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From a macroeconomic perspective, the short-term interest rate is a policy instrument

under the direct control of the central bank, which adjusts the rate to achieve its economic

stabilization goals. From a finance perspective, the short rate is a fundamental building

block for yields of other maturities, which are just risk-adjusted averages of expected future

short rates. Thus, as illustrated by much recent research, a joint macro-finance modeling

strategy will provide the most comprehensive understanding of the term structure of interest

rates. In this paper, we discuss some salient questions that arise in this research, and we also

present a new examination of the relationship between two prominent dynamic, latent factor

models in this literature: the Nelson-Siegel and affine no-arbitrage term structure models.

I. Questions about Modeling Yields

(1) Why use factor models for bond yields? The first problem faced in term structure

modeling is how to summarize the price information at any point in time for the large

number of nominal bonds that are traded. In fact, since only a small number of sources

of systematic risk appear to underlie the pricing of the myriad of tradable financial assets,

nearly all bond price information can be summarized with just a few constructed variables or

factors. Therefore, yield curve models almost invariably employ a structure that consists of a

small set of factors and the associated factor loadings that relate yields of different maturities

to those factors. Besides providing a useful compression of information, a factor structure is

also consistent with the celebrated “parsimony principle,” the broad insight that imposing

restrictions–even those that are false and may degrade in-sample fit–often helps both to

avoid data mining and to produce good forecasting models. For example, an unrestricted
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Vector Autoregression (VAR) provides a very general linear model of yields, but the large

number of estimated coefficients renders it of dubious value for prediction (Diebold and Calin

Li, 2005). Parsimony is also a consideration for determining the number of factors needed,

along with the demands of the precise application. For example, to capture the time series

variation in yields, one or two factors may suffice since the first two principal components

account for almost all (99%) of the variation in yields. Also, for forecasting yields, using just

a few factors may often provide the greatest accuracy. However, more than two factors will

invariably be needed in order to obtain a close fit to the entire yield curve at any point in

time, say, for pricing derivatives.

(2) How should bond yield factors and factor loadings be constructed? There are a variety

of methods employed in the literature. One general approach places structure only on the

estimated factors. For example, the factors could be the first few principal components,

which are restricted to be mutually orthogonal, while the loadings are relatively unrestricted.

Indeed, the first three principal components typically closely match simple empirical proxies

for level (e.g., the long rate), slope (e.g., a long minus short rate), and curvature (e.g., a mid-

maturity rate minus a short and long rate average). A second approach, which is popular

among market and central bank practitioners, is a fitted Nelson-Siegel curve (introduced

in Charles Nelson and Andrew Siegel, 1987). As described by Diebold and Li (2005), this

representation is effectively a dynamic three-factor model of level, slope, and curvature.

However, the Nelson-Siegel factors are unobserved, or latent, which allows for measurement

error, and the associated loadings have plausible economic restrictions (forward rates are

always positive, and the discount factor approaches zero as maturity increases). A third

approach is the no-arbitrage dynamic latent factor model, which is the model of choice

2



in finance. The most common subclass of these models postulates flexible linear or affine

forms for the latent factors and their loadings along with restrictions that rule out arbitrage

strategies involving various bonds.

(3) How should macroeconomic variables be combined with yield factors? Both the

Nelson-Siegel and affine no-arbitrage dynamic latent factor models provide useful statistical

descriptions of the yield curve, but they offer little insight into the nature of the underlying

economic forces that drive its movements. To shed some light on the fundamental determi-

nants of interest rates, researchers have begun to incorporate macroeconomic variables into

these yield curve models.

For example, Diebold, Rudebusch, and S. Boragan Aruoba (2005) provide a macroeco-

nomic interpretation of the Nelson-Siegel representation by combining it with VAR dynamics

for the macroeconomy. Their maximum likelihood estimation approach extracts three latent

factors (essentially level, slope, and curvature) from a set of 17 yields on U.S. Treasury secu-

rities and simultaneously relates these factors to three observable macroeconomic variables

(specifically, real activity, inflation, and a monetary policy instrument).

The role of macroeconomic variables in a no-arbitrage affine model is explored by several

papers. In Piazzesi (2005), the key observable factor is the Federal Reserve’s interest rate

target. The target follows a step function or pure jump process, with jump probabilities that

depend on the schedule of policy meetings and three latent factors, which also affect risk

premiums. The short rate is modeled as the sum of the target and short-lived deviations from

target. The model is estimated with high-frequency data and provides a new identification

scheme for monetary policy. The empirical results show that relative to standard latent

factor models using macroeconomic information can substantially lower pricing errors. In
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particular, including the Fed’s target as one of four factors allows the model to match both

the short and the long end of the yield curve.

In Andrew Ang and Piazzesi (2003) and Ang, Sen Dong, and Piazzesi (2004), the macro-

economic factors are measures of inflation and real activity. The joint dynamics of these

macro factors and additional latent factors are captured by VARs. In Ang and Piazzesi

(2003), the measures of real activity and inflation are each constructed as the first principal

component of a large set of candidate macroeconomic series, to avoid relying on specific

macro series. Both papers explore various methods to identify structural shocks. They differ

in the dynamic linkages between macro factors and yields, discussed further below.

Finally, Rudebusch and Tao Wu (2004a) provide an example of a macro-finance specifi-

cation that employs more macroeconomic structure and includes both rational expectations

and inertial elements. They obtain a good fit to the data with a model that combines an

affine no-arbitrage dynamic specification for yields and a small fairly standard macro model,

which consists of a monetary policy reaction function, an output Euler equation, and an

inflation equation.

(4) What are the links between macro variables and yield curve factors? Diebold, Rude-

busch, and Aruoba (2005) examine the correlations between Nelson-Siegel yield factors and

macroeconomic variables. They find that the level factor is highly correlated with inflation,

and the slope factor is highly correlated with real activity. The curvature factor appears un-

related to any of the main macroeconomic variables. Similar results with a more structural

interpretation are obtained in Rudebusch and Wu (2004a); in their model, the level factor

reflects market participants’ views about the underlying or medium-term inflation target of

the central bank, and the slope factor captures the cyclical response of the central bank,
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which manipulates the short rate to fulfill its dual mandate to stabilize the real economy

and keep inflation close to target. In addition, shocks to the level factor feed back to the

real economy through an ex ante real interest rate.

Piazzesi (2005), Ang and Piazzesi (2003) and Ang, Dong, and Piazzesi (2004) examine

the structural impulse responses of the macro and latent factors that jointly drive yields in

their models. For example, Piazzesi (2005) documents that monetary policy shocks change

the slope of the yield curve, because they affect short rates more than long ones. Ang and

Piazzesi (2003) find that output shocks have a significant impact on intermediate yields and

curvature, while inflation surprises have large effects on the level of the entire yield curve.

They also find that better interest rate forecasts are obtained in an affine model in which

macro factors are added to the usual latent factors.

For estimation tractability, Ang and Piazzesi (2003) only allow for unidirectional dynam-

ics in their arbitrage-free model, specifically, macro variables help determine yields but not

the reverse. Diebold, Rudebusch, and Aruoba (2005) consider a general bidirectional char-

acterization of the dynamic interactions and find that the causality from the macroeconomy

to yields is indeed significantly stronger than in the reverse direction but that interactions

in both directions can be important. Ang, Dong, and Piazzesi (2004) also allow for bidi-

rectional macro-finance links but impose the no-arbitrage restriction as well, which poses

a severe estimation challenge that is solved via Markov Chain Monte Carlo methods. The

authors find that the amount of yield variation that can be attributed to macro factors de-

pends on whether or not the system allows for bidirectional linkages. When the interactions

are constrained to be unidirectional (from macro to yield factors), macro factors can only

explain a small portion of the variance of long yields. In contrast, the bidirectional system

5



attributes over half of the variance of long yields to macro factors.

(5) How useful are no-arbitrage modeling restrictions? The assumption of no arbitrage

ensures that, after accounting for risk, the dynamic evolution of yields over time is consis-

tent with the cross-sectional shape of the yield curve at any point in time. This consistency

condition is likely to hold, given the existence of deep and well-organized bond markets.

However, if the underlying factor model is misspecified, such restrictions may actually de-

grade empirical performance. (Of course, the ultimate goal is a model that is both internally

consistent and correctly specified.) Ang and Piazzesi (2003) present some empirical evidence

favorable to imposing no-arbitrage restrictions because of improved forecasting performance.

As discussed below, this issue is worthy of further investigation.

(6) What is the appropriate specification of term premiums? With risk-neutral investors,

yields are equal to the average value of expected future short rates (up to Jensen’s inequality

terms), and there are no expected excess returns on bonds. In this setting, the expectations

hypothesis, which is still a mainstay of much casual and formal macroeconomic analysis, is

valid. However, it seems likely that bonds, which provide an uncertain return, are owned

by the same investors who also demand a large equity premium as compensation for holding

risky stocks. Furthermore, as suggested by many statistical tests in the literature, these

risk premiums on nominal bonds appear to vary over time, contradicting the assumption of

risk-neutrality. To model these premiums, Ang and Piazzesi (2003) and Rudebusch and Wu

(2004a, b) specify time-varying “prices of risk,” which translate a unit of factor volatility

into a term premium. This time variation is modeled using business cycle indicators such as

the slope of the yield curve or measures of real activity. However, Diebold, Rudebusch, and

Aruoba (2005) suggest that the importance of the statistical deviations from the expectations
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hypothesis may depend on the application.

II. Example: An Affine Interpretation of Nelson-Siegel

In this section, we develop a new example to illustrate several of the above issues, partic-

ularly the construction of yield curve factors and the imposition of the no-arbitrage restric-

tions. By showing how to impose no-arbitrage restrictions in a Nelson-Siegel representation

of the yield curve, we outline a methodology to judge these restrictions. The Nelson-Siegel

model is a popular model that performs well in forecasting applications, so it would be inter-

esting to compare its accuracy with and without these restrictions (a subject of our ongoing

research).

The 2-factor Nelson-Siegel model specifies the yield on a τ -period bond as

y
(τ)
t = aNS

τ
+ bNS

τ
· xt, (1)

where xt is a 2-dimensional vector of latent factors (or state variables) and the yield coeffi-

cients depend only on the time to maturity τ :

aNS

τ = 0 (2)

bNS

τ
=

[
1 1−exp(−kτ)

kτ

]�
. (3)

The two coefficients in bNS
τ give the loadings of yields on the two factors. The first loading is

unity, so the first factor operates as a level shifter and affects yields of all maturities one-for-

one. The second loading goes to one as τ → 0 and goes to zero as τ → ∞ (assuming k > 0),

so the second factor mainly affects short maturities and, hence, the slope. Furthermore, as

maturity τ goes to zero, the yield in equation (1) approaches the instantaneous short rate

of interest, denoted rt, and, since the second component of bNS
τ

goes to 1, the short rate is
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just the sum of the two factors,

rt = x1
t + x2

t , (4)

and is latent as well. Finally, as in Diebold and Li (2005), we augment the cross-sectional

equation (1) with factor dynamics; specifically, both components of xt are independent

AR(1)’s:

xi

t = µi + ρix
i

t−1 + υiε
i

t, (5)

with Gaussian errors εi
t
, i = 1, 2. Therefore, the complete Nelson-Siegel dynamic representa-

tion, (1), (2), (3), (5), has 7 free parameters: k, µ1, ρ1, υ1, µ2, ρ2, and υ2.

Consider now the 2-factor affine no-arbitrage term structure model. This model starts

from the linear short rate equation (4); however, rather than postulating a particular func-

tional form for the factor loadings as above, the loadings are derived from the short rate

equation (4) and the factor dynamics (5) under the assumption of an absence of arbitrage

opportunities. In particular, if there are risk-neutral investors, they are indifferent between

buying a long bond that pays off $1 after τ periods and an investment that rolls over cash

at the short rate during those τ periods and has an expected payoff of $1. Thus, risk-neutral

investors would engage in arbitrage until the τ -period bond price equals the expected roll-

over amount, so the yield on a τ -period bond will equal the expected average future short

rate over the τ periods (plus a Jensen’s inequality term.) Risk-averse investors will need

additional compensation for holding risky positions, but the same reasoning applies after

correcting for risk premiums. Therefore, to make the Nelson-Siegel model internally consis-

tent under the assumption of no-arbitrage, yields computed from expected average future

short rates using (4) with the factor dynamics (5) must be consistent with the cross-sectional
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specification in equations (1) through (3).

To enforce this no-arbitrage internal consistency, we switch to continuous time and fix the

sampling frequency so that the interval [t−1, t] covers, say, one month. The continuous-time

AR(1) process corresponding to (5) is

dxi

t
= κi

(
θi − xi

t

)
dt+ σidB

i

t
, (6)

where κi, θi and σi are constants and Bi is a Brownian motion (which means that dBi is

normally distributed with mean zero and variance dt). (In continuous time, the Nelson-Siegel

has 7 parameters: k, κ1, θ1, σ1, κ2, θ2, and σ2.)

We first consider the model with risk-neutral investors, which consists of the linear short

rate equation (4) and the factor dynamics (6) and has 6 parameters: κ1, θ1, σ1, κ2, θ2, and

σ2. Investors engage in arbitrage until the time-t price P
(τ)
t of the τ -bond is given by

P
(τ)
t = Et

(
exp

(
−

t+τ∫
t

rsds

))
. (7)

This expectation can be computed by hand, since the short rate is the sum of two Gaussian

AR(1)’s and is thus normally distributed. (The appendix details these calculations.) The

resulting τ -period yield is

y
(τ)
t = −

logP (τ)
t

τ
(8)

= aNA

τ + bNA

τ · xt,

with the no-arbitrage factor loadings given by

bNA

τ
=

[
1−exp(−κ1τ)

κ1τ

1−exp(−κ2τ)
κ2τ

]�
. (9)

The equations (4), (6), (8), and (9) constitute a canonical affine term-structure specifica-

tion with two Gaussian factors. Intuitively, in the risk-neutral world, where yields are based
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only on expected future short rates, the cross-sectional factor-loading coefficients bNA
τ are

restricted to be functions of the time series parameters κ1 and κ2. The constant a
NA
τ absorbs

any Jensen’s inequality terms. In general, the Nelson-Siegel representation does not impose

this dynamic consistency restriction because the loadings bNS
τ

are not related to the time

series parameters from the AR(1). However, the no-arbitrage restriction can be applied to

the Nelson-Siegel model under two conditions. First, let κ1 go to zero and set κ2 = k, since

for these parameter values, bNA
τ

= bNS
τ

. Second, it will have to be case that the constant aNA
τ

,

which embeds the Jensen’s inequality terms, is close to zero for reasonable parameter values,

i.e., aNA
τ

≈ aNS
τ

= 0. (As a rule, macroeconomists often ignore Jensen’s terms; however,

with near-random walk components in the short rate process as κ1 goes to zero, the Jensen’s

terms may be large, especially for long maturities τ .)

Now consider the more general case of no-arbitrage with risk-averse investors. To accom-

modate departures from risk-neutrality, we parametrize the risk premiums used to adjust

expectations. For example, suppose the pricing kernel solves

dmt

mt

= −rtdt− λ1
t
dB1

t
− λ2

t
dB2

t
,

where

λi

t
= λi

0 + λi

1x
i

t

and λi

0, λ
i

1 are constants. The variables λi

t
are the prices of risk for each Brownian motion

and are affine functions of the factors and so vary over time. The no-arbitrage factor loadings

are given by

bNA

τ
=

[
1−exp(−κ∗

1
τ)

κ∗

1
τ

1−exp(−κ∗

2
τ)

κ∗

2
τ

]�
, (10)
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where

κ∗

i = κi + σiλ
i

1.

This 2-factor Gaussian model has 10 parameters λ1
0, λ

1
1, λ

2
0, λ

2
1, κ1, θ1, σ1, κ2, θ2, and σ2. Now

it is possible to pick the slope parameters, λi

1, so that the loadings, bNA
τ

, equal the Nelson-

Siegel loadings, bNS
τ . The values for λi

1 that meet this condition are obtained by setting

κ∗

1 = 0 and κ∗

2 = k, and these imply that

λ1
1 = −

κ1

σ1
and λ2

1 =
k − κ2

σ2
.

The constant terms in the market prices of risk are unrestricted, so we can set λ1
0 = λ2

0 = 0.

Again, it will have to be case that the Jensen’s inequality terms should be close to zero, so

aNA
τ

≈ aNS
τ

= 0.

III. The Future

The macro-finance term structure literature is in its infancy with many unresolved but

promising issues to explore. For example, as suggested above, the appropriate specification

for the time-series forecasting of bond yields is an exciting area for additional research,

especially in a global context (Diebold, Li, and Vivian Yue 2005). In addition, the goal of an

estimated no-arbitrage macro-finance model specified in terms of underlying preference and

technology parameters (so the asset-pricing kernel is consistent with the macrodynamics)

remains a major challenge.
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Appendix

To derive the affine bond pricing formulas and yield curve equations, consider the case

with prices of risk λt =
[
λ1
t

λ2
t

]�
. (Note that equation (9) can be obtained from (10) by

setting the prices of risk to zero.) There are two ways to derive thes formulas. First, we can

construct a risk-neutral probability measure under which the risk-neutral pricing formula (7)

holds. Second, we can start from the Euler equation E [d (mtFt)] = 0.

Risk-neutral probability

Under the risk-neutral probability measure, the process B∗ which solves dB∗

t
= dBt+λtdt

is a Brownian motion. By solving for dBt and inserting this expression into the AR(1)

dynamics of the factors (6) , we get

dxi

t
= κi

(
θi − xi

t

)
dt+ σi(dB

∗i

t
− λi

t
dt) (11)

=
(
κiθi − κix

i

t
− σiλ

i

0 − σiλ
i

1x
i

t

)
dt + σidB

∗i

t
(12)

=
(
κiθi − σiλ

i

0 − (κi + σiλ
i

1)x
i

t

)
dt+ σidB

∗i

t (13)

= (κi + σiλ
i

1)

(
κiθi − σiλ

i

0

(κi + σiλ
i

1)
− xi

t

)
dt+ σidB

∗i

t
(14)

= κ∗

i

(
θ∗
i
− xi

t

)
dt+ σidB

∗i

t
, (15)

where

κ∗

i = κi + σiλ
i

1

θ∗
i

=
κiθi − σiλ

i

0

κi + σiλ
i

1

The price of the τ -period bond is equal to

P
(τ)
t = E∗

t

(
exp

(
−

t+τ∫
t

rsds

))
,
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where the expectation operator E∗ uses the risk-neutral probability measure. Since the

vector x = (x1, x2)
ᵀ is Markov, this expectation is a function of the state today xt. Thus,

the bond price is a function

P
(τ)
t = F (xt, τ )

of the state vector xt and time-to-maturity τ . The Feynman-Kac formula says that F solves

the partial differential equation

Ftrt = −
∂F

∂τ
+

2∑
i=1

[
∂F

∂xi
κ∗

i

(
θ∗
i
− xi

t

)
+

1

2

∂2F

∂xi2
σ2
i

]

with terminal condition F (x, 0) = 1.

We guess the solution

F (xt, τ ) = exp (A (τ ) +B (τ ) · xt) (16)

which means that

∂F

∂xi
= Bi (τ)F

∂2F

∂xi2
= Bi (τ)

2
F

∂F

∂τ
= (A′ (τ ) +B′ (τ) · xt)F.

Insert these expressions into the partial differential equation and get

x1
t
+ x2

t
= −A′ (τ )−B′

1 (τ )x
1
t
−B

′

2 (τ )x
2
t

+
2∑

i=1

[
Bi (τ )κ

∗

i

(
θ∗
i
− xi

t

)
+

1

2
Bi (τ)

2
σ2
i

]
.
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Matching coefficients results in

A′ (τ) =
2∑

i=1

Bi (τ) κ
∗

i
θ∗
i
+

1

2
Bi (τ )

2
σ2
i

1 = −B ′

1 (τ )−B1 (τ) κ
∗

1

1 = −B ′

2 (τ )−B2 (τ) κ
∗

2.

The boundary conditions are

A (0) = 0

B (0) = 02×1.

The solution to these ODE’s are

B1 (τ) =
(exp (−κ∗

1τ)− 1)

κ∗

1

(17a)

B2 (τ) =
(exp (−κ∗

2τ)− 1)

κ∗

2

.

We can plug these solutions into the yield equation

y
(τ)
t = −

A (τ)

τ
−

B1 (τ )

τ
x1
t
−

B2 (τ )

τ
x2
t

(18)

= aNA (τ) + bNA

1 (τ )x1
t
+ bNA

2 (τ )x2
t

and get equations (9).

Euler equation approach

The Euler equation is

P
(τ)
t = Et

[
mt+τ

mt

]

and the instantaneous equation is

E [d (mtFt)] = 0. (19)
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The bond price is a function F (x, τ ) and we can apply Ito’s Lemma

dF = µFdt+ σFdBt,

where the drift and volatility of F are given by

µF = −
∂F

∂τ
+

2∑
i=1

[
∂F

∂xi

κi

(
θi − xi

)
+

1

2

∂2F

∂xi2
σ2
i

]

σF =
2∑

i=1

∂F

∂xi
σi

Both mt and Ft are Ito processes, so their product solves

d (mtFt) = −rtmtFtdt+mtµ
F

t
dt−mtλtσ

F

t
dt

−FtmtλtdBt +mtσ
F

t
dBt

We use the Euler equation (19) and get

0 = −rtmtFt +mtµ
F

t −mtλtσ
F

t (20)

Ftrt =

(
−

∂F

∂τ
+

2∑
i=1

[
∂F

∂xi
κi

(
θi − xi

t

)
+

1

2

∂2F

∂xi2
σ2
i

])
−

2∑
i=1

∂F

∂xi
σiλ

i

t

Again, guess the exponential-affine solution (16) and insert the expressions into (20), we get

x1
t
+ x2

t
= −A′ (τ)−B′

1 (τ )x
1
t
−B

′

2 (τ) x
2
t

+
2∑

i=1

[
Bi (τ )κi

(
θi − xi

t

)
+

1

2
Bi (τ )

2
σ2
i

]

−

2∑
i=1

Bi (τ )σi

(
λi

0 + λi

1x
i

t

)
.

Matching coefficients, we get the ordinary differential equations:

A′ (τ ) =
2∑

i=1

Bi (τ ) (κiθi − σiλ
i

0) +
1

2
Bi (τ)

2
σ2
i

1 = −B′

1 (τ )−B1 (τ ) (κ1 + σ1λ
1
1)

1 = −B′

2 (τ )−B2 (τ ) (κ2 + σ2λ
2
1).
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From this expression, we can see that we get the coefficients (17a) with risk neutral parame-

ters

κ∗

i
= κi + σiλ

i

1

κ∗

i θ
∗

i = κiθi − σiλ
i

0 =⇒ θ∗i =
κiθi − σiλ

i

0

κi + σiλ
i

1

.
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