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Abstract

Seasonal adjustment procedures attempt to estimate the sample realizations

of an unobservable economic time series in the presence of both seasonal factors

and irregular factors. In this paper we consider a factor which has not been

considered explicitly in previous treatments of seasonal adjustment: measurement

error. Because of the sample design used in the CPS, measurement error will not

be a white noise process, but instead it will be characterized by serial

correlation of a known form. We first consider what effect the serially

correlated measurement error has on estimation of the non—seasonal component in

seasonal adjustment models. We also consider the effect of measurement error on

the widely used seasonal adjustment process Xli. Xii which is the seasonal

adjust procedure used by the BLS will implicitly reduce the effect of measurement

error because of the averaging process used. However, this treatment will not be

optimal in general. We therefore specify a seasonal adjustment model which takes

explicit account of the measurement error. For examples on the unemployment

rate, we find that Xii does almost as well as the optimal filter on some series

but its efficiency is less than iO for the teenage unemployment series. We also

find that optimal treatment of the measurement error which accounts for the

serial correlation can reduce the overall mean square error of the seasonally

adjusted series below the variance of the measurement error which is often used

as the benchmark for the sampling procedure.
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SEASONAL ADJUSTI'!ENT WITH NEASUREMENT ERROR PRESENT

Jerry Hausman - MIT and NBER

Mark Watson - Harvard

Seasonal adjustment procedures attempt to estimate the sample realizations

of an unobservable economic time series in the presence of both seasonal factors

and irregular factors. Only the sum, or the product, of the three components is

observed. Within an additive framework the procedures may be represented as

(1) = +
St + et

where is the non—seasonal component, 5t is the seasonal component, and et is a

stochastic disturbance. Seasonal adjustment procedures differ in their treatment

of each of the components in equation (1). Many procedures treat as

deterministic up to some unknown parameters and set et to zero. The unknown

parameters of are estimated and the n series is then determined by

=
x.,

— s• Other seasonal adjustment procedures treat as stochastic and

after estimation by signal extraction methods, again determine by subtraction.

In either case, little attention is given to the properties of the stochastic

disturbance, et. Now, et can arise from two sources as in most econometric

models. The first source of et can be model specification error which we will

test for subsequently. The other source of e1 can be measurement error. The

concept of measurement error is somewhat non-standard here since we do not have a



2

'real' series which we are attempting to measure. That is, does not exist

apart from the model specification of the components of equation (i). But it

still makes sense to consider an underlying series, say x, where we can only

observe Xt which contains measurement error. In this reformulated model we would

have x. x + et so that and determine x. In the presence of measurement

error and thus estimation will need to account for the properties of e.

The usual model of measurement error in statistics and econometrics is one

of white noise. However, because of government data collection procedures which

use overlapping sample designs, the measurement error can be serially correlated.

For instance, the sample design used by the Bureau of Labor Statistics (BLS) to

measure unemployment consists of 8 sub—samples, seven of which have been included

in previous samples. This sample design is chosen presumably to induce positive

correlation across months which leads to a reduction of measurement error in

estimated changes in the unemployment rates. So far as we know, no seasonal

adjustment procedure takes explicit account of this measurement error which

becomes confounded with the seasonal component St because of the 50% overlap from

year to year induced by the BLS sample design.

The natural question is what effect this serially correlated measurement

error has on estimation of the non-seasonal component nt from equation (1). This

question cannot be answered apart from an examination of the goals of seasonal

adjustment in the specification of the components of equation (i) since the true

is not observable and does not exist apart from a specific model formulation.

Nerlove et al. (1979) and Pierce (1976) discuss the question of the goal of

seasonal adjustment, with Pierce setting forth a set of assumptions to guide his

procedure. We choose the minimum mean square error estimator of nt given
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hypothesized ARI1A models for both and St. Thus we allow for both

deterministic and stochastic components in the model for both components. When

measurement error is ignored the estimates of both and s. will be determined

by the similarity of their spectra and that of the measurement error. Our

empirical examples demonstrate that the increase in mean square error can be

substantial in some cases while in other cases the increase can be quite small.

Besides comparing optimal seasonal adjustment procedures which ignore

measurement error to an optimal procedure which takes account of measurement

error, we also consider the effect of measurement error on Xli . Xli is the

seasonal adjustment procedure used by the BLS and many other government agencies.

Since the Xli procedure uses a moving average of measured unemployment it will

implicitly reduce the effect of measurement error because of the averaging

procedure used. However, this treatment will not be optimal because the explicit

form of the measurement error has not been incorporated. Our empirical examples

demonstrate again that the effect of measurement error on the efficiency of the

Xli procedure can vary widely across series. The efficiency of Xli with respect

to the optimal filter which takes account of measurement error is found to be as

low as .09 in our examples so that consideration of measurement error is an

important topic. Also, of interest is that we calculate the root mean square

error of Xli so that one can assign confidence intervals to estimated levels or

changes of the official unemployment rate.

The plan of the paper is as follows. In Section 2 we consider the signal

extraction problem for when and et have been assigned ARXA

specifications. We derive expressions for the effect of omission of general
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measurement error on otherwise optimal filters. In Section 3 we discuss the

sampling procedure used by the BLS and derive the specification of measurement

error for this particular sample design. We then estimate the unknown parameters

of the model by maximum likelihood estimation via the Kalman filter. We estimate

models for both the overall unemployment rate as well as the teenage unemployment

rate. Since the latter series has considerably more variance, it offers a good

comparison to the overall series. We test for the specification of our model

both by using diagnostic statistics and by seeing how well it can predict the

estimates from a model which ignores measurement error. Then in Section 4 we

compare the optimal procedure with Xli and with an optimal filter which ignores

measurement error. For the overall unemployment rate the three procedures given

quite similar results with the efficiencies varying from .71 to .98. For teenage

unemployment the three procedure give very dissimilar results with the efficiency

of the optimal filter which ignores measurement error as low as .2 and Xli as low

as .09. In the conclusion we discuss other potential applications of the model

as well as implications for sample design.
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Section 2

In the last section we defined seasonal adjustment, in the context of an

additive components model, as a procedure for estimating the unobserved non-

seasonal component using data on the observed composite series. Measurement

error simply adds another component to the model. The observed series is now

"contaminated" not only with seasonality but with measurement error as well. The

presence of this extra component reduces the precision with which the non-

seasonal component can be estimated. If part of the non-seasonal component is

deterministic, but a function of unknown parameters (e.g., a time trend),

measurement error will decrease the precision of the estimated parameters. In

general, estimates of these parameters will remain consistent so that this

problem diminishes as the sample size grows. On the other hand, measurement

error will have an effect on the estimate of the stochastic part of the non-

seasonal which no amount of data can eliminate. This fact is easily

demonstrated.

We will ignore any deterministic components and assume that the non—seasonal

component, and the seasonal component, s are generated by independent

stationary and invertible moving average processes of the form

(2) = e(B)ct

= e(B)
where and are white noise and e(B) and

85(B)
are polynomials in the
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backshift operator B. (The stationarity assumption is not crucial for what

follows. An investment in additional notation would allow us to assume that

(B)nt and 5(B)st were stationary, where A(B) and (B) are differencing

operators with no common factors. This generalization is discussed in Cleveland

and Tiao (1976) and Pierce (1979).) We will assume that the measurement error,

et, is generated independently of nt and by another stationary and invertible

moving average process

(4) e

where is white noise. This allows et to be serially correlated, a

characteristic of the measurement error processes for the two series discussed in

the next section. Finally, let x. be the series composed of only and 5' and

let x be composed of and
et.

() x= 5

(6) x = n + + et.

The problem of estimating given x or x (i.e., seasonally adjusting x

or x) can be solved using well known signal extraction techniques. In both

cases is estimated from "noisy" measurements. When x is observed the noise

is when x is observed the noise is the sum of and e.

In general, the signal extraction procedure for n. depends on the time

subscript t. When t is not near the beginning or the end of the sample the

procedure for forming the minimum linear mean square estimates of and are

very similar. Indeed, they can be made arbitrarily close by extendiri the sample
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at both ends. To avoid the

notational burden of extra time
subscripts i'ie will

assume that a complete realization of
the observed series is available. If the

observed series is uncontaminated with measurement error the linear minimum mean
square estimate of n. is given by

=
V(B)xt

where

(8) v(B) =

1=0
v(B' + B')

and the coefficients V. can be formed from1

2e (z)e (z—' )() v(z)= Cfl

2e (z)e (z—' ) + 2o (z)e (z—' )en n S

(See whittle [1963] or Grether and Nerlove [1970] for the derivation of the

filter V(B).) The seasonal
adjustment error associated with the filter V(B) is

given by

(10) at = - = (i -
V(B))nt V(B)st,

and the variance of
at of this seasonal adjustment error is

i f (w)f (w)
(ii) = (wY dw

where f(w), and f(w) are the spectra of n, , and
x respectively.

When the observed series is
Contaminated by measurement error as well as

seasonal noise the optimal
seasonal adjustment filter changes. In this case the
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linear minimum mean square estimate of is given by

(12) n =

where
2e (z)e (z—1)

(13)
v*(z) =

cnn.
2e(z)e(Z1) + ee5(Z)85(Z1)

+

The seasonal adjustment error
in this case is

(14) ant_fl

and

it f(w)(f(W)+f(w))
(15) 2a* = 5

dw

where
and f(w) are the spectra of e and x. The increase

in the

variance of the seasonal
adjustment caused by the

measurement error is easily

shown to be

it f(w) f(w)

(16)
- J C—çy-)

dw.

Since

(17)
f(w) = + f(w)

and

(18)
f(w) f(w) + f(w) + fe(W)

the terms in parenthesis
are both less than one so that the increase in mean
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square error is less than the variance of e.

In the discussion of optimal seasonal adjustment procedures found in the

literature measurement error is usually (always) ignored. The literature has

focused on the construction and evaluation of seasonal filters when the models

for and s are known (e.g., Grether and Nerlove [1970], Cleveland Tiao [1976])

or the estimation of models for n and using the composite series (e.g.,

Pierce [1976], Engle [1976], Burinan [1980], Hilimer and Tiao [1982].) When

measurement error is ignored seasonal adjustment filters formed using the actual

or estimated models for nt and will be sub—optimal. In the first case the

optimal filter V(B), for seasonal adjustment of x. is used to seasonally adjust

x. This produces a seasonally adjusted series

(19) V(B)x

with seasonal adjustment error

(20) = —

The increase in mean square error which arises from the use of this sub-optimal

filter is given by

it f(w) f(w)
(21) - = 5 fe(W) ( ) (

f:(w)
)2 dw.

When the processes generating the measurement error and n. are very dissimilar,

so that is large when f(w) is small and visa—versa, the increase in mean

square error will be small. This is unlikely to be true for most series where we

would expect both nt and et to be positively serially correlated. In this case
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the spectra of the two series have a similar shape, and the increase in mean

square error can be as large as

2 + fl)_l•e 2
c3e

When measurement error is ignored and the contaminated data, x, are used to

estimate models for n and the comparison of filters is less straightforward.

The comparison depends in an obvious way on whether the measurement error is

attributed to the seasonal or to the non—seasonal component. At one extreme the

measurement error is purely seasonal and is totally attributed to the seasonal

component. The seasonal adjustment filter in this case will filter the

"seasonal" series s + et from x leaving an estimate of This is precisely

what the optimal filter does. At the other extreme the measurement error is not

seasonal (i.e., its spectrum has no peaks near the seasonal frequencies) and is

incorrectly attributed to the non—seasonal component. The seasonal adjustment

will now be an estimate of the filter which extracts (nt + et) from x which

yields a seasonally adjusted series

(22) = V(B) x

with error

(23) = —

The increase in mean square error caused by the misspecification of the model

(i.e., ignoring et) is
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11 f(w)
(24) — = 5

(w) )
dw.

a a* 1t x

Again the exact magnitude of this increase depends on the processes generating

n' and
et.

In the next section we estimate models for two economic time series which

are measured with error. We estimate models incorporating and ignoring the

measurement error. These models are used to construct seasonally adjusted

series. The mean square error of these series are then calculated and compared.
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Sectioxi 3

One of the most closely watched indicators of macroeconomic performance is

the civilian unemployment rate. Each month this rate is estimated by the Bureau

of Labor Statistics using a rotating sample composed of approximately 56,000

households. The data exhibit clear seasonal behavior. The unadjusted rate in

January and June of each year is roughly one percentage point higher than the

rate in May. This empirical regularity suggests the presence of a seasonal

component. Since the data published by the BLS are estimates constructed from a

sample, they also contain a sampling error or measurement error component.

In this section we present a model which decomposes the series into three

components -. a non—seasonal component, a seasonal component, and a measurement

error component. Using the observed data we estimate the parameters of the

model. The estimated model is then used to construct the optimal seasonal

adjustment filter. We compare this filter to one which we estimate ignoring the

measurement error. The exercise is repeated for another series, the teenage

unemployment rate. This series exhibits more dramatic seasonal behavior, and is

subject to more severe measurement error.

We begin by describing the sample design used by the BLS. Each month the

BLS surveys eight sub—samples, each composed of approximately 7,000 households.

Seven of these sub-samples have been included in some past survey and one sub-

sample is new. The new sub-sample is included in the survey for four months,

left out of the survey for the next eight months, and then included for four

final months. This rotation procedure produces a 75 overlap in the sample from

month to month and a 50% overlap from year to year.
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This sample design produces measurement error which may be serially

correlated. The degree of serial correlation will depend on the "memory" in the

measurement error for any sub-sample. Given random sampling we can assume that

errors across sub-samples are uncorrelated, but we want to allow some fraction of

the error in any sub-sample to persist from period to period. To capture this

persistance we assume that the error for the i'th sub—sample at time t is

(25) et = + wt

where is a time invariant random effect with mean zero and variance cr2, and

w. is a white noise error, uncorrelated with 'y. , and has variance cr2. If we
it 1 w

choose our indices so that sub—sample "i" is surveyed for the first time at time

t = i, then the total measurement error at time t is given by

(26) e= (i +B'2)(1 +B+

where is the sum of the eight white noise terms, e1.

This model produces a very parsimonious representation of the process

generating the measurement error. The rotation incorporated in the sample design

implies that error follows an MA (15) process. The size of the sample determines

the standard deviation of the sampling error. (It is approximately .12% for the

civilian unemployment rate and .60% for the teenage unemployment rate.) Our

model represents this MA(15) process with known variance in terms of only one

unknown parameter, cT/a1.
While much is known about the process generating the measurement error from

the sample design we have little a priori knowledge concerning the processes

generating the non-seasonal and seasonal components. There are some "common
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sense" constraints that seem reasonable to impose on these processes. First, the

deterministic component of the seasonal should sum to zero over any twelve month

period. Second, the stochastic component of the seasonal should have non—zero

autocorrelations only at the seasonal lags, so that it represents seasonal noise.

Third, the deterministic component of the non—seasonal should not be seasonally

periodic. Analogously, its stochastic component should not have a spectrum with

extra power at the seasonal frequencies.

Unfortunately these four constraints are not sufficient to identify the

seasonal and non—seasonal processes, even if the process generating their sum is

known. There is little problem in identifying deterministic components and the

autoregressive portion of the stochastic processes. The problem arises in the

identification of the moving average portions of the model. This lack of

identification has led to various normalizations and canonical forms (e.g., see

Pierce [1976], Burman [1980], Hilimer and Tiao [1982].) In this application we

found that low order autoregressive models adequately described the data, so that

identification was not a problem. In other applications this may not be the case

so that a "minimal extraction principle", as in Pierce [1976], or some other

normalization would have to be employed.

Our model for the deterministic part of the seasonal was very simple. We

chose a flexible form consisting of twelve monthly constants which summed to

zero. We did not include a non—seasonal deterministic component; rather we

assumed the non-seasonal to be generated by an integrated autoregressive

process :1

1More elaborate models are certainly possible. Within our framework we can allow
any of the components to depend on observed variables. The non—seasonal
component, for example, could be related to changes in GNP or an index of real
wages as well as to its own lagged values. We have chosen to use a univariate
model for n÷ so that our results are directly comparable with other widely used
"auto-adjus6ent" procedures.
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(27) B)(l — B)nt
=

Ct

where the roots of (z) are outside the unit circle. We also allowed the

stochastic seasonal component to be generated by an autoregressive process

(28) (Bl2)s =

In all models that are presented below we found

(29) (B) = (i -

and

(30) B12) = (1 —(jB12)

adequately described the data. Combining the non—seasonal, seasonal, and the

measurement error we have a model for the observed unemployment rate

(31)

where dt is (12 x 1) vector of monthly dummy variables and p is a (12 x i) vector

of unknown constants which sum to zero. The unknown parameters which must be

estimated are , d1, 2, 2, cy/cY2, and the initial value for non= seasonal

component no.
To estimate the unknown parameters of the model we assumed that the

disturbances were normally distributed and calculated maximum likelihood

estimates. A very useful computational device for forming the likelihood

function and for carrying out seasonal adjustment is the Kalman filter.1

1Engle [1976] uses the Kalman filter in a similar application. See also Pagan
[1975] and Harvey [1981].
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The Kalman filter recursively calculates various estimates including the current

estimates of the components as well as

(32) = E[xIx1, X2•• .,x]
and

(33) h = var[xlx1,
Since the disturbances are normally distributed the innovations in x,

— are independent and normally distributed with mean zero and variance

ht. The likelihood function can then be formed in terms of these innovations. A

discussion of techniques for maximizing this likelihood function can be found in

Watson and Engle [1983].

The parameters of the models for the civilian unemployment rate and the

teenage (age.16-19) unemployment rate were estimated using data from 67:1 to

83:1. The results are shown in Table 1 in the column labeled Model 1.

TABLE 1

Civilian Teenage
Unemployment Rate Unemployment Rate

Model 1 Model 2 Model 1 Model 2

.264 (.158) .239 .278 (1.302) —.153

.366 (.117) .317 .408 (1.038) .108

4 .028 (.009) .036 .057 ( .1032) .411

.525 (.383) .566 .758 ( .114) .678

.004 (.005) .008 .106 ( .060) .167

.0021(.005) .190 ( .061)

.0016(.004) .021 ( .007)

Q(d.s.) 25.6(18) 22.7(20) 26.5(18) 27.2(20)

Note: Asymptotic standard errors in parentheses. Coefficients on
twelve seasonally dummy variables were also estimated.
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The last entry in this column is the Box—Pierce Q—statistic followed by the

degrees of freedom.1 The Q—statistics suggest that we have committed no grievous

dynamic misspecification; neither statistic is significant at the 5% level. The

point estimates for the parameters of the non—seasonal processes are similar for

both series. They are much more precisely estimated for the civilian

unemployment rate. This series is subject to a much smaller seasonal effect (the

variance of s is .005 for the civilian unemployment rate and .250 for the

teenage unemployment rate) and much less measurement error. The persistence of

the sampling error is also much different across the two series. The persistent

random effect, y, accounts for 85% of the variance in the civilian unemployment

rate measurement error but only 47% of the measurement error for the teenage

unemployment rate.

Charts 1 and 2 show the estimated decomposition of the observed series.

These estimates were formed using the optimal signal extraction filter

constructed from the parameter values in Table 1. The seasonal and measurement

error variation is much more dramatic for the teenage unemployment rate. The

estimated seasonal factor for the teenage unemployment rate varies from 4.8% to —

2.7% and from .75% to .59% for the civilian unemployment rate. Teenage

unemployment rate sampling error varies from .95% to -.96%, and civilian

unemployment rate sampling error varies from .10% to -.11%.

1 Our component models implies an ARIMA model for the observed series. The
parameters of the ARIMA model are functions of (4'j '2' ' a2, a, and

a2
1•1
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As a first step in constructing seasonal adjustment filters which ignore

measurement error we re-estimated the models leaving out the sampling error

component. The results are presented in Table 1 in the columns labeled Model 2.

The measurement error in the civilian unemployment rate is small and neglecting

it has only a small effect on the model. The estimated seasonal process is

essentially unchanged, and the non-seasonal process has changed slightly to

capture the measurement error dynamics. The estimated process for the seasonal

component of the teenage unemployment rate is slightly changed. The variance of

the seasonal component has increased to capture some of the effect of the

measurement error. The process for the non-seasonal component has changed

markedly. The variance of its driving noise, Ct, is over seven times larger than

in Model 1, and the point estimates of 1 and 2 are different.

While Model 1 and Model 2 may be quite different in one sense they should be

very similar in another sense. Both models are descriptions of the same observed

series, so that they should imply the same aggregate dynamic model. Comparing

the implied aggregate model from both models can therefore serve as a check on

our specification. The stochastic portion of Model 1 is Ut = t + + e, and

let us write the stochastic portion of Model 2 as Ut= n + s.

Since (1 — B)ut is stationary it has a Wold representation

(34) (1 - B)ut =
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where at is white noise with unit variance so that

(35) (1 — B)(nt + + et) = (1 — B)(n + s) =
X(B)at.

Using the estimated parameters of Model 1 and Model 2 we have calculated the

implied moving average parameters XD These are plotted in Chart 3 for

the civilian unemployment rate and in Chart 4 for the teenage unemployment rate.

The implied models are very similar. That is, when we 'predict' the parameters

of Model 2, which ignores measurement error, in terms of the parameters of Model

1 the results are quite close. This finding should increase the confidence

placed in Model 1 since we are able to predict well the properties of the

'misspecified model', Model 2, as a function of the estimated parameters of Model

1 which is hypothesized to be correct.

A different "optimal" seasonal adjustment is associated with both Model 1

and Model 2. The Model 1 filter constructs an optimal estimate of the true non-

seasonal component, nt, while Model 2 filter constructs an optimal estimate of

the misspecified non—seasonal component, . Given a complete realization of the

observed series both of these filters will be of the form

(36) (B) = + + B').
i=1

In Chart 5 we plot the filter weights implied by Model 1 and Model 2 for the

civilian unemployment rate. The seasonal adjustment filters are quite similar so

that the filters will produce similar seasonally adjusted values for the civilian

rate. Indeed in the next section we show that Model 2 filter produces an
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estimate of which is only slightly less precise than the Model 1 filter. In

Chart 6 we compare the filter for the teenage unemployment rate. The filters are

quite different for this series. The misspecified filter puts far too much

weight on the current observation, and in part compensates for this by a large

negative weight at the twelfth lead-lag.

We can analyze other seasonal adjustment in a similar manner. The most

widely used seasonal adjustment procedure is produced by the Census X-11 program.

While the filter constructed by this program. contains non-linearities (e.g.,

adjustments for outliers) it can be well approximated for many series by the

symirietric 84 term linear filter which is given in Wallis [1974]. Charts 7 and 8

compare this filter with the Model 1 filter for our series. For both series X—11

puts too much weight on the first observation and compensates for this with large

negative weight at the seasonal lead—lags. This characteristic is much more

dramatic for the teenage unemployment rate. A mere glance at these charts

suggests that the increase in precision of the optimal filter from the X—1 1

filter will not be too large for the civilian unemployment rate, but may be quite

large for the teenage rate. In the next section we calculate the mean square

error associated with the X—11 procedure and find this to be the case.
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Section 4

The unobserved components model of seasonality allows us to view a seasonal

adjustment procedure as an estimation method, and a seasonally adjusted series as

a sequence of estimates of the underlying non—seasonal component. Alternative

seasonal adjustment procedures can be evaluated on the basis of how precisely

they estimate the non—seasonal component. In this section we compare various

seasonal adjustment procedures for the two series analyzed in the previous

section using mean squre error as the measure of precision. In particular, we

calculate the m.s.e. of the estimates calculated by Census X—11 program. This

comparison allows us to discuss the accuracy of the official seasonally adjusted

series and the increase in accuracy that could be achieved using an optimal

filter. We also calculate the increase in m.s.e. that arises from the

measurement error component, both when it is ignored and when it is accounted for

in an optimal manner.

It is useful to identify five different sources of seasonal adjustment

uncertainty. First, there is a certain irreducible signal extraction

uncertainty, that arises when both n. and s. are stochastic. This uncertainty

makes it impossible to deduce the value of either when only their sum is

observed. Next, there is additional uncertainty which arises from measurement

error. Its presence increases the "noise" in the observed series. A further

increase in uncertainty may arise from the use of a suboptimal seasonal

adjustment procedure. There are also two sources of uncertainty which arise from

the quantity of data available. Since the components are serially correlated,

future values of the observed series will contain information on the value of
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today's non—seasonal component. Data at time t+1 , etc. can therefore be used to

reduce the uncertainty surrounding nt. Finally, since the parameters used in

constructing seasonal adjustment filters may be unknown, there is uncertainty

that arises from the use of estimated parameters.

In usual calculations of mean square error it is possible at some point in

time to observe the realization of the variable being estimated. In calculating

one-step-ahead forecast mean square error, for example, the variable being fore-

cast is observed with a period lag. This set—up makes it possible to calculate a

sample mean square error which incorporates all sources of error. In seasonal

adjustment the case is somewhat different. The variable being estimated is never

observed. Sample mean square error cannot be calculated. Mean square error can

only be calculated or estimated if the processes generating the components are

known or are estimated. It makes little sense to discuss the precision of an

estimate of something that is n t observed nor defined apart from a particular

model specification1 . Our estimates of mean square error will be based on the

models that we presented in the last section. We will assume that the

specification used in Model 1 is correct.

If we assume that the data were generated by Model 1 with parameter values

shown in Table 1 then the root mean square error of various seasonally adjusted

series are straightforward to calculate. All of the seasonal adjustment

procedures that we will consider first subtract a constant, c, from the observed

series. The result is then passed through a linear filter, i(B), to produce

seasonally adjusted value. Consider for example a crude form of seasonal

adjustment in which only the deterministic seasonality is removed. In this case

Ct represents the deterministic seasonality which we denoted d in the last

Summers [1981] attempts such a discussion.
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section and it(B) = 1. This procedure produces a seasonal adjustment error

= - ,t(B)(x - c) = -

if the observed series is not measured with error and

(38) b = n — it(B)(x — ct) = — — et

if the observed series is measured with error. An aribtary c and it(B) will

yield seasonal adjustment errors

(39) bt = (1 — (B))nt — t(B)st — it(B)(d — ct).

and

(40) = bt - lt(B)et.

Recall that nt followed an integrated process so that a necessary condition for

the m.s.e. of to be finite is that ( 1 — ,(B)) contain the factor (1 — B) or

equivalently that ,t(i) = 1. All seasonal adjustment filters that we consider

will have this property. Given these expressions for bt and b their m.s.e. can

be easily calculated from the constants (d — ct) and autocovariances of

(i - B)nt and St.

The first row of Table 2 shows the root mean square error (r.m.s.e.)

associated with the optimal filter applied to a complete realization of the

series without measurement error. This model corresponds to the series n and

error at given in Section 2. Notice that the irreducible r.m.s.e. is much

larger for the teenage unemployment rate. The larger r.m.s.e. is caused by the

large variance of the stochastic seasonal component for this series as compared
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TkBLE 2

Seasonal Adjustment Root Mean Square error

Civilian Teenage
Unemployment Rate Unemployment Rate

Levels Changes Levels Changes

1. Ni, no measurement error .060 .075 .222 .173

2. Ni, with measurement error .114 .103 .387 .202

3. Deterministic adjustment,
no meas. error .074 .105 .499 .706

4. Deterministic adjustment,
with meas. error .141 .127 .780 .981

5. M2, with measurement error .124 .104 .511 .451

6. X—11, no measurement error .090 .091 .286 .337

7. X—11, with measurement error .126 .122 .552 .680

8. Current adj. using Ni with
meas. error .131 .104 .529 .241

9. Ni with parameter uncertainty* .124 .105 .391 .265

10. Current adj. with parameter
uncertainty* .139 .110 .540 .270

Notes:
* Varies over the sample period
Average value is presented.

to the component for the civilian unemployment rate.

For both series notice that the r.m.s.e. is considerably smaller than the

r.m.s.e. of the measurement error component. The r.m.s.e. of the level of the

civilian rate is roughly 1/2 the size the r.in.s.e. of its measurement error, and

for the teenage rate the r.m.s.e. is only 1/3 its measurement error. This

emphasizes the point that the seasonal adjustment procedures significantly

reduces both sources of noise — seasonal and measurement error. It also
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illustrates the point made by equations (15) and (16): while the size of the

measurement error is important, its dynamic properties and those of and are

equally important.

In row 2 of the table we show the r.m.s.e. associated with the optimal

filter applied to a complete realization of the series measured with error. This

model corresponds to the series n and error a given in Section 2. Again the

figures for the teenage unemployment rate are larger than those for the civilian

unemployment rate.

Comparing row 2 and row 1 of Table 2 shows the increase in r.m.s.e. due to

measurement error is larger for the teenage rates. Recall, however, that the

measurement error variance was .36 for the teenage rate as compared to .0144 for

the civilian rate. The increase in m.s.e. for the level of the teenage rate is

only 28% of its measurement error variance, while the increase in m.s.e. for the

level of the civilian rate is 65%. The reason for this differential increase is

shown in equation (16). The seasonal measurement error components are relatively

unimportant in the civilian rate so that a large fraction of the spectrum of x

and x1 is accounted for by the nt. The terms (f(w)/f(w)) and (f(w)/f(w)) in

equation (16) are, on average, larger for the civilian rate than the teenage

rate.

The next two rows of Table 2 present the r.m.s.e. of the seasonally adjusted

series when only the deterministic seasonal component is extracted. The

estimator was calculated for the series with and without measurement error.

Table 3 presents the efficiency of the optimal estimator relative to this

estimator. The relative efficiency is much smaller for the teenage rate, again

reflecting the importance of stochastic seasonality and measurement error for

this series. The next row of Table 1 presents the results using the filter
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TABLE 3

Relative efficiency of Seasonal Adjustment Procedures

Levels Changes Levels Changes

Deterministic adjustment,
no meas. error .66 .51 .20 .06

Deterministic adjustment,
meas. error .65 .66 .25 .04

M2, meas. error .85 .98 .57 .20

X-11, no meas. error .44 .68 .60 .26

X-11, with meas. error .82 .71 .49 .09

constructed from the Model 2 parameter estimates and applied to a complete

realization of the series. This filter would be estimated if measurement error

were present but was ignored. For the civilian unemployment rate the variance of

the (change in the) measurement error is small relative to the variance of the

(change in the) observed series, so that the increase in m.s.e. from the Model 1

filter is not large. (See equation (24).) The relative efficiency of this

filter is quite high. In the case of teenage rate, measurement error is much

more important, and the Model 2 filter produces a much less precise estimate than

the Model 1 filter. The relative efficiency for estimating the change in is

only .20. Our finding emphasizes the potential importance that measurment error

can have on seasonal adjustment procedures.

The plots presented at the end of the last section also suggested a more

dramatic reduction in efficiency from the use of census X—11 for the teenage

unemployment. We should point out the X—11 procedure does not subtract a

deterministic component from the row series before filtering. The seasonally
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adjusted series will therefore contain the deterministic component it(B)d, which

is a weighted average of monthly constants. The X—11 filter is constructed so

that the weights across months are very nearly equal. Therefore, it(B)d is very

nearly the sum of the seasonal constants, which is zero. Rows 6 and 7 of Table 2

present the r.m.s.e. for the linear approximations to the X—11 filter. The

performance of the X—11 filter is close to the optimal filter for the level of

civilian unemployment rate (a relative efficiency of .82),1 but it performs very

poorly for the change in the teenage rate (a relative efficiency of .09). Indeed

for the change in the teenage rate one is better off applying the Model 1 filter

to the series measured with error then to apply the X—11 filter to the series

without measurment error.

The results thus far have assumed that a complete realization of the series

was available so that two sided filters could be applied. When adjusting current

values, or values from the recent past, symmetric two—sided filters cannot be

used. It is possible to construct optimal one—sided filters and indeed the

Kalman filter does just this. In row 8 of Table 2 we present the r.m.s.e. of

currently adjusted values using the optimal filter. Comparing these figures with

those in row 2 shows the value of future data for current seasonal adjustment.

For both series future data decreases m.s.e. for the level of the series rather

substantially (25 for the civilian rate, nearly 50% for the teenage rate), but

has a smaller effect on the m.s.e. of the change in

The filter that we have constructed from our estimated Model 1 is only an

1Our estimate of the r.m.s.e. of the X—11 process is approximately one—half of
the estimate of Summers (1981). However, he failed to take account of the time
series properties of the unemployment rate or of the X—11 filter.
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estimate of the optimal filter. Imprecise estimates of the parameters will

produce an imprecise estimate of the filter which in turn will produce an

imprecise seasonally adjusted series. A bit more notation will make the

discussion of the effects of parameter uncertainty easier. Let

(41) = 1' 2' ' cy2, /2)i

be the vector of unknown parameters used to construct the filter for extracting

the stochastic components. The other unknowns are the deterministic seasonal

components, 3. Let and denote the true values of the parameters, and 8 and

denote their maximum likelihood estimates. Finally we write the optimal

seasonally.adjusted series, n, as a function of (e,).

(42) nt(8,) = 1(e)(x1 —

Expanding our estimate, n(O,p), about the true optimal estimate, n(e0,p0), and

subtracting from we have

ôit.(8 )
(43) nt - n(e,) = - n(80,0)) - (8 - es)'

° (x- d10)

+ ( — )'

as our seasonal adjustment error. The first term on the left-hand side is the

error that arises from the optimal filter, the final two terms reflect parameter

estimation error. As the sample grows these last two terms converge in

probability to zero leaving only the first term. A large sample approximation to
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the m.s.e. of n— nt(8,) follows from the asymptotic disturbances of I (e—e)

and /T (—). We will approximate the m.s.e. of - ' (e,) using the

covariance matrix of 8 and from the asymptotic normal distribution.

The information matrix between is easily shown to be block diagonal between

8 and so that

(44) m.s.e. (nt(8,)) in.s.e. (n(e0,0))

it.(9 ) ôit.(8 )

+V x —d' 2( 10 'M (
10

t—i t—i'o' ô0 ' 00 '

1=-

+i- (i(e0))2d±Mdt

where M99 and are estimates of the covariance matrices of 0 and derived

from the information matrix.1

In the final two rows of Table 2 we present these estimates for both of our

series. Row 9 shows the results for the estimated two—sided filters, so that

this result corresponds to historical seasonal adjustment. The final row shows

the results using the estimated optimal one—sided filter. These results

correspond to the adjustment of current data. Comparing rows 2 and 9, and rows 8

and 10, suggests that parameter uncertainty increased m.s.e. only slightly. This

finding is true even though our point estimates of the parameters were not very

precise, as the large standard errors in Table 1 indicated.

1Formally, of course, N and should be indexed by T and the range of the

summations depend on sample size and t.
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5. Conclusions

Given our empirical findings a more full—fledged study of the effct of the

use of Xii on the seasonally adjusted unemployment rate seems called for. BLS

actually uses Xli on each of the four component series separately and then adds

to find the overall unemployment rate. Our evidence on the teenage unemployment

rate indicates that Xii could be improved on significantly by a filter that takes

account of measurement error. The further question of whether it is a good idea

to filter each of the four series by Xii separately should also be investigated.

Since the overall unemployment rate is arguably the most watched government

series, such an investigation seems worthwhile. If unemployment is not the most

watched series, then the inflation rate must be the recipient of the most

watched-over award. Our techniques seem applicable to this series also since

measurement error may be an important factor. Further investigation seems called

for.

A related question which arises is the optimal sample design of the BLS

Survey, i.e., the CPS. The National Commission on Eknployment and Unemployment

Statistics Report (1980), vol II considered the question of measurement error,

but it did not do so in the context of seasonal adjustment. If an accurate

estimate of the non-seasonal component of unemployment is an important goal for

the data collection procedure, which it almost surely is, then the sample design

could be substantially increased in efficiendy by taking account of the

simultaneous presence of both measurement error and seasonal components. Our

estimated model of Section 3 would be useful in choosing the optimal design for
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samples used to measure unemployment statistics.

A last potential unadjusted application arises when revisions take place

between the first announced number and the final estimate of an economic time

series, e.g., the money supply series. If the measurement error model were

applicable to these series in the sense that the measurement error is independent

of the final number, then our procedures could be used to predict optimally the

final number given the initial estimate. It seems quite likely that the

measurement error has a seasonal component which would contaminate the estimates

of the seasonal component and non-seasonal components using current seasonal

adjustment procedures. Procedures which model the measurement error in an

explicit manner should lead to an improvement over current methods.
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