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ABSTRACT

A plot of expected returns versus betas obeys virtually no relation to an inefficient index

portfolio's mean-variance location. If the index portfolio is inefficient, then the coefficients and

R-squared from an ordinary-least-squares regression of expected returns on betas can equal

essentialiy any desired values. The mean-variance location of the index does determine the

properties of a cross-sectional mean-beta relation fitted by generalized least squares (OLS). As

the index portfolio moves closer to exact efficiency, the GLS mean-beta relation moves closer

to the exact linear relation corresponding to an efficient portfolio with the same variance. The

goodness-of-fit for the GLS regression is the index portfolio's squared relative efficiency, which

measures closeness to efficiency in mean-variance space.
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1. Introduction

Expected returns on a set of risky assets obey an exact linear relation to betas computed
against an index portfolio that lies on the minimum-variance boundary of those assets. If the

betas are computed instead against an index portfolio that lies inside the minimum-variance
boundary, then expected returns must deviate to some degree from any fitted cross-sectional

linear relation.' These properties are well known, but they leave open the question of
whether, in the latter case, the extent to which expected returns are approximated by a
linear function of beta is at all related to the mean-variance location of the index portfolio.

For example, one might ask whether, with only negligible inefficiency in the index portfolio,
a plot of expected returns versus betas would display a near-perfect linear relation.

In fact, the mean-variance location of an inefficient index portfolio bears essentially no
relation to the plot of expected returns versus betas. For example, expected returns can
display essentially no correlation with betas computed against an index portfolio that has an

expected return arbitrarily close to that of the efficient portfolio with the same variance. Al-

ternatively, expected returns can display a nearly perfectly linear relation to betas computed

against an index portfolio that is grossly inefficient. Such plots of expected returns versus
betas can be summarized by ordinary least squares (OLS) regression. We show that, if the
index portfolio is inefficient, the OLS regression coefficients and ft-squared can equal essen-
tially any values desired. This general result, as well as the two examples noted above, can
be demonstrated by repackaging a given set of risky assets into alternative sets that generate

the same portfolio opportunities. Such repackagings change neither the index portfolio nor
the minimum-variance boundary, but they can change the cross-sectional mean-beta relation

in virtually any manner desired.

This study shows that generalized-least-squares (GLS) regression provides a framework
wherein the exact linear mean-beta relation implied by strict efficiency of the index portfolio
can be generalized to an approximate linear relation when the index is inefficient. The GLS
regression uses the covariance matrix of the asset returns, and much of the information
in that matrix is omitted in a plot of expected return versus beta. An index portfolio's
location in mean-variance space is unaffected by repackaging the individual assets, and we
define a measure of relative efficiency that is determined by a portfolio's mean-variance
location. This relative-efficiency measure approaches its maximum value of unity as the
index portfolio moves closer to the upper portion of the mininuim-variance boundary. We
find that this measure provides a simple link between the index portfolio's mean-variance

tSn, Fan,a (1976), Roll (1917) and Ross (1977).

1



location and the properties of the fitted GLS mean-beta relation. As the index portfolio's

relative efficiency moves closer to unity, the fitted GLS mean-beta relation moves closer to
the exact tinear relation corresponding to an efficient portfolio with the same variance as the

index. A slope coefficient of zero occurs only when the mean return on the index is equal to

that of the global minimum-variance portfolio. Moreover, the goodness-of-fit measure for the

CLS cross-sectional regression is simply the squared relative efficiency of the index portfolio.

In the absence of an exact linear relation between expected returns and betas, a variety
of criteria could be used to fit a line and judge its goodness-of-fit. Developing such criteria
is difficult without an economic context in which to view a fitted linear mean-beta relation.
We consider a context in which such a relation is judged by its ability to provide fitted
expected returns that are useful substitutes for true expected returns as inputs to a standard

one-period portfolio optimization. For a given set of cross-sectional independent variables,
including but not limited to beta, using the expected returns fitted from a OLS. regression
produces a portfolio with a higher expected return than using any other linear function of
the independent variables. The squared relative efficiency of that portfolio is simply the
goodness-of-fit for the GLS regression.

The analysis in this study takes the moments of the return, distribution as given, so
sampling issues of estimation and inference are not addressed. Such issues are beyond the
intended scope of this paper. For an analysis of these issues as they apply to the GLS cross-

sectional regression, the interested reader is referred to Shanken (1992). He shows that, when

sample mean returns are regressed on estimated betas, the GLS estimator is asymptotically
efficient, even though the betas used as independent variables are first estimated in OLS
regressions.2 Shanken also observes, however, that there are reasons to be concerned about
the small-sample performance of the GLS estimator. In recent empirical work, Amihud,
Christensen, and Mendelson (1992) report that a (JLS regression produces a significantly
positive slope for the mean-beta relation, in contrast to the OLS result reported by Fama
and French (1992). For an analysis of how the 8amplemean-variance location of the index
portfolio is related to a likelihood-ratio test of that portfolio's aciency, see Kandel and
Stambaugh (1989).

The remainder of the paper is organized as follows. Section 2 shows that the cross
sectional mean-beta relation fitted by OLS bears essentially no relation to the mean-variance
location of the index portfolio. Section 3 defines a portfolio's relative efficiency, which can be

2Shanken's GLS estimator is defined using the covariance matrix of the residuals from the first-pass
market-model regressions, but he shows in earlier work [Shauken (1985, footnote 16)J that the same estimator
is obtained using the covariance matrix of returns.
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stated in terms of either expected returns or variances, and section 4 provides simple relations

between the index portfolio's relative efficiency and a (JLS regression of expected returns on

betas. Section 5 offers a portfolio-optimization setting in which to compare GLS to other
methods for fitting and judging cross-sectional relations for expected returns. Conclusions

are then presented in section 6. The Appendix contains proofs of all propositions.

2. Inefficiency and Deviations from Mean-Beta Linearity

For a universe of n risky assets, define

B: n-vector of returns realized in a given period

E: n-vector of expected returns,

n x ii covariance matrix of returns, assumed to be nonsingular.

For a given portfolio p, a combination of the n assets, define

w: n-vector of weights in portfolio p,

mean return on portfolio p (= w,E),
variance of return on portfolio p (= wVw),

/3: n-vector of betas with respect to p [= (1/c)Vw].
Let denote an n-vector of ones, and define

(1)

Assume that neither £ nor /3 are proportional to t.

The mean-variance location of portfolio p has virtually no bearing on the degree to which

the elements of E and ft conform to a linear relation, when goodness-of-fit is measured by
the standard Euclidean norm. That is, portfolio p can lie arbitrarily close to the minimum-
variance boundary and yet produce an OLS slope and It-squared that are arbitrarily close
to zero. Similarly, portfolio p can lie far from the minimum-variance boundary (by whatever
metric desired) and yet still produce an OLS fit between expected returns and betas that is

arbitrarily close to exact linearity.

We verify the above statements by considering "repackagings" of assets. The portfolio
opportunities generated by one set of n assets are identical to those generated by an alter-
native set of it assets that simply repackage the original set, provided that returns on the
new assets also have a nonsingular covariance matrix. Such a repackaging does not change
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the minimum-variance boundary or the location of portfolio p in mean-variance space,but it
can change the relation between the n assets' expected returns and their betas with respect

to portfolio p.

A given repackaging of assets can be represented by a nonsingular n x vi matrix A, where
AL = t. The returns on the repackaged assets are constructed as fr = AR, so the means and
betas of the repackaged assets ar given by E = AE and 9- =Afi. For a given repackaging
of the n assets, let y denote the vector of coefficients in an ordinary-least-squares (OLS)

regression of expected returns on betas with respect to portfolio p. That is,

= (X'X')'r'E, (2)

where

(3)

The goodness of fit in this regression is given by

it's Vs •ViZ'. V.
B2 —1 n7jsi n7— —

(E' — c)'(E- —

If portfolio p is inefficient, the following proposition states that one can always find a
repackaging such that expected returns on the new set of vi assets obey essentially any
desired OLS regression outcome.

Proposition i If portfolio p is inefficient, then forany w E (0,1), c > 0, and two-element
vector 9, there exists a norzsingular n x vi matrix A, with As = s, such that

If — 911 < c, and (5)= . (6)

The results of an OLS regression correspond closely, of course, to what one would infer
visually from a simple plot of expected returns versus betas. Proposition 1 implies that such
a plot could in fact appear to contradict standard theory, since small degrees of portfolio
inefficiency or deviations from perfect mean-beta linearitymay not be visible in a plot. Two
such examples are presented in Figure 1. The minimum-variance boundaries in figures la
and Ic are identical, and they are generated using sample means and covaa-iances of monthly

3The Euclidean norm of an n-vectorv is defined as lvii = (v'v).
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returns on ten portfolios of common stocks sorted by equity capitalization (firm size) for the

period from l926-l992.

The ten points plotted in figure la as solid dots represent means and variances on ten

assets that simply repackage the ten size portfolios. Portfolio p, shown as a small circle, is

inefficient, having a monthly expected return that is 88 basis points less than the expected

return on the efficient portfolio with the same variance. Figure lb plots the expected returns
on the ten assets versus the assets' betas with respect to portfolio p. The mean-beta relation
is not exactly linear, although the violations of exact linearity are too slight to be visible on
the graph. The OLS regression line on which all of the points appear to lie has an intercept
of 30 basis points, close to the average monthly interest rate for the 1926-92 period, and the

slope of the line is 76 basis points, the average excess return on portfolio p. In other words,
shown only figure ib, one would be inclined to conclude that portfolio p is the Sharpe-Lintuer

tangent portfolio of the ten assets.

The ten assets whose means and variances are plotted in figure ic are obtained as a
different repackaging of the ten size portfolios. Portfolio q is inefficient, although it lies
too close to the minimum-variance boundary for the inefficiency to be visible on the graph.

For the ten assets, a least-squares regression of expected returns on betas with respect to

portfolio q produces an WQLS less than .0001, and the corresponding plot is shown in figure

id. Shown only that plot, one would be inclined to conclude that portfolio q is inefficient.
Such a conclusion must be correct, of course, but the degree of inefficiency can be of no

economic significance.

Related issues are discussed in several recent studies. Jagganathan and Wang (1993)
construct a four-asset example in which repackaging changes R3,s from 0.95 to 0.0, although
those authors do not address the generality of the example or its relation to the mean-variance

location of the index portfolio. The example in which R3,5 is nearly zero is also related
to the study by Roll and Ross (1994). They show that a portfolio can lie fairly dose to
the minimum-variance boundary and yet produce a mean-beta relation whose OLS slope is
exactly zero (and thus R35 is zero). Those authors consider a given set of n assets, without
repackaging, and they show that the region of zero-slope-producing portfolios moves closer

to the minimum-variance boundary as the cross-sectional dispersion of expected returns on
the n assets grows smaller. As shown here, repackaging the assets allows the goodness of
fit to become arbitrarily close to zero for any inefficient portfolio. Our observation that

4The portfolios include alt stocks on the New York Stock Exchange, and the returns within a portfolio
are value-weighted. Portfolio returns were obtained horn the Index File supplied by the Center for Research

in Security Prices.
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inefficient portfolios can also give arbitrarily good fits to any given linear mean-beta relation

goes beyond the analysis of Roll and Ross, who do not consider goodness-of-fit measures.5

Grauer (1994) constructs a number of examples illustrating that the difference between the

OLS intercept and the riskiess rate does not correspond to the proximity of the index portfolio

to the Sharpe-Linter tangent portfolio.

The plots in figure 1 omit much information about the covariance matrix of the assets.

For example, the covariance matrix of the assets plotted in figure la, althoughnonsingular,
has one very small eigenvalue. We consider below a framework that uses this additional

information to measure the relation between expected returns and betas with quantities that

correspond directly to portfolio p's position in mean-variance space. A portfolio's position
in mean-variance space will be characterized by a simple measure of relative mean-variance

efficiency.

3. A Measure of Relative Portfolio Efficiency

For -a given portfolio p, let x denote the efficient portfolio with the same variance as p, and

let y denote the minimum-variance portfolio with the same mean as p. Define

s: mean return on portfolio x,

p: mean return on portfolios uncorrelated with portfolio z,

c: variance of portfolio y.
mean of the global minimum-variance portfolio,

o: global minimum variance.

The relative efficiency of portfolio p is defined as

(7)
Pr — Pg

The relative efficiency measure defined in (7) has a range from -l to 1, with the latter value
corresponding to exact efficiency. Relative efficiency is undefined for the global minimum-

variance portfolio. When portfolio p lies on the minimum-variance boundary but has the
lowest expected return for its variance, then = —1. The square of this efficiency measure

can also be expressed in terms of variances, as given by the following proposition.

5Roli and Ross derive mean-variance regions for portfolios that produce a given positive OLS slope for
the mean-beta relation, but other than in the case where the slope is zero, the value for the elope does not
provide information about the gooclns of fit.
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Proposition 2
a2 — a2

(8)

Roth (7) and (8) are represented graphically in figure 2. Figure 3displays the locations in

mean-variance space of portfolios with given values of /',. The minimum-variance boundary
is the same as that constructed in figures Ia and ic.

A portfolio's inefficiency can also be characterized in terms of correlation. Kandel and
Stambaugh (1987) and Shanken (1987) show that pp, the maximum correlation between the
return on portfolio p and the return on any minimum-variance portfolio, is given by

cvpp=_. (9)
o.p

This measure, like approaches unity as portfolio p approaches the minimum-variance
boundary, but it is bounded below by zero. Combining (8) and (9) gives

(10)

which implies that

tPp<Pp (11)

if portfolio p is inefficient.

4. The Mean-Beta Relation and the Covariance Matrix

Consider a cross-sectional regression of E on fi, where the covariance matrix V is used to
perform Generalized Least Squares (GLS). That is, the coefficient vector in the regression is

given by
=
[' ] = (X'lr'Xy1X'r'E- (12)

Proposition 3 The slope coefficient 2 is given &y

= — Pzo) (13)

and the intercept is given by = — or

= po + (1 — 'p)Q'g — (14)
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lip is efficient, so v'.,, = 1, then must equal Pro and #2 must be the portfolio's premium

over that zero-beta rate, Pr — pro- The above proposition reveals that, if p is inefficient, then

'i > Pro and 02 < pr — pro. As &.,, gets closer to 1, #1 approaches Pro and #2 approaches
its maximum value, Pr — pro. A negative slope occurs for p < p9, and a zero slope occurs

if and only jul.',, = 0, or when p,, =

The standard measure for the CLS regression's goodness-of-fit is

— (E — — X#)
(15)OLS — —

(E — —

where
-

p = (E'V't)/(i'Vt), (16)

which is the coefficient in a OLS regression of E on t. Note that exact linearity gives
= I, a slope of zero gives R3 = 0, and 0 RLs � 1.

Proposition 4

(17)

We see that, unlike the OLS regression, the outcome of a GLS regression of expected
returns on betas is determined completely by portfolio p's location in mean-variance space,
as summarized by i,,. In figure la, tfr,, = 0-3, so the goodness of fit in a GLS regression of
means on betas with respect to portfolio p is 0.09.In figure lc, Ø is nearly 1, and so is the
goodness of lit in the GLS mean-beta regression. Although it can be shown algebraically that
the coefficient vector and the goodness-of-fit measure R2GLS are invariant to repackaging
the n assets, this result follows immediately from the fact that portfolio p's location in mean-
variance space is unaffected by repackaging the assetsused to generate the set of portfolio
opportunities.

The GLS regression constructs a least-squares fit between means and betas that are

transformed using the factored inverse of the covaz-iance matrix, and, as is obvious from
figure 1, the outcome of that regression need bear no resemblance to a plot of the "raw"

expected returns versus betas. To decide whether fitted lines and goodness-of-fit measures are

more relevant when computed with the raw means and betas than with their transformed
counterparts, it may be useful to have a context in which fitted cross-sectional relations
for expected returns would be used. The next section considers the use of such relations
in providing expected returns as inputs to portfolio optimization. It is shown that the

'This tast point is also made by Roll and Ross (1994), who attribute correspondence with Simon Wheatley.
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fitted GLS regression provides the optimal inputs for the optimization, and the regression's
goodness-of-fit provides the squared relative efficiency of the resulting portfolio. If in other
contexts the goodness-of-fit of the raw means and betas is a more relevant metric, however,
then one must simply recognize that such a metric need bear no relation to the relative

mean-variance efficiency of portfolio p.

5. Using Fitted Mean Returns: An Optimization Setting

In the absence of an exact linear relation between expected returns and betas, it seems useful
to have an economic context in which one might, at a theoretical level, fit a linear relation
and judge its goodness-of-fit. We consider here the simple context of mean-variance portfolio
optimization, where the expected returns fitted from a linear cross-sectional relation are used

as inputs to the problem of maximizing a portfolio's expected return for a given variance.
The extent to which the portfolio constructed in the optimization differs from the efficient
portfolio depends only on the differences between true and fitted expected returns -

Because the cross section of mean returns can possibly be explained better by variables

used in addition to, or even in place of, betas computed against an inefficient portfolio, we
allow such variables to be included in the analysis. For k < n, let Z denote an it x k matrix

of full column rank, where one column is t. The matrix Z can simply be the it x 2 matrix

X defined previously, so that the results below include fitting the mean-beta relation as a
special case. We consider linear cross-sectional relations that fit expected returns as

E=Za. (18)

for some k x 1 vector a.

The quality of the approximation to expected returns in (18) is characterized by the
results of a portfolio optimization that uses E instead of £ as inputs- Let w(E; a2) denote

the solution to the portfolio maximization problem,

maxw'E (19)

subject to the constraints

w'Vw = a2 and (20)

= 1, (21)

for a given a2 > o.
9



Let 8 denote the coefficient vector in a GLS regression of E on Z,

8 = (Z'V'Z'Z'V'E. (22)

The fitted mean returns from the GLS regression are given by

= Z6_ (23)

Note that is a special case of E in (18) with a =8. We see that this choice of a is best
in the following sense.

Proposition 5

[w(Et; a2)]'E � [w(E; e2)]'E (24)

for all a.

In other words, the true expected return of the portfolio constructed using the GLS inputs is
greater than or equal to the true expected return of a portfolio constructed using any other
inputs of the form in (18).

As before, the goodness-of-fit for the GLS regression is given by

— (E — zS)'v—'(E — Z8)
250L3 —

(E—ip)'V-'(E—tp)'
where is defined as in (16). This goodness-of-fit is also the squared relative efficiency of
the portfolio constructed using GLS inputs.

Proposition 6 For any a2> a, let q denote the portfolio with weights w(EI;o2). Then

= &. (26)

Note that and thus do not depend on the value for a2 specified in the portfolio
optimization. Jn the special case where Z = X, it follows from propositions 4 and 6 that
the portfolio constructed with the GLS inputs has the same (squared) relative efficiency as
portfotio p. In fact, it can also be shown in that case that the weights in portfoliop are equal
to w(Et;a).

10



6. Conclusions

As is well known, an exact linear relation between expected returns and betas with respect

to a given portfolio p occurs if and only if portfolio p lies exactly on the minimum-variance
boundary. If portfolio p is at all inefficient, however, a plot of expected returns versus betas

bears essentially no relation to the position of portfolio p in mean-variance space. An OLS
slope and R-squared arbitrarily close to zero can occur when portfolio p is arbitrarily close to

the minumum-variance boundary. A near-perfect linear relation can occur, with any desired

intercept and slope, if portfolio p is grossly inefficient.

Although OLS is inadequate to the task, the exact linear mean-beta relation implied by
the efficiency of portfolio p can indeed be generalized to an approximate linear relation in
the presence of inefficiency in portfolio p. If the linear relation is fitted as a OLS regression

of expected returns on betas, using the variance-covariance matrix of returns, then that
relation's coefficients and goodness-of-fit measure bear simple relations to the location of

portfolio p in mean-variance space. if portfolio p is close to efficient, based on a relative
efficiency measure that can be stated in terms of either means or variances, then the fitted
relation will be close to the exact linear relation corresponding to an efficient portfolio whose

mean and variance are close to those of portfolio p.

When portfolio p is inefficient, it may be useful to adopt an economic context in which

to fit a linear relation between expected return and beta and characterize, at a theoretical
level, that relation's goodness-of-fit. We consider a context in which the quality of the linear

relation is judged by its ability to provide fitted expected returns that are useful substitutes
for true expected returns as inputs to a standard one-period portfolio optimization. For a
given set of cross-sectional independent variables, including but not limited to beta, using the

expected returns fitted from a GLS regression produces a portfolio with a higher expected
return than using any other linear combination of the independent variables. The (squared)
relative efficiency of that portfolio is simply the goodness-of-fit for the GLS regression.

The absence of a relation between the index portfolio's relative efficiency and a plot of
expected returns versus betas illustrates the difficulty in using and assessing any model that

delivers multiple implications. The Capital Asset Pricing Model, for example, delivers two
major implications: (i) the market portfolio is mean-variance efficient and (ii) the relation
between expected returns and betas is linear. Many finance academics prefer not to view
these implications as separate, since either one implies the other, but such a strict view does
not easily accommodate the fact that any financial model is at best a convenient and useful
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abstraction rather than an exact representation of reality.7 That is, the strict view does not

easily entertain the possibility that, for practical purposes, one implication can hold while

the other fails. This study demonstrates that either implication can hold nearly perfectly

while the other is grossly violated.

In some applications, the implication of interest may be that the market portfolio is

mean-variance efficient or, in practical terms, very nearly so. This implication might lead,
for example, to an "index fund" portfolio strategy. If the implication of interest is instead
the cross-sectional mean-beta relation, then we see that the relative efficiency of the index
portfolio offers little guidance as to the properties of such a relation. An additional problem

with the mean-beta implication arises, however. Even if a linear mean-beta relation fits
arbitrarily well (but not perfectly) for a given set of N assets that generate all portfolio
opportunities, the same relation can still provide a poor approximation for the expected
return on another asset (a repackaging of the N assets). Many applications of the model are
likely to use a relation fitted with one set of assets to approximate the expected return on
another asset, such as a project in a capital budgeting problem or a managed portfolio in a
performance evaluation. Thus, unless one takes seriously the possibility that thelinear mean-

beta relation holds perfectly, this implication of the model seems to offer limited applicability.

TSUCh a view of modeling is advanced, for example, by Fama (1976).
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Appendix

Proof of Proposition /: Let F be a nonsingular it x it matrix whose first three columns are

1' = , (A.1)

f2=$, (A.2)

and
= E — X6, (A.3)

respectively. Note that when portfolio p is inefficient, the above three vectors are linearly
independent. Define the OLS coefficient vector

-y = (X'XY'X'E. (A.4)

Let Q be an it x it diagonal matrix whose diagonal elements are all ones except for the (3,3)

element, which satisfies

(A.5)
(f3'X(X'X)-X'f3)

when 6 y and q(33) = 1 when 6 = y. In the latter case, note that fX = 0. Define the

nonsingular matrix B FQF'. It is easy to verify that the columns of F are eigenvectors
of B, and that the diagonal elements of Q are the corresponding eigenvalues. Hence,

= U1 = f'q',i = i, (A.6)

Bjf3 = Bf2 = f2q(2,2) = /3, (A.?)

and
2f3 = f3q(3.a). (A.8)

Equations (A.6) and (A.7) can be rewritten as:

LX = X. (A.9)

Let C be a nonsingular it x it matrix whose columns are orthogonal to each other and whose

first three columns are
gi = (A.10)

92 = /3 — 111, (A.11)

and
= BE — X(X'X'X'BE. (A.12)
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Note that g is the vector of residuals from the regression of BE on BX (= X). When

portfolio p is inefficient, the vector E is not spanned by the columns of X, and, therefore,
the above three columns of C are linearly independent and orthogonal to each other. Let
A (G'C)—'. Since the columns of G are orthogonal to each other, A is a diagonal matrix.

Let H be an n x n diagonal matrix whose diagonal elements are all ones except for the (3,3)

etement, which is given by
f(v'v)(l —w)'\= , (A.13)
\' (9393)"' 1

where
v X(X'X)'X'BE — (iDE) • (A.14)

Define the nonsingular matrix C GHAG'. It is easy to verify that the columns of G
are eigenvectors of C as well as C', and the diagonal elements of H are the corresponding

eigenvalues of both C and C'. Hence,

= Cc = = glh0,i) = t, (A.15)

C'$ = Cfi = C(92 + .g') = 5, (A.16)

C'X=CX=X, (A.17)

and

C93 = h(a,s)93. (A.18)

Now let A CD, which is nonsingular. Equations (AS) and (A.17) imply that

AX=CBX=CX=X, (AdO)

so At = c. Substituting (A.19) into the definition of -y in (2) and simplifying by using

equations (A.3), (A.8), (AS), and (A.17) gives:

= (V'A'AX)' V'A'AE — (X'X)'X'CBE
= (X'X)' '('BE = (X'Xy'X'B(X6+ 13)

= 9+(X'X)'X'Bf3
= 9 + q(3,a)(X'X)'Xfa. (A.20)

If = 6, then -y' = 0, since in that case q(33) = 1 and X'f3 = 0. When 6, inequality (5)

is obtained by combining (A.20) with (A.S):

— Oil = (q33)fX(XFX)_2Xlfa)} < c. (A.21)
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Using (2), (3), (All), and (A.19) we get:

(F7— V7) — AE—AX(X'A'AX1X'A'AE
= AE - X(X'X)'X'BE
= C(BE - X(X'X)'X'BE)
= C93 = g3h(33), (A.22)

which implies that
AE = g3h(3) + X(X'X)'X'BE. (A.23)

Using (A.17), (A.23) and the definition of v in (A.14) we get:

=

= 93/1(3,3) + X(X'X)'X'BE — (iDE)

= 93/1(33) + v. (A.24)

Equation (6) is obtained by substituting (A.22) and (A.24) into (4), observing that
(t/g3) = 0, and using the definition of /1(33) in (A.13):

2 — (E — X-f)'(E — X'y)ROLS —
(E — fZ)'(E —

= 1 —

+ V'V

thy

+ v'v

= w. (A.25)

Proof of Proposition 2: We first define the 2 x 2 matrix,

L M I iV—c t'V'E
A 26M N =

[I'V-'E EIVtE
and its determinant,

D = LN — M2. (A.27)

As is well known [Roll (1977)],

M=
Ti' (A.28)

= 1

(A.29)
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and if (p,a2) is a point on the minimum variance boundary, then

2_ (Lp2 —2Mp+N) 'AD
Equation (A.30) can be rewritten as then:

2 1 Lf MYa (A.31)

By construction. (z1 a) and (Pr, a) are on the minimum variance boundary. Using (A.28),
(A.29), and (A.31) we get

— = — p9)2, and (A.32)

=
5pt—p,)2. (A.33)

Dividing equation (A.32) by (A.33) gives
2 2 2

= (a—a,' (A.34)\Pr1401 a,—aj
Equation (8) follows from (A.34) and the definition of * in (7).

Proof of Proposition .9: The geometric analysis of the OLS coefficients in Roll (1985) may
be used as a starting point for this proof. For the sake of clarity, we provide a complete
proof. Observe that

x = [ ], (A.35)

so

= ____
]

= J [ (A.36)
i4Vw i4Vwp

(X'V'X)-' =
La— 1 [-i (A.37)

and

X'VE= [ev-IEJ[M1 (A.38)
t4Vwp qp

Multiplying (A.37) and (A.38) gives

a2
—i (A.39)La—1 Lp—M

Using (A.28) and (A.29), the second element of 4 in (A.39) can be written as

= (aa;) (p, —p•). (A.40)
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This expression for 2 is presented also by Roll (1985). The expression in (13) is obtained
by observing that, since portfolio x is on the minimum-variance boundary, we can write /49
as

cov{r,,r}
p9 = Pro+(Pz/4x0) 2

a2= p + (p — /4o)$, (A.41)

where the second line follows by substituting cr for a (equal by construction) and from
the property that every asset has covariance with the global minimum-variance portfolio

[Roll (1977)]. Equation (A.41) can be rewritten as

2_ 2 PrPzo)
)— Pro

Substituting (A.42) for a in (A.40), simplifying, and using the definition of &,, in (7) gives
(13). The expression for in (14) follows directly by substituting (A.28), (A.29) and (A.41)
into the first element of 4' in (A.39) and simplifying.

Proof of Proposition 4: Equation (15) can be rewritten as:

(E — tp)'V—'(E — ip) ' (A.43)

Through straightforward algebra, using (A.26)—(A.39), one can express the numerator of
(1 — cLs) in (A.43) as

(E—X4')'V-'(E—X4') = Lp_2Mpp+NTDa:

= £ (A.44)L

where the second line makes use of the equation for the minimum-variance boundary (A.30),

= (L,4 — 2Mp + N)/D. (AA5)

The denominator of (1 — R3js) can be expressed, using (16), (A.26), and (A.27), as

(E — cp)'V1(E — tfl) = . (A.46)

Taking 1 minus the ratio of (A.44) to (A46) gives

( 2 2\
p2 — °/ A47'CLS (a2_a2\'' p 9/

17



which is equal to using Proposition 2.

Proof of Proposition 5: Since w(E;a2) is the solution to the portfolio maximization

problem (19)—(21), there exist scalars C' � 0 and (2 such that the following first order
condition is satisfied:

w(E;c2) =
= (1V'Za+(3V't. (A.48)

where the second line uses (18). The maximization problem's constraints imply that

(2 = — (,ilV1Za, and (A.49)

I L2—1
(1 =

kLa'Z'V'Za— (ilV_1Za)2)
(A.50)

Using (A.26) and (A.49), the expected return [w(E; c2)]'E can be written as

= +(,[(E'V'Za) —
!i(ilV_1Za)). (A.51)

Recall that 8 = (Z'V'Z)'Z'V'E, define

K E'V'Z8 = (E'V'Z)(Z'V'Z'(Z'W1E), (A.52)

and note that K � (M2fL). Let d1 be an n-vector with 1 in the first element and 0 elsewhere.
Noting that the first column of Z is t, it is easily verified that

Zd1 = t, (A.53)

= (Z'V1Z)'Z'Vt, (A.54)

= E'V'Zd1 = = M, and (A.55)

= 4Z'W'Zd1 = = L. (A.56)

For any n-vector a there exist scalars c1 and c2 and an n-vector it such that

a = cjS + c2dj + it, (A.57)

u'(Z'V'Z)di = u'Z'V't = 0, and (A.58)
= u'Z'V'E = 0. (A.59)

Maximizing the expected return [w(E; a2)J'E with respect to a is, therefore, equivalent to
maximizing the expected return with respect to c1, c2, and an n-vector it that satisfies (A.58)

18



and (A.59). Using (A.55), (A.56), (A.58), and (A.59), we get

t'V'Za = ct(?V'ZS) + c2(t'V'Zdi) + (t'V1Zu)
= c1M + c2L, (A.60)

E'VZa = ci(E'V'Z6) + c2(E'V'Zdt) + (E'V'Zu)
= ciK+c2M, and (A.61)
= c121C + c22L + 2c1c2M + u'Z'V'Zu. (A.62)

Substituting (A.60)—(A.62) into (A.50), and (A.51) gives

[w(E; c2)]'E = +
— 1)4c1(I L — M2)

(A.63)L [(KL — M2) + (tilZlV_1Zu)]fL
Let c2 = 0, since (A.63) does not depend on c2. The maximum must occur with c1 > 0 since
the denominator and the other factors in the numerator are positive. For any c1 > 0, the
maximum occurs at u = 0 and does not depend on c1. Thus, let c1 = 1, which implies the
maximum occurs at a = S or E = ZE = EL

Proof of Proposition 6: We first observe that (E — Z5) can be written as

(E — ZE) = [I— Z(Z'V'Z1Z'V]E, (A.64)

which, when substituted into the numerator of (1 —R) in (A.43), provides

(E — Z6)'V'(E — Z6) (A.65)
= E'[I — Z(Z'V'ZyZ'V']'V' [I — Z(Z'V'Zy'Z'V']E
= E'V-'E—E'V-'Z(Z'V-'Z)-'Z'V-'E
= N—K (A.66)

where the last line uses (A.26) and (A.52). The denominator of 1 — can be expressed,

using (16), (A.26), and (A.27), as

(E — — = .. (A.67)

Taking 1 minus the ratio of (A.66) to (A.67) and using (A.27) gives

= (KL—M2)
(A.68)

Let Pq and denote the mean and variance of the return on the portfolio q, respectively.

By Proposition 1,

(A.69)—
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where denotes here the variance of the minimum variance portfolio with mean return Pr
Equation (A.32) implies that the numerator of (A.69) can be written as

— = — (A.70)

Substituting p9, c, and pg into (A.63) gives:

(p7 — = (o — — M2)
(A.71)

which implies that the denominator ol (A.69) can be written as:

= L(p—4u,)
(A.72)

Dividing (A.7O) by (A.72) yields

= (KL — M2) = (A.73)

where the second equality is based on (A.68).
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Figure 1. Examples of mean-beta relations for different mean-variance b-
cations of the index portfolio. Figure la plots ten assets (solid dots), their minimum-
variance boundary, and a portfolio pot those ten assets (circle). Figure lb plots the expected
returns and betas of those assets with respect to portfolio p as well as the OLS regression
line through those points. Figures Ic and id display a similar case, except that the tell assets
are a "repackaging" of those in the first case. The points in figure lb do not lie exactly on
the regression line, and portfolio q in figure lc does not lie exactly on the minimum-variance
boundary.
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Figure 3. Mean-variance locations of portfolios with various levels of relative
efficiency . Relative efficiency is undefined for the global minimum-variance portfolio.
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