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ABSTRACT

This paper provides a welfare economic analysis of the problem of districting. In the context of a

simple micro-founded model intended to capture the salient features of U.S. politics, it studies how

a social planner should allocate citizens of different ideologies across districts to maximize

aggregate utility. In the model, districting determines the equilibrium seat-vote curve which is the

relationship between the aggregate vote share of the political parties and their share of seats in the

legislature. To understand optimal districting, the paper first characterizes the optimal seat-vote

curve which describes the ideal relationship between votes and seats. It then shows that under rather

weak conditions the optimal seat-vote curve is implementable in the sense that there exist

districtings which make the equilibrium seat-vote curve equal to the optimal seat-vote curve. The

nature of these optimal districtings is described. Finally, the paper provides a full characterization

of the constrained optimal seat-vote curve and the districtings that underlie it when the optimal seat-

vote curve is not achievable.
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1 Introduction

Districting plans, which allocate voters across districts for the purpose of electing representa-

tives to a central legislature, are frequently perceived as unfair to voters of certain ideologies

or race. These perceptions of unfairness have lead to conflicts over how district lines should be

drawn. As computer technology and the information available to officials charged with districting

have improved, districting plans have become more refined, and these conflicts between groups

of voters have intensified. As a result of these conflicts, courts have become more involved in

the process, and independent commissions have been established in some cases to oversee the

districting process.

There is little consensus, however, on what types of districting plans are socially desirable.

Should all districts be identical in their composition of voter types or should districts be heteroge-

nous? Should all districts be competitive or should some districts be “safe seats”? How should

the allocation of seats in the legislature respond to changes in national support for the parties?

Should the system be biased in favor of certain groups of voters? In addressing these normative

questions, some have advocated an axiomatic approach, which adheres as closely as possible to

“traditional districting principles”, such as the spatial notions of compactness and contiguity as

well as the democratic ideals of respecting political subdivisions and recognizing communities of

actual shared interest.1

As an alternative to this axiomatic method of evaluating districting plans, this paper explores

an approach rooted in traditional welfare economics. This approach begins with the observation

that citizens have preferences over policy outcomes, which depend upon the representation of

groups of voters in the legislature, which in turn depends upon how different groups of voters are

allocated across districts. This induced linkage between citizen preferences and districting plans

allows for an explicit characterization of how different groups of voters should be allocated across

districts in order to maximize social welfare.

The paper studies a theoretical model of a community divided into political districts each of

which elects a single representative to a legislature. There are three types of voters: Democrats,

Republicans, and Independents. Democrats and Republicans have fixed ideologies, while Inde-

pendents’ ideologies may vary across elections. There are two political parties, one representing

1 The U.S. Supreme Court defined traditional districting principles in 1990s redistricting cases, including Shaw
vs. Reno and Miller vs. Johnson.

1



Democrats and the other Republicans. These parties field candidates in each district and the can-

didates with the most votes are elected. The legislature’s policy choices depend upon the average

ideology of the elected legislators which in turn depends upon the share of seats each party holds

in the legislature. The allocation of voters across districts determines the equilibrium seat-vote

curve which is the relationship between the aggregate vote share of the two parties and their share

of seats. This relationship determines how responsive the legislature’s policy choices are to swings

in the aggregate vote share created by changes in the ideological leanings of Independents.

In the context of this model, we analyze how the three types of voters should be allocated across

districts to maximize social welfare. We approach the problem by first characterizing the optimal

seat-vote curve, which relates the optimal fraction of Democrats in the legislature to the aggregate

fraction of voters supporting Democrat candidates across all districts. Under our assumptions,

the optimal relationship between aggregate votes and seats is linear, with a slope that depends

on the degree of variation in the preferences of Independents. Interestingly, we also find that the

optimal seat-vote curve is biased in favor of the party with the largest partisan base.

We then explore whether this optimal seat-vote curve is implementable, in the sense that there

exist feasible allocations of Democrat, Republican, and Independent citizens across districts that

would make the equilibrium seat-vote curve equal to the optimal seat-vote curve. If so, then

such allocations clearly represent socially optimal districtings. We develop simple necessary and

sufficient conditions for the optimal seat-vote curve to be implementable. These conditions are in

terms of the fractions of the various groups in the community and the Independents’ preference

parameters. We also describe some of the districtings that generate the optimal seat-vote curve.

While the conditions under which the optimal seat-vote curve is implementable are permissive,

there are interesting situations in which they are not satisfied. To characterize optimal alloca-

tions of voters across districts in these cases requires a more sophisticated approach. First, we

must characterize implementable seat-vote curves - those that can be generated by some feasible

districting. Then, we must choose the best of these implementable seat-vote curves. We develop

an analytical approach that permits a complete characterization of the shape of the constrained

optimal seat-vote curve. We also identify the districtings that generate these constrained optimal

seat-vote curves.

Throughout the paper we ignore geographical constraints in the way in which districts may

be formed. Thus, we assume that the planner can allocate citizens to districts in any way he
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likes, rather than requiring districts be connected subsets of some geographic space. While this is

certainly a weakness of the analysis, we feel that given the difficulty of knowing how to model geo-

graphic constraints, it makes sense to first understand what optimal districtings look like without

them. Moreover, when the optimal seat-vote curve is implementable, we show that it can typically

be implemented by a large class of districtings, some of which look quite “straightforward”, and

hence geographic constraints may actually be easily accommodated.

This paper fits into the growing literature applying contemporary political economy modelling

and welfare economic methods to explore the optimal design of political institutions.2 This

literature includes efforts to understand the relative merits of different electoral systems (e.g.,

Lizzeri and Persico (2001) and Myerson (1999)); systems of campaign finance (e.g., Coate (2004a)

and Prat (2002)); and methods of choosing policy-makers (e.g., Maskin and Tirole (2004)). It also

includes analyses of the desirability of citizens’ initiatives (e.g., Matsusaka and McCarty (2001));

the optimal allocation of functions across layers of government (e.g., Lockwood (2002)); and the

relative merits of presidential and parliamentary systems (e.g., Persson, Roland and Tabellini

(2000)). The districting problem is somewhat different from these constitutional design questions

in that it must be done on an on-going basis in any political system with geographically based

districts. This makes the problem particularly salient.

The organization of the remainder of the paper is as follows. The next section discusses the

relationship of the analysis to the existing literature on districting. Section 3 outlines the model

and introduces the notion of an equilibrium seat-vote curve. Section 4 introduces the idea of the

optimal seat-vote curve and characterizes it. This section also shows that the optimal seat-vote

curve is not necessarily implementable. Section 5 describes a general method for determining

whether a seat-vote curve is implementable and this is used in Section 6 to find the conditions

under which the optimal seat-vote curve is implementable. Section 7 characterizes the constrained

optimal seat-vote curve and discusses the districtings that generate it. Section 8 discusses the role

of some of the key assumptions of the model and Section 9 concludes with a summary of the

lessons of the analysis.

2 A parallel empirical literature explores the consequences of political institutions for observed policy choices.
See Besley and Case (2003) and Persson and Tabellini (2004) for surveys.
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2 Relation to the districting literature

There are two strands of political science literature on districting - one empirical and the other

theoretical. The main focus of the empirical literature has been on understanding how redistricting

in the U.S. States has impacted partisan bias and responsiveness. In a two-party system, partisan

bias and responsiveness are conceptualized in terms of properties of the seat-vote curve that a

districting generates. The seat-vote curve is formally represented by a function S(V ) where V

is the aggregate fraction of votes received by (say) the Democrats and S is the fraction of seats

in the legislature that they hold. A seat-vote curve exhibits partisan symmetry if the fraction of

seats that one Party gets with any particular share of the vote is the same as the other Party

would receive with the same share. Formally, the condition is that S(V ) = 1 − S(1 − V ) for all

V . A seat-vote curve exhibits partisan bias if it deviates from partisan symmetry in a systematic

way by giving one Party more seats. The responsiveness of a seat-vote curve is measured by the

proportionate change in seat share following an increase in vote share. If the seat-vote curve is

differentiable, then its responsiveness at vote share V is measured by the derivative S0(V ).

A common approach in the literature has been to specify parameterized functional forms for

seat-vote curves and estimate them. One popular specification is the linear seat-vote curve, which

can be written as

S(V ) =
1

2
+ b+ r(V − 1

2
). (1)

The parameter b measures partisan bias and r measures responsiveness. In a well-known study,

Tufte (1973) estimates linear seat-vote curves using historical data for the U.K., the U.S., New

Zealand and three U.S. States and found that the linear form fits the data well.3 In an influential

series of papers, Gary King and co-authors worked with bilogit seat-vote curves of the general form

S(V ) =
1

1 + exp(−b− r ln V
1−V )

. (2)

Again, the parameters b and r can be interpreted as measuring bias and responsiveness.4 This

family of curves admits a broad range of possible shapes (see Browning and King (1987) and King

3 He found, for example, that for New York State in the time period 1934-66 with S measuring democratic seats,
r equalled 1.28 and b equalled −0.055.

4 To see this, consider the equivalent log-odds formulation: ln [S(V )/(1− S(V ))] = b + r ln [V/(1− V )] . This
makes clear that the responsiveness parameter r determines how changes in votes are translated into changes
in seats. Further, note that when voters are equally divided between parties [V = 0.5], seats are given by
S = exp(b)/[1 + exp(b)], and Democrats thus secure a majority (minority) of seats if the bias parameter (b) is
positive (negative). While these parameters share the same interpretation as Tufte (1973), the exact formulations
are somewhat different.
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(1989)). King (1989) developed techniques to estimate bias and responsiveness parameters using

only data from a single redistricting period.

Gelman and King (1990), (1994) significantly advance the literature by dispensing with the

assumption of a particular functional form for the seat-vote curve. Instead, they specify an under-

lying statistical model of the district-by-district vote generating process which implies a relation-

ship between expected votes and expected seats. They then develop a procedure for estimating

the parameters of this underlying statistical model and explore how the implied relationship be-

tween seats and votes is impacted by redistricting. In particular, they study whether cross-state

variation in redistricting institutions gives rise to systematically different patterns of change in

bias and responsiveness.

While this general line of inquiry strikes us as very interesting, the underlying foundations of

the analysis are somewhat opaque. Rather than beginning with a functional form for the seat-vote

curve or a statistical model for the vote generating process, it would seem more satisfying to begin

with a description of the voters, their political preferences and what is generating the variation in

these preferences. A districting, or distribution of voter types across districts, would then imply

both a district-specific vote generating process and a seat-vote curve. It would also seem useful to

spell out how the composition of the legislature matters for citizens’ welfare, so that the normative

significance of partisan bias and responsiveness could be assessed.

The theoretical literature has largely focused on understanding how political districts should

be crafted with the aim of maximizing a Party’s expected seat share. Its motivation has been the

purely positive one of shedding light on how partisan redistricting committees might further their

political objectives. Important strategies for expected seat maximization are concentration - the

packing of an opponent’s supporters into a few districts - and dispersion - the spreading of the

remainder thinly over the remaining districts.

Owen and Grofman (1988) present a classic analysis of this problem that incorporates aggregate

uncertainty in voters’ behavior (see also Gilligan and Matsusaka (1999) and Sherstyuk (1998)).

Their model assumes that each district j is characterized by some threshold αj ∈ [−1, 1] and that

there is some random variable Z such that district j votes for the Party controlling the districting

if and only if αj < Z. The districting determines the αj for each district, but subject to two

constraints. First, if y(α) is the fraction of districts with αj = α, it is required that
P

α y(α) = 1.

Second, the average value of the thresholds across districts must be zero, so that
P

α αy(α)dα = 0.
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The districting problem is to choose the function y(α) to maximize the controlling Party’s expected

seat share. The solution is very simple: there exists some α∗ > 0 such that y(−1) = α∗/(1 + α∗)

and y(α∗) = 1/(1 + α∗). Thus, a fraction α∗/(1 + α∗) of districts will be overwhelmingly for the

opposition, while the complementary fraction will be solidly for the controlling Party.

While the principles emerging from the theoretical literature seem natural, the mapping from

the models used to the problem of districting is again somewhat opaque. For example, in Owen

and Grofman’s formulation it is not clear precisely what the threshold αj is, nor why the average

value of the thresholds across districts must be zero. Moreover, the interpretation of the random

variable Z is unclear.

What our paper contributes to both the empirical and theoretical literatures is a micro-founded

model for the study of districting questions. The model is simple, but captures important aspects of

the U.S. political scene. It permits a clear understanding of the mapping between districtings and

seat-vote curves. It also provides a consistent story for why the properties of the seat-vote curve

matter for welfare, as is implicitly assumed in the empirical literature. As in Owen and Grofman’s

theoretical analysis, each district does indeed have a critical threshold and this threshold depends

upon the distribution of voter types in the district.5 The random variable in the model is the

distribution of the aggregate vote between the two Parties and this randomness is generated by

variation in the ideological attachments of Independent voters.

Some of the same concerns about the empirical literature on seat-vote curves motivate the

independent work of Besley and Preston (2005). These authors develop an alternative micro-

founded model that generates an equilibrium relationship between seats and votes. They use their

model to solve for what the distribution of voter types must be across districts if the equilibrium

seat-vote curve is to be of the bilogit form. Their main theoretical point is to show that this

distribution, and hence the shape of the seat-vote curve, is a key determinant of Parties’ electoral

incentives to put in effort on the part of their constituents. They provide empirical evidence in

favor of their theory by showing that local government performance in the U.K. is related to

the parameters of the local seat-vote curve in the way the theory suggests. Their work therefore

suggests a novel theoretical mechanism why the form of the seat-vote curve (and hence districting)

matters for citizens’ welfare and provides evidence for this. By contrast, our model reflects the

5 As we will note, however, Owen and Grofman’s constraint that the average threshold is zero is not implied by
the model.
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conventional view that districting matters because it determines which Party gets the most seats

and hence the ideological composition of the legislature.

Also in the spirit of this paper is the recent work of Epstein and O’Hallaran (2004) on

racial gerrymandering.6 They seek to understand the allocation of voter types across dis-

tricts that would maximize the welfare of blacks. Their model formalizes the intuition that there

maybe a trade-off between descriptive and substantive representation. Descriptive representa-

tion is achieved by having districts elect black representatives, while substantive representation

is achieved when the legislature chooses policies that favor black voters. Maximizing descrip-

tive representation may require concentrating black voters into majority-minority districts, while

maximizing substantive representation may require a more even spreading of black voters. The

underlying structure of Esptein and O’Hallaran’s model is simpler than the one presented here in

that it does not allow for Independents and there is no aggregate uncertainty in voters’ prefer-

ences. On the other hand, to incorporate substantive representation, they model strategic policy

choices on the part of politicians, whereas in our model parties’ positions are fixed.

3 The model

We consider a community divided into n equally sized districts, indexed by i = 1, ..., n. Policies

are chosen by a legislature consisting of a representative from each district. Each district chooses

its representative in an election. The policy outcomes chosen by the legislature depend upon the

average ideology of the elected representatives, where ideology is measured on a 0 to 1 scale.7

In terms of ideologies, citizens are divided into three groups - Democrats, Republicans, and

Independents. Democrats and Republicans have ideologies 0 and 1, respectively. Independents

6 See also the interesting work of Shotts (2002) who studies the impact of federally mandated majority-minority
districts on policy outcomes under the assumptions that districting at the state level is done by partisan districters
and that the median voter theorem applies in district level elections.

7 This assumption should be distinguished from the obvious alternative that the policy outcome chosen by
the legislature depends upon the median ideology of the elected representatives. While it is certainly possible
to undertake the analysis under the median assumption, it implies that the properties of the seat-vote curve are
irrelevant for citizens’ welfare over almost of its range and hence makes the problem much less interesting. For
example, suppose that the aggregate vote for Democrats increases from 30% to 40% and suppose their initial seat
share is 30%. Then whether their seat share increases to 35% or 45% has no impact on policy because in either
situation the median legislator remains a Republican. Thus, the responsiveness of the seat-vote curve over this
range is irrelevant. All that matters for welfare is the vote share at which the Democrats become the majority
party. In essence, to make sense of the concern in the districting literature over the responsiveness of seat-vote
curves one needs to assume something like average legislator ideology matters and this motivates the modelling
choice we have made. From a theoretical perspective, whether policy choices reflect the preferences of the median
or mean legislator ultimately depends upon the nature of legislative bargaining.
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have ideologies that are uniformly distributed on the interval [m−τ,m+τ ] where τ > 0. Reflecting

the fluid nature of these voters’ attitudes, the ideology of the median Independent is ex ante

uncertain. Specifically, m is the realization of a random variable uniformly distributed on [1/2−

ε, 1/2+ ε], where ε ∈ (0, τ) and ε+ τ ≤ 1/2. The latter assumption guarantees that the ideologies

of the Independents are always between those of Democrats and Republicans, while the former

guarantees that some Independents lean Democrat and some lean Republican. The fraction of

voters in district i who are Democrats, Republicans, and Independents are, respectively, πD(i),

πR(i) and πI(i).
8 Let πD, πR and πI denote, respectively, the fraction of voters in the entire

community who are Democrats, Republicans, and Independents.

Each district must elect a representative. Candidates are put forward by two political or-

ganizations: the Democrat and Republican Parties. Following the citizen-candidate approach,

candidates are citizens and are characterized by their ideologies (see Besley and Coate (1997)

and Osborne and Slivinski (1996)). Each Party must select from the ranks of its membership,

so that the Democrat Party always selects a Democrat and the Republican Party a Republican.9

Elections are held simultaneously in each of the n districts and the candidate with the most

votes wins. If the average ideology of the elected representatives is α0, a citizen with ideology α

experiences a payoff given by −(α− α0)2. Thus, citizens have quadratic loss functions.10

In each district, every citizen votes sincerely for the representative whose ideology is closest

to his own.11 Accordingly, if the median independent has ideology m, the fraction of voters in

8 Note for future reference that since πR(i) = 1 − πI(i) − πD(i) the allocation of voters in district i is fully
described by the pair (πD(i),πI(i)).

9 This assumption substantially simplifies the problem because it means that Parties have no strategic choices
to make as regards candidates. It would be interesting to extend the model to allow Parties some flexibility in
candidate choice, perhaps by assuming that Democrats and Republicans come in varying ideologies (as in Coate
(2004b)). Districting would then shape the incentives for Parties to put up moderate or extreme candidates. It is
important to note, however, that going all the way to a Downsian vision of political competition in which candidates
adopt the ideology that makes them most likely to win would devoid the problem of much of its content. In each
district both Parties’ candidates would adopt the position of the expected median voter and which candidate won
would have no signifcance for welfare. Thus, while the problem of optimal districting could still be posed, the
seat-vote curve and the ideas of partisan bias or responsiveness would cease to have much meaning.

10 The roles of this assumption and the assumption that the ideologies of the Independents are uniformly dis-
tributed are discussed in Section 8.

11 This is an assumption. An Independent voter who leans Democrat may be better off if his district elects
a Republican if other districts disproportionately elect Democrats. For the average legislator ideology would be
closer to his ideal point if his district elected a Republican. As an empirical matter, however, it is not clear that
most voters are this sophisticated. Similar incentives to diverge from voting for the candidate closest to one’s own
ideology arise when voters are electing congressional and presidential candidates and the policy outcome depends
upon a weighted average of the ideologies of the median congressman and the president (Alesina and Rosenthal
(1995) and Fiorina (1992)). While it is certainly the case that some voters do “split their tickets”, Degan and Merlo
(2004) estimate that the vast majority (82%-93%) vote sincerely.
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district i voting for the Democrat is

V (i;m) = πD(i) + πI(i)[
1/2− (m− τ)

2τ
]. (3)

This group consists of the Democrats and the Independents whose ideologies are less than 1/2.

The aggregate vote share of the Democrat Party is

V (m) = πD + πI [
1/2− (m− τ)

2τ
]. (4)

Let V and V denote, respectively, the maximum and minimum aggregate Democrat vote shares;

i.e., V = V (1/2− ε) and V = V (1/2 + ε).

We can now use the model to derive the equilibrium relationship between seats and the aggre-

gate Democratic vote share. First, for all V ∈ [V , V ], let m(V ) denote the ideology of the median

Independent that would generate the vote share V ; i.e., m(V ) = V −1(V ). From (4), we have that

m(V ) =
1

2
+ τ [

πI + 2πD − 2V
πI

]. (5)

Substituting this into (3), we obtain

V (i;m(V )) = πD(i) + πI(i)[
V − πD

πI
]. (6)

District i elects a Democrat if V (i;m(V )) ≥ 1/2, or, equivalently, if

V ≥ V ∗(i) = πD + πI [
1/2− πD(i)

πI(i)
], (7)

where V ∗(i) is the critical aggregate vote threshold above which district i elects a Democrat. It is

natural to say that district i is a safe Democrat (safe Republican) seat if V ∗(i) ≤ V (V ∗(i) ≥ V ).

A seat which is not safe is called competitive.

Without loss of generality, order the districts so that V ∗(1) ≤ V ∗(2) ≤ .... ≤ V ∗(n). Then, the

fraction of seats the Democrats receive when they have aggregate vote share V is

S(V ) =
Max{i : V ∗(i) ≤ V }

n
. (8)

This is the equilibrium seat-vote curve. It is determined by the allocation of citizens across districts

(πD(i),πI(i))
n
i=1 which determine their critical vote thresholds (V

∗(i))ni=1.
12 Note also that the

12 It is worth noting that this model offers partial micro-foundations for the assumptions made in Owen and
Grofman’s (1988) analysis of optimal partisan districting discussed in section 2. The vote threshold in district
i is V ∗(i) and the random variable is V - the aggregate Democrat vote share. Moreover, districting determines
the vote thresholds across districts. However, the average value of the thresholds

Pn
i=1 V

∗(i)/n is not constant
across districtings as Owen and Grofman’s analysis assumes it must be. We have that

Pn
i=1 V

∗(i) = πD +

πI
Pn
i=1[

1/2−πD(i)
πI(i)

] and all we know is that
Pn
i=1 πI(i)/n = πI and that

Pn
i=1 πD(i)/n = πD. Thus, their

characterization of optimal partisan districtings cannot be applied to this model.
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average ideology of the elected representatives is 1− S(V ).

4 The optimal seat-vote curve

We are interested in the problem of a planner who must choose how to allocate citizens across

the districts to maximize aggregate utility. The districting matters for welfare because, as just

demonstrated, it determines the equilibrium relationship between aggregate votes and the com-

position of the legislature - the equilibrium seat-vote curve. It is important to note, however,

that there is not a one-to-one mapping between districtings and seat-vote curves. The seat-vote

curve is determined by the pattern of critical vote thresholds across districts. As is clear from

(7), the same pattern of critical vote thresholds could in principle be achieved by many different

districtings. Thus, the problem is not as simple as writing welfare as a function of the allocation

of citizens and choosing the best such allocation.

To solve the problem, we need to think of the planner as choosing the seat-vote curve but

subject to the constraint that it be an equilibrium for some districting. The optimal districtings

will then be those that are associated with the constrained optimal seat-vote curve. However, this

is a hard problem, because of the difficulties in formalizing the constraint that a seat-vote curve be

an equilibrium for some districting. Accordingly, we will begin our analysis by characterizing the

optimal relationship between seats and aggregate votes - the optimal seat-vote curve - ignoring

the constraint that it be an equilibrium for some districting. We will then investigate whether

there exist allocations of voters that generate this optimal seat-vote curve. If there do exist such

districtings, these will clearly be optimal. This two-stage procedure will not totally eliminate the

need to consider the grand constrained optimization, but the insights that it yields will make the

problem more manageable.

Consider then the problem of the planner deciding on the number of seats S that should be

allocated to the Democrats when their vote share is V given that the resulting policy outcome

will be 1−S. Aggregate utility when the median Independent has ideology m and the Democrats

have seat share S is given by:

W (S;m) = −[πD(1− S)2 + πRS
2 + πI

Z m+τ

m−τ
(1− S − x)2 dx

2τ
]. (9)

If the vote share is V , the median Independent has ideology m(V ) and hence the optimal seat
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share is

So(V ) = arg max
S∈{ i

n}
W (S;m(V )). (10)

To avoid tedious integer concerns, assume that the number of districts is very large, so that we

can interpret S as the fraction of seats held by the Democrats and treat the choice set in the

optimization problem as the unit interval [0, 1]. Then, So(V ) satisfies the following first order

condition:

∂W (So;m(V ))/∂S = 0. (11)

Solving this first order condition allows us to establish the following result13 :

Proposition 1: The optimal seat-vote curve So : [V , V ]→ [0, 1] is given by

So(V ) = 1/2 + (πD − πR)(1/2− τ) + 2τ(V − 1/2). (12)

Recalling our discussion in section 2, Proposition 1 tells us that the optimal seat-vote curve

is linear, with bias (πD − πR)(1/2− τ) and responsiveness 2τ . This curve is illustrated in Figure

1. The horizontal axis measures the aggregate Democratic vote and the vertical the Democrats’

share of seats. Since τ < 1/2, the slope of the optimal seat-vote curve is less than 1 meaning

that the fraction of Democrat seats increases at a constant but less than proportional rate as the

aggregate Democrat vote increases. The seat-vote curve intersects the 45o line when the aggregate

vote is πD + πI/2. Thus, when exactly half the Independents lean Democrat, the optimal share

of Democratic seats is πD + πI/2. Notice also that S
o(V ) > 0 and So(V ) < 1 so that, under this

optimal system, there are safe seats for both Parties.

To understand why the optimal responsiveness is 2τ , note first that the welfare maximizing

Democratic seat share must be such that the social gains from increasing it marginally just equal

the social losses. With the quadratic preferences, this condition implies that the Democratic seat

share must be such as to make the ideology of the average legislator equal the average ideology

in the population. Thus, when the mean (which equals the median) Independent has ideology

m, the optimal Democrat seat share should be πD + πI(1 − m) because this would make the

average ideology in the legislature equal to the population average - which is πR + πIm. When

the aggregate Democrat vote share increases marginally, the change in the mean Independent’s

ideology is dm/dV = −2τ/πI and hence the increase in the optimal Democrat seat share is just

13 The proofs of this and all subsequent propositions can be found in the Appendix.
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2τ . Recall that τ measures the diversity of views among Independents, so that responsiveness is

positive correlated with this diversity. This is because the greater the diversity of Independent

views, the greater the change in mean Independent ideology signalled by any given increase in

vote share.

To understand why the optimal seat-vote curve is biased, consider the case when the Democrats

get exactly half the aggregate vote (V = 1/2). If the optimal seat-vote curve were unbiased then

the Democrats should get half the seats (So(1/2) = 1/2). This would indeed be optimal if the

average ideology in the population were 1/2. However, while the median voter in the population

must have ideology 1/2 in this case, the average voter’s ideology will only equal 1/2 when the

fractions of Democrats and Republicans are equal. To see this, note from (5) that when V = 1/2,

the median Independent’s ideology must be m(1/2) = 1/2 + τ(πD − πR)/πI which implies that

the average ideology in the population is 1/2 + (πR − πD)(1/2 − τ). Thus, to make the average

legislator’s ideology equal to the population average it will be necessary to have the Democratic

seat share greater than 1/2 if πD is greater than πR. Fundamentally, then, the bias in the optimal

seat-vote curve stems from the fact that the ideology of the median voter will typically differ from

that of the average voter. This in turn reflects the fact that partisans feel more intensely about

ideology than do Independents.

Having understood the nature of the optimal seat-vote curve, we must tackle the question of

implementability; that is, whether there exist districtings which generate an optimal relationship

between seats and votes. Such a districting would make the composition of the legislature such that

average legislator ideology always equals the population average. Clearly, this cannot be achieved

by making each district a microcosm of the community as a whole, because then all districts

would vote in the same way and the legislature would be either all Democrat or all Republican.

However, with appropriate district level heterogeneity, implementability seems possible. While

the conditions that might guarantee it are by no means obvious, it is apparent that the fraction

of Independents must matter. For, if there were no Independents, then the optimal seat-vote

curve would be a single point and could be implemented, for example, by creating a fraction πR

districts majority Republican and a fraction πD districts majority Democrat. On the other hand,

if the entire population were Independents, then all districts would necessarily be identical and

the optimal seat-vote curve is clearly not implementable.14

14 In this case, the optimal seat-vote curve is So(V ) = 1/2 + 2τ(V − 1/2), while the equilibrium seat-vote curve
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This discussion leaves us with two general questions: first, what are the conditions under which

the optimal seat-vote curve is implementable? Second, when it is not implementable, what does

the “constrained” optimal seat-vote curve look like? The remainder of the paper is devoted to

answering these questions.

5 Determining when a seat-vote curve is implementable

In this section, we outline a method for determining whether a particular seat-vote curve is

implementable. This method will not only allow us to understand when the optimal seat-vote

curve is implementable, but also how to specify the constraints for the problem of choosing the

constrained optimal seat-vote curve.15

In developing this method, it is more convenient to work with inverse seat-vote curves rather

than seat-vote curves. An inverse seat-vote curve is described by a triple {i, i, V ∗(·)} where i

and i are scalars satisfying 0 ≤ i ≤ i ≤ 1 and V ∗(·) is a non-decreasing function defined on [i, i]

with range [V , V ]. The interpretation is that i is the fraction of districts that are safe Democrat;

1− i the fraction that are safe Republican; and V ∗(i) is the critical aggregate vote threshold for

competitive district i ∈ [i, i]. Given a seat vote curve S(V ) we form its inverse in the following

way: i is just S(V ); i is S(V ) and for all i ∈ [i, i], V ∗(i) is such that S(V ) = i. In the event

that S(V ) is flat over some part of its range, we let V ∗(i) be the smallest value of V such that

S(V ) = i and, in the case in which S(V ) is discontinuous and there does not exist a V such that

S(V ) = i, we let V ∗(i) be the smallest value of V such that S(V ) ≥ i. The relationship between

a seat-vote curve and its inverse is illustrated in Figure 2.

We will need the following definitions. A districting is a description of the fractions of voter

types in each district {(πD(i),πI(i)) : i ∈ [0, 1]}. It must be the case that for all i, (πD(i),πI(i))

belongs to the two dimensional unit simplex ∆2+. This ensures that πD(i) and πI(i) are non-

negative and satisfy the constraint that πD(i)+πI(i) ≤ 1. The latter guarantees that the associated

fraction of Republicans in the district πR(i) = 1 − πD(i) − πI(i) is non-negative. A districting

{(πD(i),πI(i)) : i ∈ [0, 1]} is feasible if it is the case that the average fractions of voter types equal

the actual; i.e.,
R 1
0
πI(i)di = πI and

R 1
0
πD(i)di = πD. Notice that this definition of feasibility

is S(V ) = 0 if V < 1/2 and S(V ) = 1 if V > 1/2.

15 The reader anxious to see the conditions under which the optimal seat-vote curve is implementable and/or
what the constrained optimal seat-vote curve looks like, can jump ahead to the Propositions in Sections 6 and 7
with little loss of continuity.
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neglects any geographic constraints on districting.

A districting {(πD(i),πI(i)) : i ∈ [0, 1]} generates the inverse seat-vote curve {i, i, V ∗(·)} if

(i) πD + πI [
1/2−πD(i)

πI(i)
] ≤ V for all i ∈ [0, i); (ii) πD + πI [

1/2−πD(i)
πI(i)

] ≥ V for all i ∈ (i, 1]; and

(iii) πD + πI [
1/2−πD(i)

πI(i)
] = V ∗(i) for all i ∈ [i, i]. Requirement (i) is that districts i ∈ [0, i) are

safe Democrat seats and requirement (ii) is that districts i ∈ (i, 1] are safe Republican seats.

Requirement (iii) is that competitive district i ∈ [i, i] has a critical aggregate vote threshold

just equal to V ∗(i). A seat-vote curve is implementable if there exists a feasible districting that

generates its associated inverse seat-vote curve.

Consider then a particular seat-vote curve S(V ) with inverse {i, i, V ∗(·)}. We want to know

if it is implementable. We assume only that S(V ) is piecewise continuously differentiable and

non-decreasing. This allows S(V ) to have both jumps and flat spots.16 These properties will

also be shared by the function V ∗(·).

We begin by describing the districtings that can generate the inverse seat-vote curve {i, i, V ∗(·)}.

In describing this set, there is no loss of generality in assuming that the safe Democrat and Repub-

lican districts are identical. Thus, we may assume that (πD(i),πI(i)) = (πD,πI) for all i ∈ [0, i)

and (πD(i),πI(i)) = (πD,πI) for all i ∈ (i, 1] where (πD,πI), (πD,πI) ∈ ∆2+.17 Using the

definitions of V and V (see (4)), requirements (i) and (ii) from above imply that

πD + πI [
τ − ε

2τ
] ≥ 1

2
(13)

and

πD + πI [
τ + ε

2τ
] ≤ 1

2
. (14)

These inequalities reflect the fact that the minimum and maximum fraction of Independents voting

Democrat are, respectively, τ−ε2τ and τ+ε
2τ .

In the competitive districts [i, i], requirement (iii) ties down what the function πD(i) must

look like over the interval [i, i] given any choice of the function πI(i). Specifically, πD(i) =

f(πI(i), V
∗(i)) where

f(x, y) =
1

2
− x

πI
(y − πD). (15)

16 By piecewise continuously differentiable we mean that S(V ) is continuously differentiable except possibly at a
finite number of points. Thus, if S(V ) has jumps, it has only a finite number.

17 For example, if (πD(i),πI(i)) varied over the safe Democrat seats i ∈ [0, i), then we could create a districting
with identical safe Democrat districts that used exactly the same fractions of voter types in the safe Democrat

districts by letting (πD(i),πI(i)) = (
R i
0 πD(i)

di
i
,
R i
0 πI(i)

di
i
) for all i ∈ [0, i).
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In addition, we must have that (πI(i), f(πI(i), V
∗(i))) ∈ ∆2+ for all i ∈ [i, i]. This constraint

amounts to the requirement that

πI(i) ∈ [0,min{
πI

2(V ∗(i)− πD)
;

πI
2(πI + πD − V ∗(i))

}]. (16)

Notice that V ∗(i)−πD is less than πI +πD−V ∗(i) if and only if V ∗(i) is less than πI
2 +πD. Thus,

letting bi be such that V ∗(i) ≤ πI
2 + πD for all i ∈ [i,bi) and V ∗(i) ≥ πI

2 + πD for all i ∈ (bi, i], we
can write the constraint as18

πI(i) ∈
½
[0, πI

2(πI+πD−V ∗(i)) ] if i <bi
[0, πI

2(V ∗(i)−πD) ] otherwise
. (17)

We conclude from this that the districtings that generate the inverse seat-vote curve {i, i, V ∗(·)}

can be described by the set of all {(πD,πI), (πD,πI),πI(i)} such that (πD,πI) and (πD,πI) belong

to ∆2+ and satisfy (13) and (14) and πI(i) satisfies (17) for all i ∈ [i, i]. We call this the set of

generating districtings and denote it by G(i, i, V ∗(·)). The question of implementability is whether

there exists a districting in this set which is feasible; i.e., which satisfies

iπI + (1− i)πI +
Z i

i

πI(i)di = πI (18)

and

iπD + (1− i)πD +
Z i

i

f(πI(i), V
∗(i))di = πD. (19)

How do we know when this is true? The following observation is key to the method that

we use. Let G∗(i, i, V ∗(·)) denote the subset of generating districtings that satisfy the feasibility

requirement that the average fraction of Independents equals the actual fraction of the population

(i.e., (18)). Then we have:

Lemma 1: Let {(πoD,πoI), (πoD,πoI),πoI (i)} and {(π1D,π1I), (π1D,π1I),π1I (i)} be two districtings in

the set G∗(i, i, V ∗(·)) such that

iπoD + (1− i)πoD +
Z i

i

f(πoI (i), V
∗(i))di ≥ πD ≥ iπ1D + (1− i)π1D +

Z i

i

f(π1I (i), V
∗(i))di.

Then there exists a feasible districting in the set G(i, i, V ∗(·)).

18 There will exist such an bi whenever there are safe seats for both Parties. If V ∗(i) = πI
2
+ πD for a set of

districts, then bi can be any element of this set. If i = 0 and V ∗(0) > πI
2
+ πD, let bi = 0, while if i = 1 and

V ∗(1) < πI
2
+ πD, let bi = 1.

15



Thus, if there exists two districtings in the set G∗(i, i, V ∗(·)) one of which involves a higher average

fraction of Democrats than there are in the population and one of which involves a lower fraction,

then there must exist a feasible districting in G∗(i, i, V ∗(·)).

Consider now the following pair of optimization problems:

min iπD + (1− i)πD +
R i
i
f(πI(i), V

∗(i))di Pmin

s.t. {(πD,πI), (πD,πI),πI(i)} ∈ G∗(i, i, V ∗(·))

and

max iπD + (1− i)πD +
R i
i
f(πI(i), V

∗(i))di Pmax

s.t. {(πD,πI), (πD,πI),πI(i)} ∈ G∗(i, i, V ∗(·))

The minimization problem selects the districting in G∗(i, i, V ∗(·)) that has the minimal fraction of

Democrats, while the maximization problem selects the districting that has the maximal fraction

of Democrats or, equivalently, the minimal fraction of Republicans. Letting the values of these

problems be Ω(i, i, V ∗(·)) and Ω(i, i, V ∗(·)) respectively, it follows from Lemma 1 that there exists

a feasible districting generating {i, i, V ∗(·)} if and only if Ω(i, i, V ∗(·)) ≤ πD ≤ Ω(i, i, V ∗(·)).

Thus, the seat-vote curve S(V ) is implementable if and only if πD lies between Ω(i, i, V
∗(·)) and

Ω(i, i, V ∗(·)).

6 When is the optimal seat-vote curve implementable?

Given the method just outlined, to see whether the optimal seat-vote curve So(V ) is implementable

we proceed as follows. First, we find the associated inverse seat-vote curve {io, io, V ∗o (·)}. Next,

we find the values of the associated minimization and maximization problems Ω(io, io, V
∗
o (·)) and

Ω(io, io, V
∗
o (·)). Then, we compare these values with the actual fraction of Democrats πD. In this

way, we establish the following result:

Proposition 2: The optimal seat-vote curve is implementable if and only if

πI(
ε

2τ
+ ε− (τ + ε) ln(1 +

ε

τ
)) ≤ πD (20)

and

πI(
ε

2τ
+ ε− (τ + ε) ln(1 +

ε

τ
)) ≤ 1− πD − πI = πR. (21)
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Thus, we need that there be “enough” Republicans and Democrats relative to Independents.

This makes good intuitive sense given the discussion of implementability in Section 4. There

are several points to note about the coefficient multiplying the fraction of Independents (i.e.,

ε
2τ + ε − (τ + ε) ln(1 + ε

τ )). First, for all τ , its value of the coefficient converges to zero as ε

converges to zero. This means that the optimal seat-vote curve is necessarily implementable when

the degree of uncertainty in the identity of the median Independent is sufficiently small. Second,

for given ε, the coefficient is decreasing in τ and hence the optimal seat-vote curve is more likely

to be implementable when there is more diversity in the ideologies of Independents. Third, and

most importantly, for any values of ε and τ satisfying our assumptions, the coefficient is less than

1/2 and hence we have the following useful sufficient condition for the optimal seat-vote curve to

be implementable.

Corollary: The optimal seat-vote curve is implementable if πI ≤ 2min{πD,πR}.

According to data from Erikson, Wright and McGuiver (1993), this sufficient condition is satisfied

in all but four U.S. States.19

When the conditions of Proposition 2 are satisfied, we can use arguments developed in the

proof of Proposition 2 to show that the optimal seat-vote curve can always be implemented by a

districting of the form

(πD(i),πI(i)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(πD,πI) if i ∈ [0, io)

(
πD+

πI
2 −i

πD+
πI
2 −i+πIτ

, πIτ
πD+

πI
2 −i+πIτ

) if i ∈ [io,πD + πI
2 )

(0, πIτ
i−(πD+πI

2 )+πIτ
) if i ∈ [πD + πI

2 , io]

(πD,πI) if i ∈ (io, 1]

(22)

The voter allocations in the safe seats (πD,πI) and (πD,πI) must satisfy inequalities (13) and

(14) and the aggregate feasibility conditions

ioπI + 2πIτ ln(1 +
ε

τ
) + (1− io)πI = πI (23)

and

ioπD + 2[πIε− πIτ ln(1 +
ε

τ
)] + (1− io)πD = πD. (24)

19 Of course, just because a person reports that they are a Democrat does not mean that they always vote for
the Democrat candidate as the model assumes. Nonetheless, the requirement that the fraction of swing voters is
less than twice the fraction of voters who either always vote Democrat or always vote Republican seems permissive.
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Under the conditions of Proposition 2, there will exist some (πD,πI) and (πD,πI) that satisfy all

these requirements.

The allocations of voters in the competitive districts in districtings of this form are of particu-

lar interest. They are divided into Democrat-leaning districts (i ∈ [io,πD + πI
2 )) and Republican-

leaning districts (i ∈ [πD + πI
2 , io]). The Democrat-leaning districts are populated by only De-

mocrats and Independents, with the fraction of Independents varying from τ/(τ + ε) to 1. These

districts all elect a Democrat candidate when the majority of Independents prefer the Democrats;

i.e., when V ≥ πD+
πI
2 . However, they differ in their critical vote thresholds because they contain

different fractions of Independents. Thus, the fraction of these districts electing Democrats varies

smoothly as the aggregate Democrat vote share increases from V to πD +
πI
2 . The Republican-

leaning districts are populated by only Republicans and Independents, with the fraction of Inde-

pendents varying from 1 to τ/(τ + ε). These districts all elect Republicans when the majority of

Independents prefer Republicans, but the fraction electing a Republican varies smoothly as the

aggregate vote share increases from πD +
πI
2 to V .

In general, not much of interest can be said about the allocation of voters in the safe seats.

However, when one of the two conditions in Proposition 2 holds with equality, there is a unique

districting (in the class of districtings with homogeneous safe seats) that generates the optimal

seat-vote curve. Accordingly, the allocation of voters in the safe seats is tied down uniquely.

It will be helpful in understanding constrained optimal seat-vote curves to see what this looks

like. Consider the case in which condition (20) holds with equality, so that there are just enough

Democrats. Then, (πD,πI) = (ε/(τ+ε), τ/(τ+ε)) and (πD,πI) = (0, (
πI
2 −πIτ ln(1+

ε
τ ))/(1−

πI
2 −

πIε−πD)). Thus, the safe Democrat districts are just populated by Democrats and Independents

and the safe Republican districts by Republicans and Independents. The fraction of Democrats in

the safe Democrat districts is no more than necessary to ensure that the fraction of Democrats and

Democrat-favoring Independents always exceeds the fraction of Republican-favoring Independents.

Assuming that condition (21) holds as an inequality, the fraction of Republicans in the safe

Republican districts is greater than the minimal sufficient level.20 Thus, there are surplus

Republicans in the safe Republican seats.

The districtings of the form described in (22) are extreme in the sense that the competitive

20 If condition (21) holds as an inequality, then
πI
2
−πIτ ln(1+ ε

τ
)

1−πI
2
−πIε−πD

< τ
τ+ε

.
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districts have no voters of one type. It is reasonable to object that such districts are unlikely

to be practically feasible when account is taken of geographic constraints. However, it is im-

portant to note that the optimal seat-vote curve can typically be implemented with much more

“straightforward” districtings. To illustrate, consider the class of districtings in which the fraction

of Independents is constant across districts. In this class, all that varies across districts is the

fraction of Democrats and Republicans. Then, we have the following result:

Proposition 3: The optimal seat-vote curve is implementable with a districting of the form

(πD(i),πI(i)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(πD,πI) if i ∈ [0, io)

(12 −
πI
2 +

πD+
πI
2 −i

2τ ,πI) if i ∈ [io, io]

(πD,πI) if i ∈ (io, 1]

(25)

if and only if
πIε(1− πI) + (

1
2 − πI(

1
2 −

ε
2τ ))πI(

1
2 − ε)

1
2 + πI(

1
2 −

ε
2τ )

≤ πD (26)

and
πIε(1− πI) + (

1
2 − πI(

1
2 −

ε
2τ ))πI(

1
2 − ε)

1
2 + πI(

1
2 −

ε
2τ )

≤ 1− πD − πI = πR. (27)

The encouraging point to note is that the conditions of Proposition 3 are not that much more

restrictive than those of Proposition 2. Figure 3 illustrates the sets of (πD,πI) that satisfy the

conditions of Propositions 2 and 3 under the assumption that ε = 0.1 and τ = 0.2. The horizontal

axis measures πI and the vertical axis measures πD. The two dimensional unit simplex ∆
2
+ is the

area below the line connecting the points (0, 1) and (1, 0). The set of (πD,πI) that satisfy the

conditions of Proposition 3 is the smaller triangular area between the two lines that are closest

to each other and the set satisfying the conditions of Proposition 2 is the larger triangular area.

The two sets are almost the same.

The competitive districts in districtings of the form described in Proposition 3 can still be

divided into Democrat-leaning districts (i ∈ [io,πD + πI
2 ]) and Republican-leaning districts (i ∈

[πD +
πI
2 , io]). However, all districts contain all three types of voters. The Democrat-leaning

districts just have a greater fraction of Democrats than Republicans, with the ratio of Democrats

to Republicans varying from [1 − πI(
τ−ε
τ )]/[1 − πI(

τ+ε
τ )] to 1. The Republican-leaning districts

have a greater fraction of Republicans, with the ratio of Democrats to Republicans varying from

1 to [1− πI(
τ+ε
τ )]/[1− πI(

τ−ε
τ )].
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7 The constrained optimal seat-vote curve

While the optimal seat-vote curve is implementable in a broad class of circumstances, there are

interesting situations in which it might not be. For example, according to Erikson, Wright and

McGuiver (1993), the sufficient conditions of the Corollary are not satisfied in four New England

States, where many voters are not affiliated with either political party. In two states (MA and

RI) there are enough Democrats (πI ≤ 2πD) but too few Republicans (πI > 2πR), while these

conditions are reversed in two others (NH and VT). In such cases, what does the constrained

optimal seat-vote curve look like?

We find the constrained optimal seat-vote curve by solving for the implementable inverse seat-

vote curve that maximizes aggregate welfare.21 Let F−1 denote the set of all inverse seat-vote

curves {i, i, V ∗(·)} that have the property that V ∗(·) is piecewise continuously differentiable. In

addition, let EW ({i, i, V ∗(·)}) denote expected aggregate utility under the inverse seat-vote curve

{i, i, V ∗(·)}. Then, the problem we solve is

max
{i,i,V ∗(·)}∈F−1

EW ({i, i, V ∗(·)}) Pcon

s.t. Ω({i, i, V ∗(·)}) ≥ πD ≥ Ω({i, i, V ∗(·)}).

The constrained optimal seat-vote curve is the seat-vote curve corresponding to the solution of

this problem.

When (20) and (21) are satisfied, Proposition 2 implies that the optimal inverse seat-vote

curve {io, io, V ∗o (·)} solves this problem and the constraints are not binding. When this is not the

case, there are three possibilities. First, only (21) is satisfied and there are not enough Democrats.

Second, only (20) is satisfied and there are not enough Republicans. Finally, neither inequality is

satisfied and there are not enough Democrats or Republicans. We discuss each of these cases in

turn.

7.1 Not enough Democrats

In this case, we are able to establish the following result:

Proposition 4: Suppose that there are not enough Democrats and let S∗(V ) denote the con-

strained optimal seat-vote curve. (a) If πD ≤ πIε
2τ (1−τ −2ε), then S∗(V ) = πD

τ+ε
ε on the interval

21 By an “implementable” inverse seat-vote curve we mean one for which there exists a feasible districting that
generates it.
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[V ,πD +
πI
2 ) and S

∗(V ) = So(V ) on the interval [πD +
πI
2 , V ]. (b) If πD >

πIε
2τ (1− τ − 2ε) there

exists eV ∈ (V ,πD + πI
2 ) such that: (i) S

∗(V ) is positive, increasing, and strictly convex on the

interval [V , eV ); (ii) S∗(V ) is constant on the interval [eV ,πD + πI
2 ); and (iii) S

∗(V ) = So(V ) on

the interval [πD +
πI
2 , V ].

The result is illustrated in Figure 4. Panel (a) illustrates the case in which πD is less than

πIε
2τ (1 − τ − 2ε) and panel (b) the case in which πD is greater than πIε

2τ (1 − τ − 2ε). In the

former case, the constrained optimal seat-vote curve is constant on the interval [V ,πD +
πI
2 ) and

then jumps up discontinuously to equal the optimal seat-vote curve on the interval [πD +
πI
2 , V ].

The logic of the constrained optimum is to allocate the available Democrats to make as many

safe Democrat districts as possible. In the case illustrated in panel (b) the seat-vote curve is

first increasing and at an increasing rate. However, at some aggregate vote level between V and

πD +
πI
2 the curve becomes flat. It then jumps up discontinuously to equal the optimal seat-vote

curve on the interval [πD +
πI
2 , V ]. It can be shown that as πD gets larger (holding constant πI)

the point at which the curve flattens (eV ) moves to the right and, for sufficiently large πD, equals
πD +

πI
2 and the flat spot disappears.

In either case, the constrained optimal seat-vote curve lies below the optimal seat-vote curve

on the interval [V ,πD +
πI
2 ) and equals it thereafter. What this tells us is when the median

Independent favors the Republicans, it is not possible to elect enough Democrats to make the

average ideology of the legislature equal to the population average. However, when the median

Independent favors the Democrats there is no longer a problem, because Democrats can be elected

from districts that are populated solely by Independents. In case (a) the shortage of Democrats

is dealt with by creating as many safe Democrat seats as possible. This means that the seat-vote

curve is non-responsive on the interval [V ,πD+
πI
2 ), implying that the divergence between average

population and legislator ideology is increasing. In case (b) the seat-vote curve is first increasingly

responsive, and then becomes unresponsive. This implies that the divergence between the average

population and legislator ideology displays a more complex pattern, first increasing and then

decreasing. This counter-intuitive pattern stems from an inherent non-convexity in Problem Pcon

that is discussed in the proof of Proposition 4.

What can be said about the districting underlying the constrained optimal seat-vote curve? In

contrast to the situation when the optimal seat-vote curve can be implemented, there is a unique

districting (in the class with homogeneous safe seats) generating the constrained optimal seat-vote
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curve. When πD is less than
πIε
2τ (1− τ − 2ε), this optimal districting is

(πD(i),πI(i)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( ε
τ+ε ,

τ
τ+ε) if i ∈ [0,πD τ+ε

ε )

(0, 1) if i ∈ [πD τ+ε
ε ,πD +

πI
2 )

(0, πIτ
i−(πD+πI

2 )+πIτ
) if i ∈ [πD + πI

2 , io]

(0,
πI
2 −πIτ ln(1+

ε
τ )

1−πD−πI
2 −πIε

) if i ∈ (io, 1]

. (28)

It is instructive to compare this with the optimal districting when there are “just enough De-

mocrats” discussed in Section 6. The safe Democrat districts look exactly the same, but there

are less of them since πD(τ + ε)/ε is smaller than io. However, the Democrat-leaning competitive

districts from (22) have been replaced by a group of districts (i ∈ [πD τ+ε
ε ,πD +

πI
2 ]) that are

populated solely by Independents. These districts all vote in the same way and elect a Democrat

candidate if and only if the median Independent votes Democrat or, equivalently, if the aggregate

vote share for the Democrats exceeds πD +
πI
2 . This is what generates the discontinuity in the

seat-vote curve illustrated in Figure 4(a). The Republican-leaning competitive districts and the

safe Republican districts look the same as in the districting described by (22).

In the case in which πD exceeds
πIε
2τ (1− τ − 2ε), the optimal districting is more complicated.

There exists scalars i, i∗ and a function ϕ defined on [i, i∗] such that

(πD(i),πI(i)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( ε
τ+ε ,

τ
τ+ε ) if i ∈ [0, i)

(πI/2+πD−ϕ(i)πI+πD−ϕ(i) ,
πI/2

πI+πD−ϕ(i)) if i ∈ [i, i∗)

(0, 1) if i ∈ [i∗,πD + πI
2 )

(0, πIτ
i−(πD+πI

2 )+πIτ
) if i ∈ [πD + πI

2 , io)

(0,
πI
2 −πIτ ln(1+ ε

τ )

1−πD−πI
2 −πIε

) if i ∈ [io, 1]

(29)

where ϕ(i) is increasing, strictly concave and satisfies ϕ(i) = V . Again, the safe Democrat districts

look exactly the same as when there are just enough Democrats, but there are less of them since

i is smaller than io. The Democrat-leaning competitive districts from (22) are now replaced by two

groups of districts. One group (i ∈ [i, i∗)) contains both Democrats and Independents. This group

have differing critical vote thresholds, with the fraction of Independents increasing from τ/(τ + ε)

to πI/2(πI+πD−ϕ(i∗)). Accordingly, the fraction of these districts electing a Democrat candidate

varies smoothly with the aggregate Democrat vote. However, in contrast to the case where the
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optimal seat-vote curve is implementable, the critical vote threshold (which is ϕ(i)) increases at a

decreasing rate in i as opposed to a linear rate. This generates a strictly convex seat-vote curve.

The other group of districts (i ∈ [i∗,πD + πI
2 )) are populated solely by Independents as in the

earlier case. Notice that the aggregate vote level eV described in Proposition 4 part (b) is ϕ(i∗).

When i∗ = πD +
πI
2 , the group of districts populated solely by Independents disappears and

ϕ(i∗) = πD +
πI
2 .

7.2 Not enough Republicans

The properties of the constrained optimal seat-vote curve when there are not enough Republicans,

can be deduced from Proposition 4. As noted in the proof of Proposition 2, one can redefine

the seat-vote curve as representing the relationship between the fraction of seats held by the

Republican Party and its share of the aggregate vote. Such a Republican seat-vote curve is denoted

by SR(VR), where SR is the fraction of seats held by Republicans and VR is the fraction of votes

they received. One can then apply Proposition 4 to deduce the properties of the constrained

optimal Republican seat-vote curve S∗R(VR) when there are not enough Republicans. Finally, one

can use the fact that S∗(V ) = 1 − S∗R(1 − V ) to find the properties of the constrained optimal

Democrat seat-vote curve. In this way, the following result can be established:

Proposition 5: Suppose that there are not enough Republicans and let S∗(V ) denote the con-

strained optimal seat-vote curve. (a) If πR ≤ πIε
2τ (1− τ − 2ε), then S∗(V ) = So(V ) on the interval

[V ,πD +
πI
2 ] and S

∗(V ) = 1 − πR
τ+ε
ε on the interval (πD +

πI
2 , V ]. (b) If πR >

πIε
2τ (1 − τ − 2ε)

there exists bV ∈ (πD + πI
2 , V ) such that: (i) S

∗(V ) = So(V ) on the interval [V ,πD +
πI
2 ]; (ii)

S∗(V ) is constant on the interval (πD +
πI
2 ,
bV ]; and (iii) S∗(V ) is increasing and strictly concave

on the interval (bV , V ].
This result is illustrated in Figure 5. Panel (a) illustrates the case in which πR is less than

πIε
2τ (1− τ − 2ε) and panel (b) the case in which πR is greater than

πIε
2τ (1− τ − 2ε). In the former

case, the constrained optimal seat-vote curve equals the optimal one on the interval [V ,πD +
πI
2 ]

and then jumps up discontinuously and flattens out on the interval (πD +
πI
2 , V ]. Again, the

logic of the constrained optimum is to allocate the available Republicans to make as many safe

Republican districts as possible. In the latter case, the seat-vote curve equals the optimal one on

the interval [V ,πD+
πI
2 ], jumps up at πD+

πI
2 and stays constant until

bV . It then starts increasing
at a decreasing rate on the interval [bV , V ]. As πR gets larger, bV moves to the left and eventually
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equals πD +
πI
2 .

7.3 Not enough Democrats or Republicans

The optimal districting when there are not enough Democrats allocates all the available De-

mocrats in the districts [0,πD +
πI
2 ). Similarly, when there are not enough Republicans, the

available Republicans are allocated to the districts (πD +
πI
2 , 1]. Accordingly, when there are

neither enough Democrats or Republicans the optimal districting is just an amalgam of the two

cases: the Democrats are allocated optimally over the districts [0,πD +
πI
2 ) and the Republicans

over the districts (πD +
πI
2 , 1]. The corresponding constrained optimal seat-vote curve therefore

just pieces together the two distorted ends of the seat-vote curves.

This is illustrated in Figure 6. Panel (a) depicts the case in which both πD and πR are

smaller than πIε
2τ (1− τ − 2ε) and in panel (b) the case in which both πD and πR are greater than

πIε
2τ (1−τ−2ε). In the former case, the constrained optimal seat-vote curve is flat on [V ,πD+

πI
2 ),

jumps up discontinuously at πD +
πI
2 and then is constant on the interval (πD +

πI
2 , V ]. In the

latter case, the seat-vote curve is first increasing and at an increasing rate. However, at aggregate

vote level eV the curve becomes constant, jumps up discontinuously at πD+ πI
2 and stays constant

until bV . It then starts increasing at a decreasing rate on the interval [bV , V ]. In the case in which
both eV and bV equal πD +

πI
2 , the seat-vote curve is S-shaped.

7.4 General lessons

There are three general lessons we can draw concerning the properties of constrained optimal seat-

vote curves. The first is that they always have safe seats. When either Democrats or Republicans

are in short supply, at least some fraction of them are optimally concentrated together to make

safe seats for their party.

The second lesson is that when there is a shortage of one group of partisans, the constrained

optimal seat-vote curve is biased toward the party with the largest partisan base, but when there

is a shortage of both groups this is not uniformly the case. Consider first the case in which there

is a shortage of one group - say, Republicans. The constrained optimal seat-vote curve is biased

in favor of the Democrats if for all V we have that S∗(V ) > 1 − S∗(1 − V ).22 The optimal

seat-vote curve is biased in favor of the Democrats in this case, so that So(V ) > 1 − So(1− V ).

22 To be more precise, the inequality must hold for all V ∈ [V , V ] such that 1− V ∈ [V , V ].
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Moreover, from Figure 5, the constrained optimal seat-vote curve lies on or above the optimal

seat-vote curve in this case, so that S∗(V ) ≥ So(V ) and S∗(1−V ) ≥ So(1−V ). Combining these

inequalities yields the result.

By contrast, consider a case in which there are too few Republicans and Democrats. Assume

that both πD and πR are smaller than
πIε
2τ (1 − τ − 2ε) so that we have the situation illustrated

in Figure 6(a) and suppose that πD is larger than πR. Consider the situation in which exactly

one half the population vote for the Democrats so that V = 1/2. Then, since πD is larger

than πR, it must be the case that 1/2 < πD + πI/2, implying that the Democrats’ seat share is

S∗(1/2) = πD(τ + ε)/ε (see Figure 6(a)). In order for S∗(1/2) > 1− S∗(1/2), it must be the case

that S∗(1/2) exceeds 1/2. But this will not be the case whenever πD < 2ε/(τ + ε). The difficulty

that arises here is that because πD is larger than πR, it must be the case that the majority of

Independents favor the Republicans when V = 1/2. Thus all the Independent districts elect

a Republican giving the Republicans an advantage in this case. It should be stressed that this

anomaly does not arise for all V because whenever V is sufficiently small so that 1−V > πD+πI/2

the condition that S∗(V ) > 1 − S∗(1 − V ) will be satisfied. But the existence of the anomaly

means that the constrained optimal seat-vote curve is not necessarily uniformly biased toward the

larger party.

The final lesson is that the responsiveness of the constrained optimal seat-vote curve can be

anywhere from zero to infinity. Moreover, as is clear from Figures 4-6, responsiveness can vary

discontinuously as one moves along the seat-vote curve. Accordingly, while the notion of the

optimal degree of responsiveness makes sense for the optimal seat-vote curve, it does not for the

constrained optimal seat-vote curve.

8 The role of the assumptions

In analyzing socially optimal districting in our model, we have worked with quite specific assump-

tions on citizens’ political preferences. Specifically, we have assumed that citizens have quadratic

loss functions and that the distribution of Independents’ ideologies is uniform across its support.

To highlight the role these play in the analysis, this section briefly discusses the implications of

working with more general assumptions.

With respect to the distribution of Independents’ ideologies, the basic model can be generalized

by assuming that the fraction of Independents with ideologies less than x ∈ [m − τ,m + τ ] is
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H(x−(m−τ)2τ ) where H : [0, 1] → [0, 1] is a continuously differentiable, increasing distribution

function with a density h that is symmetric around 1/2. This allows us to capture the possibility,

say, that there are more Independents with ideologies closer to the median than in the tails of the

support. With respect to citizens’ loss functions, the model can be generalized by assuming that

if the average ideology of the elected representatives is α0, a citizen with ideology α experiences a

payoff given by −v(|α− α0|) where v : <+ → <+ is increasing, strictly convex, twice continuously

differentiable and satisfies v0(0) = 0. This allows us to vary the degree of convexity in citizens’

loss functions.

It is important to note that these generalizations make little difference to the positive aspects

of the analysis. The derivation of the equilibrium seat-vote curve is basically the same and, in par-

ticular, the critical aggregate vote threshold for district i is still given by (7).23 Consequently, the

method for determining the implementability of a seat-vote curve outlined in Section 5 generalizes

straightforwardly under these assumptions.24

Where the generalizations have implications is for the normative analysis; in particular, the

form of the optimal seat-vote curve. Consider first the implications of generalizing the distribution

of Independents’ ideologies. Maintaining the assumption of quadratic loss functions, the optimal

seat-vote curve can now be written as:

So(V ) = 1/2 + (πD − πR)(1/2− τ) + 2τ(πIH
−1(

V − πD
πI

)− (1/2− πD)). (30)

This seat-vote curve remains biased in favor of the party with the largest partisan base and its

responsiveness continues to depend upon the degree of preference variation among the Indepen-

dents, as measured by 2τ . However, the responsiveness is 2τ/h( 1/2−(m(V )−τ)2τ ) and thus depends

upon the density of Independents’ ideologies. Intuitively, this is because the size of this density

determines the change in the mean Independent’s ideology that is signalled by a marginal increase

in the Democrats’ vote share. The implication of this is that the optimal seat-vote curve is no

longer linear. In particular, under the assumption that the density h is increasing on [0, 1/2], the

optimal seat-vote curve will be strictly concave on [V ,πD+
πI
2 ) and strictly convex on (πD+

πI
2 , V ].

23 If the median independent has ideology m, the fraction of voters in district i voting for the Democrat is

V (i;m) = πD(i)+πI(i)H(
1/2−(m−τ)

2τ
) and the average fraction of voters voting for the Democrat Party is V (m) =

πD + πIH(
1/2−(m−τ)

2τ
). Accordingly, m(V ) = 1/2 + τ − 2τH−1(V−πD

πI
) and V (i;m(V )) = πD(i) + πI(i)[

V−πD
πI

]

which is just (6). Hence (7) still holds.

24 The only difference is that equations (13) and (14) become πD+πIH(
τ−ε
2τ
) ≥ 1/2 and πD+πIH(

τ+ε
2τ
) ≤ 1/2.
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With the more general loss function, it is no longer possible to obtain a closed form solution

for the optimal seat-vote curve. Rather, it is defined implicitly by the first order condition that

the social marginal benefit from having more Democrat seats just equals the social marginal cost.

Maintaining the uniform distribution assumption, this condition is given by25

πDv
0(1−So)+πI

Z 1−So

m(V )−τ
v0(1−So−α)

dα

2τ
= πRv

0(So)+πI

Z m(V )+τ

1−So
v0(α− (1−So))dα

2τ
. (31)

Despite the lack of a closed form solution, it is possible to explore the bias and responsiveness

of the optimal seat-vote curve. It is straightforward to show that when V = 1/2, the optimal

Democratic seat share So(V ) is greater or smaller than 1/2 as πD is greater or smaller than πR,

so that the optimal seat-vote curve remains biased towards the party with the largest partisan

base. Moreover, it can be shown that there exists αD ∈ (0, 1 − So(V ) − (m(V ) − τ)) and αR ∈

(0,m(V ) + τ − (1− So(V ))) such that

dSo(V )

dV
= 2τ [

(v00(αD) + v
00(αR))/2

Ev00
] + [

v00(αD)− v00(αR)
Ev00

](1− So(V )−m(v)), (32)

where Ev00 is the population average second derivative of the loss function. Thus, the responsive-

ness of the optimal seat-vote curve still depends upon the degree of preference variation among

the Independents, but now also on the behavior of the second derivative of the loss function.

It should now be clear that the role of our assumptions concerning citizens’ preferences and the

distribution of Independents’ ideologies is to ensure that the optimal seat-vote curve has a simple

tractable form. This allows us to easily compute the values of the minimization and maximization

problems associated with the optimal inverse seat-vote curve Ω(io, io, V
∗
o (·)) and Ω(io, io, V ∗o (·))

and hence derive the simple conditions for implementability presented in Proposition 2. More-

over, these assumptions permit the characterization of the optimal constrained seat-vote curve

by ensuring that the social welfare function EW ({i, i, V ∗(·)}) has a relatively tractable form.

In this sense, our assumptions are key. Nonetheless, they are not misleading because, as just

demonstrated, the determinants of partisan bias and responsiveness in the basic model remain in

more general models. Thus, the nature of socially optimal districting in more general models is

not going to be fundamentally different - it is just that additional considerations will come into

play. Obviously, understanding precisely how such considerations impact both the conditions for

implementability and the nature of the constrained optimal seat-vote curve is an interesting (and

25 This assumes that the optimal Democrat seat-share So lies between m(V )− τ and m(V ) + τ .
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challenging) subject for further research.

9 Conclusion

This paper has developed a welfare economic analysis of the problem of districting. In the con-

text of a simple micro-founded model intended to capture salient features of U.S. politics, it has

studied how a social planner should allocate citizens of different ideologies across districts to max-

imize aggregate utility. Ideally, the social planner would like the Democratic seat share in the

legislature to be such that the social gains from marginally increasing it just equal the social

costs. Since changes in the parties’ aggregate vote share reflect changes in voters’ ideologies, the

optimal composition of the legislature will depend on the aggregate vote share. This yields the

key conceptual innovation of the paper - the optimal seat-vote curve. Under the assumptions of

the model, the optimal seat-vote curve is of the same simple linear form estimated in the early

empirical literature. Its “responsiveness” depends on the magnitude of the change in average voter

ideology signalled by a change in vote share, which in turn depends on the degree of preference

variation among Independents. Its “bias” depends on the difference in the fractions of Democrats

and Republicans in the population; specifically, it is biased in favor of the party with the largest

partisan base.

If there exists a way of districting voters that makes the equilibrium seat-vote curve equal to the

optimal seat-vote curve, then the social planner can do no better than to choose such a districting.

The first analytical achievement of the paper is to show that there exist such districtings if (and

only if) the fraction of Independents in the population is not “too large” relative to either the

fraction of Democrats or Republicans. These conditions appear permissive and would be satisfied

in the vast majority of U.S. States. Moreover, while the analysis does not take into account the

geographical constraints faced by officials charged with redistricting in the real world, the optimal

seat-vote curve can typically be generated by districtings that look straightforward to achieve.

This nurtures the hope that the optimal seat-vote curve may be an attainable benchmark for

districters.

When the fraction of Independents in the population is large, the optimal seat-vote curve will

not be implementable even if the planner has the flexibility in allocating voter types that we have

assumed. The second analytical achievement of the paper is to fully characterize the constrained

optimal seat-vote curve. In contrast to the situation when the first best is implementable, the
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constrained optimal seat-vote curve is generated by a unique districting. These optimal districtings

involve a complex pattern of voter types, with some districts being all Independent and the

remainder containing only Independents and Democrats or Independents and Republicans.

While the shape of the constrained optimal seat-vote curve differs from that of the optimal seat-

vote curve, they do share several general features, which can be interpreted as lessons for districting

practices. While many commentators consider uncompetitive districts to be undesirable from the

perspective of democracy, our welfare economic perspective provides general support for a mix of

competitive and safe seats. In addition, the analysis provides support for partisan bias as both the

optimal and constrained optimal seat-vote curves are typically biased in favor of the party with

the largest voter base. Regarding the districtings underlying these seat-vote curves, our analysis

provides support for districts that are heterogeneous, rather than identical, in their compositions

of voter ideology. While the optimal and constrained optimal systems concur on these issues of the

number of safe seats, partisan bias, and cross-district heterogeneity, they differ on the appropriate

degree of responsiveness. In particular, while the first-best system has a constant responsiveness,

the constrained optimal seat-vote curve exhibits responsiveness that varies from zero to infinity.

The model and techniques developed in this paper can be used to address other districting

questions. One could study the classic question of optimal partisan gerrymandering by char-

acterizing the implementable seat-vote curve that maximizes the expected utility of (say) the

Democrats. This requires solving a problem similar to that studied in Section 7, except the objec-

tive function would be the expected welfare of the Democrats rather than the population at large.

This exercise might be useful for developing predictions concerning the districtings that a partisan

redistricting committee might choose. The model would also facilitate a precise understanding of

the determinants of the welfare loss associated with partisan districting.26

The model can also be used as a basis to empirically estimate and evaluate seat-vote curves.

Coate and Knight (2005) use the model to develop an empirical methodology for estimating

seat-vote curves for the U.S. States and measuring citizen welfare. This allows the comparison

of actual and optimal seat-vote curves and the estimation of the welfare loss associated with

observed districtings. Given our argument that it may be reasonably easy to achieve the optimal

relationship between seats and votes, we might hope this welfare loss to be small. Following

26 It would also be interesting to explore the determinants of the level of partisan bias under the optimal partisan
gerrymander as in Gilligan and Matsusaka [1999].
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King (1989) and Gelman and King (1994), one could also investigate the correlation between

redistricting institutions and welfare loss.

Finally, it will be clear to the reader that this paper is very much a first cut at the problem

and there are numerous ways the model could usefully be extended. First, it would be interesting

to see how strategic voting of the sort discussed in the split-ticket voting literature (Alesina and

Rosenthal (1995) and Fiorina (1992)) would impact the analysis. Second, it would be highly

desirable to be able to incorporate geographic constraints in a meaningful way. Perhaps the most

fruitful approach would be to devise a way of studying the welfare consequences of local changes

in districting. Third, it would be useful to incorporate a governor or president into the model.

Fourth, it would be interesting to make the model dynamic and incorporate incumbency. In

reality, incumbents have a significant advantage (perhaps due to greater experience) and, it is

often argued that redistricting is done with an eye to preserving the seats of incumbents. Fifth,

it would be interesting to give parties a strategic role in terms of candidate selection, perhaps by

assuming that they can choose between moderate and extremist candidates.
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10 Appendix27

Proof of Proposition 1: Differentiating (9) yields

∂W (S;m)/∂S = 2{πD + πI(1−m)− S}.

Thus, ∂W (So;m(V ))/∂S = 0 if and only if

So = πD + πI(1−m(V )).

In addition, note that ∂2W (S;m)/∂S2 < 0 so that the first order condition is sufficient for So to

be optimal. Substituting in the expression for m(V ) from (5), we obtain

So(V ) = 1/2 + (πD − πR)(1/2− τ) + 2τ(V − 1/2)

as required. QED

Proof of Lemma 1: Let

Ωo = iπoD + (1− i)πoD +
Z i

i

f(πoI (i), V
∗(i))di

and

Ω1 = iπ1D + (1− i)π1D +
Z i

i

f(π1I (i), V
∗(i))di.

Choose λ ∈ [0, 1] such that

λΩo + (1− λ)Ω1 = πD.

Then consider the districting {(πλD,πλI ), (πλD,πλI ),πλI (i)} that is the convex combination of {(πoD,πoI),

(πoD,π
o
I),π

o
I (i)} and {(π1D,π1I), (π1D,π1I),π1I (i)} with weight λ. This districting is in the setG(i, i, V ∗(·))

and is feasible. QED

Proof of Proposition 2: The proof has four parts. In Part I, we develop expressions for the

values of the minimization and maximization problems Ω(i, i, V ∗(·)) and Ω(i, i, V ∗(·)) associated

with an arbitrary inverse seat-vote curve {i, i, V ∗(·)}. This is more general than we need, but we

will use these expressions later in the paper. In Part II, we compute the inverse seat-vote curve

{io, io, V ∗o (·)} associated with the optimal seat-vote curve So(V ). In Part III, we show that the

optimal inverse seat-vote curve {io, io, V ∗o (·)} satisfies the constraint that Ω(io, io, V ∗o (·)) ≤ πD if

27 In the interests of brevity, some of the details of the proofs are omitted. Detailed proofs can be found in the
version available at http://www.econ.brown.edu/fac/Brian Knight/optlong.pdf.
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and only if (20) holds and in Part IV we show that it satisfies the constraint that Ω(io, io, V
∗
o (·)) ≥

πD if and only if (21) holds.

Part I

Let {i, i, V ∗(·)} be an arbitrary inverse seat-vote curve satisfying the requirement that V ∗(·) is

piecewise continuously differentiable and consider the minimization problem Pmin. To simplify the

problem, note that in any solution it is clearly optimal to have no more Democrats than necessary

in the safe Democrat seats. Thus, from (13), we have that

πD =
1

2
− πI(

τ − ε

2τ
). (33)

Similarly, it is optimal to have no Democrats at all in the safe Republican seats and hence

πD = 0. (34)

It follows from (34) that we can rewrite (14) as πI ≤ τ
τ+ε . Similarly, (33) implies that the constraint

that πD+πI ≤ 1 amounts to πI ≤ τ
τ+ε . Thus, we can rewrite the minimization problem as follows:

min{πI(i),πI ,πI}
R i
i
f(πI(i), V

∗(i))di+ i[12 − πI(
τ−ε
2τ )] Pmin

s.t. πI ∈ [0, τ
τ+ε ]; πI ∈ [0, τ

τ+ε ]; (17) and (18)

In order for this problem to have a solution, it must be the case that the set G∗(i, i, V ∗(·)) is

non-empty. Thus, there must exist at least one generating districting which has the property that

the average fraction of Independents equals the actual fraction in the population. A necessary

and sufficient condition for this to be true is that

πI ≤ i
τ

τ + ε
+

Z bi
i

πI
2(πI + πD − V ∗(i))

di+

Z i

bi
πI

2(V ∗(i)− πD)
di+ (1− i) τ

τ + ε
. (35)

The expression on the right hand side is the fraction of Independents associated with the generating

districting that maximizes the use of Independents. We will assume that {i, i, V ∗(·)} satisfies this

inequality.

To state the value of the minimization problem, it is convenient to introduce some additional

notation. Let β(i, i, V ∗(·)) denote the fraction of Independents that would be used up if in each

competitive district i ∈ [i,bi] πI(i) were set equal to its maximal level; that is,
β(i, i, V ∗(·)) =

Z bi
i

πI
2(πI + πD − V ∗(i))

di. (36)
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Similarly, let β(i, i, V ∗(·)) denote the fraction of Independents that would be used up if in each

competitive district i ∈ [bi, i] πI(i) were set equal to its maximal level; that is,
β(i, i, V ∗(·)) =

Z i

bi
πI

2(V ∗(i)− πD)
di. (37)

Then we have:28

Lemma A.1: (i) If πI ∈ [i τ
τ+ε + β + β, i τ

τ+ε + β + β + (1− i) τ
τ+ε ], then

Ω =

Z bi
i

(
πI/2 + πD − V ∗(i)
πI + πD − V ∗(i)

)di+ i
ε

τ + ε
.

(ii) If πI ∈ [β + β, i τ
τ+ε + β + β], then

Ω =

Z bi
i

(
πI/2 + πD − V ∗(i)
πI + πD − V ∗(i)

)di+ i[
1

2
− (

πI − β − β

i
)(
τ − ε

2τ
)].

(iii) If πI ∈ [β,β + β], then

Ω =

Z i∗

i

1

2
di+

Z bi
i∗
(
πI/2 + πD − V ∗(i)
πI + πD − V ∗(i)

)di+ i
1

2

where i∗ is defined by Z bi
i∗

πI
2(πI + πD − V ∗(i))

di+ β = πI .

(iv) If πI ∈ [0,β], we have that

Ω =

Z i∗∗

i

1

2
di+ i

1

2

where i∗∗ is defined by Z i

i∗∗

πI
2(V ∗(i)− πD)

di = πI .

Proof of Lemma A.1: Ignoring the inequality constraints on the choice variables, the Lagrangian

for the problem is

£ =

Z i

i

f (πI (i),V
∗(i))di + i [

1

2
− πI (

τ − ε

2τ
)] + λ[iπI +

Z i

i

πI (i)di + (1 − i)πI ]

where λ is the Lagrange multiplier on the aggregate constraint (18). Using the definition of the

function f(·) we can write this as

£ =

Z i

i

πI (i)[λ−
(V ∗(i)− πD)

πI
]di + πI i [λ− (

τ − ε

2τ
)] + πI (1 − i)λ+ constant

28 To economize on notation and where it will not cause confusion, we will not recognize the dependence of β,

β, Ω and Ω on the inverse seat-vote curve {i, i, V ∗(·)}.
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We can therefore minimize the Lagrangian pointwise with respect to πI(i), πI and πI , respecting

the inequality constraints on these variables. The value of the multiplier λ must be such that (18)

is satisfied.

We know that

τ + ε

2τ
≥ (V

∗(i)− πD)

πI
≥ τ − ε

2τ
> 0 for all i ∈ [i, i].

It follows that λ ≤ τ+ε
2τ , for if this were not the case, then the solution involves πI(i) = 0 for all i,

πI = 0 and πI = 0. This means that constraint (18) cannot be satisfied. In addition, note that if

the multiplier lies in the interval 0 to τ−ε
2τ this generates no more potential solutions than values

of the multiplier equal to 0. Thus, we can restrict attention to three possibilities: (i) λ = 0; (ii)

λ = τ−ε
2τ ; and (iii) λ ∈ (

τ−ε
2τ ,

τ+ε
2τ ).

Case 1: λ = 0

In this case, the solution involves setting the fraction of Independents in the safe Democrat

seats and competitive seats equal to their maximal levels, so that πI =
τ

τ+ε and

πI(i) ∈
½ πI
2(πI+πD−V ∗(i)) if i ∈ [i,bi)

πI
2(V ∗(i)−πD) if i ∈ [bi, i] .

The fraction of Independents in the safe Republican seats does not affect the value of the La-

grangian and hence can be set equal to any level x ∈ [0, τ
τ+ε ]. In order that (18) be satisfied we

need that

i
τ

τ + ε
+ β + β + (1− i)x = πI .

Thus, for this to be a solution, it must be that πI ∈ [i τ
τ+ε + β + β, i τ

τ+ε + β + β + (1− i) τ
τ+ε ].

Case 2: λ = τ−ε
2τ

In this case, the solution involves setting the fractions of Independents in the competitive seats

equal to their maximal levels, so that

πI(i) ∈
½ πI
2(πI+πD−V ∗(i)) if i ∈ [i,bi)

πI
2(V ∗(i)−πD) if i ∈ [bi, i]

and the fraction of Independents in the safe Republican seats equal to zero so that πI = 0. The

fraction of Independents in the safe Democrat seats does not effect the value of the Lagrangian

and hence can be set equal to any level x ∈ [0, τ
τ+ε ]. In order that constraint (18) be satisfied we

need that

x
τ

τ + ε
+ β + β = πI .
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Thus, for this to be a solution, it must be that πI ∈ [β + β, i τ
τ+ε + β + β].

Case 3: λ ∈ ( τ−ε2τ ,
τ+ε
2τ )

Let i(λ) denote the value of i at which λ is at least as large as V
∗(i)−πD
πI

for all i ∈ [i, i(λ)] and

smaller than V ∗(i)−πD
πI

for all i ∈ (i(λ), i]. There are two subcases depending on whether i(λ) is

greater or less than bi.
Case 3a: i(λ) ∈ [i,bi]
In this case, the fraction of Independents in the safe Democrat and Republican seats equals

zero, so that πI = 0 and πI = 0. In the competitive seats,

πI(i) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 if i ≤ i(λ)

πI
2(πI+πD−V ∗(i)) if i ∈ (i(λ),bi)

πI
2(V ∗(i)−πD) if i ≥ bi

.

The value of the multiplier must be such that i(λ) satisfies the constraint thatZ bi
i(λ)

πI
2(πI + πD − V ∗(i))

di+ β = πI ,

and lies in the interval [i,bi]. Thus, it must be that πI ∈ [β,β + β].

Case 3b: i(λ) ∈ [bi, i]
In this case, we still have that the fraction of Independents in the safe Democrat and Republican

seats equals zero, so that πI = 0 and πI = 0, but in the competitive seats,

πI(i) =

⎧⎪⎪⎨⎪⎪⎩
0 if i ≤ i(λ)

πI
2(V ∗(i)−πD) if i > i(λ)

.

The value of the multiplier must be such that i(λ) satisfies the constraint thatZ i

i(λ)

πI
2(V ∗(i)− πD)

di = πI ,

and lies in the interval [bi, i]. Thus, it must be that πI < β.

We conclude that: (i) If πI ∈ [i τ
τ+ε + β + β, i τ

τ+ε + β + β + (1− i) τ
τ+ε ], then we are in Case 1
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and the solution to the minimization problem is

πI(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ
τ+ε if i ∈ [0, i)

πI
2(πI+πD−V ∗(i)) if i ∈ [i,bi)

πI
2(V ∗(i)−πD) if i ∈ [bi, i]

πI−[i τ
τ+ε+β+β]

1−i if i ∈ (i, 1]

.

(ii) If πI ∈ [β + β, i τ
τ+ε + β + β], then we are in Case 2 and the solution to the minimization

problem is

πI(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πI−[β+β]
i if i ∈ [0, i)

πI
2(πI+πD−V ∗(i)) if i ∈ [i,bi)

πI
2(V ∗(i)−πD) if i ∈ [bi, i]

0 if i ∈ (i, 1]

.

(iii) If πI ∈ [β,β + β], then we are in Case 3a and the solution to the minimization problem is

πI(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i ∈ [0, i∗)

πI
2(πI+πD−V ∗(i)) if i ∈ [i∗,bi)

πI
2(V ∗(i)−πD) if i ∈ [bi, i]

0 if i ∈ (i, 1]

.

where i∗ is defined by Z bi
i∗

πI
2(πI + πD − V ∗(i))

di+ β = πI .

(iv) If πI ∈ [0,β], then we are in Case 3b and the solution to the minimization problem is

πI(i) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 if i ∈ [0, i∗∗)

πI
2(V ∗(i)−πD) if i ∈ [i∗∗, i]

0 if i ∈ (i, 1]

.

where i∗∗ is defined by Z i

i∗∗

πI
2(V ∗(i)− πD)

di = πI .
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We can now prove the Lemma by deriving the corresponding allocation of Democrats across

districts and computing the aggregate fraction of Democrats used. For example, in case (i),

equations (33), (34), and the fact that πD(i) = f(πI(i), V
∗(i)) for all i ∈ [i, i], imply that

πD(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
τ+ε if i ∈ [0, i)

πI/2+πD−V ∗(i)
πI+πD−V ∗(i) if i ∈ [i,bi)

0 if i ∈ [bi, i]
0 if i ∈ (i, 1]

.

Thus, we have that

Ω =

Z bi
i

(
πI/2 + πD − V ∗(i)
πI + πD − V ∗(i)

)di+ i
ε

τ + ε
.

This completes the proof of Lemma A.1. ¥

To understand the result, recall that the problem is to choose the districting that uses as few

Democrats as possible from the set of districtings that both generate the inverse seat-vote curve

and satisfy the constraint that the fraction of Independents used equals πI . Precisely what that

districting looks like will depend upon the actual fraction of Independents available. In case (i)

of the Lemma, there are a large fraction of Independents available, and it is optimal to set the

fractions of Independents in both the safe Democrat and competitive districts (πI and πI(i) for

all i ∈ [i, i]) equal to their maximal level, with the remaining Independents allocated to the safe

Republican districts. The opposite extreme is case (iv), in which there are only a small fraction

of Independents available and it is only in Republican-leaning competitive districts (i ∈ [i∗∗, i])

that the fractions of Independents are set equal to their maximal level. In all other districts, the

fraction of Independents equals its minimal level - which is 0. Cases (ii) and (iii) lie in between

these extremes.

The nature of the solution to the maximization problem can be deduced from the observation

that selecting the districting in G∗(i, i, V ∗(·)) that has the maximal fraction of Democrats is

equivalent to choosing the districting that has the minimal fraction of Republicans. One can

alternatively define the seat-vote curve as representing the relationship between the fraction of

seats held by the Republican Party and its share of the aggregate vote. Let such a Republican

seat-vote curve be denoted by SR(VR), where SR is the fraction of seats held by Republicans

and VR is the fraction of votes they received. We can analogously define V R and V R to be
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the minimal and maximal vote shares received by the Republican Party. Associated with this

Republican seat-vote curve, we can define an inverse Republican seat-vote curve {iR, iR, V ∗R(·)}

and deduce the minimal fraction of Republicans - call it ΩR - directly from Lemma A.1. The value

of the maximization problem will then be given by Ω = 1 − πI − ΩR. The only drawback with

this procedure is that the expressions for the value Ω will be in terms of the inverse Republican

seat-vote curve {iR, iR, V ∗R(·)}. However, these expressions are readily converted into ones in terms

of the inverse (Democrat) seat-vote curve {i, i, V ∗(·)}, by noting that iR = 1− i, iR = 1− i, and

V ∗R(i) = 1− V ∗(1− i). In this way, we can establish:

Lemma A.2: (i) If πI ∈ [β + β + (1− i) τ
τ+ε , i

τ
τ+ε + β + β + (1− i) τ

τ+ε ], then

Ω = 1− πI −
Z i

bi (
V ∗(i)− πD − πI/2

V ∗(i)− πD
)di− (1− i) ε

τ + ε
.

(ii) If πI ∈ [β + β,β + β + (1− i) τ
τ+ε ], then

Ω = 1− πI −
Z i

bi (
V ∗(i)− πD − πI/2

V ∗(i)− πD
)di− (1− i)[1

2
− (

πI − β − β

1− i
)(
τ − ε

2τ
)]

(iii) If πI ∈ [β,β + β], then

Ω = 1− πI −
Z i∗

bi (
V ∗(i)− πD − πI/2

V ∗(i)− πD
)di−

Z i

i∗

1

2
di− (1− i)1

2

where i∗ is defined by Z i∗

bi
πI

2(V ∗(i)− πD)
di+ β = πI .

(iv) If πI ∈ [0,β], we have that

Ω = 1− πI −
Z i

i∗∗

1

2
di− (1− i)1

2

where i∗∗ is defined by Z i∗∗

i

πI
2(πI + πD − V ∗(i))

di = πI .

Part II

Using the definition of an inverse seat-vote curve and the expression for the optimal seat-vote

curve in Proposition 1, we find that the optimal inverse seat-vote curve is given by

io = πD + πI(1/2− ε), (38)

io = πD + πI(1/2 + ε), (39)
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and

V ∗o (i) =
[i− (πD + πI

2 )(1− 2τ)]
2τ

. (40)

Part III

For the optimal inverse seat-vote curve, it is straightforward to show that β = β = πIτ ln(1+
ε
τ ).

This means that

β + β = πI2τ ln(1 +
ε

τ
) ≤ πI ln(2) < πI .

Accordingly, only cases (i) and (ii) of Lemma A.1 are possible which simplifies matters. Further-

more, it can be shown thatZ bi
io

(
πI/2 + πD − V ∗o (i)
πI + πD − V ∗o (i)

)di = πIε− πIτ ln(1 +
ε

τ
).

Thus, we can deduce from Lemma A.1 that (a) if πI ∈ [io τ
τ+ε +πI2τ ln(1+

ε
τ ), io

τ
τ+ε +πI2τ ln(1+

ε
τ ) + (1− io)

τ
τ+ε ], then

Ω = πIε− πIτ ln(1 +
ε

τ
) + io

ε

τ + ε
,

and (b) if πI ∈ [πI2τ ln(1 + ε
τ ), io

τ
τ+ε + πI2τ ln(1 +

ε
τ )], then

Ω = πIε− πIτ ln(1 +
ε

τ
) + io[

1

2
− (

πI − πI2τ ln(1 +
ε
τ )

io
)(
τ − ε

2τ
)].

In addition, observe that after substituting in for io from (38), we have that πI ≥ io
τ

τ+ε +

πI2τ ln(1 +
ε
τ ) if and only if

πI ≥
πD

(1 + ε
τ )[1− 2τ ln(1 +

ε
τ )] + ε− 1

2

(41)

so that case (a) arises if (41) holds and case (b) otherwise.

Suppose that (41) holds so that case (a) arises. Then, after substituting in for io, we have that

Ω = (πD +
πI
2
)

ε

τ + ε
+ πIε

τ

τ + ε
− πIτ ln(1 +

ε

τ
)

Thus, in this case, the constraint that Ω ≤ πD is satisfied if and only if

πD ≥ πI(
ε

2τ
+ ε− (τ + ε) ln(1 +

ε

τ
))

which is just (20).

Next suppose that (41) does not hold and case (b) arises. Then, after substituting in for io,

we have

Ω =
πI
2
(ε+

ε

τ
− 1
2
) +

πD
2
− πIε ln(1 +

ε

τ
)
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and thus the constraint that Ω ≤ πD is satisfied if and only if

πI
2
(ε+

ε

τ
− 1
2
)− πIε ln(1 +

ε

τ
) ≤ πD

2
(42)

To summarize, if (41) holds the constraint Ω ≤ πD will be satisfied if and only if (20) is satisfied.

If (41) does not hold the constraint that Ω ≤ πD will be satisfied if and only if (42) is satisfied.

We can now prove Part III. Suppose first that (20) is not satisfied. This implies that (41) holds

since

(
ε

2τ
+ ε− (τ + ε) ln(1 +

ε

τ
)) < (1 +

ε

τ
)(1− 2τ ln(1 + ε

τ
)) + ε− 1

2
.

It follows that the constraint Ω ≤ πD will be violated. Next suppose that (20) is satisfied. Then

we claim that (42) must also be satisfied. We need to show that

πD ≥ πI(
ε

2τ
+ ε− (τ + ε) ln(1 +

ε

τ
))

implies that

πD ≥ πI{(ε+
ε

τ
− 1
2
)− 2ε ln(1 + ε

τ
)}

This amounts to 1 ≥ 2ε ln(1+ ε
τ ), which holds under our assumptions on ε and τ . It follows that,

irrespective of whether (41) holds, the constraint Ω ≤ πD will be satisfied. This completes Part

III.

Part IV

Note first that since Ω = 1−πI−ΩR, the constraint that Ω ≥ πD is equivalent to the constraint

that πR ≥ ΩR where ΩR is the minimized fraction of Republicans defined above. But by applying

the argument just presented to the optimal Republican inverse seat-vote curve {iRo, iRo, V ∗Ro(·)},

we can show that πR ≥ ΩR if and only if

πI(
ε

2τ
+ ε− (τ + ε) ln(1 +

ε

τ
)) ≤ πR.

This completes the proof of Proposition 2. QED

Proof of Corollary: We need to show that

ε

2τ
+ ε− (τ + ε) ln(1 +

ε

τ
) ≤ 1/2.

As already noted, for a given value of ε, the coefficient is decreasing in τ . Thus, since 0 < ε < τ

by assumption, it suffices to show that

1/2 + ε− 2ε ln(2) ≤ 1/2.
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This follows from the fact that 2 ln(2) > 1. QED

Proof of Proposition 3: Using the definitions in section 5, the optimal seat-vote curve is

implementable with a districting of the form in (25) if and only if (a) the proposed districting is

a feasible districting and (b) πD + 1/2− πD ≤ V and πD + 1/2− πD ≥ V .

The proposed districting is a feasible districting if and only if the following conditions are

satisfied: (a.i) πD ∈ [0, 1−πI ]; (a.ii) πD ∈ [0, 1−πI ]; (a.iii) for all i ∈ [io, io], 12 −
πI
2 +

πD+
πI
2 −i

2τ ∈

[0, 1− πI ]; and (a.iv)

ioπD +

Z io

io

[
1

2
− πI
2
+

πD +
πI
2 − i

2τ
]di+ (1− io)πD = πD. (43)

It is straightforward to show that condition (a.iii) is satisfied if and only if πI ≤ τ
τ+ε . Condition

(a.iv) can be simplified by noting thatZ io

io

[
1

2
− πI
2
+

πD +
πI
2 − i

2τ
]di = πIε(1− πI)

so that (43) can be rewritten as

ioπD + πIε(1− πI) + (1− io)πD = πD. (44)

Using the definitions of V and V , the inequality requirements in (b) can be rewritten as πD ≥
1
2 − πI(

τ−ε
2τ ) and πD ≤ 1

2 − πI(
τ+ε
2τ ).

Combining all this, the optimal seat-vote curve is implementable with a districting of the form

in (25) if and only if there exist πD ∈ [12 − πI(
τ−ε
2τ ), 1− πI ] and πD ∈ [0, 12 − πI(

τ+ε
2τ )] that satisfy

(44). Solving (44), we have that

πD =
πD − πIε(1− πI)− ioπD

1− io
.

So defining the function:

g(πD) =
πD − πIε(1− πI)− ioπD

1− io
,

the optimal seat-vote curve is implementable with a districting of the form in (25) if and only if

there exists πD ∈ [12 − πI(
τ−ε
2τ ), 1− πI ] such that g(πD) ∈ [0, 12 − πI(

τ+ε
2τ )].

Since g is decreasing, it follows that if g(12 − πI(
τ−ε
2τ )) ≤

1
2 − πI(

τ+ε
2τ ) the condition is met if

and only if g(12 −πI(
τ−ε
2τ )) ≥ 0, while if g(

1
2 −πI(

τ−ε
2τ )) >

1
2 −πI(

τ+ε
2τ ) the condition is met if and

only if g(1− πI) ≤ 1
2 − πI(

τ+ε
2τ ). Observe that

g(
1

2
− πI(

τ − ε

2τ
)) =

πD − πIε(1− πI)− io[12 − πI(
τ−ε
2τ )]

1− io
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so that g( 12 − πI(
τ−ε
2τ )) ≤

1
2 − πI(

τ+ε
2τ ) if and only if πD ≤ πR. Thus, if πD ≤ πR the condition is

met if and only if g(12−πI(
τ−ε
2τ )) ≥ 0 and if πD > πR it is met if and only if g(1−πI) ≤ 1

2−πI(
τ+ε
2τ ).

So suppose that πD ≤ πR. Then, the condition is

πD − πIε(1− πI)− io[12 − πI(
τ−ε
2τ )]

1− io
≥ 0,

which is equivalent to (26). On the other hand, if πD > πR, then the condition is

πD − πIε(1− πI)− io(1− πI)

1− io
≤ 1
2
− πI(

τ + ε

2τ
)

which with a little work can be shown equivalent to (27). QED

Proof of Proposition 4: The problem we need to solve is

max
{i,i,V ∗(i)}∈F−1

EW ({i, i, V ∗(i)}) Pcon

s.t. Ω({i, i, V ∗(i)}) ≥ πD ≥ Ω({i, i, V ∗(i)}),

under the assumption that condition (21) is satisfied but that condition (20) is not. The idea of

the proof is to first hope that the constraint that Ω({i, i, V ∗(i)}) ≥ πD will not be binding and

second substitute in for the expression Ω({i, i, V ∗(i)}) the formula from part (i) of Lemma A.1.

The logic for the second step is that when condition (20) is not satisfied, this is the range in which

the constraint is violated (see the proof of Proposition 2). Thus, we consider the problem

max
{i,i,V ∗(i)}∈F−1

EW ({i, i, V ∗(i)}) PconD

s.t.

Z bi
i

(
πI
2 + πD − V ∗(i)
πI + πD − V ∗(i)

)di+ i
ε

τ + ε
≤ πD. (45)

We will first characterize the solution to this problem and then show that it indeed solves Problem

Pcon.

Before we can do this, however, we must develop an expression for the objective function

EW ({i, i, V ∗(i)}).

Lemma A.3: Let {i, i, V ∗(i)} ∈ F−1. Then,

EW ({i, i, V ∗(i)}) = [

Z i

i

{2[i− (πD +
πI
2
)(1− 2τ)]V ∗(i)− 2τV ∗(i)2}di

+[2τ iV
2
+ 2(πD +

πI
2
)(1− 2τ)iV − i2V ]

−[2τ iV 2 + 2(πD +
πI
2
)(1− 2τ)iV − i2V ] + constant]/[V − V ].
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Proof of Lemma A.3: Let S(V ) ∈ F be the seat-vote curve associated with the inverse seat-vote

curve {i, i, V ∗(i)}. Welfare with aggregate votes V is

W (S(V );m(V )) = −[πD(1− S(V ))2 + πRS(V )
2 + πI

Z m(V )+τ

m(V )−τ
(1− S(V )− x)2 dx

2τ
],

which can be rewritten as:

W (S(V );m(V )) = −[c(V ) + S(V )2 − 2πDS(V )− 2πIS(V )(1−m(V ))],

where

c(V ) = πD +
πIτ

2

3
+ πI(1−m(V ))2.

Note that c(V ) is independent of the number of seats and hence the seat-vote curve. Using the

equation for m(V ) given in (5), we can re-write welfare as follows:

W (S(V );m(V )) = −[c(V ) + S(V )2 + 2(πD +
πI
2
)(2τ − 1)S(V )− 4τV S(V )].

The expected welfare associated with the seat-vote curve S(V ) is accordingly given by

EW (S(V )) =

Z V

V

[4τV S(V ) + 2(πD +
πI
2
)(1− 2τ)S(V )− S(V )2 − c(V )][ dV

V − V
]. (46)

Now note that Z V

V

S(V )dV = iV − iV −
Z i

i

V ∗(i)di,

Z V

V

S(V )2dV = i
2
V − i2V −

Z i

i

2iV ∗(i)di,

and Z V

V

S(V )V dV =
i

2
V
2 − i

2
V 2 −

Z i

i

1

2
V ∗(i)2di.

Substituting these formulas into (46) yields the result. ¥

The first point to note about the solution to Problem PconD, is that it can be shown straight-

forwardly that i and V ∗(i) on the range [πD +
πI
2 , i] are exactly as in the unconstrained problem.

Thus, we have:

Fact A.1: Let {i, i, V ∗(i)} solve Problem PconD. Then, i = io and on the interval [πD +
πI
2 , i],

V ∗(i) = V ∗o (i).

45



To understand this intuitively, observe that constraint (45) is independent of i and the behavior

of the function V ∗(i) for i ≥ bi.
Since V ∗o (πD+

πI
2 ) = πD+

πI
2 , it follows from Fact A.1 that we can assume that if {i, i, V ∗(i)}

solves Problem PconD, then bi = πD+
πI
2 . It remains to solve for i and the behavior of the function

V ∗(i) on the range [i,πD +
πI
2 ). Using Lemma A.3, these must solve the problem:

max{i,V ∗(i)}
R πD+πI

2

i
{2[i− (πD + πI

2 )(1− 2τ)]V ∗(i)− 2τV ∗(i)2}di

−[2τ iV 2 + 2(πD + πI
2 )(1− 2τ)iV − i

2V ]

s.t. πD ≥
R πD+πI

2

i
(
πI
2 +πD−V

∗(i)
πI+πD−V ∗(i) )di+ i

ε
τ+ε

V ∗(i) ∈ [V ,πD + πI
2 ] for all i ∈ [i,πD +

πI
2 ) and i ≥ 0.

(47)

The constraint that V ∗(i) ∈ [V ,πD + πI
2 ] for all i ∈ [i,πD +

πI
2 ) is implied by the requirement

that V ∗(·) must be a non-decreasing function defined on [i, i] with range [V , V ] given that we

know that V ∗(πD +
πI
2 ) = πD +

πI
2 . It is not necessary to impose the constraint that V

∗(i) be

non-decreasing on [i,πD +
πI
2 ) since it will not bind.

The Lagrangian for the problem is

£ =

Z πD+
πI
2

i

h(V ∗(i), i ,λ)di − [2 τ iV 2 + 2 (πD +
πI
2
)(1 − 2τ)iV − i2V ] + λ[πD − i

ε

τ + ε
]

where λ is the Lagrange multiplier and

h(V, i,λ) = 2[i− (πD +
πI
2
)(1− 2τ)]V − 2τV 2 − λ(

πI
2 + πD − V
πI + πD − V

).

Differentiating the Lagrangian with respect to i, we have that

∂£

∂i
= h(V , i,λ)− h(V ∗(i), i,λ).

Thus, the Kuhn-Tucker condition for i is that

h(V , i,λ) ≤ h(V ∗(i), i,λ) ( = if i > 0). (48)

In addition, it must be the case that for all i ∈ [i,πD + πI
2 )

V ∗(i) ∈ argmax{h(V, i,λ) : V ∈ [V ,πD +
πI
2
]}. (49)

Before we develop the implications of these conditions, it is useful to note two properties of

the function h(V, i,λ). The first property is its shape. Differentiating, we have that

∂h(V ; i,λ)

∂V
= 2[i− (πD +

πI
2
)(1− 2τ)]− 4τV + λπI

2(πI + πD − V )2
,
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so that
∂2h(V ; i,λ)

∂V 2
= −4τ + λπI

(πI + πD − V )3
.

Notice that for all V ∈ [V ,πD + πI
2 ]

λ8

π2I
(

τ

τ + ε
)3 ≤ λπI

(πI + πD − V )3
≤ λ8

π2I
.

Thus, if λ ∈ (0, τπ2I/2] then h(·, i,λ) is a strictly concave function on [V ,πD+ πI
2 ] for all i ∈ [i,πD+

πI
2 ). On the other hand, if λ ≥ (τ+ε)3π2I/2τ

2 then h(·, i,λ) is strictly convex. In the intermediate

case in which λ ∈ (τπ2I/2, (τ + ε)3π2I/2τ
2) then, for all i ∈ [i,πD+ πI

2 ), h(·, i,λ) is strictly concave

on [V ,πD + πI − (λπI/4τ)1/3) and strictly convex on (πD + πI − (λπI/4τ)1/3,πD + πI
2 ].

The second important property of the function h(V, i,λ) is monotonicity. In particular, it is

straightforward to show that if V > V 0, i > i0, and h(V, i0,λ) ≥ h(V 0, i0,λ), then it must be the

case that h(V, i,λ) > h(V 0, i,λ).

We can now develop the implications of conditions (48) and (49). Matters are simplified by

noting that it can be shown that there is no loss of generality in assuming that i > 0 and hence

(48) can be assumed to hold with equality. We begin by describing what the solution to conditions

(48) and (49) must look like for given λ, denoting this by {i(λ), V ∗(i;λ)}.

Suppose first that λ ∈ (0, τπ2I/2] so that h(·, i,λ) is a strictly concave function on [V ,πD+ πI
2 ]

for all i ∈ [i,πD + πI
2 ). Let i(λ) be such that

∂h(V ; i,λ)

∂V
= 2[i− (πD +

πI
2
)(1− 2τ)]− 4τV + λπI

2(πI + πD − V )2
= 0

and let i∗(λ) be such that

∂h(πD +
πI
2 ; i
∗,λ)

∂V
= 2[i∗ − (πD +

πI
2
)(1− 2τ)]− 4τ(πD +

πI
2
) +

2λ

πI
= 0.

It is straightforward to show that 0 < i(λ) < i∗(λ) < πD +
πI
2 . For all i ∈ [i(λ), i∗(λ)], the

concavity of h(·, i,λ) means that V ∗(i;λ) is implicitly defined by the first order condition

∂h(V ∗; i,λ)

∂V
= 2[i− (πD +

πI
2
)(1− 2τ)]− 4τV ∗ + λπI

2(πI + πD − V ∗)2
= 0,

while for all i ∈ (i∗(λ),πD + πI
2 ) the monotonicity property implies that V

∗(i;λ) = πD +
πI
2 .

Suppose next that λ ≥ (τ + ε)3π2I/2τ
2 so that h(·, i,λ) is a strictly convex function for all

i ∈ [i,πD + πI
2 ). Then, let i(λ) be such that h(V ; i,λ) = h(πD +

πI
2 ; i,λ), which implies that

i(λ) = πD +
πI(1− ε)

2
− λ

πI
(

τ

τ + ε
).
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This will be greater than 0 provided that λ < πI(
τ+ε
τ )(πD+

πI(1−ε)
2 ). Since h(·, i(λ),λ) is a convex

function, it is clear that

πD +
πI
2
∈ argmax{h(V, i(λ),λ) : V ∈ [V ,πD +

πI
2
]}

and hence we can choose V ∗(i(λ);λ) = πD +
πI
2 . Condition (48) is then satisfied by construction.

For all i ∈ (i(λ),πD + πI
2 ) the monotonicity property implies that V

∗(i;λ) = πD +
πI
2 .

Finally, consider the intermediate case in which λ ∈ (τπ2I/2, (τ + ε)3π2I/2τ
2). In this case,

there are two possibilities depending on the value of λ. The first possibility is that the solution

is exactly as in the convex case; that is, i(λ) is such that h(V ; i,λ) = h(πD +
πI
2 ; i,λ) and, for all

i ∈ (i(λ),πD + πI
2 ), V

∗(i;λ) = πD +
πI
2 . This is the solution if and only if

∂h(V ; i,λ)

∂V
= 2[i(λ)− (πD +

πI
2
)(1− 2τ)]− 4τV + λπI

2(πI + πD − V )2
≤ 0.

Since

2[i(λ)− (πD +
πI
2
)(1− 2τ)]− 4τV + λπI

2(πI + πD − V )2
= πIε−

2λετ

πI(τ + ε)2
,

this requires that λ ≥ π2I (τ+ε)
2

2τ .

For λ <
π2I (τ+ε)

2

2τ , let eV (λ) ∈ (V ,πD + πI
2 ) and i

∗(λ) satisfy the following equations:

h(eV ; i∗,λ) = h(πD + πI
2
; i∗,λ)

and
∂h(eV ; i∗,λ)

∂V
= 2[i∗ − (πD +

πI
2
)(1− 2τ)]− 4τ eV + λπI

2(πI + πD − eV )2 = 0.
It should be clear that eV (λ) must belong to the region in which h(·, i∗,λ) is concave. It follows
that

argmax{h(V, i∗(λ),λ) : V ∈ [V ,πD +
πI
2
]} = {eV (λ),πD + πI

2
}

and hence we can choose V ∗(i∗(λ);λ) = πD +
πI
2 . For all i ∈ (i∗(λ),πD +

πI
2 ) the monotonicity

property implies that V ∗(i;λ) = πD +
πI
2 . Then, let i(λ) be such that

∂h(V ; i,λ)

∂V
= 2[i− (πD +

πI
2
)(1− 2τ)]− 4τV + λπI

2(πI + πD − V )2
= 0.

It is straightforward to show that 0 < i(λ) < i∗(λ). For all i ∈ [i(λ), i∗(λ)), the concavity of

h(·, i,λ) means that V ∗(i;λ) is implicitly defined by the first order condition

∂h(V ∗; i,λ)

∂V
= 2[i− (πD +

πI
2
)(1− 2τ)]− 4τV ∗ + λπI

2(πI + πD − V ∗)2
= 0.
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We have now described the solution {i(λ), V ∗(i;λ)} for any given λ. The value of the multiplier

must be such that constraint (45) holds with equality, implying that λ equals bλ where
i(bλ) ε

τ + ε
+

Z πD+
πI
2

i(bλ) (
πI
2 + πD − V ∗(i; bλ)
πI + πD − V ∗(i; bλ) )di = πD.

The solution to the problem described in (47) is then given by i(bλ) and V ∗(i; bλ).
The next step is to provide conditions that inform us as to the type of solution that will arise.

Fact A.2: Let {i, i, V ∗(i)} solve Problem PconD. Then, if πD ≤ πIε
2τ (1 − τ − 2ε) we have that

i = πD
τ+ε
ε and for all i ∈ [i,πD + πI

2 ), V
∗(i) = πD +

πI
2 .

Proof of Fact A.2: To prove this, all we need to show is that under the stated condition, the

value of the multiplier bλ is such that bλ ≥ π2I (τ+ε)
2

2τ . Notice that the proposed solution {i, V ∗(i)}

necessarily satisfies the constraint (45). However, we can obtain the value of the multiplier bλ from
the requirement that

h(V ;πD
τ + ε

ε
, bλ) = h(πD + πI

2
;πD

τ + ε

ε
, bλ)

which implies that bλ = π2I (1− ε)(ε+ τ)

2τ
− τπIπD(ε+ τ)

ετ
.

Thus, we need that
π2I (1− ε)(ε+ τ)

2τ
− τπIπD(ε+ τ)

ετ
≥ π2I (τ + ε)2

2τ

which is equivalent to
επI
2τ
(1− 2ε− τ) ≥ πD.

¥

Fact A.3: Let {i, i, V ∗(i)} solve Problem PconD. Then, if πD > πIε
2τ (1 − τ − 2ε), there exists

some i∗ ∈ (V ,πD + πI
2 ] such that V

∗(i) is increasing and strictly concave on [i, i∗] and equal to

πD +
πI
2 thereafter. For πD sufficiently close to πIε

2τ (1− τ − 2ε), V ∗(i∗) will be strictly less than

πD +
πI
2 and hence V ∗(i) will be discontinuous at i∗.

Proof of Fact A.3: This follows almost immediately from the above discussion of the properties

of the solution. When πD exceeds
πIε
2τ (1− τ − 2ε) but is close to it, the value of the multiplier bλ

will only be slightly less than
π2I (τ+ε)

2

2τ and V ∗(i∗) = eV (bλ) < πD +
πI
2 . When πD is much larger

than πIε
2τ (1− τ − 2ε), the value of the multiplier will be less than τπ2I/2 and V ∗(i∗) = πD +

πI
2 . In
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either case, on the interval [i, i∗], V ∗(i) is defined by the first order condition ∂h(V ∗; i, bλ)/∂V = 0
implying that

dV ∗

di
=
−∂2h(V ∗;i,bλ)

∂V ∂i

∂2h(V ∗;i,bλ)
∂V 2

=
2bλπI

(πI+πD−V ∗)3 − 4τ
> 0

It is also apparent that d
2V ∗

di2 < 0. Thus, V ∗(i) is increasing and strictly concave as claimed.¥

We have now characterized the solution to Problem PconD. It remains to show that it solves

Problem Pcon.

Fact A.4: Suppose that condition (20) does not hold and and that condition (21) holds and let

{i, i, V ∗(i)} solve Problem PconD. Then it solves Problem Pcon.

Proof of Fact A.4: To prove this, we first need to show that {i, i, V ∗(i)} is feasible for Problem

Pcon. This requires demonstrating that it satisfies the constraints Ω({i, i, V ∗(i)}) ≥ πD and

Ω({i, i, V ∗(i)}) ≤ πD.

To show that Ω({i, i, V ∗(i)}) ≤ πD, we can use what we know about {i, i, V ∗(i)} to demonstrate

that πI ∈ [i τ
τ+ε + β + β, i τ

τ+ε + β + β + (1− i) τ
τ+ε ]. It then follows from Lemma A.1 that

Ω({i, i, V ∗(i)}) =
Z bi
i

(
πI
2 + πD − V ∗(i)
πI + πD − V ∗(i)

)di+ i
ε

τ + ε

which by construction is equal to πD.

To see that Ω({i, i, V ∗(i)}) ≥ πD suppose first that πI ∈ [β + β + (1− i) τ
τ+ε , i

τ
τ+ε + β + β +

(1− i) τ
τ+ε ]. Then, by Lemma A.2

Ω = 1− πI −
Z i

bi (
V ∗(i)− πD − πI/2

V ∗(i)− πD
)di− (1− i) ε

τ + ε
,

which is bigger than πD when (21) holds. If πI ∈ [β + β, 1−i1+ ε
τ
+ β + β] then by Lemma A.2

Ω = 1− πI −
Z i

bi (
V ∗(i)− πD − πI/2

V ∗(i)− πD
)di− (1− i)[1

2
− (

πI − β − β

1− i
)(
τ − ε

2τ
)],

which is again bigger than πD when (21) holds.

Given that {i, i, V ∗(i)} is feasible for Problem Pcon, if it were not a solution there would exist

some alternative inverse seat-vote curve {ia, ia, V ∗a (i)} which was also feasible but yielded a higher

level of welfare. Now clearly it must be the case thatZ bia
ia

(
πI
2 + πD − V ∗a (i)
πI + πD − V ∗a (i)

)di+ ia
ε

τ + ε
> πD,
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because otherwise {i, i, V ∗(i)} could not solve Problem PconD. However, we can show using Lemma

A.1 that it must be that

Ω({ia, ia, V ∗a (i)}) ≥
Z bia
ia

(
πI
2 + πD − V ∗a (i)
πI + πD − V ∗a (i)

)di+ ia
ε

τ + ε

which contradicts the assumption that {ia, ia, V ∗a (i)} is feasible for Problem Pcon. ¥

The Proposition now follows from combining Facts A.1 - A.4. QED
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