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(1961) linear quadratic inventory model. It is shown that a central

property- of the model is that a certain weighted sum of variances and
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weights are the basic structural parameters of the model. The model may be

tested by- seeing whether this sum in fact is nonnegative. When the test is

applied to some non—durables data aggregated to the two—digit SIC code

level, it almost always rejects the model, even though the model does well

by traditional criteria.
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The linear quadratic inventory model, originated by Holt et al. (1961),

has been the basis of much theoretical and empirical work on manufacturers'

inventories of finished goods. The model argues that the basic reason firms

hold finished goods inventories is to smooth production in the face of

randomly fluctuating sales. In some versions of the model a desire to avoid

sales backlogs provides an additional motive for holding inventories.1 That

firms might hold inventories for these reasons seems theoretically compelling

(Blinder (1983)), and much empirical work has been interpreted as being

supportive of the model (e.g., Blanchard (1983)).

Some basic facts about finished goods inventories, however, seem to

contradict the spirit if not the letter of this model. The model suggests

that firms will smooth production by building up inventory stocks when sales

are low and drawing down stocks when sales are high (Summers (1983)).

As is well known, however, manufacturers generally do precisely the opposite.

Stocks tend to be decuinulated in cyclical downturns and accumulated in cyclical

upturns (Blinder (l98la)). In addition, it has been suggested that the fact

that production has a larger variance than sales in many industries is

inconsistent with the model (Blanchard (1983), Blinder (198th)). The

argument presumably is that firms could always make production exactly as

variable as sales by holding rio inventories. So if firms are holding

This is a revised version of Chapter II of my Ph.D. dissertation. I
thank the members of my thesis coTiittee, Stanley Fischer, Jerry Hausman,
and Julio Rotemberg, as well as Alan Blinder, RQbert Shil1er Lawrence
Summers, two anonymous referees and various seminar audiences for helpful
comments. I also thank the Social Science Research Council for financial
support.
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inventories to smooth production, t'hey appear not to be doing so very successfully.

It is, however, somewhat difficult to evaluate this seemingly unfavorable

evidence, and to balance such evidence against the favorable results found in

recent econometric studies such as Blanchard (1983) . None of the authors cited

in the previous paragraph formally establish any implications of the production

smoothing model for variances and covariances of inventories, sales and

production. Still less do any try to quantify the economic or statistical

significance of the aspects of inventory behavior apparently inconsistent with

the production smoothing model. Whether these aspects provide no or considerable

evidence against the model therefore has not yet been established.

This paper formally establishes an inequality summarizing the implications

of the production smoothing model for the variances and covariances of inventories,

sales and production, and then uses some aggregate data to test the inequality

statistically. It turns out that the model is consistent both with accumulation

of inventories in cyclical upturns and with production being more variable

than sales, at least when a desire to avoid sales backlogs provides a motive for

holding inventories (Blanchard (1983)). But even the model that allows for such

a desire restricts the movements of inventories, sales and production, so that

only a certain amount of excess variability of production is consistent with

the model. The inequality that this paper derives summarizes these restrictions.

The inequality is derived by comparing how much better off the firm would

have expected to have been by ignoring random sales fluctuations and simply

letting inventories increase from period to period at their trend rate of growth.

This may be calculated as the difference between expected costs under this

static policy and the policy that is optimal according to the model. This

difference, which should be nonnegative if the model is correct, may be



expressed as a simple weighted sum of'certain variances and covariances of

inventories, sales and production. The weighted sum includes in particular the

excess of' production over sales variability. The weights are the basic structural

parameters of the model, obtainable in standard fashion from an Euler equation.

Even if all the estimates of parameters are right signed and significant, the

estimate of this difference in principle may be insignificantly positive, or even

negative.

If the difference is negative for a given set of data it seems unlikely that

inventories truly are chosen in accordance with the supposedly optimal policy and

therefore unlikely that the model is correct. The inequality quantifies the cost

savings produced by the optimal inventory policy——that is, it quantifies the

extent to which firms cut costs by adjusting inventories in response to random

sales fluctuations. If the model is correct, a violation of the inequality

indicates nonsensically that firms adjusted inventories to increase costs. Such

violation would therefore mean that there is no evidence that production smoothing

provided the motive for holding inventories.

And in fact, for almost all of the aggregate non—durables industries studied

here, the inequality is violated——that is, the allegedly optimal policy could for

almost all the industries have been expected to increase costs relative to the

static one. The increase is statistically significant about half the time.

Moreover, it is economically large, with expected deviations of costs from trend

that are up to 50 percent higher than under the static policy. This strongly

suggests that in these industries production smoothing does not provide the only

motive for holding inventories.

The conclusion that the model does not adequately explain the data considered

here seems particularly compelling since the test performed here requires

relatively few economic or statistical assumptions. The test, for example, is
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consistent with but does not require ,the assumptions about market structure,

causality and demand made in the recent studies of Blanchard (1983) and Eichenbaum

(1982). Also, and again in contrast to Blanchard (1983) and Eichenbaum (1982),

it is computationally straightforward, requiring only linear estimatiQn. In fact,

in some cases, it could be concluded that the static inventory policy would be

expected to cost less than the supposedly optimal policy without even calculating

any of the model's parameters. All that was required was the calculation of

certain variances and covariances. Since the test easily extends to cover other

linear quadratic models, and perhaps some non—linear models as well, it may be

of general interest.

This is especially so since the test appears to be economically more

informative than the usual test of cross equation restrictions, at least in the

present case. The significance of a rejection or acceptance of the variance bounds

test can be measured not only in statistical but also in economic terms, by the

calculation of the increase in expected costs mentioned above. In addition, the

test itself suggests a reason for any rejection that occurs: some unexplained

factors are making production too volatile. This indicates that model needs to

be modified to account for such excess volatility, and the concluding section to

this paper briefly discusses some possible modifications. In contrast, statistical

rejections of tests of cross equation restrictions appear to be difficult to

interpret in economic terms (e.g., Blanchard (1983, p387)).

To prevent misunderstanding, it should be emphasized at the outset that the

innovation in the present paper is not in the model used but in the test performed.

Two general formulations of the model are studied, both drawn from the existing

literature on the linear quadratic inventory model. The two are motivated only

briefly and uncritically. A critical evaluation of the model may be found in
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West (l983a) and Blinder (1983). The two were chosen because they are

representative of the many versions of the model that have been formulated.

Both are not only quite similar to most versions studied but are even identical to

or strictly more general than some (e.g., Holt at al. (1961), Beisley (1969)).

But the two of course do not incorporate all aspects of all formulations

of the model. It is worth mentioning in particular that both follow the

mainstream of work in the model and assume that inventories are held to cut

production and possibly backlog costs in the face of randomly fluctuating sales.

Some recent formulations of the model such as Blinder (1983) allow inventories

to also serve to cut production costs in the face of randomly varying production

costs. Extensions of the present paper to cover this and other major extensions

to the linear quadratic model are left for future work.

The paper is organized as follows. Part II develops the test, part III

contains empirical results, and part IV contains conclusions. An appendix

contains econometric details.
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II. THE TEST

This section first describes the model arid then derives an inequality

that is central to the test.

A. The Model

The model under consideration is intended for finished goods inventories

in so—called "production to stock" industries (Abramowitz (1951), Rowley and

Trevedi (1975)). Its precise formulation varies from author to author, and

this paper's empirical work tests two versions. Both may be derived from the

following general model. Firms producing a single homogeneous good maximize

expected discounted real profits:

(1) max E0 Ed([pS]

- d[a0(Q)2+ a1(Q) + a2(H - a3S+i)2])

s.t. Q = S + H - H
t t t t—l

where

E0 mathematical expectations, conditional on
information available at time 0

d1 fixed real discount rate, 0 < d1
< 1

d2 fixed rate of technological progress, 0 < < 1

Pt real price in period t

S units sold in period t

units produced in period t

H units of finished goods irivenories at end of period t

a. strictly positive parameters



Two general comments on (1) will be made, before the individual terms

of the equation are briefly discussed. First, the firm's choice variables

have intentionally been left unspecified. The estimation here is consistent

with any of the standard ones: output only (Beisley (1969)) or inventories

only (Blanchard (1982)) in models in which sales are exogenous: output,

inventories and sales in models in which the firm is a perfect competitor

(Blanchard and Meljno (1981), Eichenbaum (1982)) -f-'; output, price and

inventories in models in which the firm is a monopolist (Blinder (1982)).

The firm's information set has been left unspecified for the same reason.

Second, for the present, all variables should be assumed to be deviations

from trend (where trend should be understood to encompass all deterministic

components, seasonal as well as secular). This assumption is made for

algebraic simplicity and will be relaxed shortly. What we wish to derive are

some restrictions that are implied for arbitrary trend, and the algebra is

less cluttered when trend terms are set to zero.

The first term in brackets in equation (1) is revenue, the second is

costs. Although the revenue function will play no role in the bulk of this

paper, it is worth pointing out some of the implications of its presence at

this initial state to emphasize the generality of the tests performed here.

The market may be perfect (Eichenbaum (1982))or imperfect (Blinder (1982)).

Price speculation on the supply side (Eichenbaum (1982)) or perhaps even on

the demand side may be present. Pricing and production decisions may be

made simultaneously (Eichenbaum (1982), Blinder (1982)) or separately (Holt,

et al., (1961)). In short, Summers' (1981) criticisms of inventory models that

ignore interactions between firms and their customers are not relevant here.
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The second term in brackets is 'costs. These are the focus of the model,

and, here as elsewhere, are central. Total per period costs are the sum of

three terms.

The first is the cost of changing production, which is quadratic in the

period to period change in the number of units produced. This represents, for

example hiring and firing costs.

The second is the cost of production, which is quadratic in the number

of units produced. This approximates an arbitrary concave cost function

that results as usual from a decreasing returns to scale technology.

The third and final term embodies inventory and backlog costs, and is

quadratic in how far inventories are from a target level. A brief explanation

of its rationale is as follows (see West (1983a) for a lengthier discussion and

critique). Inventory holding costs (e.g., storage and handling charges), are

reflected in a2. The parameter a3 is the inventory to expected sales ratio that

would be set in the absence of both types of production costs (a0 =
a1

= 0).

all authors agree that this ratio should be anything but zero, and the two

major variations in (1) accommodated in the tests here turn on whether a3 is

allowed to be non—zero. Those who do so (Blanchard (1983), Eichenbaum (1982),

Holt, et al., (1961)) argue that sales sometimes exceed inventories on hand,

forcing firms to backlog orders. Firms face costs when such a backlog develops,

perhaps because of loss of future sales. Thus, ceteris paribus, when expected

sales are higher, inventories should be higher as well. The target level for

inventories, a3ES+1, trades off backlog and inventory costs. In this

model with a target level, inventories can serve two functions.-' They can
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buffer production, allowing it to be smoothed in the presence of fluctuating

demand. And they can cut backlog costs. Optimal inventories balance pro-

duction, holding arid backlog costs.

Some other authors, however, insist that in the absence of production

costs, the target level for inventories would be zero (Auerbach and Green

(1980), Belsley (1969), Blinder (1982)). They impose a3 = 0. Inventories

purely to smooth production. In this model without a targetL LL&L

level, optimal inventories balance savings in production costs against the

costs of carrying inventories.

The tests performed here will thus accommodate equation (1) both with

and without a target level for inventories.

B. An Inequality

We now derive an inequality that compactly expresses the production

smoothing motive for holding inventories, by calculating the effect inventories

The effect in models
have on expected costs.— (The algebra carries along a

without a target level is obtained simply by setting a3 = 0 in the manipula-

tions that follow.) According to the model, firms solve (1), subject to

*transversality and market equilibrium conditions to select optimal H and/or
* * *Q (and, as noted above, possibly p and S as well) (Eichenbaum (1982)

t t

Hansen and Sargent (1981), Sargent (1981)). In this optimal closed loop

policy, the endogenous control variables are set by a feedback rule, with

their optimal period t values a function of their ow-n past values and past

and present values of forcing variables.

* * *Let us assume that the sequences (H)(Q), and (S) are covariance

stationary. Methods for calculating this stationary solution in particular
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cases may be found in Eichenbaum- (1982), Holt, et al., (1961) and Blanchard

(1983). Let E0V0 be the expectation at time t of the value of the objective

function that results from this policy:

t **
(2)

E0 d1([pSJt=O

*2 *2 * *2
—

d2[a0(Q) + ai(Q) + a2(H — a3S÷i) J)

Let E0V be the expectation at time t of the value of the objective

function that would result from the alternative policy of setting HA = o

in every period, Q = S = S. Price Pt = will in general still be

A /consistent with buyers demanding S = S. The value of the objective

function under this alternative policy is then

(3) E0
t=O

d([pS]

t *2 *2 *2
— d2[a0(S) + a1(S) + a2(—a3S÷1) U

This alternative decision rule in general is feasible. (The only apparent

circumstance under which the policy is not feasible is when production takes

place with a lag and inventories absorb sales expectatlonal errors, as in

Blinder (1982). Even here the inequality about to be developed may be

considered approximately correct if those errors are small relative to the

size of the inventory stock, as seems reasonable.) By assumption,

then, since V0 is optimal, E0V0 > E0V. Now, E0V0 and E0V are random

with respect to unconditional information and E0V0 — E0V is a well—defined

random variable with respect to this information set. Since it is non-

negative it has a nonnegative expectation. Thus E(E0V0 — E0V)
> 0. By

the law of iterated expectations, then

* A
(4) > EV0
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E t=od [ps]
- d[aO(t)2+al(Q )24-a2(H

r **
E tOd LpS]

- d[aO()2+ai(3)2+a2(_a3S)2]

* *
Let var(Q ) = E(Q)2 denote the variance of production and cov(Q,Q1) =

* *
E(QQi) its first autocovariance, with analogous notation for ocher

variables. (No time subscripts are necessary by the assumption of covariance

stationarity.) Also define d =
d1d2.

With this notation (4) becomes

* *1( tod E[psJ -
todt [(a(AQ*)÷(*)f**)]

= 4- **tod E[pSJ —

todt [(a(S*)+a(*)+(*)1
* *

Using Q = S + H - H where convenient, expanding var(H - a3S+1)
=t t c—I

var(H)_2a3cov(H*,S÷)+avar(S*), moving all terms to the left hand side

of the inequality, and then applying the standard formula for a geometric

sum transforms (5) into

(6) 0 < (1-d1 [aO(var(5*)_var( Q*))+al(var(S*)_var(Q*))

*\ * *,- a2var(H ' 4- 2a2a3cov(H ,s4-1)j

It is the two versions of this inequality —— with and without a
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:3rgct Level —— that will be tested:

(7.1)0< (1-dY1 [a0(var(S)-var(Q)) + a1(var(S)-var(Q))
- a2var(H)]

(7.2)0< (1-d) [a0(var(S)_var()) + a1(var(S)-var(Q))
—

a2ver(i-j) 2 a2a3cov(X,S1)]

The "k" superscripts have been dropped in accordance with the null hypothesis

that observed H, S and Q accord with the optimal solution to (1).

(1 1\ (7 )\ L...-.... -.-J o-I.....- ,11 -.• -1 LLV .ero

unconditional expectations. These inequalities still hold even when such

expectations are non—zero and firms account for them when maximizing expected

discounted profits. For let the variables in (1) include deterministic com-

ponents —— constant, time trends, seasonal dummies, etc. —— and add linear

terms such as a10(Q) to the cost function in equation (1). It is then

easily verified (see West (l983a)) that if the alternative policy is the no—

feedback, open ioop one that sets inventories equal to their unconditional

A * A A * * *
expectation each period (H =EH p=p, S=S, Q =s +E(H —H — )), the in—

t t' t t t ti
6/

equalities in (7) still result.— (Note that this alternative policy entails

varying inventories from period to period if inventories display a time trend

and/or seasonal variation.) For the remainder of the paper, (7.1) and

(7.2) wi.L! be understood to apply to Just such a model with deterministic

terms. Lc should be noted again that for expositional convenience all such

terms will be referred to as "trend," even though the word "trend' is perhaps

somewhat misleading if deterministic seasonal fluctuations are present or if

secular growth is not.

In this light, let us interpret (7.1) and (7.2). The right—hand sides of

these two equations describe the cost savings that could be (unconditionally)

expected to result from setting inventories optimally rather than without
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feedback. The first two terms express differences of production costs, the

third that of inventory costs, and the fourth, in (7.2), that of costs of

inventories that deviate from their target level. The expected difference

in inventory holding costs, .a2var(H), is always negative. Therefore,

according to the model, these expected cost increases are more than offset by

savings elsewhere (otherwise the optimal policy would not be optimal).

Inequality (7.l),.applicable when there is no target level, says that the

firm must expect to save either on costs of changing production (var(Q) <

var(AS)), or on costs of production (var(Q) < var(S)), or both, and the ex-

pected savings must be large enough that overall expected costs are lower,

i.e., (7.1) holds. Similarly, (7.2), applicable when there is a target

level, says that the optimal policy must be expected to more than offset

increases in expected inventory holding costs with expected savings in

production and/or target level costs.

Thus it would seem to be a minimal economic requirement that (7.1) and

(7.2) be satisfied by data that are to be explained by the model. The

inequalities merely ask that the optimal policy be expected to cost less

than the static one. The static policy is the one that would be optimal in

the absence of any random fluctuations in sales. The inequalities therefore

summarize how production, sales and inventories are expected to interact as

they are dynamically adjusted in response to sales shocks. And this is precisely

what the model purports to explain. It is perhaps reasonable, therefore, to

ask that the data not only satisfy (7.1) and (7.2), but do so to an extent

that is significant in economic or statistical terms.

The next section sees how well some aggregate nondurables data satisfy

these inequalities. Given that (7.1) and (7.2) have been derived for a single
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firm, however, it is appropriate t make a remark on aggregation before ex-

amining these empirical results. The inequalities do still hold at an aggregate

level, provided that all the parameters representing technology (e.g., the

a's) and the stochastic characteristics of forcing variables (i.e., their

ARNA parameters) are the same for each individual firm. As is explained in

detail in West (1983a) under these sufficient though perhaps not necessary

nnditions each firm's behavior is summarized by a set of linear regressions

with identical coefficients on the regressors. As usual, therefore, the

model aggregates exactly, and aggregate behavior is characterized by the

same set of regressions. It is no surprise, then, that aggregate production,

sales and inventories satisfy (7.1) and (7.2), for arbitrary correlations of

production, sales and inventories across fir-ms.

LII. Empirical results

Data and estimation are described briefly before the basic and some

additional empirical results are presented.

A. Data

The data were real (1972 dollars) and monthly. Both seasonally adjusted

and unadjusted data were used. Seasonally adjusted data were available for

1959 to 1980 for aggregate non—durables and for all six two—digit industries

that Belsley (1969) identified as operating in production to stock markets:

food (SIC 20), tobacco (SIC 21), apparel (SIC 23), chemicals (SIC 28), rubber

(SIC 30), and petroleum (SIC 29). Seasonally unadjusted data were available

for aggregate non—durables and three two digit industries (chemicals, petroleum,

and rubber). (Again, durable goods and the remaining non—durable goods

industries were excluded because the model is intended to apply only to in-

dustries that produce to stock, and, according to Belsley (1969), none of these
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other industries produce to stock.)

Sales were obtained by using the appropriate wholesale price index to

deflate the Bureau of the Census nominal figures for sales (all figures found

in the Citibank Economic Database, in the Bureau of the Census's (1978,1982)

Manufacturer's Shipments, Inventories and Orders or obtained directly from

the Bureau of the Census). The seasonally adjusted inventory figures were

obtained by converting the Bureau's receutly calculated constant dollar

seasonally-adjusted finished goods inventory series (Hinrichs and Eckman (1981))

from "cost" to "market" so that one dollar of inventories represented the same

physical units as one dollar of sales (see West (1983b) for a definition of

"cost" and "market" and an explanation of why a conversion was necessary). As in

Reagan and Sheehan (1982) the seasonally unadjusted constant dollar inventory

figures were obtained by multiplying the adjusted figures by the corresponding

unadjusted to adjusted ratio for book value (nominal) finished goods

inventories. (This procedure was adopted since no unadjusted constant dollar

data appear to be available. It makes the plausible assumption that the

"seasonal deflator" is the same for book value and constant dollar inventories.--")

Production was obtained from the identity Q = S +H —H
t t t t—l

B. Estimation

The sample period covered 1959:5 to 1980:10, with 1980:11 and 1980:12

used for leads and 1959:2 to 1959:4 used for lags. All regressions included

deterministic terms: a constant and a time trend, and, for seasonally

unadjusted data, seasonal dummiesas well.-"

Three specific aspects of estimation will be briefly discussed. These

are estimation of the a, of the second moments of inventories, sales and
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produLon. and. finally, of the standard error of (7). (Throughout this

section. references to '(7)" should be understood to be shorthand for "(7.1)

nd (7.2)"). Additional details will be found in the appendix and in West

(983a).

The a 's in the model with a target level were obtained as follows.
I

(The same procedure was applied to the model without a target level, except

that 33=0 was imposed.) A necessary first order condition to solve (1)

at time t > t0 is obtained by differentiating (1) with respect to and

setting the result equ1 to zero:V

(8) Et 2[d2aOH+2 - (2d2a0÷2da0÷dai)H+l

+ (daQ4d4.aQ1.dal+ala2)Wt

- (2a0+2da0+ai)Ht_i + aOHt_2

+ d2a0St+2 — (d2a0+2daO+dala2a3)St+l

+ (2da÷+g1 )s - aOSt_1 + deterministic terms ]. o

After defining lower case dQ_Qi and dividing this first. order

condition by two, the Euler equation (9) results

(9) Et[ + deterministic terms 1— 0

A normalization is required to estimate the ar's. The normalization

chosen is arbitrary since changing the a. by a scale factor does not change

inequality (7). The normalization used was a1 ÷ (1+d)a0 1, so (9) becomes

(10) t1= a(dq++q) + a2Ht — a2a3S.t+1 ult + deterministic terms

where the disturbance u1 has a moving average cOfflponeflt.' With a

monthly discount rate imposed (10) can be estimated by instrumental variables.

The results here report d = .995 (corresponding annual discount rate is about six

per cent); results with d = .990 and d = .999 were virtually identical. The six

instruments used apart from the deterministic terms in (10) were three lags each t"t
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inventories and sales. The estimation required two steps, as described in

[-iansen and Singleton (1982). The first step calculated the variance—covariance

matrix of the u1 and the second obtained the optimal instrumental variables

estimator. See the appendix and West (1983a) for further details. Since the

equation is overidentified —— the model without a target level has four fewer

right—hand side variables than instruments, and that with has three —— Hansen!s

(1982) test of over—identifying restrictions was calculated.

Variances and covarjances were calculated from a bivariate (inventories,

sales) autoregression of order three:il"

(11) H = deterministic terms + llHt_i÷l2Ht_2l3Ht_314st_1+15St_2+i6t32t
St deterministic terms +2lHti422Ht..24 3Ht_3 24Stl++25St_2+6S_3u

The Yule—Walker equation using the estimated .. was then used in. the standard

way (Anderson (1971, p. 182)) to obtain the needed second monents of sales

and inventories. The second moments of production were derived

from the identity Q=St+H_H_j, e.g.

var(Q)=var(S)+2cov(S,H)—2cov(S,H1)+2var(H)—2cov(H,H1).

Finally, the standard error of the statistic (7) was derived as follows.

Let G be the parameter vector needed to calculate (7). 0 consists of the

coefficients on the right—hand side variables in the three equation system

consisting of (10) and (11) and the three elements of the covariance matrix

of the error terms in (11). Thus, 0 is (1 24) for seasonally adjusted

data (24 = 15 RHS variables explicitly listed in (10) and (11) + 6 constant and

trend terms +3 elements of variarice—covariance matrix of the residuals in (11)).

Similarly, is (1 x 57) for seasonally unadjusted data. The estimated i is

asymptotically normal with a covariance matrix V defined in the appendix.

The statistic (7) is a function of
, say, g(), and thus is
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asptoticallv noal with covariance matrix (dg/dO)V(dg/dO)'. The

standard error of (7) is the square root of (dg/dO)V(dg/d6)' . The

derivatives dg/dO were calculated numerically.

It is to be noted that this procedure takes into account not only the

uncertainty in the estimates at the a. but also in the estimates of the

first and second moments. The procedure also accounts for the covariance

between the estimates of the a. and of moments. Again, for details see the
1

appendix and West (1983a).

C. Results

We will shortly present estimates of the size and the standard errors of

the right hand sidesof (7.1) and (7.2) for the data described above. This

will require estimates not only of the appropriate variances and covariances

of inventories, sales and production, but of the a. parameters as well.

First, however, let us consider whether these data are qualitatively consistent

with the inequalities, by examining the appropriate second moments. Tables I

and II have these, for seasonally adjusted and unadjusted data respectively.

It follows inunediately from the trivial calculations underlying the

entries in Tables I and II that for both seasonally adjusted and unadjusted

data, the model without a target level violates (7.1) for almost all industries

(The only possible exception is chemicals.) Columns (5)—(7) indicate that

for all but the chemical industry, var(S)_var(Q)<O, and, of course,

var(H)>O. Since the a. are known a priori to be positive it follows that

for all but chemicals, O>a0(varXS)—var(Q)) + a1(var(S)—var(Q))
—

a2var(H).

In other words, according to the model itself, the static, no—feedback policy

of letting inventories grow at their trend rate would have ben expected to

be preferable to the optimal policy that the model claims actrually was followed:



—19—

lower costs of changing production, lower costs of production, and lower

inventory costs. From these simple calculations we can conclude that with

the possible exception of the chemical industry, the data studied here are

inconsistent with the model without a target level. This suggests that

backlog costs, whose existence is used to rationalize a non—zero target

level, are of crucial importance to this model.

It also follows from Tables I and II that even the model with a target

level is inconsistent with the seasonally unadjusted behavior of the petroleum

industry, since inventories here covary negatively with next period's sales.

Relative to the static policy, the optimal policy that supposedly was followed

would have been expected to increase all the costs just noted, and the cost

of being away from a target level as well. Thus, this data set is incompatible

with the model, with or without a target level. For the remaining industries,

(7.1) and (7.2) cannot be signed without the a.'s Let us therefore turn to

precise calculation of the inequalities.

In Tables III and IV are the a.'s for the models with and without a
1

target level, respectively. Almost all of the parameter estimates are indeed

positive. Consider the model without a target level first. With seasonally

adjusted data 11 of 14 free signs on the a. are correct, and with unadjusted

the figure is 5 of 8. (The number of free signs is 14 and 8 rather than 21

and 12 because the normalization rule a1+(l+d)a0=l constrains either
a0 or a1

to be positive in each equation.) The comparable figures for the model with

a target level are 19 of 21 and 9 of 12. Only two of the wrong—signed co—

efficients are significant at the .05 level (a0 in the model with a target

level, for both seasonally adjusted rubber and seasonally unadjusted aggregate

non—durabes). In most equations the production cost a1 and the cost of
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changing production a0 are signifièant. Somewhat puzzling is the imprecision

of the estimates of the inventory holding cost a2 and the target level

parameter a3, which are rarely significant at the .05 level. They are,

however, almost always positive and stand here in about the same ratio to the

other a. and to each other as they did in Blanchard's (1983) estimates for

the automobile industry.

However, these parameters, though positive and often significant, are

not enough to make the model plausible. Results of the variance bounds test

for the model without a target level are shown in Table V, and for the model

with a target level in Table VI. It was noted above what would result for all

data sets except possibly chemicals for the model without a target level, and

for the seasonally unadjusted petroleum industry in the model with a target

level. Thus it is no surprise that Tables V and VI indicate that (7.1) and

(7.2) were violated for all of these. However, the inequality for the model

without a target level was violated for seasonally unadjusted chemicals as well,

as was the inequality for the model with a target level for most of the data

sets. Thus, the inequalities were violated in seventeen out of twenty—two

instances, and nine of these were significant at the .05 level. The four

data sets that did satisfy (7.2) did so insignificantly, with standard errors

uniformly larger than the sizes of the inequality. Also, two of these four

produced the only significantly wrong—signed parameter (a0 for adjusted rubber

and unadjusted aggregate non—durables). It therefore appears that the model

does not well explain any of the data studied here.

Moreover, the increase in deviations of Costs from trend attributable

to the optimal policy would appear to be economically as well as statistically

noticeable. Column (2) in Tables V and VI contain total deviations of costs
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from trend (again, in 'normalized" dbllars, a1+(1+d)a0=1):

(12) (1—d) [a0var(Q)+a1var(Q)+a2var(H)

—
2a2a3cov(H,S1)+a2a3var(S)]

When (7.1) or (7.2) is divided by (12) (possibly with a3=0 imposed in (12))

the result is a dimensionless measure of the extent to which, the optimal

policy increases or decreases deviations of costs from trend relative to the

static policy. This is shown in column 3 of Tables V and VI. The optimal

policy increases expected cost deviations by up to 56 percent. If this increase

were to be believed it would mean that deviations of profit margins from

trend, and therefore presumably profit margins themselves, are substantially

reduced.

It is of some interest to compare the results of the inequality tests

with those of a common test of specification, the Hansen (1982) test of over—

identifying restrictions that is reported in the columns labelled J. This

was accepted at the .05 level for about two thirds of the data sets (food,

tobacco, apparel, petroleum, rubber) and was rejected at the .05 but accepted

at the .005 level for the two other data sets. This compares favorably

with the tests of the overidentifying restrictions in other recent studies

(Blanchard (1983), Ejchenbaum (1982)). Thus it is perhaps fair to say that

this traditional test is supportive of the model. It would appear, then,

that the variance bounds test was an essential element in assessing the

reasonableness of this model for these data.

Additional empirical results

The robustness of the conclusions of the previous subsection was checked

by calculating two additional sets of estimates. The first related to some
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variance inequalities applied to deterministic seasonal components, the

second to quarterly (instead of monthly) data.

(I) Let a 'j' superscript denote the deterministic seasonal component of a

variable in month j; X the mean deterministic seasonal component of variable
12

S= E X; var(XS) the "varianc&' of the deterministic seasonal component,

12

var(XS) (X—), with var (LXS) and cov(X3,Y5) defined in the obvious
- j=l

way.

Consider comparing costs under the optimal policy witn costs that result

under the alternative policy that suppresses all deterministic seasonal

variation in inventories but otherwise allows inventories to grow at their

trend rate, =
EH + (H5- H3), where j is the month corresponding to

time period t. It may be shown by an argument analogous to that in Section

II (details available on request) that the model (1) implies that

(13.1) 0 < (1-d) 1([a0(var(S)—var(Q))+a(var(S)—var(Q))—avar(H)]

+
[aO(var(SS)_var(QS))+a1(var(S5)_var(QS))_a2var(Hs)J}

(13.2) 0 < (l-d){[a0(var(AS)—var(O))+a(var(S)—var(Q))avar(H)

-j- 2à2a3cov(H,S1)

÷

+ 2a2a3cov(H5,S51)]

(13.1) applies to a model without a target level, (13.2) to a model with

a target level. Loequality (13.1) in conjunction with inequality (7.1) says

that when firms allow deterministic inventory seasonals to depart from their
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mean level, this must not increase'costs to such an extent that the cost

savings detailed in (7.1) are more than offset. Further, these departures

will cut costs only insofar as they make var(QS) and var(2QS), the deterministic

seasonal costs of production and changing production, smaller than var (SS)

and var(ISS), the deterministic seasonal cost that obtains when there are no

departures of inventory seasonals from their mean levels. Inequality (13.2)

in conjunction with inequality(7.2) has a comparable interpretation.

It is of interest, then, to calculate the relevant "variances' and

"covariances," as well as to estimate the size and standard errors of (13.1)

and (13.2). The relevant second moments for the fou-r seasonally unadjusted

data sets are displayed in Table VII. For two of the four data sets (aggregate

non—durables and rubber), it can be concluded without calculating any parameter

estimates that (13.1) will be rejected. (This follows since columns (5) and

(6) are negative for these two data sets in both Table VII and Table II.)

For the other two data sets, parameters do have to be estimated to sign (13.1),

and, for all four data sets, parameter estimates are needed to sign (13.2).

The model, then, seems to be qualitatively consistent with (13.1) to a slightly

greater degree than with (7.1), in that two data sets rather than one have

second moments that are consistent with one relevant inequality.

En a more formal, quantitative sense, however, the model performs as

poorly with respect to (13.1) and (13.2) as it did with respect to (7.1) and

121
(7.2).-— Once again, almost all the inequalities are wrong signed, about

half of them significantly so (see Tables VIII and Ix). The only exception,

once again, is chemicals (which does, however, satisfy (13.1) and (13.2)

in a statistically significan.t fashion).
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For these data, as for the automobile data studied by Blanchard (1983),

then, the seasonals appear to contain little evidence to suggest that

manufacturers are selecting their inventories in accord with (1).

(II) Inequalities (7:1) and (7.2) were also tried for quarterly, seasonally

adjusted data. These were constructed from the monthly data sales by adding

the figures for the relevant three months, inventories by selecting the last

mrinrh rf th ,iirl-r—-

Since the estimates were very similar to those for monthly data, only a

summary of the final results seems worth reporting. Inequality (7.1) was wrong

signed for six of seven data sets (the exception was tobacco, and resulted

from wrong—signed estimates of a0 and a2). Inequality (7.2) was wrong signed

for all seven data sets. Four of the fourteen wrong signs were significant

at the 5 percent level; the correct sign for tobacco was not.

These additional tests, then, support the results reported in the previous

subsection.-'

IV. CONCLUSIONS

This summarizes the basic conclusions of this paper. It would seem that

the linear quadratic model does a poor job of rationalizing these inventory

data. In effect, a contradiction results when it is assumed that the actual

inventory path chosen is the one that is optimal according to the model. The

allegedly optimal path is dominated by a naive alternative path.

En the model without a target level, for inventories, this follows simply

because production is more variable than sales. Inventories therefore cannot

be chosen simply to perform their putative function, smoothing production.!

For the model with a target level, the matter is slightly more complicated.

Inventories do usually track their target level (except in the petroleum
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industry) . But this makes production and inventories so variable that inven—

tories cannot be chosen as hypothesized, to minimize quadratic inventory,

production and target-level costs.

The basic implication of this is that inventories appear to serve some

role other than production smoothing. The inventory literature suggests

two possible explanations of the excess volatility of production. The first

is backlog coss. Now, as we have seen, the typical formulation —— a simple

cost of having inventories deviate from a target level is inadequate, at

least for these data. But this does not rule out more sophisticated formularion.

Some encouraging evidence from a model that includes such a formulation may be

found in 1est (1983a).

The second possible explanation relates to stochastic cost variability. It

is possible that inventories serve mainly not to smooth production in the face

of random varying demand, but to smooth it in the face of randomly varying costs.

In this case production may be more variable than sales (as noted by Topel

(1982)). Stochastic cost variability has been crudely allowed for in some recent

work by calling the unobservable disturbances "cost shocks" (Blarichard (1983)

Eichenbaum (l92)). But if cost variability is an important determinant of

optimal inventory stocks, it clearly is essential to model the cost variations

explicitly. Some encouraging evidence from a model that does such modelling

may be found in Blinder (1983).

It seems fair to say, however, that a convincing explanation of the

excess volatility of production has yet to be made (see Blinder (1983)).
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FOOTNOTES

1. Throughout this paper, the word "inventories" used without qualification

refers to manufacturers' inventories of finished goods.

2. Lictienbawn's (1982) model does riot fit precisely into this framework,

even in its simplified version (1982, pp 24—25). He includes the term

in the cost function, where is the wage and a4 another

positive parameter. As will, become apparent, the inequality to be

derived here is approximately correct if a4(cov(w,Q)'-cov(w,S)) is small

compared to the other terms in the inequality.

3. That is, inventories serve two functions apart from any they may

serve on the revenue side. In the general formulation of the model used

here, inventories may alsoaserve to, say, allow the price speculation by

producers that is emphasized in Eichenbaum (1982). The cosssent in this

footnote also applies the model without a target level.

4. I thank both R. Shiller and L. Suers for (independently) suggesting

to me the basic argument of this section.

5. Except if the firm has some market power and demand depends on actual

or expected production or inventories. As far as I know, this assumption

has never been made in this class of models.

6. See Bertsekas (1976, pp. 191—2) for a definition of an "open loop" policy.

A *Strictly speaking, setting HtHt is the open loop policy only if inventories

are the only control.

7. An alternative method for calculating unadjusted constant dollar

inventories would be to deflate book value inventories by the appropriate

wholesale price inde.?c. Given the massive switch from FIFO to LIFO

accounting in the 1970's and Cyclical differences in output price versus

input cost (see Foss, et al. (n.d.fl, this is likely to lead to estimates
substantially inferior than those derived as described in the text.
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8. It should be noted that in Reagan and Sheehan (1982) time series study of

precisely the unadjusted aggregate data used here, it was found that seasonal

dummies alone successfully accounted for the seasonal variation in inventories.

There appeared to be no need to allow for indeterministic seasonal components.

9. This assumes dp .S+./dH=O. This is consistent with any linear

quadratic inventory model that I am aware of, including not only those in

which sales are exogenous (e.g. Belsley (1969)) but also those in which

they are jointly endogenous with inventories (Eichenbaum (1982), Blinder

(1982)).

10. u is MA(l) if production and sales decisions are made simultaneously.
it

But if production is decided before sales are known, as in Blinder (1982),

u is MA(2). It seemed desirable to adopt a procedure that was consistent
it

under those circumstances, so the estimation procedure allowed for a MA(2)

disturbance.

11. This is not to say that the model (1) implies that inventories and

sales follow such an autoregression. In general, however, it does imply

that they follow a bivariate ARMA process of some order (Hansen and

Sargent (1981)). The order cf the ARMA process can.not be tied down

without making auxiliary assumptions that we have been at pains to avoid

making. The AR process assumed in the text should be considered an

approximation to this ARMA process.
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12. Total expected costs when the determinished seasonal component is

accounted for are:
-

(14) (l-d)[a0var(Q) +
a1var(Q) ÷ a2var(H)

—2a2a3var(h1S1) = a2a3var(S)]

+[a0var(IQS) ÷ a1var(QS)
+
a2var(HS)

_2a2asvar(Hs,Ss+l) + a2a3var(SS) ]j

13. One further set of estimates was obtained, but results were so poor

that they do not appear to warrant reporting in the text. An independent

measure of production was obtained by using the Federal Reserve Board's

index of industrial production. This is an available seasonally

adjusted, and (7.1) and (7.2) were estimated for five of the seasonally

adjusted data sets (aggregate non—durables, chemicals, food, petroleum

and rubber). (Naturally, the inventory and sales figures were also

scaled• down to a base of 1967=100.) Parameter estimates, unfortunately

were uniformly nonsensical, with about three—fourths of them wrong

signed. The tests of (7.1) and (7.2) therefore do not seem worth

reporting. But it is perhaps worth noting that var Q<var S for all

five data sets.

Apparently, the FRB index of industrial production does not jibe

with the Department of Commerce figures on sales and inventories. Alan

Blinder has suggested to me that this is because the FRB measure includes

production that adds value to works in progress inventories.

14. This has been conjectured by Blinder (1981b) and Blanchard (1983)
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TABLE III

STRUCTURAL PARAMETERS, MODEL WITHOUT A TARGET LEVEL

a0 a2
J

Raw data seasona11 adjusted

Aggregate .2443 .5126 .0129 12.69

non—durables (.0453) (.0903) (.0188)

Food .3377 .3261 -.0000 6.61

(.0585) (.1167) (.0175)

Tobacco .0373 .9256 .0311 4.27

(.0828) (.1652) (.0510)

Apparel .3844 .2332 .0169 8.10

(.0539) (.1075) (.0123)

Chemicals .4074 .1872 .0160 12.91

(.0627) (.1251) (.0172)

Petroleum .1399 .7209 .0418 7.42

(.0826) (.1648) (.0235)

Rubber —.0501 1.0999 —.0083 7.91

(.1150) (.2294) (.0354)

Raw data seasonally unadiusted

Aggregate —.1093 1.2182 —.0038 19.92

non—durables (.0931) (.1857) (.0273)

Chemicals .3530 .2958 .0224 14.48

(.0839) (.1674) (.0198)

Petroleum .3300 .3417 .0395 4.85

(.0555) (.1107) (.0127)

Rubber .4204 .1612 —.0117 4.17

(.1058) (.2111) (.0254)

Notes:
1. Variables defined in text.
2. J distributed as chi—squared with four degress of freedom, critical levels:
9.48 at .05, 13.28.at .01, 14.86 at .005.
3. Asymptotic staidard errors in parentheses; standard error on a1=l—(1+d)a01—l.995a.
calculated as 1.99k times the standard error on a0.

L



Chemicals

Petroleum

Rubber

Notes:

4.5217 1.79

(10.6588)

11.46

13.50

3.53

4.30

1. See Notes to Table III.
2. J distributed as chi—squared with three degrees of freedom, critical levels:
7.81 at .05, 11.34 at .01, 12.84 at .005.

TABLE IV

Raw data seasonally adlusted

a0 a1 a2 a3
J

Aggregate
non—durables

Food

Tobacco

Apparel

Chemicals

Petroleum

STRUCTURAL PARAMETERS,

.6489

MODEL JITH

.0228

ATARGET LEVEL

1.1249 11.44.1759

(1113) (.2220) (.0232) (1.2178)

—.0786 1.1568 .0839 6.4669 2.62
(.2914) (.5813) (.0868) (3.4099)

.0241 .9520 .0420 1.2325 3.76
(.0854) (.1704) (.0540) (2,0185)

.1117 .7271 .0257 4.8653 1.43
(.1276) (.2546) (.0283) (5.3242)

.3990 .2041 .0171 .3256 12.83
(.0671) (.1339) (.0177) ( .9832)
.0775 .8453 .0367 1.1048 4.01

(.0908) (.1811) (.0263) (1.0980)

1.4900

(.2372)

1.4827

.0199

(.0494)

.0617 2.0416—.2419

(.1014) (.2023) (.0464) (1.1844)

.2092 .5827 .0375 .8601

(.1392) (.2777) (.0282) (.8514)

.2232 .5546 .0253 .8504
(.1029) (.2053) (.0206) (1.3155)

.3100 .3816 —.0085 —3.0046
(.1722) (.3435) (.0320) (13.3695)

Rubber —.2456

(.1189)

Raw data seasonally unadjusted

Aggregate
non—durables



TABLE V

TEST STATISTICS, MODEL WITHOUT A TARGET LEVEL

(1) (2) (3)

Eq'n (7.1) Eq'n (12) 100 x
(1)/(2)

Raw data seasonally adjusted

Aggregate —8 074 590 146 256 000 —5.50
rion—durabjes (6 779 480)

Food —1 056 690 6 797 350 —15.54
(1 881 690)

Tobacco —160 232 284 920 —56.23
(38 669)

Apparel —659 426 1 762 890 —37.41
(97 754)

Chemicals —262 668 4 151 380 —6.33
(276 638)

Petroleum —279 082 3 465 590 —8.05
(124 475)

Rubber —162 299 5 018 480 —3.23
(161 445)

Raw data seasonally unadjusted

Aggregate —13 324 700 315 102 000 —4.23
non—durables (6 961 700)

Chemicals 11 111 7 708 310 .14

(335 832)

Petroleum 339 895 2 001 050 —16.98
(81 276)

Rubber —63 054 1 036 880 —6.08
(99 154)

'Totes: Units are billions of Itnormalized dollars, obtained after normalizing
one 1972 dollar to one unit of production and a0 + a1(1 + d) = one dollar.



TABLE VI

TEST STATISTICS, MODEL WITH A TARGET LEVEL

(1) (2) (3)

Eq'n (7.2) Eqtn (12) 100 x
(1)/(2)

Raw data seasonally adjusted

O Qflfl 1Q,) /)Q (flfl .1 Qd j.JJ L1J¼1 S%JL. ?L.LJ JJ'*J
non—durables (6 904 450)

Food 2 398 440 40 638 700 5.90
(3 050 810)

Tobacco -158 798 293 430 —54.11

(39 817)

Apparel —525 333 4 896 480 —10.73
(97 687)

Chemicals —238 359 4 431 220 —5.37

(279 689)

Petroleum —242 594 4 120 130 —5.89

(137 816)

Rubber 169 716 8 124 210 2.09
(382 009)

Raw data seasonally unadj us ted

Aggregate 9 642 140 417 671 000 2.31
non—durables (18 963 400)

Chemicals 24]. 510 13 544 900 1.78

(386 956)

Petroleum —366 608 2 923 310 —12.50

(187 799)

Rubber —21 256 1 456 590
(149 736)

Notes: Units are billions of "normalized" dollars, obtained after normalizing one
1972 dollar to one unit of production and a0 +

a1
(l—d) = one dollar.
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TABLE VIII

TEST STATISTICS, SEASONAL MODEL 1ITHOUT A TARGET LEVEL

(1) (2) (3)

Eq'n (13.1) Eq'n (14) 100 x
(1)1(2)

Aggregate —31 394 10O 558 919 000 —5.61
rion—durables (8 448 700)

Chemicals 1 290 390 12 936 200 9.98
(327 677)

Petroleum —292 635 2 914 500 —10.04
(97 243)

Rubber —168 585 2 195 920 —7.67
(54 951)

Notes:
1. See notes to Table V.
2. Equation (14) defined in footnote 12.

PABLE IX

TEST STATISTICS, SEASONAL-MODEL WITH A TARGET LEVEL

(1) (2) (3)

Eq'n (13.2) Eq'n (14) 100 x
(1)1(2)

Aggregate —234 130 713 810 000 -0.00
non—durables (.21 052 500)

Chemicals 1 929 020 1 927 400 10.1
(636 967)

Petroleum —209 849 3 108 010 —6.75

(162 745)

Rubber —247 514 3 167 820 —7.81
(151 183)

Notes:

See notes to Table VIII
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Appendix

The appendix briefly outlines the procedure usc1 to derive the

asymptotic covariance matrix of the parameters needed to calculate (7.1)

and (7.2). Much more detail may be found in West (1983a).

Write the three equation system consisting of (10) and (11) as:

y1 = Xb +

= Zb +
u2

y3Zb3+u3

y1 is the vector of observations of the left hand side of (10); y2 and y3

contain vectors of inventories and sales. X contains the right hand side

variables in (10) (including deterministic terms), Z the right hand side

variables in (11). The error U1 jfl MA(2) (see footnote 10), u2 and u3 are lid.

b1 was estimated by two step, two stage least squares,

b1=(AZ'X)1AZ'y1.
A is Hansen's (1982) optimal weighting matrix (no

heteroscedasticity correction), A=X' Z(Z '2Z). , the variance—covariance

matrix of u1, was calculated from 2SLS estimates of u1.

The numerical simulations in West (1984) suggest that is likely to be

estimated only slightly less efficiently than it would have been had it been

estimated by a "full information" technique that specified the demand side of

the market, solved for the equilibrium of the model, and imposed crass—equation

contraints.

b2 and b3 were estimated by OLS.
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Let 0 denote the parameter vector, S = (b1,b2, b3,a22,a23,33).

and are needed to calculate (7.1) and (7.2) since they figure

into th variances and covariances in these inequalities. (These second

moments, again, were calculated as functions of b7,b3 and the a. as

described briefly in the text and in detail in West (1983a).) Now, the.

b. were calculated as just described, the a.. from the moments of the OLS
1 1J

r.esiduals. Thus, the b. and d.. satisfy the ortliogonatitv conditions.

T Z (y1-X'bi)
I ' It72tt 2

o T1 1t(G )

23-T1 (Y2t-z' b2)(y3tZb3)

T1A Z(y1_xb1)

T'Zt(72_Zb2)
T Z(y33b3)

As proved by Han,5en, then, the asymptotic covariance matrix of V(S-3)

—1. —1. -l —1 *is (plim T he) S(pliml Eh5') , where S is the true but unknown 8

2
and S = Eh •. Details on how this covariance matrix were calculated

t

may be found in West (1983a).




