UNOBSERVABLE FAMILY AND INDIVIDUAL CONTRIBUTIONS TO THE DISTRIBUTIONS OF INCOME AND WEALTH

J. R. Kearl

Clayne L. Pope

Working Paper No. 1425

NATIONAL BUREAU OF ECONOMIC RESEARCH
 1050 Massachusetts Avenue
 Cambridge, MA 02138
 August 1984

Prepared for the Smith Conference on Economics and Public Policy. Research supported by the National Science Foundation Grant \#SES 8218799 NSF and by the College of Social Science, Brigham Young University. The research reported here is part of the NBER's research program in Development of the American Economy. Any opinions expressed are those of the authors and not those of the National Bureau of Economic Research.

Unobservable Family and Individual Contributions to the Distributions of Income and Wealth

ABSTRACT

This paper uses a data set composed of combinations of full brothers, half brothers as well as fathers and sons to measure the effect of common family background on households' income and wealth. While the data is drawn from a nineteenth century population, the intra-class correlation (after the effects of age, occupation, nativity, residence and duration in the economy have been removed) for income ranges from .l3 to .l8 which is similar to that found in modern samples. Intra-class correlations for wealth are significantly higher (.l8 to .35) than those for income. The addition of fathers' observed characteristics to the sweeping regressions reduces the unobserved common background effect shared by brothers by about twenty percent.

The intra-class correlations of half brothers were lower than those observed for full brothers though the small differences between the two groups suggest that fathers played a dominant role in the transmission of the common family effect. Unobserved background was decomposed into individual and family effects by a variance components procedure. The individual effect was dominant for income while the family effect was dominant for wealth.

```
J. R. Kearl
Department of Economics
184 Faculty Office Building
Brigham Young University
Provo, uT 84602
J. R. Kearl
Department of Economics 184 Faculty Office Building Brigham Young University Provo, UT 84602
```

Clayne L. Pope
Department of Economics 184 Faculty Office Building Brigham Young University Provo, UT 84602

Family members, except perhaps spouses, are certainly genetically and highly likely to be environmentally more similar than unrelated individuals. This unobserved common background may very well make family members more similar in measured socioeconomic position than would be expected for unrelated individuals with comparable observable individual characteristics. In addition, if parents are egalitarian within the family, they may make compensatory transfers in response to differences among siblings. Parental choices of this sort would also make sibiings more similar than comparable unrelated individuals in terms of socioeconomic outcomes. In the first instance, family members are more socioeconomically alike because of similarities in backgrounds and characteristics.

In the second instance family members are more socioeconomically alike because dissimilarities in sibling characteristics trigger compensatory activities by parents.

On the other hand, efficient parental human capital transfers to children would not ameliorate the economic effects of ability differences among siblings assuming ability enhances human capital acquisition. The effect of the family on the distribution of socioeconomic rewards depends, then, on the variation in individual characteristics within and between families, market rewards for those characteristics and the rules of family allocation of parental resources among children (see Becker and Tomes; Behrman, Pollak and Taubman; Ishikawa; Loury; and Sheshinski and Weiss). Behrman, Pollak and Taubman distinguish two allocational models: the wealth model and the separable earnings-bequest model. If there are positive material wealth transfers, the former predicts that such transfers fully compensate for earnings differences. The separable earnings-bequest model predicts equal transfers. Children may, in either
case, have different expected earnings if they have different abilities even if parents have equal concern for their children.

Failure to account for common family background effects may bias estimates of the effects of measured individual characteristics (e.g. the return to education). Considerable effort has been devoted to this problem using sibling data although Sheshinski and Weiss argue that the importance of the bias depends upon the family resource allocation rule. Moreover, whether the use of sibling data lessens or amplifies bias probiems depends on whether the common family effect fully accounts for all ommitted effects and on the possibility of measurement error and simultaneity problems. (See Griliches, 1979.) Common family background effects are, however, interesting in their own right precisely because of the importance of the family resource allocation rule and its embedded parental preferences. In addition, failure to account for such effects would lead one to overestimate the degree to which the variance in observable socioeconomic indicators is truly stochastic, unless common family background is completely reflected in the observable characteristics that individuals have or choose to acquire. If the potential effects of family background are not completely reflected in observable individual characteristics, ignoring family background may cause one to overlook important aspects of the creation and perpetuation of economic differences among individuals and across generations. Even where the effects are fully or partially reflected in observable individual characteristics, we may view these individual characteristics differently knowing that, in part, they embody a family background shared with other individuals. Finally, if common family background effects are substantial, they may affect greatly policy development aimed at changing the distribution of socioeconomic rewards among individuals since the family then becomes an important
social institution affecting the distribution of socioeconomic rewards in addition to the government.

In this paper we explore the degree to which family background, whose source may be genetic, environmental and/or behavioral, explains the variance in indicators of socioeconomic position for individuals from an economy that would appear to be quite different from the economy from which modern data are drawn -- l9th century Utah. Our data allow us to consider two different kinds of family relationships, that between fathers and their sons and that between brothers. For the latter, we have samples of full brothers raised in the same home sharing a common father and mother and half brothers raised in separate homes sharing only a common father. We use two indicators of socioeconomic position, wealth holdings and income.

We focus on those aspects of common family background that are not measured directly but whose presence can be inferred from correlations between the observed socioeconomic positions of family members when the effects of individual characteristics have been factored out. We also consider the differences between measured and unmeasured common background by accounting for the observed individual characteristics of a common father, including the father's income or wealth, and for the characteristics of the common family such as family size.

Families can, of course, influence individual choices about individually acquired characteristics. However, in a series of studies over the past several years, it has been found that when the effects of individual characteristics have been accounted for there remains an unmeasured component of the variance in measures of socioeconomic position that can be attributed to membership in a common family by siblings. That is, residuals are correlated when individuals
are ordered by family membership. For example, Table l, combined from the summary work of Jencks and his associates and from a survey by Griliches, provides the intraclass correlation coefficients for eight recent studies using sibling data. The intraclass correlation coefficient, which measures the degree of association between individuals who share the attribute of belonging to the same family, also measures the percentage of the variance in the socioeconomic indicator that can be attributed to the common characteristic, in this case family memberstip. The indicator in these studies is the logarithm of income or earnings al though many of the studies also use occupational status as an indicator.

For each of the samples of brothers, there is a residual correlation that is significant. That is, brothers are unlike randomly paired individuals in their economic position as measured by income. In addition, the variance that can be explained by sibling membership in a common family exceeds that which can be explained by observable individual characteristics -- common family background dominates other measured determinants of a brother's income. Jencks argues that the NORC sample provides the best estimate of the intraclass correlation ($r=.129$) and that the range of raw estimates of r is likely to be . 12 to .28. That is, family background explains 12 to 28 percent of the variance in the logarithm of income. When suitable adjustments are made for sample and measurement bias, Jencks et al. argue that family background probably explains between 15 and 35 percent of the variance of log income -- a significant addition to the variance explained by observable individual characteristics.

Brittain, using a small sample of brothers from Cleveland, finds a much higher intraclass correlation for \log income than any of the studies summarized by Jencks et al. He estimates an intraclass correlation in the $.35-.45$ range
but his is the only study with estimates this high. The intraclass correlation for occupational status measured by the Duncan scale is still higher, around .48. This may be attributable, in part, to the way that the status measure is created. But in any event, the correlation attributable to family background again exceeds that explainable by individual characteristics (R^{2} is usually in the .20 to .35 range for occupational status).

The substantial difference that Taubman finds between monozygote and dizygote twins has led him and his associates to explore models that separate the common family background effect into genetic and environmental components. Goldberger has been skeptical of the assumptions necessary to pursue this approach but potential problems in modelling the nature of the family background effect do not call into question the presence of the family effect itself.

Chamberlain, Griliches and others have explored the possibilites that there is a common factor accounting for the family effect in a structural model of ability, schooling, occupational status and log income, taking advantage of the identifiability properties of multiple indicators for latent variable models. Chamberlain and Taubman et al. have extended the latent variable model so that the unobserved factor has a variance components structure. These efforts have been quite successful in changing the estimates of the returns to school ing but less successful in pushing the various estimates toward a common point. Chamberlain and Griliches have also explored extensions of these models to include the possibility that there are two factors that account for the family effect.

Our aim is initially more modest: Using single equation models, we estimate the variance component or the intraclass correlation attributable to individuals sharing a common family background and explore how the estimates differ with
the nature of the socioeconomic indicator, the nature of the family relationship and the nature of family background measures available. We also consider differences between unobserved individual and family effects.

II THE DATA

Our data are drawn from some or all of the following sources: census manuscripts of 1850, 1860, 1870, 1880 and 1900; tax assessment records of 1870 , 1880, 1890, and 1900; financial records of the LDS Church for 1855, 1857, 1859, 1861, 1866, 1870, 1875, 1880, 1885, 1890, 1895, 1900; and family vital records from the Genealogical Library of the LDS Church.

Estimates of wealth were obtained from the Census manuscripts of 1850 , 1860 and 1870 and from tax assessment records for $1870,1880,1890$ and 1900. We sampled from both records in 1870 in order to splice the wealth series from 1850 to 1900 at decade intervals. Both tax assessment and census records provide estimates of gross rather than net weal th.

Income estimates are obtained from the financial records of the LDS Church for the 12 years noted earlier. Essentially we cover five year intervals from 1855 to 1900. LDS financial records indicate the contribution an individual made to the Church. Church members accepted the moral obligation to contribute a tithe--ten percent of one's income. In eight of the twelve sample years we have a record of the percentage that an individual's contribution was relative to this full tithe. These assessments of tithing paid versus tithing owed were made by local Church leaders who would personally know the individual contributor. The individual would also be consulted as to the percentage of a full tithe that he or she paid. Families usually made their contribution under the name of the male spouse if there was one although some young men
contributed independently to the Church. The combination of the amount contributed with the percentage of this amount relative to a full tithe yields an estimate of income. We made adjustments for who those reported income in a particular year but for whom we did not have percentages by averaging the percentage paid from other years.

Occupational data have been collected from each census manuscript, available from 1850 to 1900. Occupations were transcribed into a three-digit code that combined occupations that were essentialiy the same, e.g. lawyer and attorney. We did not create an occupational status scale. Rather, for purposes of analysis, these codes were aggregated into four categories: white collar workers, managers, and proprietors (W); farmers, ranchers, dairy owners, etc. (F); craft workers (C); laborers, farm laborers and other unskilled occupations (L). This left a heterogeneous mixture of occupations that were largely service oriented, such as hotel clerks, policemen, lower level clerks, etc. which we classified in a fifth group as service workers (S).

Both census and genealogical records provide place of birth and age. When these sources disagreed, the genealogical record was used. From these two records we could obtain most of the vital statistics of interest, including birth, death and marriage information as well as the implied information about household location at particular times, family size and family structure. These records also provide sibling names (linking brothers) and multiple marriage information (linking half brothers).

We used place information to provide a record of residence and internal migration and to provide an estimate of the length of time a household had been within the economy (T). For analysis purposes, we consider only rural (R) and urban (U) residence where urban is defined as Salt Lake County.

We have linked individuals through time and across records and we have linked these individual histories by family relationship. The core of the sample was created by linking census weal th records using name, location, age and birth place data. We then added a random sample of the households from each census year that did not appear in more than one of these censuses. We separately coded links that were "certain" from those for which there were some discrepancies in name spellings or age estimates between census years, "uncertains". We were, however, conservative in our efforts and subsequent analysis has shown no statistically significant differences between "certains" and "uncertains" and hence we no longer carry the coding distinguishing the two. To this core of linked and randomly sampled individuals, we added as many LDS financial records as we could, linked by name across the records and through the years from 1855 to 1900 . We then reversed the procedure: first linking households in the Church financial records and then adding as much census information as was possible.

We added to this sample, now linked through time and between census and church financial records, records from either the censuses or financial records that were potentially fathers and sons. We verified these father-son links using the family vital statistic records from the Geneal ogical Library. We then searched the family vital statistic records for those in the core sample creating pointers linking those within the sample who were either fathers and sons or brothers. In addition, we added any records from the population data for those we could identify as sons or brothers of those in the sample by using the family vital statistic information.

Not all family links between brothers occur with a link to a father. Since we searched the family vital statistic records for those in our sample, we
would often find brothers without finding fathers, who might have been dead or who might not have migrated to Utah with their sons. This particular aspect of the sample means that the sibling connections cover the full age range in each year of the sample and are not restricted to be young in the early years. We also found a number of new households that were formed over the fifty year period where we observed the father for a some years and then observed the father and son. Because of the extended period over which we sampled we also observe fathers and sometimes sons who die and a small group of three generation links.

We added to this linked data additional wealth data from the tax assessments and probates as well as occupational data from the 1880 and 1900 censuses. For these records we have neither population data nor random samples from population data. Rather we sought out only those records for individuals al ready in our sample. Otherwise, however, we have population data for wealth from 1850 to 1870 and income from 1855 to 1900.

When we added data, anomolies would appear. At each point we purged from the data those links that became questionable with the new information. Obvious checks included: records past death or for an individual who was "too old"; records prior to birth or for an individual who was "too young"; the same name on multiple records from the same source in the same year; substantial age inconsistencies.

We believe that we have been fairly conservative at each point but we should note that all linking is by names with the attendant problems of mispelling and same names for different individuals. We tried to avoid both problems by not selecting or subsequently eliminating those with common names where the probability was high that there would be several individuals with the
same name (e.g. John Jones, James Green). We have differentially coded "certain" family links from those that were "less certain".

The completed data set is essentially a panel, although an individual need not appear in each year either because the individual migrated in or formed a household later in the period; because the individual migrated out or died during the period; or because we could not make a link in a particular year. It is a panel with the unique characteristic that it is drawn from a fifty year history of an economy and that it has immediate family links. Tables 2 and 3 provide means and variances by year for fathers, sons and brothers.

III FAMILY EFFECTS AND INDIVIDUAL INCOME
We test for unobserved family background effects by first estimating several variations of the now standard human capital specification for individual income,
(1) $\ln \left(y_{i j}\right)=x_{i j} B+e_{i j}$
where i indexes sibs and j indexes families and
(2) $e_{i j}=u_{j}+w_{i j}$.
u_{j} is the family component of the variance. For some specifications, we pool the data over all or part of the 50 year period and in these instances impose a fixed effects model on the aggregate yearly effects. The complete set of regressions that serve as a basis for our analysis is found in the appendix. The general properties of the regression results can be seen in the following pooled regression for brothers taken from Table Al in the appendix:

$$
\begin{aligned}
& +.56 \text { W -. } 06 \mathrm{C}+.02 \mathrm{~S}-.19 \mathrm{~L}+.58 \mathrm{D} 55+.57 \mathrm{D} 57+.47 \mathrm{D} 59 \\
& \text { (.039) (.037) (.06) (.04) (.08) (.05) (.06) } \\
& +.55 \mathrm{D} 61+.48 \mathrm{D} 66+.27 \mathrm{D} 70+.28 \mathrm{D} 75+.24 \mathrm{D} 80+.27 \mathrm{D} 85 \\
& \text { (.04) (.05) (.05) (.05) (.05) (.04) } \\
& +.16 \text { D90 +. } 002 \text { D95 } \\
& \text { (.04) (.05) }
\end{aligned}
$$

$R^{2}=.11$
\#OBS=5580
The regressions are normalized on farmers living in Salt Lake County in 1900 who are U.S. born. Elsewhere we have discussed the properties of these regressions at length, focusing on the effects of time within the economy (T), ife cycle patterns (A and A^{2}) and changes in residence (R) and occupation (W,C,S,L,F) in separate papers. (Kearl, Pope and Wimmer, 1980; Kearl and Pope, 1983a; Kearl and Pope, 1983b.) We note here that virtually all of the individual characteristics that we measure have the expected statistically significant effects on $\ln (y)$ but that like comparable analysis on modern data these individual characteristics do not explain a large percentage of the variance in log income.

Briefly, we find a pronounced concave life cycle in income with the peak occurring around age 45. Time within the economy (T) has a positive effect on a household's income while those living in the rural areas (R) have lower incomes, ceteris paribus. Whitecollar workers (W) have higher incomes than do farmers while craft (C) and service (S) workers have incomes that are not significantly different from those of farmers. Laborers (L) have incomes substantially lower than farmers and those in other occupational categories. We find that foreign born have incomes a bit higher than comparable US born households. Finally, the pattern of year effects for income essentially accounts
for price changes and growth and parallels the price decline over the 50 year period in the rest of the United States. While the relative magnitudes and significance of the coefficients change somewhat with specification and sample, the patterns are essentially the same for all the regressions reported in the appendix.

We used these estimates to sweep from individual incomes the effects of measured individual characteristics. Rather than estimating the variance component directly, we then estimated the intraclass correlation for related pairs using the resulting residuals. The residuals were stacked so that a member of the related pair appears as both a dependent and independent variable in a simple regression of residuals on residuals. This is equivalent to randomly ordering the observations. The resulting coefficient (the intercept should be zero since it is the expected value of the residuals) is an estimate of the intraclass correlation coefficient. A nonzero coefficient indicates that a common omitted effect links the paired observations that does not link observations of individuals who are not related. It therefore provides evidence that there is a "family" effect on individual income that is shared by the related individuals.

We find a significant unobserved family background effect for brothers, Table 4. Sharing a common family background explains around 20 percent of the variance in the logarithm of income. Brothers incomes are simply unlike those of randomly selected unrelated paris of individuals even when we account for similarities between brothers that are observable, including age, nativity and occupational choices. Part of the correlation between the economic position of brothers could be explained by the correlation in the ages (compare specifications 1 and 2, Table 4) reflecting "closer" positions on the income life
cycle than those shared by randomly paired unrelated individuals. In fact, this effect is unimportant.

While age, residence and birthplace correlations between brothers affect the intraclass correlation estimate very little (compare specifications l or 2 with 3), it is clear that part of the influence of family is reflected in occupational choices that brothers make. The intraclass correlation falls about 10 precent when the effect of occupational choice is swept out, implying that brothers' occupational choices are correlated. This is, of course, consistent with the considerable contemporary evidence on unobserved family effects and occupational choices.

The size of the estimated family background effect for brothers' incomes is at the midpoint of the Jencks' range. The importance of the unobserved family background variable(s) relative to that of the observable individual characteristics is also consistent with modern data. Hence, in terms of the size of the estimated family background effect, the importance of this effect relative to observed individual characteristics and the partial transmission of the family effect through occupational choices made by siblings, our data reveal similar patterns to those in modern data even though our sample was created differently and drawn from a dissimilar economy--one that is poor, agrarian with little emphasis on formal education. Differences among families appear to be an important and robust determinant of the variance in the distribution of income among individuals.

In the following sections we consider evidence from our data about the nature of the unobserved family background effect that is not available in contemporary data. We first consider the effect for weal th holdings for essentially the same households for which we have estimated the family effect on
income. Using both income and wealth as indicators of socioeconomic position, we then consider differences between full and half brothers. This is followed by a section where we use a subsample of the data to explore family effects for brothers and half brothers when we observe the socioeconomic position of their father. Using a different subsample with multiple observations for each sib, we then differentiate between unobserved family and unobserved individual effects.

IV FAMILY EFFECTS AND WEALTH HOLDINGS
We begin with an econometric specification for the logarithm of wealth holdings comparable to specification (1) for log income:

$$
\begin{aligned}
& \text { (4) } \ln (w)=4.62+.089 A-.0008 A^{2}+.014 T-.147 F B-.368 R \\
& \text { (.16)(.007)(.00008)(.0024)(.034) (.038) } \\
& +.24 W-.39 \mathrm{C}-.17 \mathrm{~S}-.53 \mathrm{~L}+.43 \mathrm{D} 60+.40 \mathrm{D} 70 \\
& \text { (.06) (.05) (.08) (.05) (.05) (.05) } \\
& +\underset{(.06)}{+.07 \text { DD70 }-.05 \text { D80 }}+. .48 \text { D90 } \\
& R^{2}=.22 \\
& \text { \#OBS=3944 }
\end{aligned}
$$

Again, the full set of equations used in the estimation of the intraclass correlation coefficient is found in the appendix. While the relative magnitudes change somewhat with specification and sample, specification (4) provides a general qualitative summary of the results for the wealth specifications and the relationship between the estimates for wealth and those for income.

There is a pronounced concave lifecycle pattern to wealth holdings in our sample with a peak at age 58 (the comparable age-income peak is at age 45). Duration within the economy (T) substantially increases weal th holdings and those who are foreign born or living in the rural area have weal th positions substantially below US born or those residing in the urban area. For income we also found a large positive effect for duration and a substantial negative effect for rural residence. However the effect of foreign birth was positive for income while it is negative for wealth. White collar workers have wealth holdings substantially above those for farmers, an effect also seen in income. However, while service and craft workers have incomes that are not significantly different from those of farmers, they have weal th holdings that are significantly lower than those of farmers. Common laborers have substantially lower weal th holdings and incomes than farmers.

The pattern of year dummies for weal th is more difficult to interpret since we essentially use them to splice the wealth series in 1870 . Hence they reflect both economic growth and changes in the measured variable between census and tax assessment records.

Table 5 provides estimates for the intraclass correlation coefficient using the logarithm of wealth as an indicator of socioeconomic position and when the effects of the observed individual characteristics have been swept from $\ln (W)$. We find that unobserved family background explains about 30 percent of the variance in the log of wealth compared to 20 percent of the variance in the \log of income.

The larger intraclass correlation for wealth is consistent with what would be expected if individual consumption behavior were determined by permanent rather than observed income. Transitory elements should be a relatively larger
component of income than of wealth and hence more of the variance in income should be truly stochastic. If individual consumption were determined by permanent income, savings would fluctuate with transitory income as would wealth holdings but the differences in the means between wealth and income would imply that these fluctuations contributed relatively less to the variance of wealth. Put differently, differences in family backgrounds are relatively more important in determining the variance in a more permanent measure of economic position, wealth, than they are in explaining a measure with a larger transitory component, income. This suggests that family differences tend to be associated more closely with permanent differences rather than transitory differences in the distribution of economic outcomes.

In addition, however, if parents make efficient investment decisions relative to the human capital accumulation of their children, thereby differentially investing in siblings in response to differing individual abilities, but want to be egalitarian within the family, they would compensate those with lesser ability by engaging in differential intra vivos wealth transfers or provide compensatory bequests. This compensatory behavior would imply a larger family background effect on weal th than on income. Indeed, if there were no important constraints on parental ability to differentially invest according to sib ability, the intraclass correlation for earnings would be nonzero only if sibling ability had an unobserved common family component. However, the transitory elements noted earlier, the likely constraints on parental compensatory behavior as well as income from capital, do not allow us to interpret the intraclass correlation for income as measuring only the unobserved family element of individual ability (See Behrman, Pollack and Taubman or Sheshinski and Weiss). We note that recent attempts to test for efficient human capital
intergenerational transfers suggest that bequests do not appear to compensate for differences in ability (Menchik; Tomes).

For both income and wealth, we used a Chow test for differences in the intraclass correlation by wealth and household size. In neither case did we find significant evidence which would indicate that, for example, the intraclass correlation was higher for brothers with wealthy fathers than for brothers with poor fathers or that family background effects differed systematically and substantially between "large" families and "small" families. The latter is a little surprising since, while common backgrounds differ among families, it would seem that the differences might be correlated with family size. When we examine these results in a slightly different way below we do find some family size effect. We also considered systematic variation in the intraclass correlation with birth order but also failed to find evidence that birth order systematically affected the intraclass correlation. In this area, however, our data present some problems since we have a large number of half brothers which make sib ordering problematic.

These results are based on data pooled from the full fifty year period covered by our sample. It is possible that the estimates change with time as, for example, the economy matures, or that our results reflect a compositional effect. We have estimated comparable intraclass correlations using only cross sections of sib pairs and, while the estimates vary somewhat, there are no systematic patterns different from those of the pooled data set. Another area of concern about reported intraclass correlations is the possiblity of correlation between observed characteristics and errors such that $E\left(U_{i} \mid X_{i j}\right)$ $\neq 0$ so that a random effects specification would involve mismeasurement. Hausman (1978) proposed a specification test which we have applied to some
of our equations. While the overall x^{2} test based on the decrease in residual sums of squares with augmented transformed variables (p. 1269, Hausman, 1978) is failed with a random effects specification; the problems seem to be centered on the age variables and the life cycle. Further work will be needed to gauge the importance of the relationship between U_{i} and some of the X_{i}.

Perhaps the most serious concern, at present, is the omission of education from the sweeping regressions. If formal education has a positive influence on income and wealth as expected, the lack of educational data reduces the variance explained by the regression and increases the measured common background effect if the education of siblings is correlated. The mismeasurement of the intraclass correlation in the sweeping regressions such as occupation, nativity and place of residence proxy for part of the effect of education. While virtually all of the Utah population was classified as literate on the census manuscript, formal education was relatively limited in the nineteenth century Utah. Nevertheless, further work is needed to bound the effect of omission of education from the sweeping regressions on the measurement of the family background effect.

V HALF VERSUS FULL BROTHERS

We can separate the contribution of the father to the unobserved family effect from that of being raised in a common home by considering the differences between full brothers raised in the same home and half brothers who share a common father but who, in our sample, would not have been raised in a common home. Table 6 provides estimates when the sample is split this way.

Half brothers, on average, share fewer genes than do full brothers. (Expected excess homozygosity would be 50% for full brothers and 25% for half brothers.)

They also, in our sample, do not share a common home since polygynous families were usually maintained in separate houses or living areas for each wife. Therefore, half and full brothers would only have similar intraclass correlations if the dominant component of the family background effect was the contribution of the father to his children. That is, if the intraclass correlations for brothers do not differ from those for half brothers, the unobserved family effects must be primarily non-genetic and primarily attributable to the father's role in creating a common environment for his sons. Conversely, if half brothers are no more similar than randomly selected unrelated individuals, then neither genetics nor the father's role matter and the common family effect would be attributed solely to the environment shared within a common home. However, if there are unobserved family background effects for both half and full brothers, the source of the differences could be both genetic and environmental since brothers and half brothers differ on both dimensions in our sample.

We clearly do not find that half brothers raised in separate homes are like randomly selected unrelated individuals. Rather, we find significant unobserved family background effects for half brothers for both wealth holdings and for income. Sharing a common father explains about 26 percent of the variance in \log wealth and about 19 percent of the variance in \log income (we continue to find that the common family effect is larger for log weal th than it is for \log income by about 50 percent). Sharing both a common father and a common mother explains about 30 percent of the variance in log wealth and about 19 percent of the variance in \log income. There is surprisingly little difference between full brothers and half brothers in this respect suggesting that in this economy, the father's contribution to the economic
success of his children dominates other aspects of the unobserved family variable. The results cast some doubt on a simple genetic explanation.

We note that a relatively larger share of the family effect appears to be transmitted through correlated occupational choices for half brothers than for brothers. That is, when individual occupational choices are accounted for (specification 4), the intraclass correlation for half brothers, still significant and maintaining the spread between income and wealth, is relatively smaller than the comparable intraclass correlations for full brothers. That is, when we account for occupational choices, sharing a common father explains 15 percent of the variance in 10 g income and 23 percent of the variance in log wealth. This compares with 29 percent and 18 percent, respectively, for those who share a common father and a common mother. It makes sense, of course, that an important element in the environment shared by half brothers is the occupational choice of their common father which may very well influence their occupational choices. However, there remains a substantial correlation in the economic position of those raised in separate homes even when we account for this element of their common environment.

VI OBSERVED AND UNOBSERVED COMMON FAMILY BACKGROUNDS
Brothers share attributes of their common father, including those that are observable such as father's age, occupation, income or wealth. We now consider the degree to which the common family background effect present in our data is adequately accounted for by the observed characteristics of the sibs' father. The observed socioeconomic position of the father might directly affect sibs because of the advantages or disadvantages the socioeconomic position
allowed the father to confer on his children. Usually interest in this area centers on income or wealth transfers but there may be more general direct effects such as access, information or nepotism. Of course there may be indirect effects for which the observed socioeconomic position of the father proxies. These might include home environments if such environments differ systematically with father's socioeconomic status. Finally, to the degree that there are capital market imperfections that impede intergenerational human capital transfers, it would be expected that higher income or wealthier parents would be able to transfer "more" human capital to all sibs and, of course, having made efficient investment decisions be more capable of providing differential material wealth transfers.

Tables $A .9$ and $A .10$ provide a summary of regressions with log income and \log wealth as dependent variables using the subsample of brothers for whom we observe the relevant data for their fathers. The parameter estimates for the individuals own characteristics do not differ much from the regressions we discussed earlier and the qualitative properties of the regressions do not change with the extended specification. To these own characteristics we have appended those noted in the table for the individual's father and family.

With the exception of white collar for wealth and white collar and craft for income, father's occupational choice does not directly affect a son's income or wealth. A son's income and wealth are also statistically unaffected by the father's age, time within the economy, birth place or place of residence. Each of these, as we noted earlier, affect a person's own income or wealth position and hence each indirectly affects the son's position to the degree that there is a relationship between a father's income or wealth and his son's
income or wealth. However, even when we account for the substantial effect of being a white collar worker on an individual's income or wealth, there is an additional substantial advantage conferred on the sons of white collar workers in this economy. This cannot be skill transmittal or else we would expect also to see significant positive effects from fathers who were craftsmen and perhaps significant negative effects from fathers who were unskilled, common laborers. We observe neither of these, rather there is no significant relationship between fathers who are unskilled and their son's income or wealth and the relationship between fathers who are craftsmen and their sons is negative for income but not significant for wealth.

A father's income positively affects his son's income as does a father's wealth his son's wealth. A ten percent increase in wealth would yield a 1.5 percent increase in a son's wealth. Put differently, a ten percent deviation between fathers' wealth would cause a 1.5 percent deviation between the wealth of sons. The corresponding elasticity for income is about.l. Both of these, while statistically significant, would indicate substantial regression toward the mean if there were no other avenues through which fathers affected sons.

For household size, we find that a son in a larger family will have lower wealth, ceteris paribus. The sign is also negative for income but the coefficient is not significant. If the family resource allocational rule first allocated parental resources for human capital accumulation and then compensated with differentially allocated material wealth among sibs, family size would be expected to have negative effects on both income and weal th but a larger effect on wealth so long as families have different material resources.

We used these regressions to once again purge from the dependent variable the effects of those individual and family characteristics that were observable
and then estimated the intraclass correlation for brothers as shown in Table 7. We continue to find a significant unobserved family effect, with unobserved family background explaining 10 percent of the variation in \log income and 19 percent of the variation in \log wealth. These compare with 13 and 23 percent when the observable common background effects are not directly estimated but are treated as part of the unobservable. Hence, observable common background characteristics account for only a little over 20 percent of the family effect. The remaining family affect is not effectively proxied by the father's own socioeconomic position as measured by income, wealth or occupation. This finding is also consistent with much contemporary work (see Taubman, et al. for a survey) but most contemporary studies do not have the rich set of characteristics that we have for fathers and hence this finding strengthens somewhat those drawn from contemporary data. While, as noted above, these results are roughly consistent with an efficient investment -cum-compensatory transfer allocational rule, the substantial unobserved family background effect when observed parental income and weal th are accounted for, suggests that resources other than material wealth or income are important in intergenerational links.

We can look at the common family effect in a slightly different way by treating fathers and sons as we have brothers, purging the effects of own characteristics and then considering the possibilities of correlated residuals when the individuals are paired by family relationship. Table 8 provides estimates of the intraclass correlation for \log income and wealth of fathers and sons. It should be noted that the fathers were quite old at the time the income or wealth was observed contemporaneously with their son's income or wealth.

The low intraclass correlation in specification l is to be expected given the pronounced life cycle pattern in both income and weal th holdings since the life cycle will explain a substantial amount of the variance for individuals whose ages are separated by a substantial number of years as would be true for fathers and sons. This result, in a sense, indirectly confirms the presence of an age-income or age-wealth profile. When the contribution of age to the economic position of an individual is accounted for, the intraclass correlations for income are very close to those estimated from brothers. For wealth holdings, however, we find about 20 percent of the variance is explained by the unobserved common background shared by fathers and sons. The unobserved background shared by brothers explains about 30 percent of the variance for brothers.

Considering fathers and sons rather than brothers indicates the ambiguity in the notion of "unobserved family background". For brothers, family background is that unobservable that is common to brothers; for fathers and sons, family background is that unobservable that is common to fathers and sons. Sons share one half of the genes of their father. Brothers may share from virtually 0 to 100 percent but on average would also share 50 percent of the genes of their common father. However, fathers and sons are not raised in the same homes and hence not in the same home environments. Conversely, brothers, who have a wider variance in shared genes, are raised in a common home by a common mother.

While we cannot estimate the relative contributions of genes and environment, we can jointly estimate the two family effects, father-son and brother-brother. We assume an error-components model where the error is partitioned into a brother-brother family component, a father-son family component and a stochastic component. By construction, the brother-brother component includes only those
things common to brothers that are not common to fathers and sons while the father-son component includes only those things common to fathers and sons that are not common to brothers. We jointly estimate the components using a maximum likelihood extimator (LISREL). Table 9 summarizes the results.

The estimated brother-brother variance component is significantly above the estimated father-son variance component. For log wealth, that unobservable common to brothers alone explains about 20 to 23 percent of the variance while that unobservable common to fathers and sons explains about 8 to 10 percent of the variance. For \log income, the percentages are about 10 percent and 15 percent respectively.

VIII INDIVIDUAL VERSUS FAMILY EFFECTS

The panel nature of our data allow us to consider unobserved individual effects as well as unobserved family effects since we can use observations on the same individual at different points in time. Unobserved individual effects would include those aspects of individual ability that do not change with time and which are not shared with a sibling. Those aspects of ability that might change with time are not considered in our analysis. Some, however, will be captured by the changes in observed individual characteristics such as occupation that occur with time. We estimate, then, a variance or error components model using paired brothers with paired observations on each individual (since we have more than pairs of observations on each individual, our data allow for potentially richer and more complex specifications than that estimated here. We intend to pursue such models later.) We assume that the error is generated by a process that includes a family effect, an individual effect and a stochastic element,

$$
\begin{equation*}
e_{i j k}=u_{i}+v_{j}+w_{i j k}, \tag{5}
\end{equation*}
$$

where \mathfrak{i} indexes the family, j indexes the individual and k indexes time. While we use a maximum likelihood estimator (LISREL), loosely, the covariances between years for the same individual estimate the sum of an individual variance component and a family variance component while the covariances between sibs estimate the family component. The family variance component is, thus, directly estimated while that for the individual is easily recoverable. The observed error variances for individuals estimate the sum of the family, individual and stochastic components. Table 10 provides estimates for 10 g income and log wealth for brothers.

Adjusting for the differences in the variances of log income and log weal th we find that the percentage of the variance attributable to the unobserved family effect continues to be in the .22-. 28 range for wealth and the .15-. 19 range for income. The interesting aspect of this model of the covariance structure for brothers is the relative importance of individual effects for wealth and income. For wealth, we find that the unobserved individual variance component is about one half that of the unobserved family variance component. For income, however, the unobserved individual effect dominates, being over twice that for the family effect. Moreover, while observable characteristics explain over 20 percent of the variance in wealth and about 10 percent of the variance in log income, the total variance explained by observable and unobservable family and individual characteristics is about 50 percent of the variance of weal th but around 65 percent of the variance of income. Again, if ability differences are enhanced by efficient human capital transfers from parents to children but these transfers are then offset by
wealth transfers that are compensatory, the pattern we observe of relatively larger individual effects and smaller family effects for income and relatively smaller individual effects and larger family effects for weal th would be produced. Nothing in this explanation would suggest, of course, that the combined effects would explain a large or small amount of the variance. It is simply the case for our data, that the explained variance from the regression analysis on observed characteristics alone gives a much distorted picture of the nature of the stochastic contribution to the distributions of income and wealth.

IX CONCLUDING COMMENTS

The variance in family backgrounds appears to be an important contributor to the dispersion of individual income and wealth. We conclude, based on the differences between the effect of unobserved family background on income and wealth, that these effects are more likely related to permanent differences than transitory differences in the distribution. While we find that part of this effect is reflected in occupational choices made by related individuals and another part is explained by the observed socioeconomic position of the father, most of the effect cannot be explained by either of these two avenues of intergenerational transmission.

We also find that unobserved individual differences are important contributors to the variance in socioeconomic positions. Observable individual characteristics, unobservable individual characteristics and unobservable family effects explain over one half of the variance in income and in wealth. This poses a problem for policy arguments that are based on stochastic elements dominating the distributions or on providing greater equality of opportunity within which individuals can make choices. Models of family allocational
rules, ability, and socioeconomic rewards should accommodate two important empirical results. First, we found that while unobservable individual effects were important determinants of both income and wealth distributions, they are relatively more important determinants of the distribution of income. Second, while we also found that unobservable family effects were important determinants of both income and weal th distributions, they are relatively more important in determining the distribution of weal th.

We have suggested at various points, that much of what we observe seems to us to be consistent with an efficient investment-cum-compensatory transfer allocational rule but our efforts do not provide a direct test of an allocational model since none of our specifications are specifically constrained by such a rule. Thus, the relatively more important family effect for weal th could reflect either equal transfers within family where resources differed (including time) between families or else compensating transfers such that sibling weal th positions looked more alike than would be predicted from incomes.

We do suggest that permanent/transitory differences between weal th and income may explain the larger family effect on wealth. This cannot be a complete explanation, however, or we would expect that unobserved individual differences, also presumed to be more permanent, would also explain proportionally more of the distribution of wealth than the distribution of income. Since this is not the case, a more complex phenomenon is presumably generating the data we have collected and analyzed.

TABLES

$1 \varepsilon^{\circ}$	It＊	$\angle \varepsilon^{*}$	900°	＋5．	$0 \varepsilon^{\circ}$	てZ•	Iてて＊	$\varepsilon 1^{\circ}$	－－	U0：7eled．as SSELOEA7UI
－－	－－	－－	Z I＊	IT ${ }^{\text {P }}$	It	080	080 ${ }^{\circ}$	Sto 0°	680°	
160	tot	889°	S80＊	875	L95＊	9カワ＊	900°	0 $28{ }^{\circ}$	－L°	
－－	－－	－－	$01 * 6$	$\angle 9^{\circ} 6$	\＄9．6	ع9．6	（e6pm Ul） $8 t^{\circ} \mathrm{I}$	6I． 6	LI＊ 6	$\kappa \mathrm{ul}^{\text {l }}$
76	ヤ8	乙IE	$\checkmark 01$	8E0Z	－181	269	86 T	00ε	LI8SI	N
	－－	－－	ヤ9－52	$\angle S-\angle D$	$\angle S-\angle b$	6s－s．	$6 z-8 z$	－9－sz	－9－5z	${ }^{\text {e6 }} \downarrow$
EL6T	6961	LZ6T	99－596 I	－ 26 T	¢ 26 I	－$L-\varepsilon<6$ I	2L－IL6I	$\checkmark<-\varepsilon L 6 T$	$\varepsilon L 6$ I	Je日
STN	S7N	euflestos	pueionels		$\begin{aligned} & \mathrm{ZO} \\ & \mathrm{uemqned} \end{aligned}$	Oozeweley	FUelPL 700¢0．d	380N	＊9S0	

Table 2B

Structure of the Father-Son Data Sets for Wealth

1.	Year......	$\begin{gathered} 1860 \\ \text { Census } \end{gathered}$	$\begin{gathered} 1870 \\ \text { Census } \end{gathered}$	1870 Tax Assess-	$\begin{gathered} 1880 \\ \text { Tax } \end{gathered}$ Assess-	$\begin{gathered} 1890 \\ \operatorname{Tax} \end{gathered}$ Assess-	$\begin{gathered} 1900 \\ \operatorname{Tax} \end{gathered}$ Assess-
2.	Father's			ment	ment	ment	ment
	Mean Age...	59	64	65	67	67	71
3.	Son's Mean Age........	31	34	34	37	38	41
4.	Mean Ln of Father's Wealth.....	7.12	7.30	7.03	7.01	7.58	7.31
5.	Mean Ln of Son's Wealth.....	6.56	6.78	6.56	6.42	7.06	6.64
6.	Variance of Ln Wealth of Father..	. 73	1.09	. 82	1.07	1.09	1.36
7.	Variance of Ln Wealth of Son.....	. 66	. 93	. 52	. 67	. 84	1.23
8.	```Simple Correlation of Father's and Son's Wealth.....```	. 22	. 29	. 29	.17	. 23	. 02
9.	Number of FatherSon pairs	264	359	131	160	217	252

OTV	Z6I	T9ع	L0才	૬ ¢	88 I	$\varepsilon L T$	S6I	S9Z	65	－•••SA！e_{d} dəy70」 10」əqunN	－6
62^{*}	$6{ }^{*}$	$0 \gtrless^{*}$	$\varepsilon{ }^{*}$	60^{*}	L0＇	90＊	Z ${ }^{\text {• }}$	$9 \varepsilon^{\circ}$	εI^{\bullet}		－8
E6＊	00＊	L9＊	て9＊	59＊	59^{*}	ع8＊	S L°	Z5＊	$6 \square^{\bullet}$		${ }^{*} L$
SL＊	S L^{*}	Z L^{\bullet}	$\nabla 5^{\circ}$	［9＊	Z L^{\bullet}	¢9＊	8 ${ }^{\circ}$	$\angle 9^{\circ}$	$\varepsilon \varepsilon^{*}$		－9
L6＊ 9	$28^{\circ} \mathrm{S}$	$96^{\circ} \mathrm{S}$	$80^{\circ} 9$	$L 0^{\circ} 9$	665^{*}	$\angle 6^{\circ} \mathrm{S}$	$9 \chi^{\bullet} 9$	6I•9	乙I＊9		－S
$\varepsilon 6^{\circ} \mathrm{S}$	$96^{\circ} \mathrm{S}$	$86^{\circ} 5$	$50 * 9$	LO＇9	$0 \chi^{\prime} 9$	OL•9	$0 \chi^{*} 9$	Lて＇9	$\varepsilon[\bullet 9$		－\downarrow
87	OS	カ૪	T \downarrow	$\varepsilon 巿$	โ \downarrow	6ε	9ε	$\varepsilon \varepsilon$	TE		
87	67	$\varepsilon \nabla$	0才	$\varepsilon \nabla$	T \downarrow	0才	LE	$\downarrow \mathcal{L}$	IE		$\cdot \varepsilon$ $\cdot 乙$
006I	S68 I	068 T	S88 I	088［	SL8I	0＜8I	998 T	［98 I	SS8T	．．．．．．」еə入	${ }^{\bullet}$［
			OUI	7 \％	$\begin{aligned} & 12470 \\ & \text { } 19 \mathrm{~L} \mid \end{aligned}$	4710	$70 n 17$				

Table 3B

Structure of the Brother Data Sets for Weal th

4. Mean Ln
of First
Brother's
Wealth....
6.77
6.87
6.51
6.58
7.13
6.86
5. Mean Ln of Second Brother's
Wealth.... 6.80 . $699 \quad 6.64$ 6.59 7.13 6.95
6. Variance
of Ln Wealth
of First
Brother

- Variance
of Ln Wealth
of Second
Brother.... . 95 . 93 . 56 . 64 . 86 1.44

8. Simple

Correlation
of Brothers
Wealth.... . 43 . 43 . 37 . 34 . 33 . 20
9. Number
of Brother
Pairs.
280
$399 \quad 169$
246
443
435

Table 4
$\left.\begin{array}{ccc}\text { Intraclass Correlation of } & \text { LnIncome for } & \text { Brothers } \\ \text { Specification } & r \text { of } & \text { InIncome }\end{array}\right] t$ 14.9

Specification l: Sweeping Regression includes constant and year dummies.
Specification 2: Sweeping Regression includes constant, year dummies, age and age ${ }^{2}$.

Specification 3: Sweeping Regression includes constant, year dummies, age, age ${ }^{2}, T, R$, and $F B$.

Specification 4: Sweeping Regression includes constant, year dummies, age, age ${ }^{2}, T, R, F B, W, C, L$, and S.

See Table A.l for estimates.
Table 5
Intraclass Correlation of LnWealth for Brothers
Specification $\quad r$ of LnWealth t
$1 \quad .314 \quad 20.7$
$2 \quad .303 \quad 20.0$
$3 \quad .295 \quad 19.4$
$4 \quad .278 \quad 18.2$

Specification l: Sweeping Regression includes constant and year dummies.
Specification 2: Sweeping Regression includes constant, year dummies, age and age ${ }^{2}$.

Specification 3; Sweeping Regression includes constant, year dummies, age, age ${ }^{2}, T, R$, and $F B$.

Specification 4: Sweeping Regression includes constant, year dummies, age, age ${ }^{2}, T, R, F B, W, C, L$, and S.

See Table A. 2 for estimates.

Table 6
 Comparison of Intraclass Correlations for Full and Half Brothers

	Fuli Brothers				Half Brothers			
		(Y)		(W)		(Y)		(W)
Specification	r	t	r	t	r	t	r	t
1	. 194	(13.1)	. 350	(20.4)	. 198	(7.0)	. 212	(6.5)
2	. 201	(13.6)	. 313	(18.2)	. 205	(10.3)	. 271	(8.4)
3	. 191	(12.9)	. 302	(17.5)	. 189	(6.7)	. 260	(7.9)
4	. 178	(12.0)	. 290	(16.7)	. 146	(5.1)	. 225	(6.9)

Specification l: Sweeping Regression includes constant and year dummies.
Specification 2: Sweeping Regression includes constant, year dummies, age and age ${ }^{2}$.

Specification 3: Sweeping Regression includes constant, year dummies, age, age ${ }^{2}, T, R$, and $F B$.

Specifjcation 4: Sweeping Regression includes constant, year dummies, age, age ${ }^{2}, T, R, F B, W, C, L$, and S.

See Tables A. 3 and A. 4 for estimates for full brothers and Tables A. 5 and A. 6 for half brothers.

Table 7
 Intraclass Correlation of Brothers with Measured Common Family Attributes

Specification	r of InWealth	t	r of \ln Income	t
1	.307	(20.1)	.12	(5.0)
2	.272	(20.4)	.16	(6.7)
3	.255	(9.7)	.14	(6.0)
4	.223	(8.7)	.13	(5.8)
5	.208	(7.8)	.11	(4.7)
6	.188	(7.0)	.10	(4.2)

See Table 4 and Tables A. 9 and A.l0.
For specification 5 we add, for each brother, the father's characteristics except wealth to the sweeping regression.

For specification 6 we add, for each brother, the father's characteristics and father's wealth or income to the sweeping regression.

Table 8

Intraclass Correlations of Fathers and Sons

	Income		Wealth	
	r	t	r	t
Specification 1	.09	5.92	.10	5.15
Specification 2	.18	12.57	.22	11.69
Specification 3	.17	11.98	.20	10.96
Specification 4	.15	10.48	.18	9.70

Specification l: Sweeping Regression includes constant and year dummies.
Specification 2: Sweeping Regression includes constant, year dummies, age and age ${ }^{2}$.

Specification 3: Sweeping Regression includes constant, year dummies, age, age ${ }^{2}, \mathrm{~T}, \mathrm{R}$, and FB .

Specifjcation 4: Sweeping Regression includes constant, year dummies, age, age ${ }^{2}, \mathrm{~T}, \mathrm{R}, \mathrm{FB}, \mathrm{W}, \mathrm{C}, \mathrm{L}$, and S .

See Table A. 7 and A. 8 for estimates.

Table 9
 Different Aspects of Common Family Background

	All Brothers				Full Brothers			
	Ln Wealth		Ln Income		Ln Wealth		Ln Income	
	Variance	t	Variance	t	Variance	t	Variance	t
$\hat{\sigma}^{2}$ Fathers/Sons	. 08	3.30	. 07	4.22	. 09	3.65	. 08	4.09
$\hat{\sigma}^{2}$ Brothers	. 20	6.84	. 10	4.66	. 20	6.56	. 11	4.84
$\hat{\sigma}_{\epsilon}{ }^{2}$. 48	30.29	. 44	34.39	. 41	26.40	. 40	29.93
σ^{2} wealth or income	. 98		. 73		. 88		. 71	

Table 10				
Measurement of Individual and Family Effects for Brothers				
	σ^{2}	Ln Income \% of total variance	σ^{2}	Ln Wealth \% of total variance
Mean Total Variance...........	. 68	100	. 95	100
Estimated Variance				
Accounted for by:				
Observed Characteristitcs (Occupation, age, etc)......	. 09	13	.17	18
Unobserved Individual Effect	. 22	32	. 08	8
Unobserved Family Efect.....	. 11	16	. 18	19

BIBL IOGRAPHY

Balestra, Pietro and Marc Nerlove, "Pooling Cross Section and Time Series Data in the Estimation of A Dynamic Model: The Demand for Natural Gas," Econometrica, 34(3), (July 1966), pp 585-610

Becker, Gary A. and Nigel Tomes, "An Equilibrium Theory of the Distribution of Income and Intergenerational Mobility," Ihe Journal of Political Economy, 87(6), (Dec 1979) pp 1153-1189

Behrman, Jere R., Robert A. Pollak and Paul Taubman, "Parental Preferences and Provision for Progeny," The Journal of Political Economy, 90(1), (Jan 1982), pp 52-73

Behrman, Jere R., Z. Hrubec, Paul Taubman and T. J. Wales, Socioeconomic Success: A Study of the Effects of Genetic Endowments, Family Environment and Schooling, New York: North-Holland, 1980

Behrman, Jere, Paul Taubman and Terrance Wales, "Controlling for and Measuring the Effects of Genetics and Family Environment in Equations for Schooling and Labor Market Success," from Kinometrics: Determinants of Socioeconomic Success Within and Between Families, Paul Taubman, ed., New York: North Holland, 1977, pp 35-96

Behrman, Jere and Paul Taubman, "Intergenerational Transmission of Income and Wealth," American Economic Review, 66, (May, 1976) pp 436-440

Blinder, Alan S., "A Model of Inherited Wealth," Quarterly Journal of Economics, 87, (Nov 1973), pp 608-626

Brittain, John A., The Inheritance of Economic Status, Washington, D.C.: The Brookings Institution, 1977

Chamberlain, Gary, "Education, Income and Ability Revisited," from Latent Variables in Socio-Economic Models, Dennis J. Aigner and Arthur S. Goldberger, eds., New York: North-Holland, 1977, pp 143-162

Chamberlain, Gary and Zvi Griliches, "Unobservables with a Variance Components Structure: Ability, Schooling and the Economic Success of Brothers," from Latent Variables in Socio-Economic Models, Dennis J. Aigner and Arthur S. Goldberger, eds., New York: North-Holland, 1977, pp 253-284

Chamberlain, Gary, "Omitted Variable Bias in Panel Data: Estimating the Returns to Schooling," Annales de l'INSEE, 30/31, (1978), pp 49-82

Chamberlain, Gary and Zvi Griliches, "Unobservables with a Variance Components Structure: Ability, Schooling and the Economic Success of Brothers," International Economic Review, 16, (June 1975), pp 422-449

Chamberlain, Gary and Zvi Griliches, "More on Brothers," from Kinometrics: Determinants of Socioeconomic Success Within and Between Families, Paul Taubman, ed., New York: North-Holland, 1977, pp 97-124

Griliches, Zvi, "Errors in Variables and Other Unobservables," from Latent Variables in Socio-Economic Models, Dennis J. Aigner and Arthur S. Goldberger, eds., New York: North-Holland, 1977, pp l-34

Griliches, Zvi and William M. Mason, "Education, Income and Ability from Structural Equation Models in the Social Sciences. Arthur S. Goldberger and Otis D. Duncan, eds., New York: Seminar Press, 1973, pp 285-316

Griliches, Zvi, "Sibling Models and Data in Economics: Beginnings of a Survey," The Journal of Political Economy, 87(5 pt 2), (Oct 1979) pp S37-S64

Griliches, Zvi, "Estimating the Returns to Schooling: Some Econometric Problems," Econometrica, 45, (1977), pp 1-22

Goldberger, Arthur S. "Structural Equation Models: An Overview," from Structural Equation Models in the Social Sciences, Arthur S. Goldberger and Otis D. Duncan, eds., New York: Seminar Press, 1973, pp l-18

Goldberger, Arthur S., "Twin Methods: A Skeptical View," from Kinometrics: Determinants of Socioeconomic Success Within and Between Families, Paul Taubman, ed., New York: North-Holland, 1977, pp 299-322

Goldberger, Arthur S. "Unobservable Variables in Econometrics," pp 193-213 from Erontiers of Econometrics, ed. by P. Zarembka, New York: Academic Press, 1974.

Haggard, Ernest A., Intraclass Correlation and the Analysis of Variance, New York: Dryden Press, 1958

Hause, J., "The Covariance Structure of Earnings and the On-the-Job Training Hypothesis," Annals of Economic and Social Measurement, 6(4), (1977), pp 335-365

Hausman, Jerry A., "Specification Tests in Econometrics," Econometrica, 46(6), (Nov 1978), pp 1251-1271

Hausman, Jerry A. and William E. Taylor, "Panel Data and Unobservable Individual Effects, Econometrica, 49(6), (Nov 1981) pp 1377-1398

Ishikawa, Tsuneo, "Family Structures and Family Values in the Theory of Income Distribution," The Journal of Political Economy, 83(5), (Oct 1975), pp 987-1008

Jencks, Christopher, Whe Gets Ahead? The Determinants of Economic Success in America, New York: Basic Books, 1977

Joreskog, Karl G., and Dag Sorbom, LISREL: Users Guide, Version V, Chicago: International Educational Services, 1981

Joreskog, Karl, "A General Method for Estimating a Liner Structural Equation System," from Structural Equation Models in the Social Sciences, Arthur S. Goldberger and Otis D. Duncan, eds., New York: Seminar Press, 1973, pp 85-112

Kearl, J. R., Clayne L. Pope and Larry T. Wimmer, "Household Wealth in a Settlement Economy: Utah, 1850-1870," Journal of Economic History, 40(3), (September, 1980), pp. 477-496.

Kearl, J. R. and Clayne L. Pope, "Life Cycles in Income and Wealth," (Working Paper, May, l983b).
Kearl, J. R. and Clayne L. Pope, "Economic Mobility in Utah from 1850 to 1900," (Working Paper, March, 1983a).
Leibowitz, Arleen, "Family Background and Economic Success: A Review of the Evidence," from Kinometrics: Determinants of Socioeconomic Success. Within and Between Families, Paul Taubman, ed., New York: North-Holland, 1977, pp 9-34
Lillard, Lee A. and Yoram Weiss, "Components of Variation in Panel Earnings Data: American Scientists 1960-70," Econometrica, 47(2), (March 1979), pp 437-454
Loury, Glenn C., "Intergenerational Transfers and the Distribution of Earnings," Econometrica, 49(3), (July 1981), pp 843-868
Maddala, G. S., "The Use of Variance Components Models in Pooling Cross Section and Time Series Data", Econometrica, 39(2), (March 1971), pp 341-358
Menchik, Paul L. "Primogeniture, Equal Sharing and the U. S. Distribution of Wealth," Quarterly Journal of Economics, 94, (March 1980), pp 299-316
Mundlak Yair, "On the Pooling of Time Series and Cross Section Data" Econometrica, 46(1), (Jan 1978), pp 69-85
Nerlove, Marc, "A Note on Error Components Mode1s," Econometrica, 39, (1971), pp 383-396
O1neck, Michael R., "On the Use of Sibling Data to Estimate the Effects of Family Background, Cognitive Skills and Schooling: Results from the Kalamazoo Brothers Study," from Kinometrics: Determinants of Socioeconomic Success With in and Between Families, Paul Taubman, ed., New York: North-Holland, 1977, pp 125-162
Searle, S. R., Linear Models, New York: Wiley, 1970
Sewell, William H. and Robert M. Hauser, "On the Effects of Families and Family Structure on Achievement," from Kinometrics: Determinants of Socioeconomic Success Within and Between Families, Paul Taubman, ed., New York: NorthHolland, 1977, pp 255-284

Sheshinski, Eytan and Yoram Weiss, "Inequality Within and Between Families," The Journal of Political Economy, 90(1), (Jan 1982), pp 105-127

Taubman, Paul, Sources of Inequality in Earnings, New York: North-Holland, 1975

Taubman, Paul, "The Determinants of Earnings: Genetics, Family and Other Environments: A Study of While Male Twins," American Economic Review, (Dec 1976)

Tomes, Nigel, "The Family, Inheritance and the Intergenerational Transmission of Inequality," The Journal of Political Economy, 89(5), (Oct 1981), pp 928-958

Wallace, T.D., and Ashiq Hussain, "The Use of Error Components Models in Combining Cross Section with Time Series Data," Econometrica, 37(1), (Jan 1969), pp 55-72

APPENDIX

TABLE A. 1

REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR INCOME OF BROTHERS

EQUATION

VARIABLE	MEAN	STANDARD	ESTIMATED	STANDARD	T-RATIO
NAME		DEVIATION	COEFFICIENT	ERROR	5568 DF
LNINCOME	6.0546	0.82302			
D 55	0.02115	0.14389	0.21339	0.08044	2.6528
D 57	0.07169	0.25799	0.24428	0.04983	4.9027
D59	0.03979	0.1954	0.21469	0.06181	3.4733
D 61	0.09498	0.2932	0.28737	0.04553	6.3112
D 66	0.06989	0.25499	0.31450	0.05025	6.2583
D70	0.06201	0.24119	0.11698	0.05237	2.2335
D75	0.06738	0.25071	0.18016	0.05088	3.5407
D 80	0.08423	0.27776	0.15762	0.04727	3.3346
D 85	0.14373	0.35084	0.14936	0.04057	3.6812
D 90	0.12939	0.33566	0.05193	0.04170	1.2454
D95	0.06882	0.25317	-0.02376	0.05052	-0.47035
D 00	0.14695	0.35409			
AGE	40.552	12.233			
AGE2 17	1794.1	1083.4			
FBE	0.24498	0.43012			
T	14.065	11.680			
R	0.82204	0.38251			
W	0.08298	0.27587			
C	0.09462	0.29272			
S	0.03154	0.17479			
L	0.08190	0.27424			
INTERCEPT			5.9155	0.02853	207.34
R2	0.0146				
N	5580				
r			0.19584	0.01313	14.915

TABLE A. 1 (Cont'd)
REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR INCOME OF BROTHERS

EQUATION 2

VARIABLE	MEAN	Standard	estimated	STANDARD	T-RATIO
NAME		deviation	COEFFICIENT	ERROR	5568 DF
LNINCOME	6.0546	0.82302			
D 55	0.02115	0.14389	0.40729	0.08081	5.0401
D 57	0.07169	0.25799	0.45265	0.05205	8.6970
D59	0.03979	0.19547	0.39291	0.06275	6.2613
D61	0.09498	0.29322	0.44133	0.04716	9.3585
D66	0.06989	0.25499	0.39509	0.05074	7.7859
D70	0.06201	0.24119	0.16500	0.05225	3.1579
D75	0.06738	0.25071	0.21766	0.05043	4.3159
D80	0.08423	0.27776	0.19284	0.04670	4.1292
D85	0.14373	0.35084	0.21051	0.04051	5.1966
D85	0.12939	0.33566	0.10090	0.04123	2.4472
	0.06882	0.25317	-0.02234	0.04962	-0.45015
$\begin{aligned} & \text { D } 95 \\ & \text { D } 00 \end{aligned}$	0.14695	0.35409			
AGE	40.552	12.233	0.06810	0.00525	12.960
AGE2 1	1794.1	1083.4	-0.00067	0.00006	-11.472
FBE	0.24498	0.43012			
T	14.965	11.680			
R	0.82204	0.38251			
W	0.08298	0.27587			
C	0.09462	0.29272			
S	0.03154	0.17479			
L	0.08190	0.27424			
INTERCEPT			4.2930	0.11790	36.411
R2	0.0504				
N	5580				
r			0.20451	0.01311	15.604

TABLE A. 1 (Cont'd)
REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR INCOME OF BROTHERS

EQUATION 3

VARIABLE NAME	MEAN	Standard	ESTIMATED	STANDARD	T-RATIO
		DEVIATION	COEFFICIENT	ERROR	5568 DF
LNINCOME	6.0546	0.82302			
D 55	0.02115	0.14389	0.46352	0.08132	5.7002
D57	0.07169	0.25799	0.46447	0.05311	8.7459
D59	0.03979	0.19547	0.38059	0.06358	5.9864
D61	0.09498	0.29322	0.44987	0.04796	9.3796
D66	0.06989	0.25499	0.40855	0.05090	8.0271
D70	0.06201	0.24119	0.19781	0.05239	3.7757
D 75	0.06738	0.25071	0.23600	0.05035	4.6869
D80	0.08423	0.27776	0.19086	0.04697	4.0639
D 85	0.14373	0.35084	0.23631	0.04067	5.8106
D90	0.12939	0.33566	0.13538	0.04111	3.2936
D 95	0.06882	0.25317	-0.02125	0.04930	-0.43104
D00	0.14695	0.35409			
AGE	40.552	12.233	0.06261	0.00530	11.817
AGE2 17	1794.1	1083.4	-0.00070	0.00006	-11.881
FBE	0.24498	0.43012	0.02583	0.02567	1.0062
T	14.965	11.680	0.00871	0.00190	4.5895
R	0.82204	0.38251	-0.26270	0.02875	-9.1372
W	0.08298	0.27587			
C	0.09462	0.29272			
S	0.03154	0.17479			
L	0.08190	0.27424			
INTERCEPT			4.6168	0.12122	38.088
R2	0.0673				
N	5580				
r			0.19190	0.01314	14.603

TABLE A. 1 (Cont'd)
REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR INCOME OF BROTHERS

EQUATION 4

VARIABLE	MEAN	STANDARD	ESTIMATED	STANDARD	T-RATIO
NAME		DEVIATION	COEFFICIENT	ERROR	5568 DF
LNINCOME	- 6.0546	0.82302			
D55	0.02115	0.14389	0.57622	0.08006	7.1975
D 57	0.07169	0.25799	0.57465	0.05264	10.917
D 59	0.03979	0.19547	0.47046	0.06255	7.5219
D61	0.09498	0.29322	0.54801	0.04747	11.545
D66	0.06989	0.25499	0.48118	0.05012	9.6001
D 70	0.06201	0.24119	0.26592	0.05155	5.1583
D 75	0.06738	0.25071	0.28322	0.04947	5.7247
D 80	0.08423	0.27776	0.23634	0.04617	5.1193
D 85	0.14373	0.35084	0.26772	0.03994	6.7031
D 90	0.12939	0.33566	0.16400	0.04034	4.0651
D 95	0.06882	0.25317	0.00236	0.04830	0.48840
D00	0.14695	0.35409			
AGE	40.552	12.233	0.06184	0.00521	11.875
AGE2 1	1794.1	1083.4	-0.00068	0.00006	-11.794
FBE	0.24498	0.43012	0.04284	0.02519	1.7005
T	14.065	11.680	0.00933	0.00186	5.0228
R	0.82204	0.38251	-0.23154	0.02878	-8.0464
W	0.08298	0.27587	0.55720	0.03918	14.223
C	0.09462	0.29272	-0.05692	0.03668	-1.5517
S	0.03154	0.17479	0.01913	0.06041	0.31660
L	0.08190	0.27424	-0.18635	0.03882	-4.8009
INTERCEPT			4.5015	0.12068	37.300
R2	0.1069				
N	5580				
r			0.17415	0.01318	13.208

TABLE A. 2

REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR WEALTH OF BROTHERS

EQUATION 1

VARIABLE NAME	MEAN	StANDARD	ESTIMATED	STANDARD	T-RATIO
		deviation	COEFFICIENT	ERROR	3938 DF
LNWEALTH	6.8751	1.0050			
D60	0.14199	0.34908	-0.11358	0.05355	-2.1212
D70	0.20233	0.40179	0.02603	0.04844	0.5374
DD 70	0.08570	0.27996	-0.32701	0.06335	-5.1623
D80	0.12475	0.33047	-0.31603	0.05575	-5.6687
D 90	0.22465	0.41740	0.22801	0.04717	4.8335
D00	0.22059	0.41470			
AGE	40.182	11.393			
AGE2 1	1744.4	1014.6			
FBE	0.25685	0.43695			
T	14.137	10.409			
R	0.80857	0.39348			
W	0.07201	0.25853			
C	0.10066	0.30092			
L	0.08316	0.27617			
S	0.03043	0.17178			
INTERCEPT			6.9021	0.03351	205.99
R2	0.0330				
$\mathrm{N} \quad 3$	3944				
r			0.31378	0.01512	20.749

TABLE A. 2 (Cont'd)

REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR WEALTH OF BROTHERS

EQUATION 2

VARIABLE NAME	MEAN	STANDARD	ESTIMATED	STANDARD	T-RATIO
		DEVIATION	COEFFICIENT	ERROR	3938 DF
LNWEALTH	- 6.8751	1.0050			
D 60	0.14199	0.34908	0.29638	0.05311	5.5808
D 70	0.20233	0.40179	0.24764	0.04648	5.3275
DD 70	0.08570	0.27996	-0.06671	0.06038	-1.1057
D 80	0.12475	0.33047	-0.13790	0.05271	-2.6162
D 90	0.22465	0.41740	0.41713	0.04490	9.2911
D 00	0.22059	0.41470			
AGE	40.182	11.393	0.09809	0.00734	13.3670
AGE2	1744.4	1014.6	-0.00078	0.00008	-9.4507
FBE	0.25685	0.43695			
T	14.137	10.409			
R	0.80857	0.39348			
W	0.07201	0.25853			
C	0.10066	0.30092			
L	0.08316	0.27617			
S	0.03043	0.17178			
INTERCEPT			4.1221	0.16369	25.182
R2	0.1538				
N	3944				
r			0.30250	0.01518	19.926

TABLE A. 2 (Cont'd)
REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR WEALTH OF BROTHERS

EQUATION 3

VARIABLE NAME	MEAN	STANDARD	ESTIMATED	STANDARD	T-RATIO
		DEVIATION	COEFFICIENT	ERROR	3938 DF
LNWEALTH	6.8751	1.0050			
D60	0.14199	0.34908	0.33829	0.05402	6.2625
D 70	0.20233	0.40179	0.33247	0.04684	7.0977
DD 70	0.08570	0.27996	0.02164	0.06025	0.3592
D 80	0.12475	0.33047	-0.09052	0.05226	-1.7321
D 90	0.22465	0.41740	0.47381	0.04451	10.6450
D00	0.22059	0.41470			
AGE	40.182	11.393	0.09326	0.00733	12.7260
AGE2 17	1744.4	1014.6	-0.00082	0.00008	-10.1390
FBE	0.25685	0.43695	-0.17641	0.03425	-5.1512
T	14.137	10.409	0.01321	0.00240	5.5040
R	0.80857	0.39348	-0.34890	0.03776	-9.2401
W	0.07201	0.25853			
C	0.10066	0.30092			
L	0.08316	0.27617			
S	0.03043	0.17178			
INTERCEPT			4.4869	0.16507	27.182
R2	0.1798				
N	3944				
r			0.29486	0.01522	19.374

TABLEA. 2 (Cont'd)

REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR WEALTH OF BROTHERS

EQUATION 4

VARIABLE NAME	MEAN	STANDARD	ESTIMATED	STANDARD	T-RATIO
		DEVIATION	COEFFICIENT	ERROR	3938 DF
LNWEALTH	6.8751	1.0050			
D 60	0.14199	0.34908	0.42889	0.05345	8.0240
D 70	0.20233	0.40179	0.39568	0.04620	8.5655
DD 70	0.08570	0.27996	0.07721	0.05921	1.3040
D 80	0.12475	0.33047	-0.04709	0.05140	-0.0162
D 90	0.22465	0.41740	0.47836	0.04364	10.9610
D 00	0.22059	0.41470			
AGE	40.182	11.393	0.08865	0.00721	12.3010
AGE2 17	1744.4	1014.6	-0.00077	0.00008	-9.7207
FBE	0.25685	0.43695	-0.14751	0.03368	-4.3803
T	14.137	10.409	0.01415	0.00235	6.0210
R	0.80857	0.39348	-0.36804	0.03779	-9.7404
W	0.07201	0.25853	0.23766	0.05687	4.1787
C	0.10066	0.30092	-0.39603	0.04864	-8.1426
L	0.08316	0.27617	-0.52661	0.05251	-10.0290
S	0.03043	0.17178	-0.17041	0.08377	-2.0343
INTERCEPT			4.6179	0.16362	28.224
R2	0.2158				
N	3944				
r			0.27749	0.01530	18.135

TABLE A. 3

REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR INCOME OF FULL BROTHERS

EQUATION 1
 NAME

LNINCOME	6.06520
AGE	40.66900
AGE2	1806.00000
T	14.92700
f	0.80453
FBE	0.24874
W	0.07385
C	0.10357
F	0.70553
S	0.0315 b
L	0.07842
D55	0.02561
D57	0.08642
D59	0.04527
D61	0.11340
D66	0.08093
D70	0.07042
D75	0.07042
D80	0.08962
D85	0.13352
D90	0.11203
D95	0.06081
D00	0.11157
INTERCEPT	

STANDARD DEVIATION

$$
\begin{array}{r}
0.81576 \\
12.33300 \\
1092.30000 \\
11.67000 \\
0.39661 \\
0.43233 \\
0.26155 \\
0.30473 \\
0.45586 \\
0.17482 \\
0.26886 \\
0.15797 \\
0.28102 \\
0.20791 \\
0.31711 \\
0.27276 \\
0.25588 \\
0.25588 \\
0.28567 \\
0.34017 \\
0.31543 \\
0.23902 \\
0.31487
\end{array}
$$

R 2	0.0164
N	4347
r	

ESTIMATED	STANDARD
COEFFICIENT	ERROR

T-RATIO 4341 DF

0.22369	0.08477
0.26717	0.05543
0.21116	0.06817
0.30976	0.05158
0.35031	0.05648
0.14690	0.05808
0.19951	0.05888
0.18709	0.05487
0.16549	0.04962
0.09852	0.05114
-0.04566	0.06166
5.8918	0.03662

$$
\begin{array}{r}
2.6389 \\
4.8197 \\
3.0976 \\
6.0050 \\
6.2020 \\
2.4950 \\
3.3886 \\
3.4095 \\
3.3352 \\
1.9040 \\
-0.7405 \\
160.88
\end{array}
$$

$$
\begin{array}{lll}
0.19378 & 0.01484 & 13.060
\end{array}
$$

TABLEA. 3 (Cont'd)

REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR INCOME OF FULL BROTHERS

EQUATION 2

VARIABLE NAME	MEAN	STANDARD	ESTIMATED	STANDARD	T-RATIO
		DEVIATION	COEFFICIENT	ERROR	4341 DF
LNINCOME	6.06520	0.81576			
AGE	40.66900	12.33300	0.06828	0.00590	11.5740
AGE2	1806.00000	1092.30000	-0.00066	0.00007	-10.0630
T	14.92700	11.67000			
R	0.80453	0.39661			
FBE	0.24874	0.43233			
W	0.07385	0.26155			
C	0.10357	0.30473			
F	0.70553	0.45586			
S	0.03155	0.17482			
L	0.07842	0.26886			
D 55	0.02561	0.15797	0.44002	0.08572	5.1332
D57	0.08642	0.28102	0.49462	0.05843	8.4658
D59	0.04527	0.20791	0.41315	0.06970	5.9275
D6 1	0.11340	0.31711	0.48135	0.05386	8.9379
D66	0.08093	0.27276	0.44343	0.05742	7.7227
D 70	0.07042	0.25588	0.19464	0.05894	3.3024
D 75	0.07042	0.25588	0.22235	0.05837	3.8092
D 80	0.08962	0.28567	0.22355	0.05425	4.1207
D 85	0.13352	0.34017	0.22800	0.04948	4.6081
D 90	0.11203	0.31543	0.14218	0.05097	2.7895
D95	0.06081	0.23902	-0.04625	0.06047	-0.7647
D00	0.11157	0.31487			
INTERCEP			4.2306	0.13354	31.679
R2	0.0549				
N	4347				
r			0.20139	0.01481	13.594

TABLEA. 3 (Cont'd)
REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR
INCOME OF FULL BROTHERS

EQUATION 3

VARIABLE NAME	MEAN	STANDARD	ESTIMATED	STANDARD	T-RATIO
		DEVIATION	COEFFICIENT	ERROR	4341 DF
LNINCOME	6.06520	0.81576			
AGE	40.66900	12.33300	0.06394	0.00595	10.7480
AGE2	1806.00000	1092.30000	-0.00068	0.00007	-10.3500
T	14.92700	11.67000	0.00665	0.00213	3.1204
R	0.80453	0.39661	-0.24124	0.03101	-7.7803
FBE	0.24874	0.43233	0.04012	0.02840	1.4127
W	0.07385	0.26155			
C	0.10357	0.30473			
F	0.70553	0.45586			
S	0.03155	0.17482			
L	0.07842	0.26886			
D55	0.02561	0.15797	0.48262	0.08678	5.5615
D57	0.08642	0.28102	0.49933	0.06002	8.3198
D59	0.04527	0.20791	0.39610	0.07078	5.5960
D61	0.11340	0.31711	0.48599	0.05494	8.8452
D66	0.08093	0.27276	0.45296	0.05758	7.8664
D70	0.07042	0.25588	0.22070	0.05913	3.7321
D75	0.07042	0.25588	0.23333	0.05822	4.0080
D 80	0.08962	0.28567	0.21405	0.05448	3.9292
D85	0.13352	0.34017	0.24592	0.04960	4.9583
D90	0.11203	0.31543	0.16436	0.05074	3.2390
D95	0.06081	0.23902	-0.04924	0.06014	-0.8187
D00	0.11157	0.31487			
INTERCEPT			4.5122	0.13676	32.092
R2	0.0700				
N	4347				
r			0.19109	0.01485	12.873

TABLEA. 3 (Cont'd)
REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR
INCOME OF FULL BROTHERS

EQUATION 4

VARIABLE NAME

LNINCOME

AGE

 AGE2 T RFBE W

R2	0.0997
N	4347
r	

STANDARD DEVIATION

ESTIMATED

COEFFICIENT
0.06291
-0.00066
0.00714
-0.22406
0.05483
0.46854
-0.04669
0.00588
10.7020
-10.2490
3.4009
0.00210
-7.1624
1.0535
10.1340
-1.1769
0.6621
0.04509
0.06811
0.6621
$\begin{array}{rrr}-0.24000 & 0.04466 & -5.3743 \\ 0.56417 & 0.08590 & 6.5677\end{array}$
$0.05972 \quad 9.7374$
$0.07001 \quad 6.6488$
$0.05456 \quad 10.2820$
$0.05695 \quad 8.8306$
$0.05844 \quad 4.5078$
$0.05745 \quad 4.5845$
$0.05378 \quad 4.4860$
$0.04891 \quad 5.3176$
$0.05005 \quad 3.6700$
$0.05925-0.5458$
0.13683
32.528

T-RATIO 4341 DF

TABLEA. 4

REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR

 WEALTH OF FULL BROTHERS
EQUATION 1

VARIABLE	MEAN	Standard	ESTIMATED	Standard	T-RATio
NAME		deviation	COEFFICIENT	ERROR	3034 DF
LNWEALTH	6.89570	0.96879			
AGE	40.43600	11.50000			
AGE2	1767.20000	1031.30000			
D60	0.17632	0.38115	-0.19100	0.05849	-3.2655
D70	0.23158	0.42191	-0.03560	0.05494	-0.6480
DD70	0.10263	0.30343	-0.38333	0.06807	-5.6311
D80	0.13158	0.33809	-0.34506	0.06327	-5.4591
D90	0.18618	0.38932	0.18446	0.05772	3.1956
D00	0.17171	0.37719			
W	0.06151	0.24031			
C	0.10855	0.31113			
L	0.08322	0.27627			
S	0.03092	0.17313			
FBE	0.28586	0.45190			
R	0.80789	0.39402			
T	14.20500	10.37300			
INTERCEPT			6.9880	0.04163	167.85
R2	0.0360				
$\mathrm{N} \quad 30$	3040				
r			0.34679	0.01702	20.379

TABLEA. 4 (Cont'd) REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR WEALTH OF FULL BROTHERS

EQUATION 2

VARIABLE	MEAN
NAME	
LNWEALTH	6.89570
AGE	40.43600
AGE2	1767.20000
D60	0.17632
D70	0.23158
DD70	0.10263
D80	0.13158
D90	0.18618
D00	0.17171
W	0.06151
C	0.10855
L	0.08322
S	0.03092
FBE	0.28586
R	0.80789
T	14.20500

INTERCEPT

R2	0.1478
N	3040
r	

STANDARD DEVIATION

0.96879
11.50000
1031.30000
0.38115
0.42191
0.30343
0.33809
0.38932
0.37719
0.24031
0.31113
0.27627
0.17313
0.45190
0.39402
10.37300

ESTIMATED STANDARD COEFFICIENT ERROR

0.09754	0.00800
-0.00080	0.00009
0.20090	0.05874
0.17763	0.05319
-0.14731	0.06540
-0.19784	0.05998
0.32611	0.05482

12.1930
-8.9695
3.4201
3.3398
-2.2523
-3.2983
5.9484
4.2625
0.18051
23.614
. 18051
0.01723
18.195

TABLE A. 4 (Cont'd)
REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR WEALTH OF FULL BROTHERS

EQUATION 3

VARIABLE NAME	MEAN	STANDARD	ESTIMATED	TANDARD	T-RATIO
		deviation	COEFFICIENT	ERROR	3034 DF
LNWEAL TH	- 6.89570	0.96879			
AGE	40.43600	11.50000	0.09180	0.00797	11.5250
AGE2	1767.20000	1031.30000	-0.00083	0.00009	-9.4886
D60	0.17632	0.38115	0.22976	0.05985	3.8393
D 70	0.23158	0.42191	0.24606	0.05303	4.6398
DD 70	0.10263	0.30343	-0.07528	0.06488	-1.1604
D80	0.13158	0.33809	-0.15646	0.05923	-2.6418
D90	0.18618	0.38932	0.37057	0.05405	6.8564
D00	0.17171	0.37719			
W	0.06151	0.24031			
C	0.10855	0.31113			
L	0.08322	0.27627			
S	0.03092	0.17313			
FBE	0.28586	0.45190	-0.21721	0.03595	-6.0427
R	0.80789	0.39402	-0.33804	0.04146	-8.1527
T	14.20500	10.37300	0.01285	0.00258	4.9800
INTERCEPT					
R2 $\quad 0.1783$					
N	3040				
r			0.30289	0.01729	17.517

TABLEA. 4 (Cont'd)
REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR WEALTH OF FULL BROTHERS

TABLE A. 5
REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR INCOME OF HALF BROTHERS

VARIABLE

 NAMELNINCOME AGE AGE2 T R FBE W C F S
L
D55
D57
D59
D61
D66
D70
D 75
D 80
D85
D 90
D95
D0 0
INTERCEPT

R2

$\mathrm{N} \quad 1206$

MEAN

$$
\begin{array}{r}
6.0159 \\
40.12500 \\
1750.60000 \\
15.10100 \\
0.88557 \\
0.23134 \\
0.11609 \\
0.06219 \\
0.69486 \\
0.03151 \\
0.09453 \\
0.00498 \\
0.01824 \\
0.01990 \\
0.02819 \\
0.02985 \\
0.03151 \\
0.05639 \\
0.06468 \\
0.18076 \\
0.19237 \\
0.09784
\end{array}
$$

EQUATION 1

TABLE A. 5 (Cont'd)
REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR INCOME OF HALF BROTHERS

EQUATION 2

Variable	MEAN	STANDARD	ESTIMATED	STANDARD	T-RATIO
NAME		deviation	COEFFICIENT	ERROR	1206 DF
LNINCOME	6.0159	0.84808			
AGE	40.12500	11.86000	0.06909	0.01181	5.8520
AGE2	1750.60000	1049.70000	-0.00071	0.00013	-5.3952
T	15.10100	11.72100			
R	0.88557	0.31846			
FBE	0.23134	0.42187			
W	0.11609	0.32046			
C	0.06219	0.24160			
F	0.69486	0.46066			
S	0.03151	0.17476			
L	0.09453	0.29268			
D55	0.00498	0.07039	0.58815	0.34521	1.7037
D 57	0.01824	0.13388	0.45228	0.18886	2.3948
D 59	0.01990	0.13972	0.53057	0.17882	2.9671
D6 1	0.02819	0.16559	0.43192	0.15440	2.7975
D66	0.02985	0.17025	0.26074	0.14880	1.7523
D70	0.03151	0.17476	0.16472	0.14606	1.1278
D75	0.05639	0.23076	0.29045	$0.114<9$	2.5414
D 80	0.06468	0.24606	0.15085	0.10621	1.4203
D85	0.18076	0.38498	0.20216	0.07492	2.6983
D 90	0.19237	0.39433	0.02579	0.07310	0.3529
D95	0.09784	0.29723	0.04842	0.08939	0.5417
D00	0.27529	0.44685			
INTERCEPT			4.3685	0.26267	16.631
R2	0.0329				
N	1206				
r			0.20453	0.01994	10.258

TABLEA. 5 (Cont'd)

REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR INCOME OF HALF BROTHERS

EQUATION 3

VARIABLE	MEAN	STANDARD	ESTIMATED	STANDARD	T-RATIO
NAME		DEVIATION	COEFFICIENT	ERROR	1206 DF
LNINCOME	6.0159	0.84808			
AGE	40.12500	11.86 .000	0.05794	0.01189	4.8738
AGE2	1750.60000	1049.70000	-0.00075	0.00013	-5.7312
T	15.10100	11.72100	0.01871	0.00426	4.3901
R	0.88557	0.31846	-0.38864	0.07779	-4.9961
FBE	0.23134	0.42187	-0.02936	0.06555	-0.4479
D55	0.00498	0.07039	0.82284	0.34279	2.4004
D57	0.01824	0.13388	0.52819	0.18923	2.7913
D59	0.01990	0.13972	0.5885 ¢	0.18443	3.1913
D 61	0.02819	0.16559	0.46792	0.16030	2.9190
D66	0.02985	0.17025	0.35003	0.15588	2.2456
D 70	0.03151	0.17476	0.25452	0.14789	1.7210
D75	0.05639	0.23076	0.37892	0.11604	3.2653
D 80	0.06468	0.24606	0.21162	0.10789	1.9615
D 85	0.18076	0.38498	0.27265	0.07626	3.5753
D 90	0.19237	0.39433	0.12074	0.07387	1.6345
D 95	0.09784	0.29723	0.06860	0.08824	0.7774
D00	0.27529	0.44685			
W	0.11609	0.32046			
C	0.06219	0.24160			
F	0.69486	0.46066			
S	0.03151	0.17476			
L	0.09453	0.29268			
INTERCEPT			4.8957	0.27183	18.010
R2	0.0635				
N	1206				
r			0.18889	0.02830	6.675

TABLE A. 5 (Cont'd)
REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR INCOME OF HALF BROTHERS

EQUATION 4

VARIABLE	MEAN	Standard	ESTIMATED	STANDARD	T-RATIO
NAME		deviation	COEFFICIENT	ERROR	1206 DF
LNINCOME	6.0159	0.84808			
AGE	40.12500	11.86000	0.05967	0.01144	5.2179
AGE2	1750.60000	1049.70000	-0.00073	0.00013	-5.8091
T	15.10100	11.72100	0.01846	0.00410	4.5042
R	0.88557	0.31846	-0.32528	0.07536	-4.3166
FBE	0.23134	0.42187	0.01091	0.06300	0.1731
W	0.11609	0.32046	0.76947	0.07448	10.3310
C	0.06219	0.24160	-0.13469	0.09594	-1.4040
F	0.69486	0.46066			
S	0.03151	0.17476	-0.06193	0.13130	-0.4717
L	0.09453	0.29268	-0.03215	0.07991	-0.4023
D55	0.00498	0.07039	0.98734	0.32820	3.0084
D57	0.01824	0.13388	0.72442	0.18179	3.9850
D59	0.01990	0.13972	0.66866	0.17656	3.7873
D61	0.02819	0.16559	0.61956	0.15436	4.0136
D66	0.02985	0.17025	0.44644	0.14942	2.9878
D70	0.03151	0.17476	0.41551	0.14218	2.9224
D75	0.05639	0.23076	0.48327	0.11143	4.3370
D 80	0.06468	0.24606	0.33520	0.10394	3.2250
D 85	0.18076	0.38498	0.36459	0.07351	4.9599
D90	0.19237	0.39433	0.18194	0.07098	2.5634
D95	0.09784	0.29723	0.11141	0.08456	1.3175
D00	0.27529	0.44685			
INTERCEPT			4.5878	0.26472	17.331
R2	0.1454				
N	1206				
r			0.14554	0.02851	5.105

TABLE A. 6

REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR WEALTH OF HALF BROTHERS

EQUATION 1

VARIABLE NAME	MEAN	STANDARD	ESTIMATED COEFFICIENT	STANDARD ERROR	$\begin{aligned} & \text { T-RATIC } \\ & 889 \mathrm{DF} \end{aligned}$
		deviation			
L NWEAL TH	-6.80570	1.11620			
AGE	39.33100	10.99100			
AGE2	1667.60000	953.01000			
D60	0.02655	0.16085	-0.17295	0.23085	-0.7492
D 70	0.10398	0.30541	-0.02652	0.12715	-0.2086
DD 70	0.02876	0.16723	-0.55253	0.22239	-2.4845
D 80	0.10177	0.30251	-0.43433	0.12823	-3.3871
D90	0.35398	0.47847	0.28198	0.08472	-3.3284
D00	0.38496	0.48685			
W	0.10730	0.30967			
C	0.07412	0.26210			
L	0.08297	0.27598			
S	0.02876	0.16723			
FBE	0.15929	0.36615			
R	0.81084	0.39185			
T	13.91000	10.53300			
INTERCEPT			6.7734	0.059	115.52
R2	0.0396				
N	904				
r			0.21203	0.03254	6.516

TABLE A. 6 (Cont'd)
REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR WEALTH OF HALF BROTHERS

EQUATION 2

VARIABLE	MEAN	STANDARD	ESTIMATED	STANDARD	T-RATIO
NAME		deviation	COEFFICIENT	ERROR	889 DF
LNWEALTH	6.80570	1.11620			
AGE	39.33100	10.99100	0.09393	0.01796	5.2311
AGE2	1667.60000	953.01000	-0.00063	0.00021	-3.0934
D60	0.02655	0.16085	0.48980	0.22126	2.2137
D70	0.10398	0.30541	0.29903	0.12109	2.4694
DD 70	0.02876	0.16723	0.06763	0.21281	0.3178
D80	0.10177	0.30251	-0.05056	0.12317	-0.4105
D90	0.35398	0.47847	0.59826	0.08290	7.2170
D00	0.38496	0.48685			
W	0.10730	0.30967			
c	0.07412	0.26210			
L	0.08297	0.27598			
S	0.02876	0.16723			
FBE	0.15929	0.36615			
R	0.81084	0.39185			
T	13.91000	10.53300			
INTERCEPT			3.9150	0.390	10.031
R2	0.1729				
N	904				8.439
			0.27051	0.03205	8.439

TABLEA. 6 (Cont'd)
REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR WEALTH OF HALF BROTHERS

EQUATION 3

VARIABLE	MEAN	STANDARD	ESTIMATED	STANDARD	T-RATIO
NAME		DEVIATION	COEFFICIENT	ERROR	889 DF
LNWEALTH	6.80570	1.11620			
AGE	39.33100	10.09100	0.09619	0.01794	5.3604
AGE2	1667.60000	953.01000	-0.00074	0.00021	-3.6162
D 60	0.02655	0.16085	0.37469	0.23087	1.6229
D 70	0.10398	0.30541	0.38589	$0.129 y 7$	2.9691
DD70	0.02876	0.16723	0.21007	0.21556	0.9745
D 80	0.10177	0.30251	-0.00771	0.12266	-0.6283
D 90	0.35398	0.47847	0.67350	0.08375	8.0419
D0 0	0.38496	0.48685			
FBE	0.15929	0.36615	-0.00473	0.10347	-0.4575
R	0.81084	0.39185	-0.43687	0.08952	-4.8802
T	13.91000	10.53300	0.009 ¢2	0.00627	1.5174
W	0.10730	0.30967			
C	0.07412	0.26210			
L	0.08297	0.27598			
S	0.02876	0.16723			
INTERCEP			4.1889	0.39289	10.662
R2	0.1926				
N	904				
r			0.25524	0.03219	7.928

TABLE A. 6 (Cont'd)
REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR
WEALTH OF HALF BROTHERS

EQUATION 4

TABLE A. 7

REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR INCOME OF FATHERS AND SONS

EQUATION 1

VARIABLE	MEAN	Standard	EStimated	STANDARD	T-RATIO
NAME		deviation	COEFFICIENT	ERROR	4612 DF
LNINCOME	6.06330	0.86465			
D55	0.03460	0.18279	0.36219	0.07762	4.6664
D57	0.07915	0.27001	0.37080	0.05809	6.2962
D 59	0.04931	0.21653	0.23608	0.06834	3.4547
D61	0.11246	0.31596	0.38047	0.05367	7.0892
D66	0.08261	0.27533	0.38507	0.05818	6.6185
D70	0.06964	0.25456	0.14124	0.06115	2.3096
D75	0.07050	0.25602	0.24302	0.06093	3.9888
D 80	0.09343	0.29106	0.17199	0.05626	3.0572
D85	0.14273	0.34984	0.09942	0.05083	1.9559
D90	0.10727	0.30949	0.07194	0.05430	1.3250
D95	0.05234	0.22273	-0.11566	0.06697	-1.7269
D 00	0.10597	0.30783			
AGE	47.92400	17.99000			
AGE2	2620.3	1797.8			
FBE	0.30255	0.45941			
T	15.76800	13.12600			
R	0.82288	0.38181			
W	0.06856	0.25272			
C	0.12284	0.32829			
S	0.02379	0.15241			
L	0.08715	0.28209			
F	0.69420	0.46079			
INTERCEPT			5.8763	0.03851	152.60
R2	0.0281				
N	4624				
r			0.08672	0.01465	5.918

TABLEA. 7 (Cont'd)

```
REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR
INCOME OF FATHERS AND SONS
```

EQUATION 2

VARIABLE	MEAN	STANDARD	ESTIMATED	STANDARD	T-RATIO
NAME		deviation	COEFFICIENT	ERROR	4612 DF
LNINCOME	6.06330	0.86465			
D 55	0.03460	0.18279	0.42481	0.07500	5.6639
D57	0.07915	0.27001	0.43003	0.05719	7.5197
D59	0.04931	0.21653	0.28086	0.06605	4.2525
D61	0.11246	0.31596	0.40109	0.05201	7.7114
D66	0.08261	0.27533	0.37150	0.05609	6.6239
D 70	0.06964	0.25456	0.13025	0.05880	2.2154
D75	0.07050	0.25602	0.24540	0.05856	4.1909
D80	0.09343	0.29106	0.18901	0.05412	3.4926
D 85	0.14273	0.34984	0.12060	0.04888	2.4670
D 90	0.10727	0.30949	0.07850	0.05215	1.5054
D 95	0.05234	0.22273	-0.11063	0.06419	-1.7234
D 00	0.10597	0.30783			
AGE	47.924	17.990	0.07787	0.00398	19.547
AGE2	2620.3	1797.8	-0.00073	0.00004	-18.329
FBE	0.30255	0.45941			
T	15.768	13.126			
R	0.82288	0.38181			
W	0.06856	0.25272			
C	0.12284	0.32829			
S	0.02379	0.15241			
L	0.08715	0.28209			
INTERCEPT			4.0453	0.09757	41.462
R2	0.1073				
N	4624				
r			0.18180	0.01446	12.569

TABLE A. 7 (Cont'd)

REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR INCOME OF FATHERS AND SONS

EQUATION 3

TABLE A. 7 (Cont'd)

REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR INCOME OF FATHERS AND SONS

EQUATION 4

VARIABLE NAME	MEAN	STANDARD	ESTIMATED	STANDARD	T-RATIO
		DEVIATION	COEFFICIENT	ERROR	4612 DF
LNINCOME	6.0633	0.86465			
D 55	0.03460	0.18279	0.72876	0.08081	9.0187
D 57	0.07915	0.27001	0.70863	0.06483	10.930
D 59	0.04931	0.21653	0.53168	0.07135	7.4520
D61	0.11246	0.31596	0.67045	0.05848	11.464
D66	0.08261	0.27533	0.61288	0.06014	10.191
D 70	0.06964	0.25456	0.34377	0.06107	5.6288
D 75	0.07050	0.25602	0.40156	0.05972	6.7238
D 80	0.09343	0.29106	0.32834	0.05513	5.9561
D 85	0.14273	0.34984	0.23521	0.04930	4.7707
D 90	0.10727	0.30949	0.16355	0.05176	3.1597
D 95	0.05234	0.22273	-0.07467	0.06294	-1.1863
D 00	0.10597	0.30783			
AGE	47.924	17.990	0.06852	0.00405	16.913
AGE2 2	2620.3	1797.8	-0.00069	0.00004	-17.595
FBE	0.30255	0.45941	-0.00528	0.02647	-0.19959
T	15.768	13.126	0.01365	0.00165	8.2519
R	0.82288	0.38181	-0.16374	0.03198	-5.1207
W	0.06856	0.25272	0.42561	0.04813	8.8433
C	0.12284	0.32829	-0.12843	0.03673	-3.4967
S	0.02379	0.15241	-0.02483	0.07819	-0.31700
L	0.08715	0.28209	-0.16480	0.04274	-3.8563
INTERCEPT			4.1524	0.10159	40.873
R2	0.1460				
N	4624				
r			0.15239	0.01454	10.483

TABLE A. 8

REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR WEALTH OF FATHERS AND SONS

EQUATION 1

VARIABLE	MEAN	STANDARD DEVIATION	ESTIMATED COEFFICIENT	STANDARD ERROR	T-RATIO 2760
LAF					

TABLE A. 8 (Cont'd)

REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR WEALTH OF FATHERS AND SONS

EQUATION 2

Variable	MEAN	STANDARD	ESTIMATED	STANDARD	T-RATIO
NAME		deviation	COEFFICIENT	ERROR	2760 DF
LNWEALTH	6.9730	1.0276			
D60	0.19089	0.39307	0.00569	0.06068	0.0938
D70	0.25958	0.43848	0.13504	0.05602	2.4108
DD70	0.09472	0.29288	-0.12495	0.07302	-1.7112
D80	0.11569	0.31991	-0.24061	0.06833	-3.5210
D90	0.15691	0.36378	0.35748	0.06265	5.7064
D00	0.18221	0.38609			
AGE	50.528	17.759	0.09538	0.00651	14.660
AGE2	2868.3	1866.3	-0.00078	0.00006	-12.584
FBE	0.33044	0.47046			
T	17.910	12.332			
R	0.82538	0.37971			
W	0.06580	0.24798			
C	0.12473	0.33047			
L	0.09436	0.29238			
S	0.02965	0.16964			
INTERCEPT			4.3378	0.16130	26.893
R2	0.1397				
N	2766				
r			0.21714	0.01857	11.695

TABLE A. 8 (Cont'd)
REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR
WEALTH OF FATHERS AND SONS

EQUATION 3

VARIABLE	MEAN	STANDARD DEVIATION	ESTIMATED COEFFICIENT	STANDARD ERROR	T-RATIO 2760
LAF					

TABLE A. 8 (Cont'd)

REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR WEALTH OF FATHERS AND SONS

EQUATION 4

VARIABLE	MEAN	STANDARD	ESTIMATED	STANDARD	T-RATIO
NAME		DEVIATION	COEFFICIENT	ERROR	2760 DF
LNWEALTH	6.9730	1.0276			
D 60	0.19089	0.39307	0.49707	0.07271	6.8366
D 70	0.25958	0.43848	0.52379	0.06116	8.5642
DD 70	0.09472	0.29288	0.26995	0.07555	3.5733
D 80	0.11569	0.31991	0.02091	0.06777	0.30847
D 90	0.15691	0.36378	0.46673	0.05979	7.8067
D00	0.18221	0.38609			
AGE	50.528	17.759	0.07942	0.00630	12.598
AGE2	2868.3	1866.3	-0.00072	0.00006	-12.109
FBE	0.33044	0.47046	-0.19344	0.03730	-5.1858
T	17.910	12.332	0.02718	0.00242	11.222
R	0.82538	0.37971	-0.36945	0.04613	-8.0087
W	0.06580	0.24798	0.44178	0.07133	6.1939
C	0.12473	0.33047	-0.27043	0.05353	-5.0523
L	0.09436	0.29238	-0.41046	0.06039	-6.7973
S	0.02965	0.16964	-0.03214	0.10192	-0.31536
INTERCEPT			4.6128	0.16319	28.266
R2	0.2351				
N	2766				
\mathbf{r}			0.18143	0.01871	9.700

TABLE A. 9
REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR INCOME OF BROTHERS
(WITH FATHER'S CHARACTERISTICS)

EQUATION 1

VARIABLE	MEAN	Standard	estimated	Standard	T-RATIO
NAME		DEVIATION	COEFFICIENT	ERROR	1632 DF
LNINCOME	6.04830	0.79167			
AGE	33.80400	9.46890			
AGE2 1	1232.30000	764.68000			
W	0.09097	0.28765			
C	0.06960	0.25454			
F	0.70269	0.45722			
S	0.03968	0.19527			
L	0.08730	0.28236			
FBE	0.24908	0.43261			
T	9.22410	8.13820			
R	0.84005	0.36667			
D 55	0.02198	0.14666	0.12760	0.14616	0.87303
D57	0.07936	0.27039	0.08562	0.09404	0.91048
D59	0.05250	0.22311	0.06189	0.10628	0.58230
D6 1	0.15140	0.35855	0.07734	0.08100	0.95473
D 66	0.08791	0.28325	0.20206	0.09152	2.20770
D70	0.06349	0.24392	0.04404	0.10021	0.43948
D75	0.07082	0.25660	0.11255	0.09707	1.15950
D 80	0.08547	0.27967	0.06901	0.09220	0.74855
D 85	0.16239	0.36892	-0.10290	0.07995	-1.28720
D 90	0.10379	0.30507	-0.03015	0.08783	-0.34330
D95	0.02686	0.16173	-0.05936	0.13496	-0.43982
D00	0.09402	0.29194			
LNFINCOME	E 6.28860	0.98115			
FAGE	66.31700	8.94610			
FAGE2 4	4478.00000	1230.30000			
FW	0.06960	0.25454			
FC	0.12332	0.32891			
FF	0.74359	0.43678			
FS	0.01709	0.12966			
FL	0.04640	0.21041			
FFBE	0.32357	0.46798			
FT	23.14200	13.76200			
FR	0.84127	0.36554			
KIDS	14.66900	8.23390			
INF	1.31620	1.91230			
SIB	13.26300	6.98010			
Plural	2.67520	1.60620			
WIVES	1.90230	1.19870			
INTERCEPT			6.0107	0.06362	94.476
R2	0.0054				
$\mathrm{N} \quad 1$	1638				
r			0.11989	0.02402	4.991

TABLE A. 9 (Cont'd)

REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR INCOME OF BROTHERS
 (WITH FATHER'S CHARACTERISTICS)

EQUATION 2

VARIABLE	MEAN	STANDARD	ESTIMATED	STANDARD	T-RATIO
NAME		DEVIATION	COEFFICIENT	ERROR	1632 DF
LNINCOME	6.04830	0.79167			
AGE	33.80400	9.46890	0.05779	0.00950	6.08580
AGE2 1	1232.30000	764.68000	-0.00044	0.00012	-3.77860
W	0.09097	0.28765			
C	0.06960	0.25454			
F	0.70269	0.45722			
S	0.03968	0.19527			
L	0.08730	0.28236			
FBE	0.24908	0.43261			
T	9.22410	8.13820			
R	0.84005	0.36667			
D55	0.02198	0.14666	0.44293	0.14414	3.07290
D 57	0.07936	0.27039	0.42330	0.09601	4.40890
D59	0.05250	0.22311	0.41143	0.10759	3.82410
D 61	0.15140	0.35855	0.38441	0.08318	4.62140
D 66	0.08791	0.28325	0.35967	0.08977	4.00670
D 70	0.06349	0.24392	0.15851	0.09 .747	1.62620
D 75	0.07082	0.25660	0.26195	0.09477	2.76420
D 80	0.08547	0.27967	0.15723	0.08961	1.75470
D 85	0.16239	0.36892	0.06372	0.07873	0.80933
D90	0.10379	0.30507	0.07284	0.08538	0.85303
D 95	0.02686	0.16173	-0.10709	0.13105	-0.81720
D00	0.09402	0.29194			
LNFINCOME	E 6.28860	0.98115			
FAGE	66.31700	8.94610			
FAGE2 4	4478.00000	1230.30000			
F W	0.06960	0.25454			
FC	0.12332	0.32891			
FS	0.01709	0.12966			
FL	0.04640	0.21041			
FFBE	0.32357	0.46798			
FT	23.14200	13.76200			
FR	0.84127	0.36554			
KIDS	14.66900	8.23390			
INF	1.31620	1.91230			
SIB	13.26300	6.98010			
PLURAL	2.67520	1.60620			
WIVES	1.90230	1.19870			
FF	0.74359	0.43678			
INTERCEPT			4.4201	0.20681	21.372
R2	0.0718				
N	1638				
r			0.16709	0.02386	7.004

TABLE A. 9 (Cont'd)

REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR INCOME OF BROTHERS
 (WITH FATHER'S CHARACTERISTICS)

EQUATION 3

VARIABLENAME	MEAN	Standard	EStimated	STANDARD	T-RATIO
		DEVIATION	COEFFICIENT	ERROR	1632 DF
LNINCOME	6.04830	0.79167			
$A^{\prime} \mathrm{G}$ E	33.80400	9.46890	0.05080	0.01040	4.88620
AGE2 1	1232.30000	764.68000	-0.00044	0.00012	-3.74870
W	0.09097	0.28765			
C	0.06960	0.25454			
F	0.70269	0.45722			
S	0.03968	0.19527			
L	0.08730	0.28236			
D 55	0.02198	0.14666	0.51140	0.14403	3.55060
	0.07936	0.27039	0.41025	0.09724	4.21910
D59	0.05250	0.22311	0.41859	0.10840	3.86140
D 61	0.15140	0.35855	0.41430	0.08405	4.92930
D66	0.08791	0.28325	0.39044	0.08976	4.34970
D70	0.06349	0.24392	0.21721	0.09842	2.20710
D75	0.07082	0.25660	0.29965	0.09450	3.17100
D 80	0.08547	0.27967	0.15905	0.08951	1.77690
D 85	0.16239	0.36892	0.14744	0.08012	1.84020
D90	0.10379	0.30507	0.14980	0.08589	1.74410
D 95	0.02686	0.16173	-0.08735	0.13015	-0.67114
T	9.22410	8.13820	0.01082	0.00386	2.80000
R	0.84005	0.36667	-0.31549	0.05362	-5.88420
FBE	0.24908	0.43261	0.02468	0.04496	0.54905
D 00	0.09402	0.29194			
LNFINCOME	E 6.28860	0.98115			
FAGE	66.31700	8.94610			
FAGE2 4	4478.00000	1230.30000			
FW	0.06960	0.25454			
FC	0.12332	0.32891			
FS	0.01709	0.12966			
FL	0.04640	0.21041			
FFBE	0.32357	0.46798			
FT	23.14200	13.76200			
FR	0.84127	0.36554			
KIDS	14.66900	8.23390			
INF	1.31620	1.91230			
SIB	13.26300	6.98010			
PLURAL	2.67520	1.60620			
WIVES	1.90230	1.19870			
FF	0.74359	0.43678			
INTERCEPT			4.7839	0.21995	21.750
R2	0.0931				
N	1638				
r			0.15238	0.02391	6.372

TABLE A. 9 (Cont'd)
REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR INCOME OF BROTHERS (VITH FATHER'S CHARACTERISTICS)

EQUATION 4

VARIABLE NAME	MEAN	STANDARD	ESTIMATED	STANDARD	T-RATIO
		DEVIATION	COEFFICIENT	ERROR	1632 DF
LNINCOME	6.04830	0.79167			
AGE	33.80400	9.46890	0.05172	0.01015	5.09670
AGE2 1	1232.30000	764.68000	-0.00041	0.00012	-3.56440
D55	0.02198	0.14666	0.65908	0.14158	4.65500
D 57	0.07936	0.27039	0.58946	0.09670	6.09600
D59	0.05250	0.22311	0.59166	0.10721	5.51880
D61	0.15140	0.35855	0.58329	0.08397	6.94640
D66	0.08791	0.28325	0.52915	0.08874	5.96290
D 70	0.06349	0.24392	0.29818	0.09642	3.09240
D75	0.07082	0.25660	0.37312	0.09256	4.03130
D80	0.08547	0.27967	0.24988	0.08816	2.83440
D85	0.16239	0.36892	0.18922	0.07806	2.42400
D 90	0.10379	0.30507	0.22720	0.08395	2.70650
D 95	0.02686	0.16173	-0.02047	0.12703	-0.16117
D00	0.09402	0.29194			
T	9.22410	8.13820	0.00990	0.00375	2.64210
R	0.84005	0.36667	-0.29588	0.05291	-5.59240
FBE	0.24908	0.43261	0.03484	0.04393	0.79307
W	0.09097	0.28765	0.60794	0.06740	9.02000
C	0.06960	0.25454	-0.00213	20.0729	-0.29256
F	0.70269	0.45722			
S	0.03968	0.19527	-0.14266	0.09519	-1.49870
L	0.08730	0.28236	-0.24648	0.06585	-3.74300
LNFINCOME	E 6.28860	0.98115			
FAGE	66.31700	8.94610			
FAGE2 4	4478.00000	1230.30000			
FT	23.14200	13.76200			
FR	0.84127	0.36554			
FFBE	0.32357	0.46798			
FW	0.06960	0.25454			
FC	0.12332	0.32891			
FF	0.74359	0.43678			
FS	0.01709	0.12966			
FL	0.04640	0.21041			
KIDS	14.66900	8.23390			
INF	1.31620	1.91230			
SIB	13.26300	6.98010			
plural	2.67520	1.60620			
WIVES	1.90230	1.19870			
INTERCEPT			4.5755	0.21968	20.828

REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR WEALTH OF BROTHERS
 (WITH FATHER'S CHARACTERISTICS)

EQUATION 1

VARIABLE	- MEAN	STANDARD	ESTIMATED	STANDARD	T-RATIO
NAME		deviation	COEFFICIENT	ERROR	1304 DF
LNWEALTH	- 6.78630	0.93108			
AGE	36.15700	8.83670			
AGE2	1385.40000	724.30000			
D60	0.17099	0.37665	-0.06644	0.08495	-0.78202
D70	0.21374	0.41010	0.07130	0.08037	0.88718
DD70	0.09466	0.29285	-0.17438	0.10137	-1.7203
D80	0.13740	0.34441	-0.29980	0.09025	-3.3221
D 90	0.19389	0.39550	0.14849	0.08228	1.8047
D 00	0.18931	0.39191			
W	0.08015	0.27163			
C	0.07786	0.26806			
L	0.08092	0.27281			
S	0.02595	0.15906			
FBE	0.25038	0.43340			
T	11.15400	7.61440			
R	0.73588	0.44103			
	H 7.40460	1.10730			
LNFWEALTH	69.38000	8.88040			
FAGE2 4	4892.40000	1245.40000			
FW	0.06107	0.23955			
FC	0.10840	0.31100			
FL	0.07176	0.25818			
FS	0.02290	0.14964			
FFBE	0.33893	0.47353			
FT	26.46900	14.09100			
FR	0.66718	0.47140			
KIDS	16.31000	10.70600			
INF	1.47630	2.07480			
PLURAL	2.74050	1.65920			
SIB	14.75100	9.19230			
INTERCEPT			6.8113	0.05852	116.38
R2	0.0202				
$\mathrm{N} \quad 1$	1310				
r			0.26198	0.02615	10.018

TABLE A. 10 (Cont'd)

```
REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR
    WEALTH OF BROTHERS
    ( WITH FATHER'S CHARACTERISTICS )
```

VARIABLE MEAN
NAME
LNWEALTH 6.78630

AGE	36.15700
AGE2	1385.40000

D60	0.17099
D70	0.21374

DD70	0.09466
D80	0.13740

D90	0.19389
D00	0.18931

DOO	0.18931
W	0.08015
C	0.07786
L	0.08092
S	0.02595
FBE	0.25038

T	11.15400
R	0.73588

LNFWEALTH $\quad 7.40460$	
FAGE	69.38000

FAGE2 $\quad 4892.40000$

FW	0.06107
FC	0.10840

FL $\quad 0.07176$

FS	0.02290
FFBE	0.33893

FFBE $\quad 0.33893$
FT 26.46900
FR $\quad 0.66718$
KIDS $\quad 16.31000$
INF $\quad 1.47630$
PLURAL $\quad 2.74050$
SIB $\quad 14.75100$
INTERCEPT

R 2	0.1340
N	1310
r	

EST」MATED	STANDARD	T-RATIO
COEFFICIENT	ERROR	1304 DF

$$
\begin{array}{r}
0.93108 \\
8.83670 \\
724.30000 \\
0.37665 \\
0.41010 \\
0.29285 \\
0.34441 \\
0.39550 \\
0.39191 \\
0.27163 \\
0.26806 \\
0.27281 \\
0.15906 \\
0.43340 \\
7.61440 \\
0.44103 \\
1.10730 \\
8.88040 \\
1245.40000 \\
0.23955 \\
0.31100 \\
0.25818 \\
0.14964 \\
0.47353 \\
14.09100 \\
0.47140 \\
10.70600 \\
2.07480 \\
1.65920 \\
9.19230
\end{array}
$$

0.01427
6.3875

$$
0.09118
$$

0.00017 -3.8844
-0.00067
0.36567
0.33500

$$
0.14864
$$

0.08635 4.2348
0.07827
4.2803
$0.09845 \quad 1.5099$

$$
-0.05492
$$

0.08716
-0.6301

$$
0.39620
$$

4.9724

T-RATIO 1304 DF

TABLE A. 10 (Cont'd)

REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR WEALTH OF BROTHERS

(WITH FATHER'S CHARACTERISTICS)

EQUATION 3

VARIABLE NAME	MEAN	STANDARD	ESTIMATED	STANDARD	T-RATIO
		DEVIATION	COEFFICIENT	ERROR	1304 DF
LNWEALTH	6.78630	0.93108			
AGE	36.15700	8.83670	0.08294	0.01461	5.6766
AGE2 1	1385.40000	724.30000	-0.00061	0.00017	-3.5512
D60	0.17099	0.37665	0.44991	0.08841	5.0890
D 70	0.21374	0.41010	0.42220	0.07916	5.3332
DD 70	0.09466	0.29285	0.19465	0.09827	1.9809
D80	0.13740	0.34441	-0.03504	0.08653	-0.4050
D90	0.19389	0.39550	0.46787	0.08066	5.8004
D00	0.18931	0.39191			
W	0.08015	0.27163			
C	0.07786	0.26806			
L	0.08092	0.27281			
S	0.02595	0.15906			
FBE	0.25038	0.43340	-0.10222	0.05618	-1.8193
T	11.15400	7.61440	0.01124	0.00383	2.9353
R	0.73588	0.44103	-0.27087	0.05477	-4.9454
LNFWEALTH	H 7.40460	1.10730			
FAGE	69.38000	8.88040			
FAGE2 4	4892.40000	1245.40000			
FW	0.06107	0.23955			
FC	0.10840	0.31100			
FL	0.07176	0.25818			
FS	0.02290	0.14964			
FFBE	0.33893	0.47353			
FT	26.46900	14.09100			
FR	0.66718	0.47140			
KIDS	16.31000	10.70600			
INF	1.47630	2.07480			
PLURAL	2.74050	1.65920			
SIB	14.75100	9.19230			
INTERCEPT			4.4658	0.30485	14.649
R2	0.1544				
N	1310				
r					
N1			0.25632	0.02619	9.786

TABLE A. 10 (Cont'd)
REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR WEALTH OF BROTHERS
(WITH FATHER'S CHARACTERISTICS)

EQUATION

\begin{tabular}{|c|c|c|c|c|c|}
\hline VARIABLE \& MEAN \& Standard \& ESTIMATED \& Standard \& T-RATIO

\hline \multicolumn{2}{|l|}{NAME} \& deviation \& COEFFICIENT \& ERROR \& 1304 DF

\hline LNWEALTH \& 6.78630 \& 0.93108 \& \& \&

\hline AGE \& 36.15700 \& 8.83670 \& 0.08029 \& 0.01408 \& 5.7010

\hline AGE2 \& 1385.40000 \& 724.30000 \& -0.00057 \& 0.00017 \& -3.4237

\hline D60 \& 0.17099 \& 0.37665 \& 0.57134 \& 0.08558 \& 6.6757

\hline D70 \& 0.21374 \& 0.41010 \& 0.50236 \& 0.07633 \& 6.5816

\hline DD 70 \& 0.09466 \& 0.29285 \& 0.26251 \& 0.09466 \& 2.7732

\hline \& 0.13740 \& 0.34441 \& 0.02812 \& 0.08393 \& 0.3350

\hline $$
\begin{aligned}
& \text { D } 80 \\
& \text { D } 90
\end{aligned}
$$ \& 0.19389 \& 0.39550 \& 0.46922 \& 0.07738 \& 6.0640

\hline D 00 \& 0.18931 \& 0.39191 \& \& \&

\hline W \& 0.08015 \& 0.27163 \& 0.61590 \& 0.08802 \& 6.9976

\hline C \& 0.07786 \& 0.26806 \& -0.45886 \& 0.08636 \& -5.3130

\hline L \& 0.08092 \& 0.27281 \& -0.46300 \& 0.08456 \& -5.4757

\hline S \& 0.02595 \& 0.15906 \& -0.34295 \& 0.14635 \& -2.3434

\hline FBE \& 0.25038 \& 0.43340 \& -0.05669 \& 0.05444 \& -1.0412

\hline T \& 11.15400 \& 7.61440 \& 0.01224 \& 0.00367 \& 3.3352

\hline R \& 0.73588 \& 0.44103 \& -0.23618 \& 0.05367 \& -4.4004

\hline LNFWEALTH \& H 7.40460 \& 1.10730 \& \& \&

\hline FAGE \& 69.38000 \& 8.88040 \& \& \&

\hline FAGE2 4 \& 4892.40000 \& 1245.40000 \& \& \&

\hline FW \& 0.06107 \& 0.23955 \& \& \&

\hline FC \& 0.10840 \& 0.31100 \& \& \&

\hline FL \& 0.07176 \& 0.25818 \& \& \&

\hline FS \& 0.02290 \& 0.14964 \& \& \&

\hline FFBE \& 0.33893 \& 0.47353 \& \& \&

\hline FT \& 26.46900 \& 14.09100 \& \& \&

\hline FR \& 0.66718 \& 0.47140 \& \& \&

\hline KIDS \& 16.31000 \& 10.70600 \& \& \&

\hline INF \& 1.47630 \& 2.07480 \& \& \&

\hline PLURAL \& 2.74050 \& 1.65920 \& \& \&

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SIB
INTERCEPT

14.75100}} \& 9.19230 \& \& \&

\hline \& \& \& 4.4310 \& 0.29545 \& 14.997

\hline R2 \& 0.2257 \& \& \& \&

\hline N \& 1310 \& \& \& \&

\hline r \& \& \& 0.22653 \& 0.02639 \& 8.583

\hline
\end{tabular}

TABLEA. 10 (Cont'd)

REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR WEALTH OF BROTHERS (WITH FATHER'S CHARACTERISTICS)

EQUATION 5

VARIABLE NAME	MEAN	STANDARD	ESTIMATED	STANDARD	T-RATIO
		DEVIATION	COEFFICIENT	ERROR	1304 DF
LNWEALTH	6.78630	0.93108			
AGE	36.15700	8.83670	0.08734	0.01454	6.0069
AGE2 1	1385.40000	724.30000	-0.00062	0.00017	-3.6649
D60	0.17099	0.37665	0.96979	0.24239	4.0009
D70	0.21374	0.41010	0.79584	0.18474	4.3079
DD70	0.09466	0.29285	0.61668	0.19732	3.1253
D 80	0.13740	0.34441	0.26166	0.14437	1.8125
D 90	0.19389	0.39550	0.54553	0.09865	5.5297
D00	0.18931	0.39191			
W	0.08015	0.27163	0.45781	0.10013	4.5721
C	0.07786	0.26806	-0.49574	0.08915	-5.5606
L	0.08092	0.27281	-0.47137	0.08468	-5.5666
S	0.02595	0.15906	-0.37704	0.14623	-2.5784
FBE	0.25038	0.43340	-0.14827	0.08262	-1.7945
T	11.15400	7.61440	0.01225	0.00376	3.2550
R	0.73588	0.44103	-0.13078	0.06503	-2.0109
LNFWEALTH	H 7.40460	1.10730			
FAGE	69.38000	8.88040	-0.00363	0.00351	-1.0327
FAGE2 4	4892.40000	1245.40000			
FW	0.06107	0.23955	0.31219	0.12144	2.5707
FC	0.10840	0.31100	0.08487	0.08183	1.0371
FL	0.07176	0.25818	0.25060	0.09252	2.7088
FS	0.02290	0.14964	-0.31589	0.15547	-2.0318
FFBE	0.33893	0.47353	0.11379	0.07886	1.4429
FT	26.46900	14.09100	0.01045	0.00603	1.7328
FR	0.66718	0.47140	-0.10890	0.06246	-1.7434
KIDS	16.31000	10.70600			
INF	1.47630	2.07480			
PLURAL	2.74050	1.65920	-0.00287	0.01572	-0.18240
SIB	14.75100	9.19230	-0.00343	0.00346	-0.99154
INTERCEPT			4.0238	0.44917	8.9581
R2	0.2381				
N	1310				
r			0.20694	0.02651	7.806

TABLE A. 10 (Cont'd)

REGRESSIONS AND INTRA-CLASS CORRELATIONS FOR WEALTH OF BROTHERS (WITH FATHER'S CHARACTERISTICS)

EQUATION 6

VARIABLE NAME	MEAN	STANDARD	ESTIMATED	STANDARD	T-RATIO
		DEVIATION	COEFFICIENT	ERROR	1304 DF
LNWEALTH	6.78630	0.93108			
AGE	36.15700	8.83670	0.08591	0.01436	5.9823
AGE2 1	1385.40000	724.30000	-0.00060	0.00017	-3.5754
D60	0.17099	0.37665	0.82979	0.24055	3.4496
D 70	0.21374	0.41010	0.67389	0.18362	3.6701
DD 70	0.09466	0.29285	0.51698	0.19559	2.6432
D 80	0.13740	0.34441	0.17613	0.14331	1.2290
D 90	0.19389	0.39550	0.46236	0.09846	4.6961
D00	0.18931	0.39191			
W	0.08015	0.27163	0.41233	0.09918	4.1573
C	0.07786	0.26806	-0.50086	0.08804	-5.6893
C	0.08092	0.27281	-0.44551	0.08373	-5.3206
	0.02595	0.15906	-0.40195	0.14446	-2.7825
S FBE	0.25038	0.43340	-0.15560	0.08160	-1.9070
T	11.15400	7.61440	0.00893	0.00376	2.3755
R	0.73588	0.44103	-0.12439	0.06423	-1.9367
LNFWEALTH	H 7.40460	1.10730	0.15315	0.02630	5.8226
FAGE	69.38000	8.88040	0.00319	0.00366	0.8704
FAGE2 4	4892.40000	1245.40000			
FW	0.06107	0.23955	0.24407	0.12049	2.0257
FC	0.10840	0.31100	0.05767	0.08094	0.7125
FL	0.07176	0.25818	0.21712	0.09153	2.3720
FS	0.02290	0.14964	-0.31629	0.15352	-2.0602
FFBE	0.33893	0.47353	0.17901	0.07867	2.2755
FT	26.46900	14.09100	0.00578	0.00601	0.9621
FR	0.66718	0.47140	-0.08845	0.06178	-1.4317
SIB	14.75100	9.19230	-0.01122	0.00367	-3.0573
PLURAL	2.74050	1.65920	0.00479	0.01557	0.3078
KIDS	16.31000	10.70600			
INF	1.47630	2.07480			
INTERCEPT			2.7530	0.49432	5.5694
R2	0.2571				
N	1310				
r			0.19393	0.02658	7.296

