviation of

log real GDP from trend, and ı̄, π̄ are long-run average values of the respective variables.33

The disturbances εt represent monetary policy “shocks” and are assumed to be serially
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uncorrelated. Estimated policy rules often omit real wages, but we include them in (2.1)

for generality; the VAR that we use below to estimate impulse responses is then completely

unrestricted (except as to number of lags).

To identify the monetary policy shocks and estimate the coefficients in (2.1), we assume

as in the studies of Bernanke and Blinder (1992), Rotemberg and Woodford (1997), Bernanke

and Mihov (1998), and Christiano et al. (2001), among others, that a monetary policy shock

at date t has no effect on inflation, output or the real wage in that period. It follows that (2.1)

can be estimated by OLS, and that the residuals of the estimated equation will represent a

historical sequence of monetary policy shocks.

We model the dynamics of the vector Zt =
[
it, ŵt+1, πt+1, Ŷt+1

]′
by a structural VAR of

with three lags. This can then be written in companion form as

TZ̄t = a + AZ̄t−1 + ēt (2.2)

where Z̄t ≡
[
Z ′

t, Z ′
t−1, Z ′

t−2

]′
and T is a lower triangular matrix with ones on the diagonal

and nonzero off-diagonal elements only in the first four rows, the first four rows of the vector

a contain constants, and A contains estimated coefficients from the VAR in the first four

rows, and an identity matrix in the lower rows. The first row of the estimated system (2.2)

corresponds to the estimated monetary policy rule (2.1).

To estimate the VAR, we consider quarterly U.S. data on the sample period 1980:1 –

2002:2. As in Rotemberg and Woodford (1997), and Amato and Laubach (2001b), we begin

the sample in the first quarter of 1980 because several empirical studies have identified

a significant change in monetary policy around that period (see, e.g., Clarida, Gaĺı and

Gertler, 2000; Boivin, 2001; Boivin and Giannoni, 2003; Cogley and Sargent, 2001, 2002).34

33Specifically, Ŷt is the log of real GDP minus a linear trend. Inflation is computed as the quarterly growth
of the GDP deflator (chain-type), annualized. The interest rate it is the quarterly average of the Federal funds
rate, annualized. The real wage is the log of wages and salaries in the compensation of employees published
by the Bureau of Economic Analysis, divided by the GDP deflator; a linear trend is then substracted from
the log real wage to obtain ŵt.

34Some studies suggest that monetary policy has changed again around the mid-1980’s. However, Boivin
and Giannoni (2003), following the approach proposed by Bernanke, Boivin and Eliasz (2002), show that
impulse response functions to monetary policy disturbances in a factor-augmented VAR are similar to the
ones reported here, when estimated both on the 1980-2002 and 1984-2002 sample periods.
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φi1 φi2 φi3 φw0 φw1 φw2

0.572 -0.085 0.192 0.365 -0.008 -0.406
(0.104) (0.127) (0.090) (0.202) (0.302) (0.191)

φπ0 φπ1 φπ2 φy0 φy1 φy2

0.071 0.146 0.472 0.333 -0.038 -0.118
(0.098) (0.115) (0.115) (0.176) (0.241) (0.169)

R2 DW
0.956 2.033

Standard errors are in parenthesis

Table 2: Estimated Monetary Policy Rule (1980:1 - 2002:2)

Table 2 reports the coefficients of the estimated policy rule. While these coefficients

are difficult to interpret as such, we note that the estimated rule implies that the interest

rate would eventually increase by 2.14 percentage points in the long run, in response to a

one percentage point permanent increase in inflation, and that it would increase by 0.55

percentage point in response to a one percent permanent increase in output. These are

similar long-run response coefficients to those obtained by authors such as Taylor (1993,

1999), Judd and Rudebusch (1998), and Clarida et al. (2000). The estimated real-wage

response coefficients at different lags are close to cancelling; the estimated reaction function

is quite similar to one in which the central bank responds only to the rate of real-wage

growth, rather than to the level of real wages. The response to real wage growth is strongly

positive, indicating that increases in wages lead to a stronger and more immediate increase

in nominal interest rates than do increases in prices of the same magnitude. While wages

are not often included as an explanatory variable in estimated Fed reaction functions, our

results here suggest that wage growth is also an important explanatory variable.

Figure 6 shows the estimated impulse response functions of output, the real wage, infla-

tion, and the interest rate. Here the dashed lines indicate 90% confidence intervals, obtained

using Kilian’s (1998) bootstrap procedure. Because of our identifying assumption, output,

inflation, and the real wage remain unchanged in the period of the shock. In the quarter
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following the shock, output still barely moves, while inflation and the real wage start de-

clining. Output falls substantially in the second quarter after the shock and then returns

progressively back to its initial level. In contrast, inflation and the real wage both reach

their lowest levels only five quarters after the shock.

2.2 A Quantitative Model of the Transmission Mechanism

We now describe a simple optimizing model that we use to explain the effects of monetary

policy on output, inflation, the real wage, and interest rates. While the model is still very

stylized, it contains several ingredients that allow it to replicate important features of the

impulse response functions estimated using our VAR. We assume that there exists a con-

tinuum of households indexed by h and distributed uniformly on the [0, 1] interval. Each

household h seeks, at date t, to maximize a lifetime expected utility of the form

Et

{ ∞∑

T=t

βT−t
[
u

(
Ch

T − ηCh
T−1; ξT

)
− v

(
Hh

T ; ξT

)]}
(2.3)

where β ∈ (0, 1) is the household’s discount factor (assumed to be equal for each household),

Ch
t is a Dixit-Stiglitz (1977) index of the household’s consumption of each of the differentiated

goods supplied at time t, Pt is the corresponding price index, and Hh
t is the amount of

labor (of type h) that household h supplies at date t. Here we assume that each household

specializes in the supply of one type of labor, and that each type of labor is supplied by

an equal number of households. The parameter 0 ≤ η ≤ 1 represents the degree of habit

formation, as in section 1.5. The stationary vector ξt represents exogenous disturbances to

preferences. For each value of ξ, the function u (·; ξ) is assumed to be increasing and concave,

while v (·; ξ) is increasing and convex.

2.2.1 Optimal Consumption Decisions

While the optimal allocation consumption at date t is chosen at date t, and is determined by

the usual Dixit-Stiglitz demand relations, we assume as in Rotemberg and Woodford (1997)

that households must choose their index of consumption Ch
t at date t− 2. Equivalently, we
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assume that Ch
t is determined at the beginning of period t − 1, i.e., before the monetary

policy shock in t − 1 is known. We assume that financial markets are complete so that

risks are efficiently shared. As a result, each household faces a single intertemporal budget

constraint.

The first-order conditions for optimal timing of consumption by the representative house-

hold require that

Et−2

{
uc (Ct − ηCt−1; ξt)− βηuc

(
Ct+1 − ηCt; ξt+1

)}
= Et−2 {λt} (2.4)

for each date t ≥ 2 and each possible state at date t − 2, generalizing (1.43), where again

λt denotes the representative household’s marginal utility of real income at date t.35 The

marginal utilities of income at different dates and in different states must furthermore satisfy

λtQt,T /Pt = βT−tλT /PT (2.5)

for any possible state at any date T ≥ t, where Qt,T is the stochastic discount factor that

defines the market valuations of alternative random income streams. Noting that the riskless

one-period nominal interest rate it must satisfy (1 + it)
−1 = EtQt,t+1, we obtain once again

(1.44) as an equilibrium relation linking interest rates to the evolution of the marginal utility

of income. We assume furthermore that the government purchases a Dixit-Stiglitz aggregate

Gt, determined at date t − 1, of all goods in the economy, so that aggregate demand Yt

satisfies Yt = Ct + Gt.

We make use of log-linear approximations of these relationships about a steady state

equilibrium in which there is no inflation. Log-linearization of (1.44) yields

λ̂t = Et[λ̂t+1 + ı̂t − πt+1]. (2.6)

where λ̂t ≡ log
(

λt

λ

)
, ı̂t ≡ log

(
1+it
1+ı̄

)
, and πt ≡ log (Pt/Pt−1) . Using this, and log-linearizing

(2.4) we obtain an equation of the form

Ỹt = ğt + Et−2

(
Ỹt+1 − ğt+1

)
− ϕ−1Et−2 (̂ıt − πt+1)− βη

(
EtŶt+1 − Et−2Ŷt+1

)
(2.7)

35Because the problem is the same for each household h (the initial level of wealth is assumed to differ
for any two households in a way that compensates for any difference in their expected labor incomes,
and complete financial markets allow complete pooling of idiosyncratic labor income risk thereafter), all
households choose identical state-contingent plans for consumption.
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where ϕ is defined as in (1.45), ğt represents exogenous demand shocks including preference

shocks and fluctuations in government expenditure, and Ỹt ≡
(
Ŷt − ηŶt−1

)
−βη

(
EtŶt+1 − ηŶt

)
,

Ŷt ≡ log
(
Yt/Ȳ

)
. Equation (2.7) generalizes the intertemporal IS relation (1.45).

For our welfare analysis, it is convenient to rewrite this relation in terms of the output

gap

xt ≡ Ŷt − Ŷ n
t

where Ŷ n
t indicates log deviations in the natural rate of output, by which we mean the

equilibrium level of output under flexible prices, flexible wages, constant levels of distorting

taxes and of desired markups in the labor and product markets, and with wages, prices and

spending decisions predetermined by only one period.36

Expressing (2.7) in terms of the output gap, we obtain

Et−2x̃t = Et−2x̃t+1 − ϕ−1Et−2 (̂ıt − πt+1 − r̂n
t ) (2.8)

where x̃t ≡ (xt − ηxt−1)− βη (Etxt+1 − ηxt) and r̂n
t is an exogenous variable that represents

the deviation from steady state of the natural rate of interest, i.e., the equilibrium real rate

of interest in the ideal situation defined above. The actual output gap relates furthermore

to the expected output gap through

x̃t = Et−2x̃t +
(
ğt − Ỹ n

t

)
− Et−2

(
ğt − Ỹ n

t

)
− βη

[
Et

(
xt+1 + Ŷ n

t+1

)
− Et−2

(
xt+1 + Ŷ n

t+1

)]
.

(2.9)

36Up to the log-linear approximation used in our estimation of the model, Ŷ n
t defined in this way is just

the conditional expectation at date t − 1 of the log deviation of the equilibrium level of output when none
of these variables are predetermined at all. Because wages and prices are both predetermined a period in
advance, it is only the component of the output gap that is forecastable a period in advance that matters in
any event for these equations. It is similarly only the variation in the forecastable component of the output
gap that need be considered when evaluating welfare under alternative policies, since the unforecastable
component of the output gap (defined relative to a concept of the “natural rate” that is not predetermined)
would in any event be both exogenous and uncorrelated with the forecastable component. It then simplifies
notation to define the output gap as the gap between actual output and the forecastable component of the
natural rate. In this way, xt becomes a predetermined state variable.
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2.2.2 Optimal Wage and Price Setting

As in Erceg et al. (2000), Amato and Laubach (2001b), and Woodford (2003, chap. 3), we

assume that there is a single economy-wide labor market. The producers of all goods hire

the same kinds of labor and face the same wages. Firm z is a monopolistic supplier of good

z, which it produces according to the production function

yt (z) = AtF
(
K̄,Ht (z)

)
≡ Atf (Ht (z))

where f ′ > 0, f ′′ < 0, the variable At > 0 is an exogenous technology factor, and capital is

assumed to be fixed so that labor is the only variable input. The labor used to produce each

good z is a CES aggregate

Ht (z) ≡
[∫ 1

0
Hh

t (z)
θw−1

θw dh
] θw

θw−1

(2.10)

for some elasticity of substitution θw > 1, where Hh
t (z) is the labor of type h that is hired

to produce a given good z. The demand for labor of type h by firm z is again of the Dixit-

Stiglitz form Hh
t (z) = Ht (z)

(
wt(h)
Wt

)−θw

, where wt (h) is the nominal wage of labor of type

h, and Wt is a wage index.

We assume that the wage for each type of labor is set by the supplier of that type, who

is in a situation of monopolistic competition and who is ready to supply as many hours of

work as may be demanded at that wage. We assume that each wage is reoptimized with a

fixed probability 1 − αw each period. However, as in Woodford (2003, ch. 3), if a wage is

not reoptimized, it is adjusted according to the indexation rule

log wt (h) = log wt−1 (h) + γwπt−1

for some 0 ≤ γw ≤ 1. A worker of type h who chooses a new wage wt (h) at date t, expects

to have a wage wt (h) (PT−1/Pt−1)
γw with probability αT−t

w at any date T ≥ t. We assume

furthermore that the newly chosen wage that comes into effect in period t, w∗
t , is chosen at

the end of period t− 1, i.e., on the basis of information available at date t− 1.
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As shown in Woodford (2003, ch. 3), this setup yields as a first-order approximation, a

wage inflation equation of the form

(πw
t − γwπt−1) = ξwEt−1 (ωwxt + ϕx̃t)−ξwEt−1µt+ξwEt−1 (wn

t − wt)+βEt−1

(
πw

t+1 − γwπt

)
,

(2.11)

generalizing (1.30) to allow for indexation to the lagged price index, habit persistence, and

predetermined wage-setting and spending decisions. Here πw
t denotes nominal wage inflation,

wt is the log real wage, and wn
t is an exogenous variable representing the log of the “natural

real wage”, i.e., the equilibrium real wage when both wages and prices are fully flexible and

consumption is not predetermined. The parameter

ξw ≡
(1− αw) (1− αwβ)

αw (1 + νθw)
> 0 (2.12)

is a function of the degree of wage stickiness, the elasticity of marginal disutility of labor

supply at the steady-state, ν ≡ vhhH̄
vh

, and the elasticity of substitution for different types of

labor. The parameter ωw ≡ νφ > 0 indicates the degree to which higher economic activity

increases workers’ desired wages for given prices. (Once again, φ ≡ f/
(
H̄f ′

)
> 0 is the

elasticity of the required labor input with respect to output variations.)

Integrating (2.11) forward, we note that nominal wages at date t tend to increase (above

lag inflation) when expected future positive output gaps are positive and when real wages

are expected to be below their natural rate. The variable µt ≡ λ̂t − ϕEt

(
g̃t − Ỹt

)
, which

corresponds to the discrepancy between the (log) marginal utility of real income and the

(log) marginal utility of consumption satisfies

Et−1µt = Et−1 (̂ıt − πt+1) + ϕEt−1

[
(g̃t+1 − g̃t)−

(
Ỹt+1 − Ỹt

)]
. (2.13)

The presence of Et−1µt in (2.11) indicates a moderating effect on nominal wage inflation of

an expectation at date t− 1 of real rates of return between t and t + 1 that are higher then

those that were anticipated at t− 2, i.e., at the time that consumption decisions were made

for period t. In fact, unexpectedly high real rates of return increase the value of income in

period t and thus lower average wage demands.
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Similarly, we assume that the suppliers of goods are in monopolistic competition and

that each price is reoptimized with a fixed probability 1 − αp each period. However, as in

Woodford (2003, ch. 3), if a price is not reoptimized, it is again adjusted according to the

indexation rule

log pt (z) = log pt−1 (z) + γpπt−1

for some 0 ≤ γp ≤ 1. Again following the development in Woodford (2003, ch. 3), we can

show that optimal pricing decisions result in an aggregate supply relation of the form

πt − γpπt−1 = ξpωpEt−1xt + ξpEt−1 (wt − wn
t ) + βEt−1

(
πt+1 − γpπt

)
, (2.14)

generalizing (1.29) to allow for indexation to the lagged price index and predetermination of

pricing decisions. Here

ξp ≡
(1− αp) (1− αpβ)

αp (1 + ωpθp)
> 0 (2.15)

is a function of the degree of price stickiness, the elasticity of substitution for different goods

θp > 1, and ωp > 0 which measures the degree to which higher economic activity increases

producers’ prices for given wages. Integrating (2.14) forward, we observe that inflation tends

to increase (relative to past inflation) when agents expect positive future output gaps and/or

expect that real wages will be above their natural rate.

Finally, the evolution of the real wage is linked to wage inflation and price inflation

through the identity (1.31). Our structural model can then be summarized by a demand

block (2.8) – (2.9) and a supply block consisting of (2.11) – (2.14) together with (1.31). We

finally close the model with an equation such as (2.1) that characterizes the behavior of the

central bank. These equations then allow us to determine the equilibrium evolution of the

variables of interest: πt, π
w
t , xt, ı̂t, and wt.

2.3 Estimated Parameter Values

We turn now to the estimation of the parameters of the structural model just set out. As

mentioned above, we are looking for structural parameters that allow the model to describe

as well as possible the transmission mechanism of monetary policy. Following Rotemberg and
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Woodford (1997), we choose the structural parameters that minimize the distance between

the estimated VAR impulse response functions to a monetary policy shock and the model’s

predicted response to the same shock. As discussed in Amato and Laubach (2001b), Boivin

and Giannoni (2003) and in Christiano et al. (2001), this is quite generally an estimation

procedure that allows for statistical inference on the model’s estimated structural parameters.

Note also that the model that we consider is constructed so as to be consistent with the

identifying assumptions made for the estimation of the VAR impulse response functions.

In particular, both the model and the VAR have the feature that output, inflation and

the real wage respond to unexpected changes in the interest rate with a lag of at least one

quarter. In addition, to the extent that we estimate the structural parameters on the basis of

impulse responses to monetary shocks, our estimation method has the advantage of providing

parameter estimates that are robust to potential misspecifications of the remaining shock

processes in the model. This is because in order to compute the impulse responses, we don’t

need to specify the stochastic process of the shocks such as g̃t, Ŷ n
t , ω̂n

t , r̂n
t .

As in the studies mentioned above, we set β = 0.99 so that β−1 corresponds approximately

to the steady-state real gross rate of interest which is about 1.01. In addition, we calibrate

the elasticity ωp ≡ −f ′′Ȳ / (f ′)2 to 0.33 as in Rotemberg and Woodford (1997). This would

be implied by a Cobb-Douglas production function in which the elasticity of output with

respect to hours is 0.75. Such a production function would yield a share of wages in the

value of output of 0.75/µp where µp ≡ θp/(θp− 1) is the average gross markup of prices over

marginal cost due to market power in the goods markets. (This means a labor share of 0.74,

given the markup estimate reported below.)

We estimate the vector of the remaining seven structural parameters v ≡
[
ϕ, η, ξp, ξw, ωw, γp, γw

]′

by minimizing the distance

D (v) =
[
f̂V − fM

(
φ̂, v

)]′
V

[
f̂V − fM

(
φ̂, v

)]

where f̂V is a vector that contains the VAR-based impulse response functions of output,

inflation, the real wage, and the interest rate to an unexpected monetary policy shock, and
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Figure 6: Estimated and predicted impulse responses to a monetary policy shock.

fM

(
φ̂, v

)
is vector containing the corresponding impulse response functions generated by the

model, for a given vector of structural parameters v and the vector of policy rule coefficients

φ̂ estimated in section 2.1. In fact to the extent that we estimated consistently the policy rule

of the form (2.1) when estimating the VAR, we do not need to estimate again its coefficients

at this stage. The positive definite weighting matrix V that we use in our estimation is a

diagonal matrix, with the inverse of the variance of the estimate of each impulse response as

the corresponding diagonal element. This allows us to weight the various impulse responses

according to the degrees of precision with which each is estimated.37 We estimate the

structural parameters by matching model-based and VAR-based impulse responses of output,

37The use of the inverse of the complete variance-covariance matrix of impulse responses as a weighting
matrix would be more attractive, as this would yield efficient estimates. But such a weighting matrix appears
to hinder the stability of the minimization algorithm. The matrix that we propose has the advantage of
reducing the weight on responses about which we are less sure, in addition to making our results independent
of the units in which we happen to measure the various series.

46



Baseline No habit No indexation Flexible wages
η = 0 γp = γw = 0 ξ−1

w = 0
Estimated parameters

ψ ≡ ϕ−1

1+βη2

0.6715
(0.3330)

4.3144
(1.0253)

1.5026
(0.4221)

0.7564
(0.2823)

η̃ ≡ η
1+βη2

0.5025
(0.0692)∗

0
(—)

0.5025
(0.1121)∗

0.5025
(0.0515)∗

ξp

0.0020
(0.0009)

0.0015
(0.0005)

0.0072
(0.0039)

0.0015
(0.0012)

ξw

0.0042
(0.1343)

0.0042
(0.0612)

0.0046
(0.0310)

+∞
(—)

ωw
19.551
(595.1)

19.991
(269.5)

19.072
(122.6)

0.5642
(0.1253)

γp

1
(0.3800)∗

1
(0.3484)∗

0
(—)

1
(0.5374)∗

γw

1
(10.908)∗

1
(12.4613)∗

0
(—)

0
(—)

Implied parameters
ϕ 0.7483 0.2318 0.3344 0.6643
η 1 0 1 1

κp ≡ ξpωp 0.0007 0.0005 0.0024 0.0004
ω ≡ ωp + ωw 19.884 20.325 19.405 0.8975
ν ≡ ωw/φ 14.663 14.994 14.304 0.4231

µp ≡ θp

θp−1
1.0039 1.0027 1.0143 1.0029

µw ≡ θw

θw−1
1.5361 1.5731 1.6113 —

Objective function value 13.110 15.886 16.580 18.837
Wald test (p-value) — 0.000 0.000 0.000

Table 3: Estimated structural parameters for the baseline case and restricted models.

inflation, the real wage, and the interest rate on quarters 0 to 12 following a unexpected

monetary policy shock. For consistency with the model, we constrain all parameters to be

positive and impose an upper bound at 1 on η, γp and γw.

The estimated parameter values are shown in Table 3. Standard errors are in parentheses;

an asterisk next to the reported standard error indicates that the standard error may not

be reliable as the estimated parameter lies on the boundary of the allowed parameter space.

Here we report estimates (with standard errors) for parameters ψ ≡ ϕ−1

1+βη2 and η̃ ≡ η
1+βη2

rather than for ϕ and η, as the former nonlinear transformations of these parameters can
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be estimated with greater precision.38 The values of ϕ and η implied by these estimates

are shown in the second part of the table, along with the implied values for other model

parameters, making use of the calibrated parameter values reported in Table 4.

While some of the model parameters cannot be estimated at all precisely, as indicated

by the large standard errors, our estimation results are consistent with our theory insofar as

we estimate positive values for the response coefficients ϕ, ξp, ξw, and ωw in our structural

equations. The values of ψ, measuring the interest-sensitivity of aggregate expenditure,39 and

ξp, measuring the response of inflation to the real-wage gap, are both significantly positive,

though the estimates of ξw and ωw are instead quite imprecise. We also find small enough

standard errors on the standard errors of η̃, measuring the degree of habit persistence, and γp,

measuring the degree of indexation of prices, to allow some inference about the magnitudes of

those parameters (for example, both are significantly positive), while the value of γw is very

imprecisely estimated. In general, the parameters of our wage equation are poorly estimated,

while both our IS relation and our inflation equation are much better estimated.40

The second through fourth columns of Table 3 report the corresponding estimates, using

the same method, of various restricted versions of our model. In column 2, we assume zero

habit persistence, as in the models of Rotemberg and Woodford (1997) and Amato and

Laubach (2001b); in column 3, no inflation inertia (i.e., no indexation of either wages or

prices to the lagged price index), also like the two models just mentioned; and in column 4,

flexible wages, as in the models of Rotemberg and Woodford (1997) and Boivin and Giannoni

(2003).41 In each case, the objective function value is reported for the restricted model, i.e.,

38Here ψ is estimated to be significantly positive, implying a significant effect of interest rates on aggregate
demand, while the corresponding standard error for an estimate of ϕ would not allow us to judge that the
latter coefficient was significantly positive. Similarly, η̃ is estimated to be significantly positive, implying
habit persistence, even though the corresponding standard error for the estimated value of η is much greater
than one.

39The parameter ψ is called by Boivin and Giannoni (2003) the “pseudo-elasticity of substitution”; it
measures the elasticity of expected output growth with respect to changes in the expected real rate of
return, holding constant output growth in other periods.

40A MATLAB program, available on our webpages, allows readers to check the extent to which our
numerical characterization of optimal policy would be different in the case of alternative parameter values.

41The restricted model considered in column 4 corresponds to the model of Boivin and Giannoni, though
their method of estimation is different, in that they do not fit estimated impulse responses of the real wage
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the weighted distance D (ν) defined above. The p-values reported on the last line refer to

Wald tests of the null hypothesis that the restricted model is correct. In the last column,

the parameter γw is set to zero as it is not identified in the case of flexible wages. We

see that each of these restrictions assumed in earlier studies can be individually rejected,

though the assumption of flexible wages is the one that would reduce the model’s ability

to fit the estimated impulse response functions to the greatest extent.42 Hence each of the

complications introduced here are found to be justified; in this respect, our findings agree

with those of Christiano et al. (2001), Altig et al. (2002), and Smets and Wouters (2002),

though these authors all also introduce additional complications in order to explain a larger

set of time series.

It is striking to note that the model fits the impulse responses best when the degree of

inflation indexing (γp) and wage indexing to inflation (γw) reach their upper bound at 1.

This corresponds to the assumption of full wage and price indexing made by Christiano et

al. (2001). A value of γp = 1 is also roughly consistent with the weight on lagged inflation in

the “hybrid” aggregate-supply relation estimated by Gaĺı and Gertler (1999), and results in

an aggregate supply relation quite similar to the one proposed by Fuhrer and Moore (1995).

The relatively small values of ξp, and ξw suggest that changes in the output gap and

the real wage gap have a relatively small impact on price and wage inflation. However the

estimated value of ωw suggests that a one percent increase in economic activity increases

workers’ desired wages by nearly 20 percent, for given prices. The estimate of ϕ corresponds

to an elasticity of intertemporal substitution (adjusted by the degree of habit formation) of

ϕ−1 = 1.3. While authors such as Fuhrer (2000) and Christiano et al. (2001) among others

have estimated substantial degrees of habit formation, our estimate lies at the upper bound

of 1.

along with those of the other three variables, and their model assumes a different form of monetary policy
rule. They also calibrate the value of ω = ωw + ωp, rather than only specifying a calibrated value for ωp,
and they assume a value of ω much smaller than our estimate. Nonetheless, the estimates for the other
parameters reported in column 4 are similar to those obtained by Boivin and Giannoni, providing further
evidence regarding the robustness of our conclusions here.

42The implied impulse response functions are compared to the estimated ones in the case of each of the
restricted models in the technical appendix to this paper.
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β ωp αp αw φ
0.99 1/3 2/3 2/3 4/3

Table 4: Additional calibrated parameter values.

While the estimated parameter values for η, γp, and γw are significantly smaller when

we estimate our model using impulse response functions over the six first quarters or less

following the monetary shock, all parameter estimates are very similar to those reported

in Table 2, when we use impulse response functions that extend longer than six quarters.43

This suggests that in order to adequately capture the degree of persistence in the endogenous

variables, we need to perform our estimation using long enough responses.

Assuming, as in Rotemberg and Woodford (1997) that αp = 2/3,44 and similarly that

αw = 2/3, together with the other parameter values already mentioned above, it is possible

to infer the elasticities of substitution θp and θw from the estimated values of ξp and ξw

respectively, using the definitions (2.12) and (2.15). The values of these elasticities implied by

our estimates imply a gross markup of prices over marginal costs of only µp = θp/ (θp − 1) =

1.004 in the goods market, but a considerably higher gross markup of µw = θw/ (θw − 1) =

1.54 in the labor market. The fact that these implied markups are greater than one (i.e.,

that the implied elasticities of substitution are greater than one) again indicates consistency

of our estimates with our theoretical model.

Finally, our estimated value for ωw can be used to derive an implied value of ν, the

inverse of the Frisch elasticity of labor supply, using the definition ωw = νφ and a calibrated

value for φ, the inverse of the elasticity of output with respect to the labor input. (The

calibrated value of φ reported in Table 4 is implied by the same Cobb-Douglas production

function as was used to calibrate the value of ωp, discussed above.) The Frisch elasticity

of labor supply implied by our estimates is thus only on the order of 0.07, less than one

one-hundredth of the value implied by the estimates of Rotemberg and Woodford (1997),

and much more consistent with many estimates in the empirical literature on labor supply.

43Again, see the technical appendix for details.
44Rotemberg and Woodford (1997) base this calibration on Blinder’s (1994) survey evidence that prices

are maintained constant for an average of 9 months, so that 1/ (1− αp) equals 3 quarters.
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Because of the assumption of sticky wages, our model is able to account for non-negligible

effects of a monetary disturbance on real activity without assuming that voluntary labor

supply (under flexible wages) would be highly elastic. (Note that under the restriction of

flexible wages, we would obtain estimates implying an elasticity of labor supply greater than

2.) While the values of these implied parameters do not matter for the ability of our model

to fit the estimated impulse responses, they do matter for our welfare analysis below.

The solid lines in Figure 6 indicate the impulse response functions generated by our

estimated model. Overall, it appears that the model is able to replicate quite well the

impulse responses estimated by the VAR (circled lines), and the impulse responses remain

consistently within the 90% confidence intervals. The model replicates in particular the

estimated hump shaped output and real wage responses. While it does not capture the

oscillations in the inflation response implied by the VAR, we note that this response is

estimated quite imprecisely.

3 Optimal Policy for the Estimated Model

Now that we have an estimated structural model which allows us to account for at least

certain aspects of the responses of output and of price and wage inflation to monetary

disturbances, we turn to the characterization of optimal policy in the context of this model.

3.1 A Welfare-Theoretic Stabilization Objective

An advantage of having developed a structural model based on optimizing behavior is that it

provides a natural objective for the monetary policy, namely maximization of the expected

utility of the representative household. Following the method of Woodford (2003, chap. 6),

we can express a second-order Taylor series approximation to this objective as a quadratic

function of (wage and price) inflation, the output gap, and the nominal interest rate. The way

in which various aspects of our model specification affect the appropriate welfare-theoretic

stabilization objective in simple cases has already been discussed in section 1.

In the technical appendix to this paper, we show that for the model developed in section 2,
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λp λw 16λx δ
0.9960 0.0040 0.0026 0.035

Table 5: Loss-function coefficients implied by our parameter estimates.

the corresponding welfare-theoretic loss function, abstracting from any grounds for concern

with interest-rate stabilization, is given by

E0

∞∑

t=0

βt
[
λp

(
πt − γpπt−1

)2
+ λw (πw

t − γwπt−1)
2 + λx (xt − δxt−1 − x̂∗)2

]
. (3.1)

In this expression, the weights λp, λw > 0 are again defined as in (1.34); the weight λx > 0 is

again defined as in (1.35), but using now the definition (1.49) for κ in the latter expression;

the coefficient 0 ≤ δ ≤ η is again the smaller root of (1.48); and x̂∗ > 0 is the same function

of the microeconomic distortions affecting the efficiency of the steady-state output level as

in (1.50).

This result combines features of several simpler cases discussed in section 1. Deadweight

loss depends on squared deviations of both price and wage inflation (separately) from the

rates that would minimize relative-price and relative-wage distortions, given that both wages

and prices are sticky, as in (1.33). Due to the indexation of both prices and wages to a

lagged price index, the loss-minimizing rates of wage and price inflation each period are

determined by the lagged inflation rate and the indexation coefficients in each case, as in

(1.10). And finally, the presence of habit persistence implies that deadweight loss depends

not on squared deviations of the output gap from a constant value, but rather on squared

deviations of xt − δxt−1 from a constant value, as in (1.50).

The numerical coefficients of the welfare-theoretic loss function implied by the estimated

parameter values reported in Table 3 (for the baseline model) are reported in Table 5.

Interestingly, our estimated model implies that it is optimal for the central bank to put a

much larger weight on the stabilization of goods-price inflation than on the stabilization of

wage inflation or of the output gap. Moreover, despite the fact that we estimate a very high

degree of habit formation, which implies that household utility depends on the rate of change

of real expenditure rather than its level, the central bank’s loss function does not involve the
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variability of the change in the output gap. Instead, it involves the variability of the level of

the output gap relative to a small fraction of the lagged output gap.

These conclusions depend, of course, on our parameter estimates. It may seem surprising

that the weight on wage inflation stabilization is so small, given that our estimates do not

imply that wages are substantially more flexible than prices (for example, ξw is larger than

ξp, but not by a large factor). The conclusion that λw is nonetheless very much smaller than

λp reflects mainly the fact that our estimates imply a value for θp that is much larger than

φ−1θw. This in turn results from the fact that the estimated value of ωw is much larger than

the calibrated value of ωp.
45 Because it is not plausible to assume a technology for which ωp

could be nearly as large as the estimated value of ωw, we are led to assume a value of θp

substantially larger than φ−1θw. The result that λp greatly exceeds λw then follows, using

(1.34).

The conclusion that λx is small follows, using (1.35), from the small value of κp and large

value of θp implied by our parameter estimates. Since κp ≡ ξpωp and the value of θp is

inferred from the value of ξp using (2.15), both of these conclusions depend crucially on the

small estimated value for ξp. Essentially, the observed insensitivity of inflation to variations

in output allows us to infer underlying microeconomic parameters that imply that variations

in the output gap cause relatively modest distortions — this is the only way, in the context

of our other assumptions, to explain the fact that inflation is not more strongly affected (i.e.,

that the Phillips curve is not steeper).

Finally, the conclusion that δ is small (despite the fact that η = 1) follows, using (1.48),

from the fact that the value of ω implied by our estimates is large relative to the estimated

value of ϕ. Essentially, the observed sensitivity of wages to variations in real activity on the

one hand (implying a large value for ωw) and the sensitivity of aggregate expenditure to

interest-rate changes on the other (implying that ϕ cannot be too large) indicate preferences

45If ξp and ξw were assigned equal values, then under our assumption of equal values for αp and αw,

(2.12) and (2.15) would imply equal values for ωpθp and ωwφ−1θw. (Here we recall that ωw ≡ νφ.) The
implied value of θp is then larger than φ−1ωw by exactly the same factor as ωw is larger than ωp. In fact,
our estimated value for ξp is smaller than our estimate for ξw, and this further increases the relative size of
the implied value of θp.
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under which variations in the level of real activity will create greater distortions than varia-

tions in the rate of growth of real activity. Even when η = 1, the level of output matters to

the representative household because of its consequences for the amount that the household

must work; if the marginal disutility of output supply increases sharply with the level of

real activity (as implied by a large value of ω), it will still be relatively more important to

stabilize the level of real activity than its rate of change.46

3.2 An Optimal Target Criterion

The method illustrated in section 1 for the derivation of optimal target criteria under al-

ternative assumptions can be applied as well in the case of the empirical model described

in section 2. Details of the relevant calculations are included in the technical appendix to

this paper; here we simply present the quantitative implications of our estimated parameter

values.

A first observation about optimal policy in our estimated model follows from the fact

that wages, prices, and output are all predetermined for one quarter or longer in the model.

It follows that in our structural equations, any variations in the short-term nominal interest

rate it that are not forecastable a quarter earlier are irrelevant to the determination of wages,

prices, or output. Hence this component of interest-rate policy cannot be relevant for welfare

except through its consequences for the expected discounted value of the λi(it − i∗)2 term

that must be added to (3.1) if we take account of monetary frictions. But this last term is

obviously minimized (in the case of any λi > 0) by a policy under which the nominal interest

rate is completely forecastable a quarter in advance. Even in the case that λi = 0, there

is no harm to any other stabilization objectives in eliminating unforecastable interest-rate

variations; and so it seems plausible to assumes at least some tiny concern with interest-rate

stabilization, so that it is optimal to suppress such variation in the interest rate.47

46As discussed in section 1.3 above, it may also be desirable to reduce the variability of nominal interest
rates; in this case, the loss function (3.1) should include an additional term, proportional to the squared
deviation of the nominal interest rate from an optimal value. We do not take up this possible extension of
the analysis here.

47For example, even if we assume that monetary frictions are of negligible quantitative significance, we may
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Hence

it = Et−1it (3.2)

is a requirement for optimal policy. This can be understood to say that all interest-rate

changes should be signaled by the central well in advance of the date at which they take

effect. The instrument that the central bank must adjust in period t in order to ensure

that its period t target criterion will be projected to be satisfied is then not the period t

interest rate it, but rather the bank’s precommitted value Etit+1 for the level of short-term

nominal interest rates in the following period.48 We turn now to the property that the bank’s

projections regarding period t endogenous variables should be made to satisfy through an

appropriate commitment of this kind.

To simplify, we shall restrict attention to the case of a model in which γp = γw = 1, as

assumed by Christiano et al. (2001), and as indicated by our estimates in section 2. In the

appendix, we show that the first-order conditions for an optimal state-contingent evolution

of the endogenous variables can be manipulated, after the fashion illustrated in section 1,

to yield a characterization of optimal policy in terms of the projected paths of the target

variables alone. However, in the present case, unlike the simpler ones discussed in section

1, the most convenient representation of these conditions is not in terms of a single target

criterion, but two distinct ones. First of all, optimality requires that projections in any

period t satisfy a condition of the form49

Ft(π) + φw[Ft(w)− wt] = π̄t. (3.3)

reasonably assume that the economy is a “cashless limiting economy” of the kind discussed in Woodford
(1998), rather than a genuinely cashless economy. In this case, there should in fact exist tiny monetary
frictions, that suffice to entail a preference for a completely forecastable nominal interest rate, in the absence
of any offsetting benefit from variations in response to current shocks.

48See further discussion in Svensson and Woodford (2003).
49The target criterion could equivalently be expressed in the form φpFt(π)+φwFt(πw) = π̄t, in which case

the target criterion would refer solely to projected inflation of different sorts (both price and wage inflation).
This would be a representation analogous to the one given in section 1.4 above, and would make clear that
only the projected future paths of target variables (variables that enter the loss function) matter. We feel,
however, that the representation proposed here allows a more convenient numerical summary of the content
of the target criterion, by collecting the central bank’s projections regarding the future level of nominal
quantities in a single variable, the projected future price level.
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Here for each of the variables z = π, w, the expression Ft(z) refers to a weighted average of

forecasts of the variable z at various future horizons, conditional on information at date t,

Ft(z) ≡
∞∑

k=1

αz
kEtzt+k, (3.4)

where the weights αz
k sum to one. Thus the coefficient φw is actually the sum of the weights

on real-wage forecasts at different horizons k. We observe that the target criterion can be

thought of as a wage-adjusted inflation target. In addition to the correction for the projected

growth of real wages in the future, the acceptable rate of projected future inflation also varies

due to time variation in the target π̄t. Optimality further requires that π̄t be a function only

of information available at date t− 1, and hence that

π̄t = Et−1[Ft(π) + φw(Ft(w)− wt)]. (3.5)

In general, this optimal target will not be constant over time.

In addition to the above requirement (which amounts to the condition that the left-hand-

side of (3.3) be forecastable a quarter in advance), optimality also requires that projections

at date t satisfy another condition as well, of the form

F ∗
t (π) + φ∗wF ∗

t (w) + φ∗xF
∗
t (x) = π∗t , (3.6)

where the expressions F ∗
t (z) are again weighted averages of forecasts at different horizons

(but with relative weights αz∗
k that may be different in this case), and π∗t is another time-

varying target value, once again a predetermined variable. In this case the criterion specifies

a target for a wage- and output-adjusted inflation projection.50

Optimality requires that the target value be given by an expression of the form

π∗t = (1− θ∗π)π∗ + θ∗πF 1
t−1(π) + θ∗wF 1

t−1(w) + θ∗xF
1
t−1(x), (3.7)

where the expressions F 1
t (z) are still other weighted averages of forecasts at different hori-

zons, with relative weights αz1
k that again sum to one, and π∗ is an arbitrary constant.51

50As with (3.3), we could equivalently express this criterion in terms of a linear function of projections for
price inflation, wage inflation, and the output gap.
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Here, as with (3.5), the optimal target value depends on the previous quarter’s forecasts of

the economy’s subsequent evolution; this is a further example of the history-dependence of

optimal target criteria, already observed in simpler cases in section 1.

The optimal target criteria (3.3) – (3.5) and (3.6) – (3.7) generalize, for the estimated

model, the simple criterion (1.13) obtained in the case of inflation inertia, γ = 1, flexible

wage, no habit persistence and no delays. To make this comparison more apparent, and to

get some intuition about the two optimal target criteria, it is useful to consider the special

case in which wages are flexible. As we show in the technical appendix, the short-run optimal

target criterion (3.3) – (3.5) reduces in this case to

πt+1 = Et−1πt+1

so that the central bank needs make inflation fully predictable two periods in advance under

optimal policy. The long-run optimal target criterion (3.6) – (3.7), reduces in turn to a

criterion of the form

Et [(πt+2 − δπt+1) + φ (xt+2 − δxt+1)] = (1− δ)π∗,

where δ is again the parameter that appears in the loss function and φ = θ−1
p , i.e., the inverse

of the elasticity of demand faced by the typical firm.

As in section 1.2, a commitment to ensure that (3.6) – (3.7) holds in each period t ≥ t0

for a particular value of the constant π∗ is equivalent to a commitment to ensure that a first

differenced form of (3.6) – (3.7) holds in each period.52 Such a first-differenced form would

have the advantage that it could be expressed entirely in terms of projections of the first

differences of the three variables — the inflation rate, the real wage, and the output gap

51Note that in the model considered here, as in section 1.2 when γ = 1, there is no welfare significance to
any absolute inflation rate, only to changes in the rate of inflation, and to wage growth relative to prices.
There is therefore no particular inflation rate that could be justified as optimal from a timeless perspective.
For purposes of comparison between historical policy and the optimal criterion, discussed below, we assume
that steady-state inflation and the steady-state real wage are equal to the long-run values estimated (by the
VAR) under historical policy.

52We suppress the details of this alternative optimal targeting rule here. The first-differenced formulation
is the one described in Woodford (2003, chapter 8).
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— with no dependence on the absolute levels of any of the variables. The target criterion

(3.6) – (3.7), instead, has the advantage of being simpler, as it only involves a comparison of

projections made in the current period with certain other projections in the previous period.

It may be wondered how we can specify optimal policy in terms of two distinct target

criteria involving different linear combinations of projections, when the central bank has only

one instrument at its disposal. The key to this is to observe that the target criterion specified

by (3.3) – (3.5) restricts only the surprise components of the quarter t projections, i.e., the

way in which they may differ from the projections that were made in quarter t − 1 for the

same variables. Hence it is only the surprise component of the central bank’s interest-rate

decision — the difference between the Etit+1 announced in quarter t and Et−1it+1 — that can

be determined by this criterion for optimal policy. The evolution of the (two-period-ahead)

predetermined component of policy, Et−2it, can instead be chosen so as to ensure that the

second target criterion, specified by (3.6) – (3.7), is satisfied each period.

We may thus imagine the implementation of the optimal targeting rule to occur in the

following way.53 First, in each quarter t, the central bank intervenes in the money markets

(through open-market operations, repurchases, standing facilities in the interbank market

for central-bank balances, etc.) so as to implement the interest-rate target it announced

in quarter t − 1. Second, as part of the quarter t decision cycle, the bank must choose an

operating target it+1 to announce for the following quarter. This is chosen in order to imply

a projected evolution of (wage and price) inflation from quarter t + 1 onward that satisfies

the target criterion (3.3), where π̄t is a target value that had been determined in quarter

t− 1. Third, it is also necessary, as part of the quarter t decision cycle, for the central bank

to choose the target π̄t+1 for the following quarter. This is chosen so as to ensure that

future policy will be conducted in a way that allows the bank to project (conditional on its

current information) that the target criterion (3.6) – (3.7) should be satisfied. In practice,

53Because our empirical model is quarterly, it is simplest to discuss the policy process as if a policy decision
is also made once per quarter, even though in reality most central banks reconsider their operating targets
for overnight interest rates somewhat more frequently than this. Our discussion should not be taken to
imply that it is optimal for the policy committee to meet only once per quarter; this would follow from our
analysis only if (as in our model) all other markets were also open only once per quarter.
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this means that the central bank should use its model of the transmission mechanism to

determine the future evolution of the economy under the assumption that (3.6) – (3.7) will

hold in all future periods; this forecast then determines the target value π̄t+1 using (3.5).54

Algebraic expressions for each of the coefficients in the optimal target criteria, as functions

of the underlying model parameters, are given in the appendix. Here we discuss only the

numerical coefficients implied by our estimated parameter values. In the case of the short-

term criterion (3.3), the coefficient φw is equal to 0.565.55 Thus if unexpected developments

in quarter t are projected to imply a higher future level of real wages than had previously

been anticipated, policy must ensure that projected future price inflation is correspondingly

reduced. This is because of a desire to stabilize (nominal) wage inflation as well as price

inflation, and under circumstances of expected real wage growth, inflation must be curbed

in order for nominal wage growth to not be even higher.

The relative weights that this criterion places on projections at different future horizons

are shown in Figure 7. The two panels plot the coefficients απ
k , αw

k respectively, as functions

of the horizon k. Note that the quarter for which the projections receive greatest weight

is one quarter in the future, in each case. However, while the real-wage projection that

matters is primarily the projected growth in real wages between the present quarter and

the next one, substantial weight is also placed on projected inflation farther in the future;

in fact, the mean lead
∑

k απ
kk is between 10 and 11 quarters in the future in the case of

the inflation projection Ft(π). Thus the short-run target criterion is a (time-varying) target

for the average rate of inflation that is projected over the next several years, adjusted to

take account of expected wage growth, mainly over the coming quarter. Roughly speaking,

optimal policy requires the central bank to choose Etit+1 in quarter t so as to head off any

change in the projected average inflation rate over the next several years that is due to any

54See Svensson and Woodford (2003) for further discussion of the sort of calculations involved in a forecast-
targeting decision procedure.

55Here and below, we present the coefficients for a target criterion where the inflation rate is measured in
annualized percentage points, rather than as a quarterly rate of change as in the model of section 2. When
the variables are defined as in the model, the coefficients multiplying the real-wage and output-gap terms
are only 1/4 as large as those given here and below.

59



1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

απ
k

1 2 3 4 5 6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

αw
k

Figure 7: Relative weights on projections at different horizons in the short-run target crite-
rion (3.3). The horizontal axis indicates the horizon k in quarters.

developments not anticipated in quarter t−1 (and hence reflected in the current target π̄t−1).

This is a criterion in the spirit of inflation-forecast targeting as currently practiced at central

banks such as the Bank of England, except that projected wage growth matters as well as

price inflation, and that the target shifts over time.

In the case of the long-term criterion (3.6), instead, the numerical coefficients of the

target criterion are given by

φ∗w = 0.258, φ∗x = 0.135.

In this case, output-gap projections matter as well; a higher projected future output gap will

require a reduction in the projected future rate of inflation, just as will a higher projected

future real wage. The numerical size of the weight placed on the output-gap projection may

appear modest; but as we shall see in the next section, the degree of variability of output-gap
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Figure 8: Relative weights on projections at different horizons in the long-run target criterion.
Panels in the first row indicate the projections in (3.6), while the second row indicates the
projections from the previous quarter that define the target value π∗t .

projections in practice are likely to make this a quite significant correction to the path of

the target criterion.

The relative weights on forecasts at different horizons in this criterion are plotted in

the panels in the first row of Figure 8. We observe that in the case of this criterion, the

projections that mainly matter are those for two quarters in the future; the criterion is nearly

independent of projections regarding the quarter after the current one. Hence it makes sense

to think of this criterion as the one that should determine the policy that the central bank

plans on in periods two or more quarters in the future (and hence its choice in quarter t

of the target π̄t+1 to constrain its choice in the following period of Et+1it+2), but not as a

primary determinant of whether the bank’s intended policy in period t + 1 is on track.

Finally, the coefficients of the rule (3.7) determining the target value for the long-term
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criterion are given by

θ∗π = 0.580, θ∗w = 0.252, θ∗x = 0.125.

The weights in the projections (conditional on information in the previous quarter) at various

horizons are plotted in the second row of Figure 8. Here too, it is primarily projections for

two quarters in the future that matter in each case. Roughly speaking, then, the target

value for the wage- and output-adjusted inflation projection two quarters in the future is

high when a similar adjusted inflation projection (again for a time two quarters in the future)

was high in the previous quarter.

Thus we find that forecasting exercises, in which the central bank projects the evolution of

both inflation and real variables many years into the future under alternative hypothetical

policies on its own part, play a central role in a natural approach to the implementation

of optimal policy. A forecast of inflation several years into the future is required in each

(quarterly) decision cycle in order to check whether the intended interest-rate operating

target for the following quarter is consistent with the criterion (3.3). In addition, the time-

varying medium-term inflation target π̄t must be chosen each period on the basis of yet

another forecasting exercise. While the long-run target criterion (3.6) primarily involves

projections for a time only two quarters in the future, the choice of π̄t+1 requires that the

central bank solve for a projected path of the economy in which (3.6) is satisfied not only in

the current period, but in all future periods as well. Hence this exercise as well requires the

construction of projected paths for inflation and real variables extending many years into the

future. The relevant paths, however, will not be constant-interest-rate projections (of the

kind currently published by the Bank of England), but rather projections of the economy’s

future evolution given how policy is expected to evolve. Indeed, the projections are used to

select constraints upon the bank’s own actions in future decision cycles (by choosing both

the interest-rate operating target Etit+1 and the adjusted inflation target π̄t+1 in period t).
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Figure 9: Actual and forecastable variation in the U.S. federal funds rate.

3.3 A Comparison with Actual U.S. Policy

An interesting question about this policy rule is the extent to which it would prescribe

policy different from that which the Fed has actually pursued during our sample period.

A simple way of considering this is to ask to what extent, under actual policy, projections

of the evolution of inflation and output have satisfied the optimal target criteria stated

above. Answering this question requires, of course, that we estimate what the projected

future paths of the target variables should have been at various past dates. However, our

VAR characterization of the data over our sample period provides one way of generating

such projections. Here we propose to appraise how close actual policy has been to being

optimal by asking to what extent projections based on the VAR would have satisfied the

target criterion.

In our characterization of optimal policy above, there are actually three criteria that
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must be satisfied each period — one relating to the component of interest-rate policy that

cannot be forecasted even a quarter in advance, one relating to the component of policy

that is forecastable a quarter in advance but not earlier, and one relating to the component

of policy that can be anticipated two quarters in advance. The first criterion, that the

evolution of interest rates satisfy (3.2) each period, is simplest to check, as long as we are

willing to assume that our VAR forecasts fully capture public information in a given quarter.

Figure 9 shows a plot of the actual (quarterly average) path of the federal funds rate over

our sample period, together with the VAR forecast using the previous quarter’s information

set.56 This allows a test of the degree to which condition (3.2) has been satisfied in practice.

We find that under actual U.S. policy, variation in the U.S. federal funds rate has been

largely predictable; the gap between the two series in Figure 9 has a standard deviation of

only 65 basis points.57 This means that the identified monetary policy shocks, according to

the VAR analysis discussed in section 2, have been relatively small. This is what one should

expect, in a period in which the conduct of monetary policy has been fairly sensible.

The next condition for optimality that we consider is the short-term target criterion (3.3)

– (3.5). Figure 10 shows a plot of the historical path of the wage-adjusted inflation projection

that is targeted under this criterion, using the VAR forecasts to form this projection each

quarter, together with the path for the target value π̄t given by (3.5), also using the VAR

forecasts for the projections in the previous quarter. Figure 11 decomposes the variation in

both the adjusted inflation projection (3.3) and the time-varying target π̄t into the parts that

are due to variation in the inflation projections (at various horizons) on the one hand and the

56Note that here and below, the “quarter t information set” is taken to include πt+1, wt+1, and Ŷt+1, as
well as all variables dated t or earlier, on the ground that prices, wages, and output are all predetermined
variables according to our model. See Rotemberg and Woodford (1997) for further discussion.

57Of course, we are judging the forecastability of the funds rate using a VAR that has been fit to this data
set, rather than considering the out-of-sample forecasting ability of a regression model estimated using only
data prior to the quarter for which the funds rate is being forecasted. We are also including variables in
the quarter t information set the values of which are not announced in quarter t (indeed, not even during
quarter t+1, though the measurements are made during that quarter), which also exaggerates the information
actually available in quarter t. But it must also be recognized that decisionmakers have access to a great
deal of information in quarter t that is not included in our data set, that might well allow better forecasting
of the funds rate than is possible on the basis of only the variables included in our VAR.
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Figure 10: Testing whether actual U.S. policy has satisfied the short-run target criterion:
the adjusted inflation projection (3.3) compared with the optimal target given by (3.5).

parts that are due to variation in the real wage projections. We observe that a substantial

part of the quarter-to-quarter variation in the adjusted inflation projection is in fact due,

over this historical period, to variation in the real wage projection,58 though variation in the

real wage projection a quarter earlier appears to be less important as a source of variation

in the optimal target value.

Once again, the data are fairly consistent with this criterion for optimal policy. While

the wage-adjusted inflation projection has varied (according to the VAR) over a range of a

few percentage points, these variations have been fairly forecastable based on the previous

quarter’s information set, as required by the target criterion. The gap between the projection

and the target value has a standard deviation of only 48 basis points over this sample.

Of course, passing this test requires only that wage and price inflation, like the federal

58We have not attempted to quantify the share since the two components are not orthogonal.
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Figure 11: Decomposition of the variation in the short-run target criterion into parts due to
variation in inflation projections and real wage projections respectively.

funds rate, be highly forecastable a quarter in advance. It may accordingly be felt that it

is the inertial character of wage and price inflation that is confirmed by Figure 10, rather

than something that depends much on monetary policy. It should also be noted that the

“target” series plotted in the figure only indicates how the right hand side of (3.5) has

varied over the sample period, under actual U.S. monetary policy, rather than the way

in which the target π̄t would have evolved under optimal monetary policy, given that the

inflation projections that determine this target would have been different under a different

sort of monetary policy. This latter sort of exercise would require that we solve for the

counterfactual equilibrium paths the endogenous variables under optimal policy, given the

historical sequence of exogenous shocks, as undertaken by Rotemberg and Woodford (1997).

We do not attempt such an exercise here.
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Testing the extent to which the historical data have satisfied the long-run target criterion

(3.6) – (3.7) is more complicated, because it requires the construction of projections for the

path of the output gap. The output gap is not directly observed, and our approach to the

estimation of the model in section 2 does not require us to commit ourselves to an empirical

proxy for the gap, despite the appearance of this variable in the model structural equations.

For in order to estimate the model parameters needed for our calculations thus far, we had

only to be able to compute the predicted impulse responses of prices, wages, output and

interest rates to a monetary disturbance. For this purpose, we could rely on the fact that,

according to our model, the output gap should equal Ŷt (detrended log output) minus a term

that is unaffected by monetary disturbances; there was no need to identify the time variation

in that latter term. Yet in order to evaluate the long-run target criterion at each date, we

need to be able to do so.

One possible approach is to use our estimated structural equations to infer the historical

sequence of disturbances from the residuals of the structural equations, using VAR forecasts

of the endogenous variables as proxies for the expectation terms in these equations, as do

Rotemberg and Woodford (1997). This approach can be used, however, only under strong

assumptions of debatable validity. The “natural rate of output” process that we are able to

infer from the residuals of our structural equations corresponds to the equilibrium level of

output under complete wage and price flexibility.59 But this may or may not be the concept

of exogenously given potential output that should be used to define the welfare-relevant

“output gap” that appears in the loss function (3.1).

Under certain assumptions that are made precise in the appendix (and that have been

tacitly maintained thus far in our exposition), the “output gap” that appears in the structural

equations (2.11) and (2.14) as a source of inflationary pressure — without any additional

“cost-push shock” term of the kind routinely included in the models of section 1 — is exactly

59To be precise, it corresponds to the component of this variable that is forecastable a quarter in advance.
This is all that can be reconstructed from the paths of the endogenous variables, given that wages, prices and
output are all predetermined according to our model, but this is also what is relevant for the construction of
the variable xt that appears in our loss function (3.1), and hence the target criterion stated in the previous
section.
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the same variable as the distortion measure appearing in (3.1). Yet this need not be true in

general; time variation in distorting taxes or in the degree of market power in either labor

markets or goods markets, for example, will result in a time-varying wedge between the

flexible-wage-and-price equilibrium level of output and the efficient level of output, with the

result that the relevant output gap for the two purposes ceases to be the same.60 We can

allow for this extension of our framework by letting the gap between actual output and the

flexible-wage-and-price equilibrium output be denoted xt +ut, as in equations (1.29) – (1.30)

above, where xt is the welfare-relevant output-gap concept (the variable that appears in the

welfare-theoretic loss function), while ut is a “cost-push disturbance” term.

In the case of the extended model, the method of Rotemberg and Woodford allows us to

construct an empirical proxy for the evolution of the series xt + ut, as this is what appears

in the wage- and price-setting equations. However, the projections that are required for

checking whether the target criterion is satisfied are projections for xt, the variable that

appears in the loss function (3.1). Further assumptions must be made in order to infer

what the projected variations in the welfare-relevant output gap should have been. These

assumptions are not testable within the context of the model and the small set of time series

used here.

One simple, though extreme, assumption, would be that the welfare-relevant concept

of potential output is a smooth trend, so that cyclical variation in Ŷ n
t should be almost

entirely attributed to transitory variation in the cost-push term ut.
61 In this case, it should

be more accurate to identify the welfare-relevant output gap with Ŷt, detrended output, than

with the series xt + ut inferred from the residuals of the structural equations. Under this

assumption, we can construct our output-gap projections using the VAR alone, without any

need reconstruct disturbances using the equation residuals.

We first consider the conformity of historical policy with the optimal target criteria when

detrended output is considered an adequate proxy for the output gap. In Figure 12, we plot

60See Giannoni (2000) or Woodford (2003, chap. 6) for further discussion in the context of simpler models.
61This view is implicit in the output-gap measures commonly used in the literature on empirical central-

bank reaction functions.
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Figure 12: Testing whether actual U.S. policy has satisfied the long-run target criterion: the
adjusted inflation projection (3.6) compared with the optimal target given by (3.7).

the historical series for the wage- and output-adjusted inflation projection that is targeted

under the long-term criterion (3.6) over our sample period, using the VAR forecasts for

inflation, the real wage, and detrended output, and the numerical weights given in section

3.2. (Since the constant π∗ in (3.7) is arbitrary, we assume a long-run inflation target equal

to 2.39% per annum, which corresponds to the long-run value average inflation rate under

historical policy, as implied by our estimated VAR.) Figure 13 similarly decomposes both

the projection and its optimal target value into their components due to variation over time

in inflation projections, real-wage projections, and output projections. Note that when the

output gap is measured in this way, the projected change in the output gap over a two-

quarter horizon is modest enough that terms of this kind are not responsible for too much

of the variation from quarter to quarter in either the adjusted inflation projection or in its

optimal target value. Instead, the target criterion is largely a function of the inflation and
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Figure 13: Decomposition of the variation in the long-run target criterion into parts due to
variation in inflation, real-wage, and output projections respectively.

real-wage projections (or alternatively, projected price and wage inflation).

This alternative (longer-run) adjusted inflation projection has also been relatively stable

over our historical sample, and once again, the gap between the target and the current

projection has never been large; the standard deviation of target misses in the case of this

criterion is only 52 basis points. However, target misses under this criterion have been

somewhat persistent, with a quarterly autocorrelation of 0.19. Thus we can identify periods

in which policy was consistently too loose or too tight for quarters at a time, according to

this criterion, though Fed policy never violated the criterion to too great an extent. Figure

14 plots the extent to which the adjusted inflation projection exceeded the target in each

quarter (the dashed line in the figure), together with a smoothed version of the same series

that makes the average tendency of U.S. policy clearer.62 One observes that policy was
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Figure 14: The extent to which the adjusted inflation projection exceeded the optimal target
at various times. Dashed line shows the quarterly discrepancy, solid line a moving average.

consistently too tight (the adjusted inflation projection was too low) under this criterion in

the period 1981-82, too loose in much of the period 1983-89, a bit too tight again in the

period 1990-95, somewhat too loose in the late 1990s, and finally again consistently too tight

in the last 9 quarters of our sample. However, in none of these periods did the adjusted

inflation projection differ consistently from the inflation projection for several quarters by

an amount greater than half a percentage point in either direction.

If, instead, we use the residuals from our structural equations to infer the evolution of the

output gap, the plots corresponding to Figures 12 and 13 instead look like those shown in

Figures 15 and 16. In this case, historical paths of both the adjusted inflation projection and

its optimal target value are more volatile. The change is due to the greater (and much more

62In the figure, the solid line is a two-sided moving average of the dashed line, equal to 1/3 the discrep-
ancy in that quarter, 2/9 of the discrepancy in both the preceding and following quarters, and 1/9 of the
discrepancy both two quarters earlier and two quarters later.
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Figure 15: Alternative version of figure 12, using equation residuals to infer the variation in
the natural rate of output.

transitory) volatility of the output gap process that is inferred in this manner. As shown in

Figure 16, in this case the quarter-to-quarter variation in projected growth of the output gap

is an important factor resulting in variation in the adjusted inflation projection and in the

target value. Of course, the high volatility of (and high-frequency variation in) this series

may well suggest that it reflects mainly specification error in the structural equations of our

wage-price block, rather than actual variation in the welfare-relevant output gap.63

In this case, the gap between the adjusted inflation projection and its optimal target

value (plotted in Figure 17) is also found to be fairly large in many individual quarters. The

standard deviation of the discrepancy using this measure of the output gap is nearly 1.80

percentage points. However, the target misses are extremely transitory in this case; their

63The fact that our model does relatively poorly at matching the dynamics of the estimated response of
inflation, as shown in Figure 6, does not give us much confidence in this regard.
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Figure 16: Alternative version of figure 13, using equation residuals to infer the variation in
the natural rate of output.

autocorrelation is actually negative (-0.53), indicating that a target overshoot one quarter

tends to have its sign reversed in the next quarter. Except again at the end of our sample,

there are no periods of time over which policy can be identified as having been consistently too

tight or too loose for several quarters in succession. However, if we smooth the discrepancy

series in the same way as in Figure 14 (again shown by the solid line in the figure), we obtain

very similar conclusions as before regarding the periods in which (and the degree to which)

U.S. policy should be judged to have been too tight or too loose on average.

Overall, a comparison between U.S. time series over the past twenty years and the criteria

for optimal policy discussed in the previous section do not indicate any gross discrepancy.

However, this may simply mean that the diagnostics proposed here are not very useful as a

way of diagnosing deviations from optimal policy in the historical record. We have plotted
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Figure 17: Alternative version of figure 14, using equation residuals to infer the variation in
the natural rate of output.

only the time-variation in the optimal target criteria that would be implied by the variation

in lagged projections that has occurred, given the actual evolution of the U.S. time series,

rather than attempting to determine the variation in the target values that would have

occurred under optimal policy, given the historical disturbance processes. These two ways of

judging the historical time series might yield quite different pictures. For our optimal target

criteria demand that certain adjusted inflation projections not be too different than similar

projections have been in the quarter before; this will result in plots of projections and target

values that look fairly similar, regardless of the paths of the U.S. time series, as long as each

of our four variables has been relatively smooth (as is the case). Nonetheless, inflation and

other variables might have wandered for years at some distance from the levels that they

would have had under fully optimal responses to the historical disturbances.
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4 Conclusions

We have shown that it is possible to derive robustly optimal monetary policy rule for optimiz-

ing models of the monetary transmission mechanism that incorporate a number of common

features of recent empirical models: staggered wage- and price-setting, inflation inertia re-

sulting from automatic indexation of wages and prices to a lagged price index, predetermined

wage-setting, pricing and spending decisions, and habit persistence in the level of real pri-

vate expenditure. In this way, we have sought to show that the approach to the design of

optimal policy rules proposed by Giannoni and Woodford (2002a) can be applied to models

of practical interest.

In each of the cases that we have discussed, the optimal policy rule is a modified inflation-

forecast targeting rule. The optimal rule differs from a simple (or “strict”) inflation target in

that projections of the future paths of variables other than goods-price inflation also receive

some weight in the target criterion — in particular, wage inflation, a measure of the output

gap, and nominal interest rates. Nonetheless, according to our numerical analysis in the

case of an estimated model of the U.S. monetary transmission mechanism, the weight on

the inflation projection (in each of the two target criteria involved in our characterization

of optimal policy for that model) is strong enough that it makes sense to speak of optimal

policy as a (flexible) inflation-forecast targeting procedure.

In our examples, the optimal rule also differs from a simple inflation target (and even

from many simple examples of “flexible inflation targeting” rules discussed in the literature)

in that the optimal target value for the modified inflation forecast should vary over time,

depending on current and recent past macroeconomic conditions. We have illustrated the

possible degree of history-dependence of an optimal inflation target by showing how our two

optimal target criteria would have varied in the U.S. over the past two decades, given our

VAR characterization of the U.S. time series and the parameters of our estimated structural

model. Even when we use detrended output as our proxy for the output gap (which results

in a less volatile output-gap series than the one implied by the residuals of our structural
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equations), and even over the relatively uneventful period 1984-2000, our analysis implies

that the optimal target criterion has varied from quarter to quarter over a range of several

percentage points.

Finally, we have shown, in the context of our empirical model, that an optimal policy may

be too complex in structure to be conveniently described by a single target criterion. Our

estimated model of the U.S. monetary transmission mechanism implies that optimal policy

must satisfy three distinct criteria — one that governs the way that interest rates in a given

quarter should respond to unexpected developments during that quarter; one that governs

the way in which the central bank’s commitment regarding interest rates in that quarter,

announced the quarter before, should respond to unexpected developments in the quarter

when the commitment is made; and still a third criterion that determines the component

of interest-rate policy that can be anticipated two quarters in advance. Nonetheless, the

decision procedure takes the form of an inflation-forecast targeting procedure, in which

(i) the instrument used to ensure satisfaction of the target criterion is the central bank’s

commitment regarding its interest-rate operating target for the following quarter, and (ii)

the inflation target each quarter is itself the product of a policy decision in the previous

quarter, also aimed at ensuring that a certain adjusted inflation projection satisfies a target

criterion.

Our optimal target criteria are a good bit more complex than the sort used by actual

inflation-targeting central banks, which typically specify a time-invariant inflation target and

a particular horizon at which it is to be reached (for example, RPIX inflation of 2.5 percent

at a horizon of 8 quarters in the future, in the case of the Bank of England). Our advocacy

of a more complex form of targeting rule is not meant to deny the desirability of having a

medium-term inflation target that remains the same even if the actual inflation rate may

depart from it temporarily. In the examples that we have considered, optimal policy almost

always involves a well-defined long-run inflation target, to which the inflation rate should

be expected to return after each disturbance; and it is surely desirable for a central bank

to be explicit about this aspect of its policy commitment, in order to anchor the public’s
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medium-term inflation expectations.

Rather, we wish to suggest that it is insufficient to specify no more of a policy commitment

than this. The mere fact that a central bank wishes to see inflation return to a rate of 2.5

percent at a horizon two years in the future is not sufficient to say which of the various

possible transition paths that reach that endpoint should be preferred. There will always

be a range of possible scenarios consistent with the terminal condition: for example, looser

policy this year to be compensated by tighter policy next year, or alternatively the reverse.

In practice, the Bank of England, like many other forecast-targeting banks, deals with this

problem by demanding that a constant-interest-rate forecast satisfy the terminal condition.

That is, the current level of overnight interest rates is held to be justified if a projection

under the assumption that that level of interest rates will be maintained implies that RPIX

inflation should equal 2.5 percent eight quarters in the future. However, this implies no

commitment to actually maintain interest rates at the current level over that period, or even

that interest rates are currently expected to remain at that level on average. (It is frequently

the case that the published constant-interest-rate projection would itself imply that interest

rates will need to be changed over the coming year, in order for the target criterion to be

satisfied by a constant-interest-rate projection under the conditions that are forecasted to

obtain by then.) It is thus hard to see how basing policy decisions on a forecast-targeting

exercise of this particular kind can be expected to serve the goals of making monetary policy

more transparent, or improving the degree to which policy is correctly anticipated by the

private sector.

The conceptually superior approach, surely, is to base policy on a projection that is

computed under the assumption that policy will be made in accordance with the targeting

rule in the future as well,64 so that the projection that is used to justify current policy will

correspond to the bank’s own best forecast of how it should act in the future, as in the case of

the projections used to justify policy decisions by the Reserve Bank of New Zealand. It will,

of course, be necessary to stress that the bank’s only commitment is to the rule embodied

64See Svensson and Woodford (2003) for further discussion of what this would mean in practice.
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in this projection, not to the particular time path of interest rates indicated as most likely.

But given the use of “fan charts” to show that a variety of possible future scenarios can be

envisioned, depending on how various types of uncertainty happen to be resolved, it is not

clear why it should not be possible to talk about probability distributions for future interest

rates along with those for inflation and real activity, without giving rise to the appearance

of a more specific commitment than is intended.

Once this is done, however, it becomes necessary to specify a target criterion that can

determine the appropriate short-run dynamics for the economy, and not simply a terminal

condition for a date some years in the future. Such a criterion will accordingly place sub-

stantial weight on projections of the target variables over the coming year, as in the case of

the optimal target criteria derived in this chapter. It will also have to take a stand as to

the kinds of projected departures of real variables from their long-run average values that

justify short-run departures of the inflation projection from its long-run target value; it will

no longer suffice simply to specify what the (unchanging) long-run inflation target is. None

of the inflation-targeting central banks actually believe that it is desirable to keep inflation

as close as possible to the long-run target value at all times; this is why forecast-targeting

procedures only seek to ensure that inflation is projected to return to the target value after

many quarters.65 But by formulating no explicit doctrine as to the way in which one should

choose among alternative transition paths to that medium-term goal, they avoid having to

clarify the nature of acceptable trade-offs among competing stabilization goals.66

A coherent approach — and in particular, one that could be justified as seeking to

implement the conditions for optimal policy discussed in this chapter — would instead have

to make explicit the kind of projections for output and other real variables that should justify

a modification of the short-run inflation target, and the degree to which they should affect it.

65On this point, see, e.g., Bernanke et al., 1999, or Svensson, 1999.
66The fact that a real GDP projection is always included along with the projection for RPIX inflation

in the introduction to the Bank of England’s Inflation Report — and in fact, is always discussed first —
suggests that the some attention is paid to the projected path of output in deciding upon the appropriateness
of the current level of interest rates. But the Bank’s official target criterion, involving only the constant-
interest-rate projection of RPIX inflation at the eight-quarter horizon, does not make explicit the way in
which the output projection should be taken into account.
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In all likelihood, the inflation-targeting banks have shied away from such explicitness out of a

suspicion that the types of circumstances that might reasonably justify short-term departures

from the inflation target are too various to be catalogued. But the theory developed here

has sought to show that it is possible to state short-run target criteria (criteria that apply

to the shortest horizon at which current policy decisions can still have an effect) that will

be robustly optimal, meaning that the same criterion continues to determine the correct

degree of short-run departure from the long-run inflation target regardless of the nature of

the disturbance that may have occurred.

Much work remains to be done, of course, before a quantitative characterization of opti-

mal policy of the kind that we offer in section 3 could be used in practical policy delibera-

tions. One of the most obvious issues requiring further study concerns the way in which a

central bank should take account of uncertainty about the correct model of the transmission

mechanism, as well as uncertainty in its evaluation of current macroeconomic conditions.

Uncertainty about the current state of the economy is relatively straightforward to deal

with, at least in principle. One can allow for partial information on the part of the central

bank in characterizing the optimal equilibrium responses to shocks, using methods similar

to those employed here, and derive an optimal target criterion that is valid in the presence of

partial information (Svensson and Woodford, 2002a, 2002b; Giannoni and Woodford, 2002b).

Because of the principle of certainty-equivalence in linear-quadratic policy problems of this

kind (discussed in detail by Svensson and Woodford), the optimal target criterion (once

correctly expressed) involves coefficients that are independent of the degree of uncertainty in

central-bank estimates of the current state of the economy; however, the target may involve

variables that are not directly observed by the central bank, and must instead be estimated

using a Kalman filter.

Dealing with uncertainty about the numerical values of structural parameters (to say

nothing of more fundamental doubts about model specification) is a much harder problem,

for which few general guidelines exist at present. Giannoni (2001, 2002) illustrates one

approach to the problem, for the case of uncertainty about the numerical values of the
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elasticities κ and σ in a model similar to our baseline model (but in which an interest-

rate stabilization objective is assumed). For the particular kind of parameter uncertainty

considered, Giannoni finds that a concern for robustness (in the sense of guarding against

bad outcomes in the least-favorable case) should lead a central bank to choose a Taylor-style

interest-rate rule with stronger response coefficients than it would choose on the basis of its

preferred estimates of the model parameters; this means allowing less variability of inflation

in equilibrium, at the cost of greater variability in nominal interest rates. This suggests that

a concern for robustness might justify targeting rules that are even closer to strict inflation

targeting than the optimal rules obtained in this paper; the question is surely one that

deserves further analysis.
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