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1 Introduction

The relationship between the mean and volatility of returns is a central issue in finance. Many

asset pricing models imply a proportional relationship between expected excess returns and

risk in the cross-section and through time. Unfortunately, the empirical relationship between

the mean and volatility of returns, in particular stock returns, is much less regular. It has

proven difficult to explain all cross-sectional differences in expected stock returns through

differential risks (e.g., Fama and French, 1996). Furthermore, the evidence on the time-series

relationship between the conditional mean and volatility of stock returns is inconclusive and

depends on the model and exogenous predictors used to draw inferences (e.g., Harvey, 2001).

In this paper, we examine more closely the time-series relationship between the conditional

mean and volatility using a latent vector autoregressive (VAR) process for the two moments.

This latent VAR approach allows us to study the contemporaneous and intertemporal

relationship between expected returns and risk in a flexible statistical framework and, more

importantly, without relying on exogenous predictors.

It is clear from both the volatility ratio tests of LeRoy and Porter (1981) and the long-

horizon autoregressions of Fama and French (1988) that expected returns are time-varying.

Predictive regressions have been used widely to capture the time-variation of expected returns

with an expanding set of predictors, such as the dividend yield, short rate, term premium,

and default premium. However, there is increasing concern over predictive regressions in light

of statistical issues (Boudoukh and Richardson, 1993; Stambaugh, 1999; Ferson, Sarkissian,

and Simin, 2000; Valkanov, 2002) and their lack of robustness and out-of-sample predictive

power (Bossaerts and Hillion, 1999; Ang and Bekaert, 2001; Goyal and Welch, 2002).

Time-varying volatility is even more firmly established and is typically modelled in an

ARCH or stochastic volatility (SV) framework.1 In ARCH models the conditional variance

of returns depends deterministically on lagged squared returns and lagged variances, while in

SV models the conditional variance is a stochastic process. The fact that in an ARCH model

all randomness is ex-post observable (through returns) implies that the volatility realizations

can be recovered from the data. As a result, ARCH models are easy to estimate and quite

popular. In SV models, in contrast, the innovations to the volatility process are random

and the volatility realizations are therefore unobservable. Estimating an SV model involves

integrating out the latent volatilities. The computation of this high-dimensional integral is

analytically difficult and computationally intensive, causing SV models to be less popular

1See Bollerslev, Chou, and Kroner (1992) and Ghysels, Harvey, and Renault (1996) for literature surveys.
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than ARCH models despite their statistical and economic appeal.2

Given the empirical evidence on both time-varying expected returns and volatility, it is

only natural to examine the co-movements of the two moments through time. Unfortunately,

the findings on this relationship are mixed. Using volatility-in-mean models (essentially

ARCH models in which the variance enters contemporaneously in the mean return), French,

Schwert, and Stambaugh (1987) and Campbell and Hentschel (1992) estimate a positive

correlation, while Campbell (1987), Breen, Glosten, and Jagannathan (1989), Nelson (1991),

and Glosten, Jagannathan, and Runkle (1993) all report a negative correlation. Koopman

and Uspensky (1999) find evidence of a weak negative relationship with an SV-in-mean

model but a weak positive relationship with an ARCH-based volatility-in-mean model.

Harrison and Zhang (1999) employ Gallant and Tauchen’s (1989) semi-parametric method

to document a positive relationship between the conditional mean and volatility at long

horizons but none at short horizons (such as a month). Finally, Harvey (2001) uses exogenous

predictors and finds that the correlation between the moments generally depends on the

model and conditioning information used in the mean and variance estimation.3

We examine more closely the time-series relationship between the conditional moments

through a latent VAR model. The first equation of the VAR describes the dynamics of the

conditional mean. It captures the temporary component in the permanent and temporary

components model of Fama and French (1988) and Lamoureux and Zhou (1996), in which

stock prices are governed by a random walk and a stationary process, respectively. The

second equation of the VAR describes the dynamics of the conditional volatility. It nests

the standard SV model studied by Wiggins (1987), Andersen and Sorensen (1994), Jacquier,

Polson, and Rossi (1994), and Kim, Shephard, and Chib (1998), among others.

The latent VAR allows us to study the contemporaneous and intertemporal relationship

between the conditional mean and volatility in a flexible statistical framework and

without relying on exogenous predictors. On the contemporaneous relationship, the mean

equation of the VAR resembles the volatility-in-mean model used by French, Schwert, and

Stambaugh (1987), and others, to measure the contemporaneous effect of volatility on

expected returns. In addition to this volatility-in-mean effect, there is a symmetric mean-in-

2Not until recently have effective methods for estimating SV models been developed. These econometric
methods include quasi-maximum likelihood (QML) (Harvey, Ruiz, and Shephard, 1994; Alizadeh, Brandt,
and Diebold, 2002), simulated maximum likelihood (Danielsson, 1994; Sandmann and Koopman, 1998),
Markov chain Monte Carlo (Jacquier, Polson, and Rossi, 1994; Kim, Shephard, and Chib, 1998), and the
simulated method of moments (SMM) (Duffie and Singleton, 1993; Andersen and Sorensen, 1994).

3An alternative to estimating the two conditional moments separately and then relating the estimates is
to infer directly the conditional mean-variance ratio from the first-order conditions (Euler equations) of a
mean-variance investor’s portfolio choice (e.g., Brandt, 1999; Aı̈t-Sahalia and Brandt, 2001).
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volatility effect in the volatility equation. If a change in the volatility has a contemporaneous

effect on the mean, a change in the mean also has a contemporaneous effect on the volatility.4

On the intertemporal relationship, the VAR allows for lag-adjustments of the volatility to

changes in the mean, and of the mean to changes in the volatility, which Whitelaw (1994)

claims to be salient features of the data. Analogous to the contemporaneous effects, we refer

to these lag adjustments as lag-volatility-in-mean and lag-mean-in-volatility effects.

Whitelaw (1994) considers a VAR model similar to ours, except he uses fitted moments

from a set of first-stage predictive regressions as proxies for the unobservable conditional

mean and volatility. The obvious drawback of using fitted moments is that their dynamics are

determined by the joint conditional distribution of the first-stage predictors. Thus, with only

slight model misspecification, such as omitted variables, the dynamics of the fitted moments

do not need to correspond to those of the true moments. Another problem with using fitted

moments is that even if the predictive models for the conditional mean and volatility are

well-specified, the effect of errors in variables induced by the first-stage regressions is not

trivial to quantify in a VAR. Our approach is not subject to these critiques because we treat

the conditional mean and volatility as latent state variables.

We use simulated maximum likelihood (SML) based on importance sampling to estimate

the parameters of the VAR model and to extract estimates of the latent mean, volatility, and

implied Sharpe ratio time-series. We then examine the contemporaneous and intertemporal

relationship between the conditional mean and volatility through the parameter estimates,

extracted series, and impulse response functions of the estimated VAR.

Among our empirical results, the following are particularly interesting:5

• The contemporaneous correlation between the innovations to the conditional mean and

volatility is negative and statistically significant (according to asymptotic standard

errors and corroborated by Monte Carlo experiments), implying negative volatility-in-

mean and mean-in-volatility effects.

• The negative contemporaneous correlation between the mean and volatility generates

substantial variation in the conditional Sharpe ratio that is distinctly counter-cyclical.

Every business cycle since 1946 is associated with an almost monotonic rise in the

Sharpe ratio from the peak to the trough of the cycle.
4An immediate implication of the mean-in-volatility effect is that the volatility is governed by two factors.

Such a two-factor model for volatility is consistent with recent empirical evidence (Barndorff-Nielsen and
Shephard, 1999; Engle and Lee, 1999; Gallant, Hsu, and Tauchen, 1999; Alizadeh, Brandt, and Diebold, 2002;
Chernov, Ghysels, Gallant, and Tauchen, 2002).

5We draw inferences with asymptotic standard errors. However, since the asymptotics of our estimator are
questionable (see Section 3.4), we corroborate the evidence on the key results with Monte Carlo experiments.

3



• Both lag-adjustments, the lag-volatility-in-mean and the lag-mean-in-volatility effects,

are positive and statistically significant, again according to the asymptotic and finite

sample standard errors. Furthermore, the timing of the lag-adjustment appears related

to business cycles as well. Whenever the economy comes off the peak of a cycle, the

conditional volatility rises immediately. The conditional mean, however, increases only

gradually as the economy moves from the peak to the trough of the cycle. Therefore,

the volatility appears to lead the mean through the recession by about six months.

The mean reaches a high at the trough of the cycle, shortly after which the volatility

drops again to a normal level. As a result, the increase in the mean is associated with

a subsequent drop in the volatility.

• Despite the large and negative contemporaneous correlation between the innovations

to the conditional mean and volatility, which measures the conditional (on the lagged

mean and lagged volatility) correlation between the moments, the unconditional

contemporaneous correlation between the mean and volatility is large and positive

due to the strong lag-volatility-in-mean effect. Unconditionally, times of high expected

returns are associated with high volatility. We argue that this difference between

the conditional and unconditional correlations may explain the disagreement in the

literature about the contemporaneous correlation.

The remainder of this paper is structured as follows. Section 2 sets up the latent VAR

for the conditional mean and volatility, derives the implied dynamics of the Sharpe ratio,

explains the link to equilibrium asset pricing models, and outlines the hypotheses we want

to test within this framework. We describe our econometric approach in Section 3. Section 4

then presents our empirical results in six subsections: 4.1 describes the data, 4.2 reports

the parameter estimates and the results of the hypothesis tests, 4.3 analyzes the extracted

latent processes, 4.4 interprets the impulse response functions, 4.5 tries to reconcile the

disagreement in the literature about the sign of the contemporaneous correlation between

the conditional mean and volatility, and 4.6 incorporates exogenous predictors as a robustness

check. We conclude in Section 5 with a summary of our main results.

2 Theory

2.1 Return Dynamics

Let yt be continuously compounded excess returns with time-series dynamics:

yt = µt−1 + σt−1 εt with εt ∼ N
[
0 , 1

]
, (1)
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where µt and σt denote the conditional mean and volatility of excess returns, respectively.

Both the conditional mean and volatility are unobservable quantities, which we assume to

evolve jointly as a first-order vector autoregressive (VAR) process in logs:[
lnµt

ln σt

]
= d+ A

[
lnµt−1

lnσt−1

]
+ ηt with ηt ∼ MVN

[
0 ,Σ

]
, (2)

where d is a 2×1 coefficient vector that relates to the long-term means of the two latent

state variables, A is a 2×2 coefficient matrix, and Σ is a 2×2 covariance matrix (symmetric

and non-negative definite). Specifically, we write:

d =

[
d1

d2

]
, A =

[
a11 a12

a21 a22

]
, and Σ =

[
b11 b12

b21 b22

]
with b12 = b21 = ρ

√
b11b22. (3)

As long as the VAR is stationary, closed-form solutions to the unconditional mean and

covariance matrix of the conditional moments are:

E

[
lnµt

lnσt

]
= (I − A)−1 d and vec

(
Cov

[
lnµt

lnσt

])
=

(
I − (A⊗ A)

)−1
vec (Σ) , (4)

where the ⊗ symbol denotes a Kronecker product.

The key parameters of the latent VAR are the transition matrix A and the correlation

coefficient ρ. The diagonal elements of A reflect the persistence of the conditional moments,

and the off-diagonal elements capture the intertemporal feedback of the conditional volatility

to the conditional mean and vice versa. The coefficient ρ represents the contemporaneous

correlation between the innovations to the conditional moments.

We entertain three assumptions about the correlation between the return innovations

εt and the conditional moment innovations ηt. The first assumption is that the return

innovations are uncorrelated with the conditional moment innovations, or Corr[εtηs]=[0, 0]′

for all s and t. Second, we assume that the return innovations are contemporaneously

correlated with either the conditional mean or the conditional volatility innovations, but not

both. Formally, either Corr[εtηt] = [ρµ, 0]
′ or Corr[εtηt] = [0, ρσ]

′. The third assumption is

that the return innovations are contemporaneously correlated with both conditional moment

innovations, so that Corr[εtηt]=[ρµ, ρσ]
′.
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2.2 Interpretation

We model the conditional moments as exponential Gaussian processes. For the mean, this

modelling choice guarantees a positive risk premium, which is a sensible assumption for the

market portfolio, and has been used in similar contexts by Bekaert and Harvey (1995) and

De Santis and Gerard (1997,1998). For the volatility, the implied log-normality is consistent

with the recent empirical findings of Andersen, Bollerslev, Diebold, and Ebens (2001).

Our latent VAR model fuses and generalizes the permanent and temporary components

model of Fama and French (1988) and the standard SV model. The first equation of the

VAR describes the dynamics of the conditional mean as:

lnµt = d1 + a11 lnµt−1 + a12 lnσt−1 + η1t, with η1t ∼ N
[
0 , b11

]
. (5)

This equation captures the temporary component of Fama and French’s permanent and

temporary components model, in which stock prices are governed by a random walk and

a stationary autoregressive process, respectively. In fact, with a12 = 0, this model of the

temporary component is the same as that of Lamoureux and Zhou (1996) (except in logs).

The second equation of the VAR describes the volatility dynamics:

lnσt = d2 + a21 lnµt−1 + a22 lnσt−1 + η2t, with η2t ∼ N
[
0 , b22

]
(6)

and nests the standard SV model. With a21=0, equation (6) is the SV model estimated by

Wiggins (1987), Andersen and Sorensen (1994), Jacquier, Polson, and Rossi (1994), Kim,

Shephard, and Chib (1998), and many others.

The mean equation also resembles the volatility-in-mean model used by French, Schwert,

and Stambaugh (1987) and Glosten, Jagannathan, and Runkle (1993) to explore the

contemporaneous relationship between the conditional mean and volatility. To illustrate

the connection to the volatility-in-mean model, we project η1t onto η2t, such that:

η1t = β1η2t + ξ1t with ξ1t ∼ N
[
0 , (1− ρ2)b11

]
, (7)

where ξ1t is uncorrelated with η2t by construction and:

β1 =
Cov[η1t, η2t]

Var[η2t ]
= ρ

√
b11
b22

. (8)
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Then, we rewrite equation (6) as:

η2t = lnσt − d2 − a21 lnµt−1 − a22 lnσt−1 (9)

and substitute it and equation (7) into equation (5) to get:

lnµt =
(
d1 − β1d2

)
+

(
a11 − β1a21

)
lnµt−1 +

(
a12 − β1a22

)
lnσt−1 + β1 ln σt + ξ1t. (10)

This reduced-form equation for the conditional mean is a generalized version of the usual

volatility-in-mean model, where the conditional mean depends contemporaneously on the

conditional volatility.6 The volatility-in-mean effect depends on the projection coefficient β1

and therefore indirectly on the correlation coefficient ρ.

Our model extends the volatility-in-mean model in two ways. First, unless |ρ|=1 there are

two sources of randomness in the conditional mean process, as opposed to only one, which

breaks the overly restrictive one-to-one link between the conditional mean and volatility

imposed by the usual volatility-in-mean model. Second, not only the current but also the

lagged volatility affects the conditional mean, whereas the usual volatility-in-mean model

involves only a contemporaneous effect. Analogous to the volatility-in-mean effect, we label

the effect of the lagged volatility the lag-volatility-in-mean effect. The lag-volatility-in-mean

effect depends on a12 −β1a22. If this term is positive (negative), the lagged conditional

volatility has a positive (negative) effect on the conditional mean.

Likewise, we can obtain the reduced-form volatility dynamics:

lnσt =
(
d2 − β2d1

)
+

(
a22 − β2a12

)
ln σt−1 +

(
a21 − β2a11

)
lnµt−1 + β2 lnµt + ξ2t, (11)

where

β2 =
Cov[η1t, η2t]

Var[η1t]
= ρ

√
b22
b11

with ξ2t ∼ N
[
0 , (1− ρ2)b22

]
(12)

and

η2t = β2η1t + ξ2t. (13)

This reduced-form volatility model captures the persistence of volatility through the term

a22− β2a12. In addition, it incorporates the effects of the mean on the volatility, both at

the contemporaneous and intertemporal level, through the coefficients β2 and a21−β2a11,

6The standard volatility-in-mean model relates the mean return to the volatility (or variance), while our
model relates the log mean to the log volatility. Let q= dµ/dσ be the usual volatility-in-mean coefficient.
Then, our coefficient on the log-volatility-in-log-mean d lnµ/d lnσ=(dµ/dσ) (σ/µ)=qσ/µ has the same sign
as the usual volatility-in-mean coefficient, since both µ and σ are positive.
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respectively. Analogous to the volatility-in-mean and lag-volatility-in-mean effects, we label

the coefficient on the contemporaneous mean the mean-in-volatility effect and the coefficient

on the lagged mean the lag-mean-in-volatility effect. The correlation ρ between the mean

and volatility innovations is again vital in determining the sign and magnitude of the mean-

in-volatility and lag-mean-in-volatility effects (through β2).

The mean-in-volatility effect mirrors the volatility-in-mean effect. Since β1β2 = ρ2, the

two effects share the same sign. However, unless |ρ| = 1, the mean-in-volatility and the

volatility-in-mean effects are not perfect reciprocals of each other. The ratio β1/β2 measures

the variance of the mean innovations relative to that of the volatility innovations.

The motivation for including the non-contemporaneous lag-volatility-in-mean and lag-

mean-in-volatility effects, a12−β1a22 and a21−β2a11, is mostly empirical. Whitelaw (1994)

documents significant lead-lag interactions between the conditional mean and volatility.

Although it is possible that his results are an artifact of the exogenous predictors used to

measure the time-variation of the moments, it is equally possible that the lead-lag interactions

are a stylized but until-now overlooked feature of the relationship between expected returns

and risk. In fact, Lettau and Ludvigson (2001) document similar lead-lag interactions using

different exogenous predictors, which is evidence in favor of the second possibility.

Finally, the three assumptions about the correlation between the return innovations and

the conditional moment innovations serve to capture and potentially distinguish two popular

explanations of asymmetric volatility. Asymmetric volatility refers to the empirical finding

that increases in volatility tend to be associated more often with large negative returns than

with equally large positive returns. The two popular explanations of asymmetric volatility

are the leverage effect and volatility feedback effect. The leverage effect states that when

the value of a firm drops through a large negative return, the leverage of the firm and the

associated probability of bankruptcy increase, causing the equity claims to become riskier.7

The volatility feedback effect attributes the asymmetric volatility to the equilibrium response

of the conditional mean to changes in volatility. Suppose a large negative return is associated

with an increase in the conditional volatility (in the spirit of an ARCH model) and the

price of volatility risk is positive, so that the increase in the conditional volatility leads to

an increase in the conditional mean. Holding fixed future dividends, the expected return

can only increase through a drop in the current stock price, resulting in an even larger

negative return. In contrast, for a large positive return that also leads to an increase in

both conditional moments, the drop in the stock price associated with the increase in the

7Although the leverage effect is often considered synonymous with asymmetric volatility, direct tests of
this explanation using leverage data generally find that the leverage effect is not strong enough to explain
the data. See Christie (1982), French, Schwert, and Stambaugh (1987), and Bekaert and Wu (2000).
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expected return partially offsets the positive return. As a result, the increase in volatility is

associated with a large negative return (enhanced by the increase in the conditional mean)

or a small positive return (partially offset by the increase in the conditional mean).

The assumption that the return innovations are independent of the conditional moment

innovations, ρσ=ρµ=0, rules out both the leverage and volatility feedback effects. A negative

correlation between the return and conditional volatility innovations, ρσ < 0, is consistent

with the leverage effect. It can also be consistent with the volatility feedback effect, but

only if the contemporaneous correlation between the conditional moments is positive, ρ>0.

Otherwise, the volatility feedback effect implies a positive correlation between the return

and conditional volatility innovations, ρσ>0, because negative returns are offset and positive

returns are enhanced by the decrease in the conditional mean associated with the increase

in the conditional volatility. Furthermore, since in our model the conditional mean can vary

independently of the conditional volatility (unless |ρ| = 1), a more direct way to capture

the intuition of the volatility feedback effect is through a negative correlation between the

return and conditional mean innovations, ρµ<0, which directly ties increases (decreases) in

the conditional mean to negative (positive) returns. Finally, the case ρµ<0 and ρσ<0 allows

for both effects, regardless of the sign and magnitude of the contemporaneous correlation

between the conditional mean and volatility.8

2.3 Implied Sharpe Ratio Dynamics

The latent VAR implies that the conditional Sharpe ratio is log-normally distributed and

that it follows a two-factor autoregressive (AR) process. Define the log Sharpe ratio as:

lnSt = lnµt − lnσt = T ′
[
lnµt

lnσt

]
, where T =

[
1

−1

]
. (14)

Equation (2) then implies that:

lnSt= T ′d+ T ′A

[
lnµt−1

lnσt−1

]
+ T ′ηt

(15)

= (d1− d2) + (a11− a21) lnµt−1+ (a12− a22) lnσt−1+ (η1t− η2t),

8We can disentangle ρµ and ρσ from ρ by factoring the conditional moment innovations ηt into a common
component due to the correlations with the return innovations εt and components that are orthogonal to
the return innovations but are correlated with each other by ρ̃ = (ρ−ρµρσ)/

√
(1−ρµ

2)(1−ρσ
2).
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which shows that the time-variation in the log Sharpe ratio is driven by the mean reversion

of the two conditional moments and by the difference between the conditional moment

innovations η1t− η2t. Given the joint normality of ηt, the difference between the innovations

is normally distributed and so is the log Sharpe ratio.

It follows that the Sharpe ratio is stochastic unless η1t− η2t is zero. In particular, it

is stochastic even if the innovations to the mean and volatility are perfectly correlated, or

|ρ|=1. The reason is that even if the innovations are perfectly correlated, their magnitudes

are different, unless also b11= b22, and therefore the difference between the innovations is non-

zero. For example, suppose ρ=1. If b11> b22, the Sharpe ratio increases whenever the mean

increases, because the volatility increases by less than the mean. Alternatively, if b11 < b22,

the Sharpe ratio decreases whenever the mean increases, because the volatility increases by

more than the mean. The Sharpe ratio is only non-stochastic if |ρ|= 1 and b11 = b22. Of

course, even then the Sharpe ratio is still time-varying due to the mean-reversion of the two

conditional moments (because lnµt−1 and lnσt−1 are time-varying).

Substituting lnµt−1 = lnSt−1+ lnσt−1 or lnσt−1 = lnµt−1− lnSt−1 into equation (15)

illustrates that the log Sharpe ratio follows an AR process:

lnSt = (d1 − d2) + (a11 − a21) lnSt−1+
(16)

(a11 + a12 − a21 − a22) lnσt−1 − (1− β1)η2t + ξ1t

or

lnSt = (d1 − d2) + (a22 − a12) lnSt−1+
(17)

(a11 + a12 − a21 − a22) lnµt−1 + (1− β2)η1t − ξ2t,

respectively. In fact, if a11 + a12 − a21 − a22 = 0, the log Sharpe ratio follows a univariate

AR process, which is fairly standard in the term structure and portfolio choice literatures. A

sufficient condition for this case is that a12 = a21 = 0 and a11 = a22, or in words, that both

the conditional mean and volatility are univariate AR processes with the same persistence

levels. Otherwise, if a11 + a12 − a21 − a22 	= 0, the latent VAR introduces a second factor

into the Sharpe ratio dynamics, namely the lagged conditional volatility in equation (16) or

the lagged conditional mean in equation (17). It is important to recognize, however, that

although the own-lag coefficients depend on which conditional moment is used as the second

factor (a11− a21 versus a22− a12), the overall time-series dynamics of the log Sharpe ratios

(including the persistence level) are the same in equations (16) and (17) because, given the

definition lnSt= lnµt− ln σt, the two equations are mathematically equivalent.
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2.4 Link to Equilibrium Models

To gain some economic intuition about the Sharpe ratio dynamics, consider the first-order

condition Et[Mt+1(Rt+1− Rf
t )]=0 of a representative investor with marginal utility growth

Mt+1 (the stochastic discount factor or pricing kernel). Using the definition of a covariance

and the fact that E[Mt+1]=1/Rf
t , we can rewrite this first-order condition as:

Et

[
Rt+1 −Rf

t

]
= −Rf

t Covt

[
Mt+1, Rt+1 −Rf

t

]
, (18)

and solve for the Sharpe ratio:9

Et

[
Rt+1 −Rf

t

]
Stdt

[
Rt+1 −Rf

t

] = −Rf
t Stdt

[
Mt+1

]
Corrt

[
Mt+1, Rt+1 −Rf

t

]
. (19)

This last equation illustrates that the log Sharpe ratio inherits the dynamics of the log riskfree

rate, the log volatility of marginal utility growth, and the log correlation of marginal utility

growth with returns (assuming this correlation is negative). Furthermore, if we parameterize

marginal utility growth Mt+1=v′(Ct+1)/v
′(Ct) and expand around the current consumption

level Ct, we get Stdt[Mt+1] 
 RRAt Stdt[(Ct+1 − Ct)/Ct], which shows that the volatility

of marginal utility growth depends to a first-order approximation on relative risk aversion

RRAt= −Ct v
′′(Ct)/v

′(Ct) and the volatility of consumption growth.

There is an extensive literature on the dynamics of the riskfree rate. In addition, there

are numerous equilibrium asset pricing models in which the level of relative risk aversion,

the volatility of consumption growth, or the correlation between marginal utility growth and

returns vary in a slowly mean-reverting fashion. Models with changing risk aversion include

Constantinides (1990), Campbell and Cochrane (1999), Bekaert and Grenadier (2001), and

Brandt and Wang (2001). Models with varying volatility of consumption growth include

Abel (1988), Kandel and Stambaugh (1991), Gennotte and Marsh (1993), and Bansal

and Yaron (2001). Finally, Whitelaw (2000) formulates a model with changing correlation

between marginal utility growth and returns. Our statistical approach can be interpreted as a

reduced-form approximation of these equilibrium asset pricing models that can accommodate

two independent sources of time-variation in equation (19).

9This Sharpe ratio is not quite comparable to St=µt/σt because it involves gross returns as opposed to
continuously compounded returns. However, the difference is negligible for short return horizons.
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2.5 Hypotheses

Based on the latent VAR model for the conditional mean and volatility, we examine two

main hypotheses about the relationship between the two moments. The first hypothesis is

about their contemporaneous relationship:

H1: No contemporaneous relationship exists between the conditional mean and volatility.

Formally, in the context of our model, β1 = β2 = 0. From equations (10) and (11),

both the volatility-in-mean effect β1 and the mean-in-volatility effect β2 depend on the

correlation ρ. As a result, this hypothesis is equivalent to ρ=0. If the innovations to

the moments are uncorrelated, neither the volatility-in-mean effect nor the mean-in-

volatility effect exists, and the two moments are contemporaneously unrelated.10

The second hypothesis is about the intertemporal relationship between the conditional

mean and volatility. There are two forms of intertemporal relationship in our model: Granger

causality and the reduced-form lag-adjustments. Granger causality refers to whether one

variable helps predict future realizations of another through the off-diagonal elements of the

transition matrix A. Despite its name, Granger causality refers to a forecasting relationship

and does not identify a structural relationship or direction of causality. In contrast, the lag-

volatility-in-mean and lag-mean-in-volatility effects shed light on the structural relationship

between the two conditional moments, whether the lagged volatility enters the reduced-

form mean dynamics (10) and whether the lagged mean enters the reduced-form volatility

dynamics (11), respectively. These lag-adjustments depend not only on the off-diagonal

elements of A but also on the correlation ρ. The second hypothesis is:

H2: There exists no lag-volatility-in-mean and/or lag-mean-in-volatility effect, meaning

a12−β1a22= 0 and/or a21−β2a11=0. If we fail to reject this hypothesis, the mean adjusts

instantaneously to changes in the volatility and vice versa. Otherwise, there exists an

intertemporal relationship between the two moments through the lag-adjustments.

3 Econometric Approach

Equations (1) and (2) make up a state-space model. In the terminology of state-space models,

the first equation is the measurement or observation equation and the second equation is the

transition or state equation. To draw inferences about the parameters of the VAR and the

realizations of the latent moments from the observed returns, we need to solve a sequence

10Given the reasoning in footnote 6, this hypothesis is essentially the same as the volatility-in-mean
hypothesis considered by French, Schwert, and Stambaugh (1987), among others.
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of filtering and smoothing problems.11 Unfortunately, the filtering and smoothing problems

generated by our latent VAR model are non-standard because of the non-linearities in the

measurement equation. As a result, the standard Kalman filter (designed for linear Gaussian

state-space models) cannot be used directly in the estimation of our model. We instead rely

on a simulation-based method for non-linear and non-Gaussian state-space models.

It is convenient for our econometric discussion to reformulate the model slightly. We

define mt = lnµt and υt = lnσt, so that µt = exp{mt} and σt = exp{υt}. Then, we demean

the latent processes and, with some abuse of our previous notation, let mt and υt denote the

demeaned moments. Finally, we define st = [mt, υt]
′, Z1 = [1, 0]′, and Z2 = [0, 1]′. With this

revised notation, we write equations (1) and (2) as follows:

yt = µ̄emt−1 + σ̄eυt−1εt = µ̄eZ′
1st−1 + σ̄eZ′

2st−1εt with εt ∼ N
[
0 , 1

]
(20)

and

st = Ast−1 + ηt with ηt ∼ MVN
[
0 ,Σ

]
. (21)

We collect the unknown parameters of the transformed state-space model into a single

parameter vector:

ψ =
[
a11, a12, a21, a22, b11, b22, ρ, µ̄, σ̄

]′
, (22)

and denote the histories of the unobserved conditional mean and volatility by:

θ =
[
s0, s1, ..., sT−1

]′
. (23)

3.1 Estimation

We estimate the latent VAR model by simulated maximum likelihood (SML). In particular,

we numerically construct the likelihood function of the model using an importance

sampling approach similar to the one Durbin and Koopman (1997) and Sandmann and

Koopman (1998) use for estimating SV models.

11Filtering generates the one-step-ahead forecasts of the latent variables E[lnµt, lnσt|y1, . . . , yt] and the
corresponding forecast variances Var[lnµt, lnσt|y1, . . . , yt], which in a linear Gaussian state-space model
are used to construct the likelihood function. Smoothing yields the full-information forecasts of the latent
variables E[lnµt, lnσt|y1, . . . , yT ] and the corresponding forecast variances Var[lnµt, lnσt|y1, . . . , yT ].
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3.1.1 Motivation

The likelihood function of the model is:

L (ψ) = p (y | ψ)

=

∫
p (y, θ | ψ) dθ

=

∫
p (y | θ, ψ) p(θ | ψ)dθ.

(24)

The first line of equation (24) defines the likelihood function as the density of the observed

returns y given the parameters ψ. The second line expresses this density as the marginal

density of the joint distribution of the observed returns y and the unobserved state variables

θ= [m, v]. Finally, in the third line we write the joint density of y and θ as the product of

the conditional density of y given θ and the marginal density of θ.

The point of this algebra is to illustrate that for a given parameter vector ψ the likelihood

function L(ψ) can be viewed as an expectation of the conditional density p(y|θ, ψ) with

respect to the marginal density p(θ|ψ). With T data points and two latent state variables,

this expectation involves a 2T -dimensional integral. The high dimensionality of this integral

and the non-linearities in the conditional density p(y|θ, ψ) make the likelihood function

practically impossible to compute analytically.

In principle, the latent state histories θ can be sampled directly from the density p(θ|ψ)
and Monte Carlo integration can then be used to solve the integral in equation (24). In

practice, however, this brute-force simulation approach is grossly inefficient. We can greatly

improve the efficiency of the Monte Carlo integration through the use of importance sampling.

To explain how importance sampling works in our context, we rewrite the likelihood function

in equation (24) as follows:

L (ψ) =

∫
p (y | θ, ψ) p(θ | ψ)

g (θ | y, ψ) g (θ | y, ψ) dθ

= Eg

[
p (y | θ, ψ) p(θ | ψ)

g (θ | y, ψ)
]
,

(25)

where g(θ|y, ψ), the so-called importance density, is a conditional density of θ that is not

the same as the conditional density p(θ|y, ψ) generated by the model, and Eg[·] denotes an
expectation taken with respect to this importance density.

If g(θ|ψ) = p(θ|ψ), which means that the distribution of the latent θ is the same under
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the two models (but the distribution of y given θ may be very different), then:

g
(
θ | y, ψ)

=
g
(
y, θ | ψ)

g
(
y | ψ) =

g
(
y | θ, ψ)

g
(
θ | ψ)

g
(
y | ψ) =

g
(
y | θ, ψ)

p
(
θ | ψ)

g
(
y | ψ) , (26)

which implies that:
p
(
θ | ψ)

g
(
θ | y, ψ) =

g
(
y | ψ)

g
(
y | θ, ψ) , (27)

where g(y|ψ)≡Lg(ψ) is the likelihood function of the model g(y|θ, ψ). Finally, substituting
equation (27) into equation (25), we have:

L (ψ) = Eg

[
p (y | θ, ψ) Lg (ψ)

g (y | θ, ψ)
]
= Lg (ψ) Eg

[
p (y | θ, ψ)
g (y | θ, ψ)

]
. (28)

In summary, the true likelihood function L (ψ) can be expressed as the product of the

likelihood function Lg(ψ) of the model g(y|θ, ψ), which we call the approximating model,

and a correction factor Eg[w(θ, ψ)], where for notational convenience we define:

w (θ, ψ) =
p (y | θ, ψ)
g (y | θ, ψ) . (29)

The correction factor characterizes the departure of the true likelihood from the likelihood of

the approximating model as the average distance between the conditional densities p (y|θ, ψ)
and g (y|θ, ψ). If the two conditional densities are close to each other for all θ, the function

w(θ, ψ) is close to one and so is its expectation with respect to g(θ|y, ψ).
The importance density g (θ|y, ψ) can in principle be any density of θ given y and ψ that

is positive everywhere, satisfies the restriction g(θ|ψ) = p(θ|ψ), and for which Eg[w(θ, ψ)]

exists. The main idea of our econometric approach is to choose an approximating model for

which we can conveniently compute both the likelihood function Lg(ψ) and the correction

factor Eg[w(θ, ψ)]. We can then evaluate the likelihood function L(ψ) using equation (28).

Before we present the approximating model, note that in choosing an importance density

for computational convenience alone we depart from the usual approach in the literature

of considering also the statistical properties of the resulting ratio of densities w(θ, ψ).

Geweke (1989) shows that for the variance of this ratio to be finite, the tails of the density in

the numerator must be fatter than the tails of the density in the denominator. In contrast

to other applications of importance sampling, our choice of approximating model is likely to

not satisfy this condition. We return to this issue in Section 3.4.
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3.1.2 Approximating Model

We choose g(θ|y, ψ) to be the conditional density of a linear Gaussian state-space model

that closely approximates our non-linear model. For example, in the case Corr[εt, ηt]=0, we

replace the non-linear measurement equation (20) with the linear measurement equation:

Yt ≡
[

yt

ln (yt − µ̄)2

]
= H ′st−1 + wt, with wt ∼ MVN

[
ct−1 , Rt−1

]
, (30)

where

H =

[
1 0

0 2

]
, ct =

[
c1t

c2t

]
, and Rt =

[
R1t ρw

√
R1tR2t

ρw

√
R1tR2t R2t

]
(31)

and the parameters ct and Rt are calibrated such that the densities g(y|θ, ψ) of the linearized
model approximate well the true densities p(y|θ, ψ) (the appendix provides more details).

The virtue of this linear measurement equation is that, together with the linear transition

equation (21), it implies a linear Gaussian state-space model for which we can analytically

evaluate the likelihood function Lg(ψ) using the Kalman filter algorithm.

3.1.3 Likelihood Evaluation

Given a realization of the state history θ, we can easily evaluate the conditional densities

p(y|θ, ψ) and g(y|θ, ψ) and hence also the function w(θ, ψ). However, θ is unobserved and the

expectation Eg[w(θ, ψ)] cannot be computed analytically. We therefore use simulations to

compute this correction factor. Specifically, we sample N state histories θi, for i=1, 2, . . . N ,

from the importance density g(θ|y, ψ) and use these samples to construct the ratios:

wi =
p (y | θi, ψ)

g (y | θi, ψ)
(32)

and to compute an estimate of the correction factor Eg[w(θ, ψ)] as:

w̄ =
1

N

N∑
i=1

wi. (33)

We then use equation (28) to construct an estimate of the likelihood function L(ψ) as:

L̂ (ψ) = Lg (ψ) w̄. (34)
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Since w̄→Eg[w(θ, ψ)] as N→∞, L̂ (ψ) is a consistent approximation of L (ψ).

As is usually the case, it is more convenient to work with the log likelihood. Taking logs

of equation (34) gives:

ln L̂ (ψ) = lnLg (ψ) + ln w̄. (35)

However, ln L̂ (ψ) is a slightly biased estimator of lnL (ψ) because E[ln w̄] 	=lnEg[wi] due to

Jensen’s inequality. Durbin and Koopman (1997) and Shephard and Pitt (1997) therefore

suggest adding the following term to the log likelihood function to correct the bias from the

log transformation (up to order N−3/2):

ln L̂ (ψ) = lnLg (ψ) + ln w̄ +
s2

w

2Nw̄2
, (36)

where

s2
w =

1

N − 1

N∑
i=1

(
wi − w̄

)2
. (37)

Finally, we define our SML estimator ψ̂ as the parameter values that maximize this bias-

corrected approximation of the log likelihood function.

One drawback of constructing the log likelihood of our model as the sum of the log

likelihood of the approximating model and the log correction factor is that we cannot directly

compute the contribution of each observation yt to the likelihood function. This is because

both terms in the sum are evaluated for the whole sample y. As a result, we cannot compute

outer-product based standard errors to check the validity of the second-derivative based

standard errors we use for drawing asymptotic inferences.

3.2 State Variable Extraction

Analogous to the simulation-based construction of the correction factor, we compute the

smoothed estimates of the unobserved state variables st=[mt, υt]
′ as follows:

E
[
st | y, ψ

]
=

1

N

N∑
i=1

wisi
t, (38)

where si
t is the tth element of θi, the ith draw from the importance density.

The smoothed estimates of the state variables st are based on the entire sample of returns

y instead of on the returns up to date t (filtered estimates). Unfortunately, our estimation

approach does not readily produce filtered estimates of the state variables because the draws

θi are obtained from the full-sample importance density g(θ|y, ψ). The practical implication
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is that our approach is more suitable for ex-post description of the data than for “on-line”

signal extraction in a portfolio choice context, for example.12

3.3 Identification and Numerical Implementation

As with most nonlinear models, it is difficult, if not impossible, to prove that the parameters

of our model are uniquely identified. In order to minimize the chance of reporting a local

or non-unique global maximum, we implement the following procedure. We optimize the

likelihood from a variety of sensible (relative to the literature and the data) initial parameter

guesses for µ̄, σ̄, A, b11, and b22, and for a grid of correlations ρ, ρµ, and ρσ, each ranging

independently from −0.8 to 0.8. For each set of initial parameter values, we iterate between

applying a simplex algorithm and a gradient-based algorithm, where each optimization round

is started with the outcome of the previous round, until the criterion function does not

improve from one optimization round to the next. We choose as our estimates the parameters

that correspond to the greatest likelihood and verify that the parameters that correspond

to slightly inferior local maxima are qualitatively similar to our estimates. The reason for

considering a grid of initial values for the correlations is that, intuitively, non-zero correlations

are the most likely cause of identification problems. We are particularly concerned about the

case ρµ 	=0 and ρσ 	=0, but have not experienced any clear signs of identification problems

(although the likelihood function is not particularly sensitive to the value of ρµ).

We are also concerned about the accuracy of the approximation of the likelihood function

because a global maximum of an approximated likelihood function is only as good as the

approximation. Therefore, we use a large simulation size of N=10,000 (typical applications

of SML with importance sampling use no more than 500 simulations) and, following the

suggestion of Durbin and Koopman (1997), also use the method of antithetic variates to

further reduce the variance of the simulation errors.13 In addition, we verify for ρµ=ρσ =0

that increasing the number of simulations to 50,000 does not significantly change the SML

estimates. Unfortunately, estimating the other specifications with more simulations is

infeasible due to the dimensionality of the grid of starting values.

3.4 Finite Simulation and Sample Size Properties

The asymptotic distribution of our estimator for a finite simulation size N is unknown. To

make matters worse, our estimator suffers from the critique of Shephard (2000), that the

12See Johannes, Polson, and Stroud (2002) for an example of on-line filtering for a related model.
13Durbin and Koopman (1997) show how to compute the contribution of the simulations to the asymptotic

variance of the SML estimates. In our case, this contribution is less than one percent.
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ratio of densities w(θ, ψ) may not have a finite variance. If the density in the denominator

has thinner tails than the density in the numerator (which is likely to be the case because we

are approximating an unconditionally fat-tailed SV model with a Gaussian model), extreme

draws of θi may cause wi to be unboundedly large. If the ratio of densities does not have a

finite variance, the central limit theorem does not apply to the Monte Carlo integral w̄ and

there is no way to tell how far a given w̄ is from its expectation.

To determine the severity of this finite simulation size problem, we follow the suggestion

of Shephard (2000) to simulate a long series of wi ratios and then compute the variances of

wi for the first 500 through 75,000 simulations. If this recursive variance is very sensitive to

individual draws and does not converge to some constant level for very large N , the problem

is serious. If, however, the recursive variance settles down quickly to a constant level, we

can be more confident in our estimator for a finite simulation size.

Figure 1 presents two recursive variance plots for the model with ρµ = ρσ = 0. To see

how the properties of the density ratios differ across the likelihood surface, we evaluate the

ratios in Panel A at a representative set of starting values and in Panel B at the estimates

presented in the empirical section. In both cases, the variance of the density ratios is very

sensitive to individual draws for relatively small N . Furthermore, for the initial parameters,

the variance is not only much larger in magnitude than for the SML estimates (by a factor

of about 300), but it also keeps drifting upward as N increases. This confirms Shephard’s

suspicion that the variance may be unbounded. For the SML estimates, in contrast, the

variance seems to be fairly stable after 10,000 simulations (at least in this particular set of

simulations), fluctuating from 0.209 to 0.227. This also confirms Shephard’s observation in

the context of SV models that the ratio of densities is much better behaved at the SML

estimates than at other points on the likelihood surface.

Although these recursive variance plots are only indicative of the (lack of) problems

induced by evaluating the correction factor with a finite number of simulations, we proceed

by assuming that the asymptotic distribution of the estimator is Gaussian as usual. In doing

so, we are likely to understate the true standard errors of our estimates for two reasons.

First, the sampling variation of the Monte Carlo integral for a finite N (which is 1/N times

the variance in Panel B of Figure 1) increases the standard errors. Second, the poor sampling

properties of the density ratios may severely deteriorate the asymptotic approximation.

As an alternative way to get a sense for the finite sample properties of the SML estimator,

we conduct a Monte Carlo experiment. In particular, we repeatedly estimate the model with

ρµ=ρσ =0 and with N = 5, 000 from 500 independent samples of T = 636 monthly returns

simulated from the model with parameter values that correspond to the estimates presented
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in the empirical section. Table 1 presents the results. It shows the true parameter values

in the first column and describes the sampling distribution of the corresponding parameter

estimates in the remaining columns. The average and median estimates are all close to the

true parameter values, suggesting that the estimator is relatively unbiased. Furthermore,

except for a21 and a12, the standard deviations of the estimates across samples are small.

In particular, the correlation between the innovations to the conditional moments ρ, which

is central to our first hypothesis, is measured very precisely with a true value of −0.634,
an average estimate of −0.636, and a standard deviation of only 0.071 across samples. The

estimates of a21 and a12, which are important for our second hypothesis, are less precise, with

true values of −0.053 and 0.108 and estimates ranging from −0.295 to 0.181 with a mean

of −0.064 and from −0.109 to 0.320 with a mean of 0.109, respectively. Finally, notice that

some of the sampling distributions are quite skewed, especially for the diagonal elements of

A and for ρ, raising serious concern about asymptotic normal approximations.

4 Empirical Results

4.1 Data

We study monthly returns on the value-weighted CRSP index in excess of the one-month

Treasury bill rate from January 1946 through December 1998 (636 observations). For the

purposes of robustness and specification testing, we also consider three information variables

known to be correlated with expected returns and volatility: the short rate, term premium,

and default premium.14 The short rate is the yield of a one-month Treasury bill. The term

premium is the yield spread of a ten-year Treasury bond and a one-year Treasury bill.

Finally, the default premium is the yield spread of corporate bonds with Moody’s Baa and

Aaa rating. Table 2 presents summary statistics of the data. Figure 2 plots the series and

indicates the dates of all business cycle peaks (dashed lines) and troughs (dotted lines).15

4.2 Parameter Estimates and Hypothesis Tests

Table 3 presents SML estimates of the latent VAR with the three different assumptions

about the correlation between the return innovations and the conditional mean and volatility

innovations. Model A assumes that these innovations are uncorrelated. In models B and C,

14In particular, subsets of these predictors are used by Keim and Stambaugh (1986), Campbell (1987),
Fama and French (1989), and Ang and Bekaert (2001) to model expected returns and by Campbell (1987),
Schwert (1989), Glosten, Jagannathan, and Runkle (1993), and Whitelaw (1994) to model volatility.

15The business cycle dates are obtained from the NBER at http://www.nber.org/cycles.html.
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the return innovations are allowed to be correlated either with the conditional mean or the

conditional volatility innovations, respectively. Finally, model D is unrestricted.

The estimates of µ̄ and σ̄ (together with the estimates of b11 and b22) imply an annualized

unconditional risk premium of 7.5 to 7.8 percent and return volatility of 13.2 to 13.6 percent,

which, not surprisingly, match closely the sample moments in Table 2.16 All but one of the

own-lag persistence coefficients a11 and a22 exceed 0.85 (the exception is a11 in model B),

suggesting that both the conditional mean and volatility are highly persistent quantities.

The innovations to the conditional mean and volatility are contemporaneously negatively

correlated in all models, with a correlation ρ that ranges from −0.635 to −0.458 and is

statistically significant at any conventional significance level (the t-statistics are computed

with Hessian-based standard errors). This finding implies a strong rejection of hypothesis H1.

Furthermore, the negative sign implies that the unconditional return distribution is

negatively skewed (consistent with Table 2) and that both the volatility-in-mean and mean-

in-volatility effects are negative and significant, with β1 = ρ
√

b11/b22 ranging from −0.235
to −0.155 and β2= ρ

√
b22/b11 ranging from −1.998 to −1.352. It is clear that there exists

a negative contemporaneous trade-off between expected returns and risk, which confirms

the results of Campbell (1987), Breen, Glosten, and Jagannathan (1989), Nelson (1991),

and Glosten, Jagannathan, and Runkle (1993), but not those of French, Schwert, and

Stambaugh (1987) and Campbell and Hentschel (1992).

The off-diagonal elements of the transition matrix a12 and a21 that determine the Granger

causality embedded in the VAR are individually not significant at the five-percent level

(but a12 is significant at the ten-percent level in models A and C). To determine whether

these parameters are also jointly insignificant, we estimate the models under the restriction

a12 = a21 = 0 and conduct a likelihood ratio (LR) test of the restriction. The LR test

statistics, which are asymptotically χ2 distributed with two degrees of freedom, all exceed the

one-percent critical value of 9.21. This rejection is evidence in favor of bidirectional Granger

causality between the conditional moments, meaning the lagged volatility helps predict the

mean and, to a somewhat lesser degree, the lagged mean helps predict the volatility.

The opposite signs of a12 and a21 confirm qualitatively Whitelaw’s (1994) finding that the

cross-autocorrelations between the conditional mean and volatility offset each other through

time. An increase in the mean is followed by a decrease in the volatility, while an increase

in the volatility leads to a subsequent increase in the mean.17

16We compute the unconditional moments of returns using the properties of bi-variate log-normal random
variables and the unconditional mean and covariance matrix of the log moments in equation (4).

17Unfortunately, we cannot directly compare our estimates to Whitelaw’s results because our VAR is for
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The lag-volatility-in-mean and lag-mean-in-volatility effects are both positive and

significant at the five-percent level (in most cases even at the one-percent level), with

estimates of a12−β1a22 ranging from 0.238 to 0.325 and of a21−β2a11 ranging from 1.103 to

1.604.18 Therefore, both parts of hypothesis H2 are decisively rejected and the reduced-form

models (10) and (11) feature lag adjustments. This means that the mean and volatility

adjust not only instantaneously but also with a lag to changes in the other moment.

The rejections of the hypotheses H1 and H2 are based on asymptotic standard errors.

However, as stressed in Section 3.4, the asymptotics of our estimator are questionable for a

number of reasons. To substantiate the evidence on the contemporaneous correlation and lag

adjustments, we therefore conduct a Monte Carlo experiment under each null. Specifically,

we estimate model A under each of the restrictions ρ=0, a12 = β1a22, and a21 = β2a11. We

then simulate from each model 500 independent samples of T = 636 monthly returns and

construct sampling distributions of the restrictions under the null. The results corroborate

our asymptotic inferences. Under the null of ρ = 0, the estimated correlation is less than

−0.5 in only two of the 500 samples. Likewise, under the null a12=β1a22 or a21=β2a11, the

estimate of a12−β1a22 or a21−β2a11 exceed their empirical estimates in less than three and

one percent of the samples under the null, respectively. We conclude that the rejections of

H1 and H2 are not attributed to invalid asymptotic approximations.

The estimates of a11+ a12− a21− a22 range from 0.068 to 0.183 and all have t-statistics

greater than two, suggesting (based on the asymptotics) that the Sharpe ratio follows a

two-factor process. If we use the conditional mean as second factor, the own-lag persistence

of the Sharpe ratio is a22− a12 
 0.80, and if we use the volatility as the second factor, it

is a11− a21 
 0.90. In either case, the Sharpe ratio is highly persistent, which reflects our

finding above that both the conditional mean and volatility are highly persistent.

The signs of the estimated correlations ρµ between the return and mean innovations

(models B and D) and ρσ between the return and volatility innovations (models C and D) are

consistent with the volatility feedback and leverage effects, respectively. Both correlations

are negative, which implies that increases in the mean and volatility are associated with

negative returns. However, only the estimates of ρσ are significant and, judging by the

Akaike information criterion, only model C yields an improvement in fit to the fully restricted

model A.19 Since the estimates of ρµ are insignificant and the volatility feedback explanation

log moments instead of levels. However, we can approximate the off-diagonal elements of a levels VAR by
dµ/dσ = (d lnµ/d lnσ)(µ/σ) 
 a12µ̄/σ̄ and dσ/dµ = (d lnσ/d lnµ) (σ/µ) 
 a21σ̄/µ̄. Whitelaw’s estimates
(for a shorter sample period) are dµ/dσ=0.118 and dσ/dµ=−0.107. Our approximations range from 0.014
to 0.021 and from −0.784 to −0.160, respectively.

18The asymptotic standard errors of a12−β1a22 and a21−β2a11 are computed using the delta method.
19The Akaike information criterion is defined as AIC=lnL − dim[ψ].
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is consistent with a negative ρσ only if ρ is positive, we conclude that our results favor the

leverage explanation of asymmetric volatility.

Finally, the estimates of the latent VAR and, more importantly, of the reduced-form

models (10) and (11), are remarkably similar across the four correlation structures. We

therefore focus in the remainder of the paper on model C, the best-fitting model according

to the Akaike information criterion. However, we verified that all qualitative statements we

make below are robust to this specification choice.

4.3 Time-Series of the Conditional Moments

Given the parameter estimates in Table 3 and the index returns, we extract estimates of

the conditional mean, volatility, and Sharpe ratio. Before we study the time-series of these

estimates, we first consider as a point of reference the time-series of the returns themselves.

It is clear from Table 2 that the returns are noisy, with an annualized volatility of 14 percent

and a first-order autocorrelation of only 0.035. It is therefore not surprising that in Figure 2

the noise disguises the persistence of the conditional mean. The persistence of the conditional

volatility is more apparent. Judging by the frequency and magnitude of large price changes,

there are pronounced and prolonged periods of high and low volatility in our sample.

The left column of Figure 3 presents the smoothed estimates of the annualized (not

logged) mean (first row), volatility (second row), and Sharpe ratio (third row). Each plot

also shows as vertical lines the dates of all business cycle peaks (dashed lines) and troughs

(dotted lines) in our sample. It is immediately clear that both the conditional mean and

volatility vary through time. The annualized mean has a standard deviation of 0.9 percent

and ranges from 4.75 percent in 1965 to almost ten percent in 1988. The annualized volatility

has a standard deviation of 4.5 percent and ranges from less than five percent in 1965 to

over 30 percent in 1987. Consistent with the estimates of a11 and a22, the conditional mean

reverts faster to its long-term average than the conditional volatility. In fact, periods of high

or low volatility appear to last as long as a few decades.

To gauge the statistical significance of the variation of the conditional mean and volatility,

we estimate restricted models with either constant mean or constant volatility and then

perform LR tests of these restrictions. Both constrained models can be rejected at the five-

percent level (asymptotic p-values of 2.3 percent for the constant-mean model and less than

0.5 percent for the constant-volatility model). To measure the economic significance and

relate our results to the literature on time-varying moments, we also compute the statistics

1−Var[yt−µt]/Var[yt] and 1−Var[y2
t−σ2

t ]/Var[y
2
t ], which we interpret as predictive regression

R2s for returns and squared returns, respectively. The values of these statistics, 2.1 percent
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for returns and 35.7 percent for squared returns, are comparable to the results of predicting

monthly returns with exogenous predictors and squared returns with ARCH models.

The variation of the conditional mean is distinctly counter-cyclical. In eight of the nine

completed business cycles in the sample, the conditional mean rises almost monotonically

from the peak (dotted vertical lines) to the trough (dashed vertical lines) of the cycle (the only

exception is the 1948–1949 recession). Although other studies have found similar counter-

cyclical patterns in the conditional mean (Fama and French, 1989), the strength of our finding

is astonishing given the fact that we are not using exogenous predictors. The problem with

using exogenous predictors to identify cyclical patterns is that the NBER may use the same

predictors (or variables that are highly correlated with these predictors) to ex-post date the

peaks and troughs of the business cycles. Furthermore, it is interesting that although the

periods between the peaks and troughs of the business cycles are aligned with the expected

return cycles, the sometimes much-longer periods between a trough and the following peak

often contain more than one large swing in expected returns.

The conditional volatility exhibits a somewhat different cyclical pattern. In particular,

the volatility is almost uniformly high and at times decreasing during recessions, when the

conditional mean is rising, and low during expansions. However, this business cycle pattern

is distorted by low-frequency swings in volatility that last for decades.

To quantify the patterns in the variation of the conditional moments, we compute the

differences between the means and volatilities at the trough and preceding peak of each

business cycle. To smooth some of the month-to-month fluctuations in the moments, we

work with the average moments over the three months straddling the peak or trough. For

the mean, all but one of the differences are positive and the average difference is 1.1 percent.

If the means were iid, which is a very conservative assumption given their persistence, the

standard error of this difference is
√
2×0.9/

√
9 = 0.4 percent, indicating that the average

difference is significant at the five-percent level. For the volatility, all differences are negative

and the average difference is −4.9 percent with a standard error (under the conservative iid

assumption) of
√
2×4.5/

√
9 = 2.1 percent. In addition, we compute correlations between

the moments and the three exogenous conditioning variables. The univariate correlations of

the conditional mean with the short rate, term premium, and default premium are 0.192,

−0.021, and 0.498, respectively, and a multivariate R2 is 0.319. The correlations of the

conditional volatility with the same variables are 0.252, −0.238, and 0.256, and the R2 is

0.132. These statistics illustrate at least two facts. First, the mean is highly correlated

with the empirically and theoretically counter-cyclical default spread. Second, the volatility

is much less correlated with the predictors than the mean, which is fairly standard in the
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literature (as long as the predictors exclude lagged volatilities).

The only seemingly counterfactual feature of our estimates is that the conditional mean

is weakly positively correlated with the short rate, while predictive return regressions suggest

a negative correlation. We conjecture that this result is due to the fact that our estimates

are strongly cyclical and do not exhibit a pattern that resembles the almost monotonic rise

of the short rate from the 1940s through the early 1980s and then subsequent drop through

the late 1990s (see Figure 2). To verify this conjecture, we relate the conditional mean to the

difference between the short rate and its one-year moving average (which essentially detrends

the short rate). Consistent with predictive return regressions, the resulting univariate

correlation is −0.22. Furthermore, we run a multivariate regression of the conditional mean

on all three predictors (which also detrends the short-rate if the predictors are co-integrated).

The regression coefficient on the short rate is −0.012 with a t-statistic of −8.46.
Together, the counter-cyclical variation of the mean and the increase in volatility during

recessions leads to counter-cyclical variation of the conditional Sharpe ratio. The Sharpe

ratio rises from the peak to the trough of every completed business cycle in the sample.

This counter-cyclical variation of the Sharpe ratio is consistent with the intuition from habit

formation models (Constantinides, 1990; Campbell and Cochrane, 1999). At the peak of a

business cycle consumers are enjoying consumption levels far above their historically built-up

“habits,” which makes them relatively risk-tolerant. As a result, it requires a low expected

reward per unit of risk, or low Sharpe ratio, for consumers to invest in stocks at the peak of

a cycle. At the trough of a cycle, in contrast, consumption levels are approaching the habits

(or perceived subsistence levels), which makes consumers relatively risk-averse. Therefore,

for consumers to invest in stocks at the trough, the Sharpe ratio must be high.

Figure 3 offers a more visual description of how the lead-lag interactions between the

conditional mean and volatility arise. As the economy comes off the peak of a business

cycle, the volatility rises almost immediately. The mean, however, increases only gradually

as the economy moves from the peak to the trough of the cycle. Therefore, the volatility

appears to lead the mean through the recession. The mean then reaches a high at the trough

of the cycle, shortly after which the volatility drops back to its lower expansion level. As a

result, the increase in the mean is associated with a subsequent drop in the volatility.

4.4 Impulse Response Functions

To better understand the dynamic behavior of the conditional moments, we now turn to the

impulse response functions of the VAR. The impulse response functions show how a one-

standard-deviation shock to one of the innovations of the VAR affects contemporaneously the
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conditional mean and volatility and then propagates to future realizations of the moments

through the dynamic structure of the VAR.20 Since our model describes the dynamics of the

log mean and log volatility, we transform the impulse response functions of the VAR to the

implied impulse response functions for the mean and volatility (without logs).

As long as the innovations of the VAR are uncorrelated, interpreting the impulse response

functions is straightforward. η1t is the innovation to the mean and η2t is the innovation to

the volatility. However, the innovations of the VAR are usually correlated, which means that

η1t and η2t have a common component that acts on both the mean and volatility and two

orthogonal components that act only on the mean or the volatility, respectively. Since we

cannot identify all three components separately, we follow the convention to attribute the

common component of the innovations to η1t (simply because it belongs to the first equation

of the VAR) and to remove this common component from η2t, so that this second innovation

is by construction orthogonal to the first. Mechanically, we use a Cholesky decomposition

of the error covariance matrix to orthogonalize the innovations of the VAR. The impulse

response functions then trace the effects of a one-standard-deviation shock to the common

component (which contemporaneously acts on the mean and, to the extent that the original

innovations are correlated, also on the volatility) and to the orthogonal component (which

by construction acts contemporaneously only on the volatility).

The six plots in Figure 4 illustrate the impulse responses for the unrestricted VAR (solid

lines) and the restricted VAR with a12 = a21 = 0 (dashed lines). The first column of plots

shows the effects of a one-standard-deviation mean innovation at date t on the mean (first

row), the volatility (second row), and the Sharpe ratio (third row) at dates t, t+1, . . . , t+60.

Similarly, the second column shows the effects of a one-standard-deviation orthogonalized

volatility innovation on the current and future mean, volatility, and Sharpe ratio.

Consider first the impulse responses for the unrestricted VAR. The first column of plots

illustrates clearly the negative contemporaneous correlation between the conditional mean

and volatility. A one-standard-deviation mean innovation results in a contemporaneous 0.66

percent increase in the annualized mean, a 1.76 percent decrease in the annualized volatility,

and a 0.14 increase in the annualized Sharpe ratio. Thereafter, the mean fully mean-reverts

within four months and then overshoots its long-term average by dropping as much as an

additional 0.29 percent over the next 24 months. The explanation for this overshooting of

the mean after a positive mean innovation is the lag-adjustment of the mean to the change in

volatility. The volatility keeps dropping, although at a decreasing rate, for about 24 months

20If a VAR(1) process (I−AL)xt=νt is covariance-stationary, it can be rewritten as a VMA(∞) process
xt=(I−AL)−1νt=[I+(AL)+(AL)2+(AL)3+ . . .]νt. This moving average (or Wold-) representation directly
identifies the effects of νt on the current and future realizations of xt as the coefficients {I,A,A2, A3, . . .}.
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after the mean innovation. This persistent drop in volatility causes the mean to fall due

to the positive and relatively large Granger causality term a12 as well as the positive lag-

volatility-in-mean effect a12 − β1a22. The three plots also illustrate clearly the persistence of

the conditional moments. One year after the shock, the conditional mean and volatility are

still 0.22 and 0.68 percent away from their respective long-term averages.

The second column illustrates that much of the variation of the conditional volatility is

contemporaneously independent of the variation of the conditional mean. A one-standard-

deviation orthogonalized volatility innovation immediately leads to a 3.02 percent increase in

the annualized volatility. Since the volatility is highly persistent, it returns to its long-term

average only about 18 months after the innovation. The lag-adjustment of the conditional

mean to changes in the volatility is also more pronounced for the orthogonalized volatility

innovation because by construction the mean does not react contemporaneously to this

innovation. The response of the mean to the orthogonalized volatility innovation is hump-

shaped. The mean does not respond contemporaneously but rises immediately after the

innovation and peaks six months later at a level of 0.51 percent above its long-term average.

The mean then mean-reverts to its long-term average over the following 30 months. Notice

that even after the volatility fully mean-reverts, the mean is still relatively high with a normal

level of risk. This results in an above-average Sharpe ratio from 12 through 36 months after

the orthogonalized volatility innovation.

An intuitive way to illustrate the role of the lag-adjustments in the dynamics of the

conditional mean and volatility is to compare the impulse responses of the restricted VAR

with a21= a21= 0 (dashed lines) to those of the unrestricted VAR (solid lines). Consider first

the responses of the restricted VAR to a one-standard-deviation mean innovation. Although

the initial effect of the innovation is virtually the same as in the unrestricted VAR, the mean

fully mean-reverts within one year and, more importantly, does not overshoot its long-term

average. The reason for this difference in mean responses is that in the restricted VAR

the decrease in volatility (from the mean innovation) does not feed back to the mean in

future periods. This lack of feedback is even more transparent for a one-standard-deviation

orthogonalized volatility innovation, where in the restricted VAR the mean never responds

to the innovation. It is therefore clear from Figure 4 that the lag-adjustments of the mean

to changes in volatility and, to a lesser extent, of the volatility to changes in the mean, play

an important role in the dynamics of the conditional moments.
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4.5 A Closer Look at the Contemporaneous Correlation

There is a surprising amount of disagreement about even the sign of the contemporaneous

correlation between the conditional mean and volatility of stock returns. Our results

contribute to this empirical debate by documenting a strong negative correlation between

the innovations to the conditional mean and volatility, which in turn implies negative and

substantial volatility-in-mean and mean-in-volatility effects. However, on the face of it, our

analysis is subject to the caveat that we model the log moments, while most of the literature

relates the mean and volatility directly (without logs).

To establish a tighter link to the literature, notice that the log moments lnµt and lnσt are

bivariate normally distributed. The moments µt and σt are therefore bivariate log-normally

distributed. It follows from the bivariate log-normal distribution that:

Corr
[
µt, σt

∣∣µt−1, σt−1

]
=

exp
{
ρ
√

b11b22
} − 1√

exp{b11} − 1
√
exp{b22} − 1


 ρ (39)

for sufficiently small b11 and b22. In words, we can legitimately approximate the correlation

between the conditional mean and volatility by the correlation between the corresponding

log moments. Given the parameter estimates in Table 3, the approximation error is only

0.012 (−0.557 with logs versus −0.545 without logs). We conclude that despite the log

transformation our empirical results can be interpreted readily in the context of the literature

on the contemporaneous correlation between the conditional mean and volatility.

However, not only can our results be interpreted in the context of this literature, but they

actually shed light on why there is such disagreement about the sign of the contemporaneous

correlation. The key issue is the distinction between the conditional (on lnµt−1 and lnσt−1)

and unconditional correlation between the moments. The conditional correlation is the

same as the correlation between the innovations to the moments and is equal to ρ. The

unconditional correlation, in contrast, is computed from the unconditional covariance matrix

in equation (4). It is clear from this equation that, depending on A, the conditional and

unconditional correlations can be quite different.

Figure 5 illustrates this point by plotting the unconditional cross-autocorrelations (as

opposed to the conditional cross-autocorrelations implicit in the impulse response functions)

of the mean and volatility implied by the parameter estimates in Table 3, where the “offset”

represents the number of months the volatility is lagged (negative offset) or led (positive

offset) relative to the mean. Each of the unconditional cross-autocorrelations is computed

from the corresponding unconditional auto-covariance matrices of the VAR. For example,

the unconditional contemporaneous correlation, at an offset of zero, is computed from the
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unconditional covariance matrix in equation (4).

The unconditional cross-correlations between the mean and leads of the volatility of more

than 12 months are all negative, with a minimum of −0.09 at an offset of 21 months. In

contrast, the correlations are positive for all lagged values of the volatility as well as for led

values up to an offset of 12 months. The correlations decay with both increasingly negative

and positive offsets, but the decay is asymmetric due to the differences between the off-

diagonal elements of A. The cross-correlations peak at an offset of minus six months with

0.75, which means that unconditionally the volatility leads the mean by six months. It is

interesting to note that the average duration of a recession in our sample is approximately

nine months. The six-month lead of the volatility therefore seems to relate to the business

cycle pattern in the conditional moments that we documented in Section 4.3. The increase

in volatility at the beginning of the recession is associated with an (almost certain) increase

in the mean approximately six months later, toward the end of the recession.

The most important result for understanding the apparent disagreement about the

sign of the contemporaneous correlation is that, although the conditional contemporaneous

correlation is large and negative (−0.557), the unconditional contemporaneous correlation

(at an offset of zero) is large and positive (0.312). This positive unconditional correlation

arises because of the large and positive Granger causality term a12, which implies a large and

positive lag-volatility-in-mean effect, and because of the high persistence of the volatility.

For example, suppose the volatility increases from a normal 15 percent to 25 percent (as the

economy enters a recession). Over the following few months the mean increases gradually,

reaching its highest level about six months after the increase in volatility. Since the volatility

is highly persistent, it is still relatively high (23 percent, for example) even six months after

the initial increase. Therefore, it appears unconditionally that whenever the mean is high

the volatility is also high, suggesting a positive correlation between the moments.

This finding implies that the sign and magnitude of the contemporaneous correlation

between the conditional mean and volatility depends crucially on whether we measure

the conditional or unconditional correlation. It is not surprising then that the results

about the contemporaneous correlation in the literature depend on the statistical model

and predictors (Harvey, 2001; Koopman and Uspensky, 1999), the return horizon (Harrison

and Zhang, 1999), and, most importantly, whether we measure the correlation in levels or

first-differences (French, Schwert, and Stambaugh, 1987; Whitelaw, 1994).
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4.6 Exogenous Predictors

On one hand, the advantage of our latent VAR approach is that it allows us to study the

dynamics of the conditional mean and volatility without relying on exogenous predictors. On

the other hand, by ignoring the evidence of a correlation between the conditional moments

and exogenous predictors we are potentially discarding some useful information. Discarding

information is always undesirable, but it is particularly so in this application because, judging

by the vast disagreement in the literature, precisely measuring the relationship between the

conditional mean and volatility is difficult.

As a compromise and robustness check, we therefore estimate an extended version of the

model in which each moment can also depend on three variables known to be correlated with

expected returns and volatility: the short rate, term premium, and default premium (see

footnote 14 for references).21 In particular, we assume that these three variables are truly

exogenous and consider the following model specification:22

yt = µ̄emt−1 + σ̄eυt−1εt = µ̄eZ′
1st−1 + σ̄eZ′

2st−1εt with εt ∼ N
[
0, 1

]
(40)

and

st = Cxt−1 + Ast−1 + ηt with ηt ∼ MVN
[
0,Σ

]
, (41)

where xt denotes the demeaned predictors observed at date t.

The extended transition equation (41) can be interpreted directly in the context of the

predictability (of both the mean and volatility) literature. With A= 0, the first equation

of the extended VAR resembles a predictive regression (except for the log) and the second

equation is an EGARCH model with only exogenous predictors. Without this restriction,

both the exogenous predictors xt and the lagged moments st−1 forecast future realizations

of the moments st. Furthermore, since the predictors are demeaned, the coefficient matrix

C shows how deviations of the predictive variables from their long-term averages predict

deviations of the conditional moments from their long-term averages.

Table 4 reports the estimates of the extended model and also replicates for comparison

the results for model C in Table 3. The estimates of A and Σ are quite similar across the

21Two common volatility predictors, namely squared returns (French, Schwert, and Stambaugh, 1987;
Schwert, 1989; Schwert and Seguin, 1991; Andersen, Bollerslev, Diebold, and Ebens, 2001) and option-
implied volatilities (Christensen and Prabhala, 1998), are not included in this list. Squared returns are
already implicitly incorporated in our estimation through the approximating model (30) and the availability
of option-implied volatilities is too limited to study business cycle patterns in the conditional moments
(covering only one business cycle).

22We also estimate this model with first-differences ∆xt in place of the levels xt in the transition equation.
The results are qualitatively similar and are available on request.
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two models. When we add exogenous predictors, the own-lag coefficients a11 and a22 both

increase. The coefficients a12 on the volatility in the mean equation and a21 on the mean in

the volatility equation both decrease in magnitude. The variance of the mean and volatility

decrease, which means that the exogenous predictors help explain some of the variation in

the moments that was previously left unexplained. Finally, the contemporaneous correlation

between the innovations to the mean and volatility decreases in magnitude from −0.557
to −0.451. Together, these differences translate into slightly smaller lag-volatility-in-mean

and lag-mean-in-volatility effects (0.188 versus 0.252 and 1.044 versus 1.471, respectively).

However, both effects remain significant at the one-percent level.

In the mean equation of the extended VAR, the coefficients on the term premium and

default premium (c12 and c13) are positive and the coefficient on the short rate (c11) is

negative. In the volatility equation, the coefficients on all three predictors (c21, c22, and c23)

are positive. The signs of the coefficients are consistent with the results of predictive return

and squared return regressions. All estimates are statistically significant at the five-percent

level and in most cases even at the one-percent level.23

Despite the fact that all of the elements of C are statistically significant, the overall fit of

the model does not improve substantially when we add the exogenous predictors. An LR test

of the hypothesis C=0 fails to reject with a p-value of 0.152. Likewise, a Hausman (1978)

test of the hypothesis that the matrix A is the same across the two models fails to reject at

conventional significance levels. This failure to reject suggests that the exogenous predictors

do not significantly alter the dynamics of the conditional moments.

The plots on the right-hand side of Figure 3 present estimates of the annualized mean

(first row), volatility (second row), and Sharpe ratio (third row), extracted from the extended

VAR with exogenous predictors. The time-variation of the three moments, especially of the

volatility and Sharpe ratio, are remarkably similar across the models with and without

exogenous predictors (correlations of 0.73 for the mean, 0.97 for the volatility, and 0.91 for

the Sharpe ratio). Specifically, the business cycle pattern in the variation of the conditional

moments is qualitatively unaltered by the exogenous predictors. If anything, the extended

model further emphasizes the counter-cyclical variation of the Sharpe ratio. This confirms

the statistical evidence above and attests to the robustness of our empirical results.

23To make sense of these large t-statistics, it is important to recognize that the results are not comparable to
predictive return or squared return regressions. Instead, they correspond to regressions with the conditional
moments as dependent variables. As we document above, the conditional moments are highly correlated
with the predictors (multiple R2 of 0.32 for the mean and 0.13 for the volatility).
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5 Conclusion

We model the conditional mean and volatility of stock returns as a latent VAR to explore

both the contemporaneous and intertemporal relationship between the two moments, as well

as time-variation of the implied Sharpe ratio, in a flexible statistical framework and without

relying on exogenous predictors. The first equation of the VAR describes the dynamics of the

conditional mean and captures the temporary component in the permanent and temporary

components model. The second equation describes the dynamics of the conditional volatility

and nests the standard SV model. Finally, the implied Sharpe ratio is time-varying in a way

that is consistent with a variety of equilibrium asset pricing models.

On the contemporaneous relationship between the conditional mean and volatility,

we estimate a strong negative correlation between the innovations to the two moments,

which implies negative and substantial volatility-in-mean and mean-in-volatility effects.

On the intertemporal relationship, the reduced-form lag-volatility-in-mean and lag-mean-

in-volatility effects are both positive and significant. Together, the contemporaneous and

intertemporal relationships generate pronounced counter-cyclical variation of the Sharpe

ratio. Every recorded business cycle in the sample is associated with an almost monotonic

rise in the Sharpe ratio from the peak to the trough of the cycle. We argue that this counter-

cyclical variation of the Sharpe ratio is consistent with the intuition of habit formation.

We document a systematic pattern in the way the mean and volatility change over the

business cycle. Whenever the economy comes off the peak of a business cycle, the conditional

volatility rises immediately. The conditional mean, however, increases only gradually as the

economy moves from the peak to the trough of the cycle. Thus, the volatility appears to

lead the mean (by about six months) through the recession. The mean reaches a high at

the trough of the cycle, shortly after which the volatility drops again to a normal level. As

a result, the increase in the mean is associated with a subsequent drop in the volatility.

Despite the large and negative contemporaneous correlation between the innovations

to the conditional mean and volatility, which measures the conditional (on the lagged

mean and volatility) correlation between the moments, the unconditional contemporaneous

correlation between the mean and volatility is large and positive due to the strong lag-

volatility-in-mean effect. Unconditionally, times of high expected returns are therefore

associated with high volatility. We argue that this difference between the conditional and

unconditional correlations may explain why there is such disagreement about the sign of the

contemporaneous correlation between the two moments.

32



References

Abel, A.B., 1988, Stock prices under time-varying dividend risk: An exact solution in an
infinite-horizon general equilibrium model, Journal of Monetary Economics 22, 375–
393.

Aı̈t-Sahalia, Y., and M.W. Brandt, 2001, Variable selection for portfolio choice, Journal of
Finance 56, 1297–1351.

Alizadeh, S., M.W. Brandt, and F.X. Diebold, 2002, Range-based estimation of stochastic
volatility models, Journal of Finance57, 1047–1091.

Andersen, T.G., and B.E. Sorensen, 1994, Estimation of a stochastic volatility model: A
Monte Carlo study, Journal of Business and Economic Statistics 14, 328–352.

Andersen, T.G., T. Bollerslev, F.X. Diebold, and H. Ebens, 2001, The distribution of stock
return volatility, Journal of Financial Economics 61, 43–76.

Ang, A., and G. Bekaert, 2001, Stock return predictability: Is it there?, Working Paper,
Columbia University.

Bansal, R., and A. Yaron, 2001, Risks for the long run: A potential resolution of asset pricing
puzzles, Working Paper, Duke University.

Barndorff-Nielsen, O.E., and N. Shephard, 1999, Non-Gaussian OU based models and some
of the uses in financial economics, Working Paper, Nuffield College.

Bekaert, G., and S.R. Grenadier, 2001, Stock and bond pricing in an affine economy, Working
Paper, Columbia University.

Bekaert, G., and C.R. Harvey, 1995, Time-varying world market integration, Journal of
Finance 50, 403-444.

Bekaert, G., and G. Wu, 2000, Asymmetric volatility and risk in equity markets, Review of
Financial Studies 13, 1–42.

Bollerslev, T., R.Y. Chou, and K.F. Kroner, 1992, ARCH modeling in finance: A selective
review of the theory and empirical evidence, Journal of Econometrics 52, 5–59.

Bossaerts, P., and P. Hillion, 1999, Implementing statistical criteria to select return
forecasting models: What do we learn?, Review of Financial Studies 12, 405–428.

Boudoukh, J., and M. Richardson, 1993, The statistics of long-horizon regressions,
Mathematical Finance 4, 103–120.

Brandt, M.W., 1999, Estimating portfolio and consumption choice: A conditional Euler
equations approach, Journal of Finance 54, 1609–1646.

Brandt, M.W., and K.Q. Wang, 1999, Time-varying risk aversion and unexpected inflation,
Working Paper, University of Pennsylvania.

33



Breen, W., L.R. Glosten, and R. Jagannathan, 1989, Economic significance of predictable
variations in stock index returns, Journal of Finance 44, 1177–1189.

Campbell, J.Y., 1987, Stock returns and the term structure, Journal of Financial Economics
18, 373–399.

Campbell, J.Y., and J.H. Cochrane, 1999, By force of habit: A consumption-based
explanation of aggregate stock market behavior, Journal of Political Economy 107,
205–251.

Campbell, J.Y., and L. Hentschel, 1992, No news is good news: An asymmetric model of
changing volatility in stock returns, Journal of Financial Economics 31, 281–318.

Chernov, M., E. Ghysels, A.R. Gallant, and G.E. Tauchen, 2002, Alternative models for
stock price dynamics, Working Paper, Columbia University.

Christensen, B.J., and N.R. Prabhala, 1998, The relation between implied and realized
volatility, Journal of Financial Economics 50, 125–150.

Christie, A.A., 1982, The stochastic behavior of common stock variances: Value, leverage,
and interest rate effects, Journal of Financial Economics 10, 407–432.

Constantinides, G.M., 1990, Habit formation: A resolution of the equity premium puzzle,
Journal of Political Economy 98, 519–543.

Danielsson, J., 1994, Stochastic volatility in asset prices: Estimation with simulated
maximum likelihood, Journal of Econometrics 64, 375–400.

De Santis, G., and B. Gerard, 1997, International asset pricing and portfolio diversification
with time-varying risk, Journal of Finance 52, 1881–1912.

De Santis, G., and B. Gerard, 1998, How big is the premium for currency risk?, Journal of
Financial Economics 49, 375–412.

De Jong, P., and N. Shephard, 1995, The simulation smoother for time series models,
Biometrika 82, 339–350.

Duffie, D., and K.J. Singleton, 1993, Simulated moments estimation of Markov models of
asset prices, Econometrica 61, 929–952.

Durbin, J., and S.J. Koopman, 1997, Monte Carlo maximum likelihood estimation for non-
Gaussian state space models, Biometrika 84, 669–684.

Engle, R.F., and G.G.J. Lee, 1999, A permanent and transitory model of stock return
volatility, in R.F. Engle and H. White, eds., Cointegration, Causality, and Forecasting:
A Festschrift in Honor of Clive W.J. Granger, 475–497, Oxford University Press:
Oxford, UK.

Fama, E., and K.R. French, 1988, Permanent and temporary components of stock prices,
Journal of Political Economy 96, 246–273.

34



Fama, E., and K.R. French, 1989, Business conditions and expected returns on stocks and
bonds, Journal of Financial Economics 25, 23–49.

Fama, E., and K.R. French, 1996, The CAPM is wanted, dead or alive, Journal of Finance
51, 1947–1958.

Ferson, W.E., S. Sarkissian, and T. Simin, 2000, Spurious regressions in financial economics,
Working Paper, University of Washington.

French, K.R., G.W. Schwert, and R.F. Stambaugh, 1987, Expected stock returns and
volatility, Journal of Financial Economics 19, 3–30.

Gallant, A.R., and G.E. Tauchen, 1989, Seminonparametric estimation of conditionally
constrained heterogeneous processes: Asset pricing applications, Econometrica 57,
1091–1120.

Gallant, A.R., C.T. Hsu, and G.E. Tauchen, 1999, Using daily range data to calibrate
volatility diffusions and extract the forward integrated variance, Review of Economics
and Statistics 81, 617–631.

Gennotte, G., and T.A. Marsh, 1993, Variations in economic uncertainty and risk premiums
on capital assets, European Economic Review 37, 1021–1041.

Geweke, J., 1989, Bayesian inference in econometric models using Monte Carlo integration,
Econometrica 57, 1317–1339.

Ghysels, E., A. Harvey, and E. Renault, 1996, Stochastic Volatility, in G.S. Maddala and
C.R. Rao, eds., Statistical Methods in Finance, Handbook of Statistics, Volume 14,
North-Holland: Amsterdam.

Glosten, L.R., R. Jagannathan, and D. Runkle, 1993, On the relation between the expected
value and the volatility of the nominal excess returns on stocks, Journal of Finance
48, 1779–1802.

Goyal, A., and I. Welch, 2002, Predicting the equity premium with dividend ratios, Working
Paper, UCLA.

Harrison, P., and H. Zhang, 1999, An investigation of the risk and return relation at long
horizon, Review of Economics and Statistics 81, 399–408.

Harvey, A.C., E. Ruiz, and N. Shephard, 1994, Multivariate stochastic variance models,
Review of Economic Studies 61, 247–264.

Harvey, A.C., and N. Shephard, 1996, Estimation of an asymmetric stochastic volatility
model for asset returns, Journal of Business and Economic Statistics 14, 429–434.

Harvey, C.R., 2001, The specification of conditional expectations, Journal of Empirical
Finance 8, 573–638.

Hausman, J.A., 1978, Specification tests in econometrics, Econometrica 46, 1251–1272.

35



Jacquier, E., N.G. Polson, and P.E. Rossi, 1994, Bayesian analysis of stochastic volatility
models, Journal of Business and Economic Statistics 12, 371–417.

Johannes, M., N. Polson, and J. Stroud, Sequential optimal portfolio performance: market
and volatility timing, Working Paper, Columbia University.

Kandel, S., and R.F. Stambaugh, 1991, Asset returns and intertemporal preferences, Journal
of Monetary Economics 27, 37–91.

Keim, D.B., and R.F. Stambaugh, 1986, Predicting returns in the stock and bond markets,
Journal of Financial Economics 17, 357–390.

Kim, S., N. Shephard, and S. Chib, 1998, Stochastic volatility: Likelihood inference and
comparison with ARCH models, Review of Economic Studies 65, 361–393.

Koopman, S.J., and E.H. Uspensky, 1999, The stochastic volatility in mean model:
Empirical evidence from international stock markets, Working Paper, Free University
of Amsterdam.

Lamoureux, C.G., and G. Zhou, 1996, Temporary components of stock returns: What do
the data tell us?, Review of Financial Studies 9, 1033–1059.

LeRoy, S.F., and R.D. Porter, 1981, The present-value relation: Tests based on implied
variance bounds, Econometrica 49, 555–574.

Lettau, M., and S. Ludvigson, 2001, Measuring and modeling variation in the risk-return
tradeoff, Working Paper, NYU.

Nelson, D.B., 1991, Conditional hetereoskedasticity in asset returns: A new approach,
Econometrica 59, 347–370.

Sandmann, G., and S.J. Koopman, 1998, Estimation of stochastic volatility models via Monte
Carlo maximum likelihood, Journal of Econometrics 87, 271–301.

Schwert, G.W., 1989, Why does stock market volatility change over time?, Journal of Finance
44, 1115–1153.

Schwert, G.W., and P.J. Seguin 1991, Heteroskedasticity in stock returns, Journal of Finance
45, 1129–1155.

Shephard, N., and M.K. Pitt, 1997, Likelihood analysis of non-Gaussian measurement time
series, Biometrika 84, 653–667.

Shephard, N., 2000, Comment on “Time series analysis of non-Gaussian observations based
on state space models from both classical and Bayesian perspective,” Journal of the
Royal Statistical Society 62, 29–30.

Stambaugh, R.F., 1999, Predictive regressions, Journal of Financial Economics 54, 375–421.

36



Valkanov, R., 2002, Long-horizon regressions: Theoretical results and applications, Working
Paper, UCLA.

Whitelaw, F.R., 1994, Time variation and covariations in the expectation and volatility of
stock market returns, Journal of Finance 49, 515–541.

Whitelaw, F.R., 2000, Stock market risk and return: An equilibrium approach, Review of
Financial Studies 13, 521–547.

Wiggins, J.B., 1987, Option values under stochastic volatility: Theory and empirical
estimates, Journal of Financial Economics 19, 351–372.

37



A Choice of Approximating Model

The measurement equation (20) is non-linear in both mt−1 and υt−1. We consider separate
first-order expansions of this equation around E[mt−1]=E[vt−1]=0:

yt = µ̄+ σ̄eυt−1εt (A.1)
and

yt = µ̄emt−1 + σ̄εt, (A.2)

respectively. Both of these equations are still non-linear in the state variables, but each
is only non-linear in one of the variables. Following convention in the stochastic volatility
literature, we log-linearize equation (A.1):

ỹt ≡ ln (yt − µ̄)2 = 2 ln σ̄ + 2vt−1 + ln ε2
t , (A.3)

where ln ε2
t is log-χ

2 distributed. We further approximate equation (A.2) and the log-linear
equation (A.3) with the following linear equations:

yt = mt−1 + w1t with w1t ∼ N
[
c1t−1, R1t−1

]
(A.4)

ỹt =2vt−1 + w2t with w2t ∼ N
[
c2t−1, R2t−1

]
, (A.5)

where w1t and w2t are correlated. Finally, we write these equations in vector form:

Yt ≡
[
yt − c1t−1

ỹt − c2t−1

]
= H ′st−1 + wt with wt ∼ MVN

[
0, Rt−1

]
, (A.6)

where

H =

[
1 0
0 2

]
and Rt =

[
R1t ρw

√
R1tR2t

ρw

√
R1tR2t R2t

]
. (A.7)

In the special case Corr[εt, ηt]=0, we can use equation (A.6) as the measurement equation
and equation (21) as the transition equation of the linearized model. In general, the log-
linearization of equation (A.1) looses all information about the correlation between εt and
the second element on ηt. However, Harvey and Shephard (1996) show in the context of a
more standard stochastic volatility model that this information about the correlation can
be recovered from the signs of the return innovations. The following is a straightforward
application of Harvey and Shephard’s approach to our latent VAR model.

Define sgnt=sign[yt−µ̄], such that sgnt is one (minus one) if yt−µ̄ is positive (negative).
Following the steps in Harvey and Shephard (1996), the transition equation conditional on
the sign of the returns is:24

st = Ksgnt + Ast−1 + η∗t (A.8)

24We condition the transition equation of the approximating and true model to maintain g(θ|ψ)=p(θ|ψ).
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with [
wt

η∗t

] ∣∣∣∣sgnt ∼ MVN

[
0,

[
Rt−1 Gt−1

Gt−1′ Σ̃

]]
, (A.9)

where Rt is the same as in equation (A.7) and:

K =

[
k1

k2

]
= 0.7979

[
ρµ

√
b11

ρσ

√
b22

]
, Gt =

[
ρµ

√
b11 ρσ

√
b22

1.1061ρµ

√
b11sgnt 1.1061ρσ

√
b22sgnt

]
,

Σ̃ =

[
b11 − k1 ρ

√
(b11 − k1)(b22 − k2)

ρ
√
(b11 − k1)(b22 − k2) b22 − k2

]
.

(A.10)

Note that if ρµ=ρσ=0, we get K=0, Σ̃=Σ, and Gt=0 for all t.

B Calibrating the Approxmiating Model

Let θ̄t =Eg[θt] be the smoothed value of θt for the approximating model obtained through
the Kalman filter. Under the assumptions of De Jong and Shephard’s (1995) simulation
smoother, simulated values of θt are normally distributed around their mean θ̄t. This suggests
that the parameters ct and Rt of the approximating model should be chosen such that the
densities p(y|θ, ψ) and g(y|θ, ψ) are as close as possible in the neighborhood of θ̄t.

To operationalize this idea, we define:

l (θ, ψ) ≡ ln p (y | θ, ψ)− ln g (y | θ, ψ)

=
T∑

t=1

ln p (yt | st−1, ψ)− ln g (yt | st−1, ψ) .
(B.1)

and choose ct and Rt such that the first- and second-order derivatives of l(θ, ψ) with respect
to st are set to zero at θt = θ̄t. More specifically, we set ρw = 0 and solve for c1t and R1t

from the derivatives of equations (A.2) and (A.4) and for c2t and R2t from the derivatives of
equations (A.3) and (A.5).25

From equations (A.2) and (A.4) we have:

p
(m)
t ≡ ln p (yt | st−1, ψ) = −1

2

{
ln 2π + 2 ln σ̄ + σ̄−2 (yt − µ̄emt−1)2

}
g

(m)
t ≡ ln g (yt | st−1, ψ) = −1

2

{
ln 2π + lnR1t−1 +R−1

1t−1 (yt −mt−1 − ct−1)
2} .

(B.2)

25The coefficient ρw captures the correlation between a normally-distributed and a log-χ2-distributed
random variable. Our Monte Carlo experiments show that this correlation is very small (less than 0.05), and
we therefore set ρw= 0. However, we check that a non-zero correlation leads to very similar estimates.
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The first- and second-order derivatives of pt and gt with respect to mt−1 are:

.
pt

(m)
= σ̄−2 (yt − µ̄emt−1) µ̄emt−1 (B.3)

.
gt

(m)
= R−1

1t−1 (yt −mt−1 − c1t−1) (B.4)

..
pt

(m)
= σ̄−2 (yt − µ̄emt−1) µ̄emt−1 − σ̄−2 (µ̄emt−1)2 (B.5)

..
gt

(m)
= −R−1

1t−1. (B.6)

Equating the second-order derivatives,
..
pt

(m)
=

..
gt

(m)
, yields:

R1t−1 = − σ̄2

(yt − 2µ̄emt−1) µ̄emt−1
, (B.7)

where we take the absolute value of R1t if it is negative. Likewise, equating the first-order

derivatives,
.
pt

(m)
=

.
gt

(m)
, and using equation (B.6), we get:

c1t−1 = yt −mt−1 +
(yt − µ̄emt−1)

(yt − 2µ̄emt−1)
. (B.8)

From equations (A.3) and (A.5) and using the log-χ2 density, we have:26

.
pt

(v)
= exp {ỹ − 2 ln σ̄ − 2vt−1} − 1 (B.9)

.
gt

(v)
= 2R−1

2t−1 (ỹt − 2vt−1 − c2t−1) (B.10)

..
pt

(v)
= −2 exp {ỹ − 2 ln σ̄ − 2vt−1} (B.11)

..
gt

(v)
= −4R−1

2t−1, (B.12)

and equating the first- and second-order derivatives yields:

R2t−1 =
2

exp {ỹ − 2 ln σ̄ − 2vt−1} (B.13)

c2t−1 = ỹt − 2vt−1 − exp {ỹ − 2 ln σ̄ − 2vt−1} − 1

exp {ỹ − 2 ln σ̄ − 2vt−1} . (B.14)

26If z is log-χ2 distributed, its density is f(z) = 1/
√
2π exp{(z − ez)/2}.
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Table 1 : Finite Sample Properties of Simulated Likelihood Estimator

This table describes the sampling distribution of simulated likelihood estimates of the model:

yt = µ̄emt−1 + σ̄eυt−1εt = µ̄eZ
′
1st−1 + σ̄eZ

′
2st−1εt with εt ∼ N

[
0, 1

]
and

st = Ast−1 + ηt with ηt ∼ MVN
[
0,Σ

]
,

where

A =
[
a11 a12

a21 a22

]
, Σ =

[
b11 ρ

√
b11b22

ρ
√
b11b22 b22

]
, and Corr[εt, ηt] = 0.

The results are based on 500 independent samples of T =636 returns simulated from the model with the parameters in the first column.

Standard Excess Percentiles
True Average Deviation Skewness Kurtosis Max 95% 75% 50% 25% 5% Min

a11 0.8589 0.8588 0.0626 -0.2422 -0.6821 0.9787 0.9514 0.9047 0.8633 0.8134 0.7465 0.7097
a21 -0.0529 -0.0643 0.0961 0.1959 -0.1858 0.1814 0.1123 0.0005 -0.0743 -0.1661 -0.2318 -0.2945
a12 0.1084 0.1089 0.0910 -0.0908 -0.3689 0.3197 0.2478 0.1581 0.1099 0.0735 -0.0430 -0.1087
a22 0.9226 0.9146 0.0423 -0.3584 0.1328 0.9902 0.9727 0.9352 0.9041 0.8771 0.8344 0.7833

b11 0.0076 0.0081 0.0041 0.0049 -0.5830 0.0208 0.0183 0.0131 0.0089 0.0071 0.0037 0.0021
b22 0.0553 0.0513 0.0061 -0.0707 0.0163 0.0709 0.0603 0.0554 0.0510 0.0476 0.0416 0.0379

ρ -0.6336 -0.6357 0.0713 0.4844 -0.3324 0.3350 -0.5063 -0.5883 -0.6667 -0.7019 -0.7643 -0.7951
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Table 2 : Data

This table presents descriptive statistics of monthly returns on the value-weighted CRSP index in
excess of the one-month Treasury bill rate as well as of the short rate, term premium, and default
premium from January 1946 through December 1998. The short rate is the yield on a one-month
Treasury bill, the term premium is the yield spread of a ten-year Treasury bond and a one-year
Treasury bill, and the default premium is the yield spead of Moody’s Baa and Aaa rated bonds.

Market Short Term Default
Index Rate Premium Premium

Mean 0.0063 0.0470 0.0115 0.0090
Std Dev 0.0413 0.0304 0.0126 0.0042
Max 0.1495 0.1805 0.0431 0.0265
Min -0.2455 0.0031 -0.0367 0.0027
Median 0.0095 0.0448 0.0115 0.0076
Skewness -0.6257 1.0177 -0.3442 1.5361
Kurtosis 5.5870 4.4510 4.0337 5.3480

Autocorrelation:

1-month 0.0347 0.9572 0.9582 0.9755
6-month -0.0637 0.8819 0.7040 0.8435
12-month 0.0398 0.8153 0.5410 0.7087
24-month 0.0271 0.6663 0.2359 0.5263

Correlation with:

Market Index 1.0000 -0.1209 0.1293 0.0530
Short Rate 1.0000 -0.3344 0.6652
Term Premium 1.0000 0.0726
Default Premium 1.0000
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Table 3 : Parameter Estimates

This table presents simulated maximum likelihood estimates of the model:

yt = µ̄emt−1 + σ̄eυt−1εt = µ̄eZ
′
1st−1 + σ̄eZ

′
2st−1εt with εt ∼ N

[
0, 1

]
and

st = Ast−1 + ηt with ηt ∼ MVN
[
0,Σ

]
,

where

A =
[
a11 a12

a21 a22

]
, Σ =

[
b11 ρ

√
b11b22

ρ
√
b11b22 b22

]
, and Corr[εt, ηt] =

[
ρµ

ρσ

]
.

The estimates are for monthly returns on the value-weighted CRSP index in excess of the one-month
Treasury bill rate from January 1946 through December 1998.

Model A Model B Model C Model D

Parameters Estimate t-Stat Estimate t-Stat Estimate t-Stat Estimate t-Stat

a11 0.8592 17.41 0.8313 9.23 0.8658 11.21 0.8677 10.92
a21 -0.0531 -1.92 -0.0211 -1.43 -0.0885 -1.96 -0.1292 -1.42
a12 0.1081 0.92 0.1168 1.12 0.0861 1.01 0.0947 0.71
a22 0.9237 15.23 0.9110 16.32 0.8973 15.32 0.9086 18.49

b11 7.60×10−3 4.24 6.43×10−3 2.20 5.96×10−3 3.19 4.68×10−3 2.76
b22 0.0554 13.02 0.0561 12.22 0.0614 5.55 0.0591 5.22

ρ -0.6345 -4.32 -0.4577 -3.21 -0.5584 -5.80 -0.5621 -5.96
ρµ — — -0.0866 -0.49 — — -0.0517 -0.77
ρσ — — — — -0.2541 -4.04 -0.2430 -3.67

µ̄ 6.50×10−3 3.31 6.48×10−3 5.94 6.24×10−3 5.11 6.24×10−3 4.87
σ̄ 0.0377 10.32 0.0385 5.60 0.0382 8.79 0.0382 9.01

β1 = ρ
√
b11/b22 -0.2350 -6.23 -0.1550 -4.11 -0.1740 -5.98 -0.1582 -3.99

β2 = ρ
√
b22/b11 -1.7131 -8.34 -1.3519 -6.34 -1.7923 -9.32 -1.9975 -10.92

a12 − β1a22 0.3252 3.82 0.2580 3.11 0.2422 3.47 0.2384 3.82
a21 − β2a11 1.4188 5.21 1.1028 4.35 1.4623 4.11 1.6040 2.42

a11 + a12 − a21 − a22 0.0967 3.33 0.0684 2.54 0.1431 2.31 0.1830 2.92

lnL 1150.98 1151.11 1152.94 1153.06
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Table 4 : Parameter Estimates with Exogenous Predictors

This table presents simulated maximum likelihood estimates of the model:

yt = µ̄emt−1 + σ̄eυt−1εt = µ̄eZ
′
1st−1 + σ̄eZ

′
2st−1εt with εt ∼ N

[
0, 1

]
and

st = Cxt +Ast−1 + ηt with ηt ∼ MVN
[
0,Σ

]
,

where

C =
[
c11 c12 c13
c21 c22 c23

]
, A =

[
a11 a12

a21 a22

]
, Σ =

[
b11 ρ

√
b11b22

ρ
√
b11b22 b22

]
, and Corr[εt, ηt] =

[
0
ρσ

]
.

The vector of conditioning variables xt contains the demeaned short rate, term premium, and
default premium. The estimates are for monthly returns on the value-weighted CRSP index in
excess of the one-month Treasury bill rate from January 1946 through December 1998. The results
for the base model without conditioning variables are reproduced from Table 3.

Model C Extended Model C

Parameters Estimate t-Stat Estimate t-Stat

a11 0.8638 15.22 0.8843 11.69
a21 -0.0875 -1.82 -0.0746 -2.91
a12 0.0867 1.00 0.0312 1.40
a22 0.8913 35.57 0.8955 32.47

b11 5.96×10−3 3.21 5.62×10−3 2.23
b22 0.0614 5.54 0.0441 4.47

ρ -0.5572 -5.80 -0.4512 -2.64
ρσ -0.2519 -3.11 -0.2817 -4.22

µ̄ 6.24×10−3 5.35 6.29×10−3 4.48
σ̄ 0.0382 8.76 0.0380 9.87

c11 — — -2.6187 -5.22
c21 — — 0.6550 3.18
c12 — — 0.3613 2.36
c22 — — 1.4233 3.04
c13 — — 2.9969 5.43
c23 — — 1.6929 5.16

lnL 1152.89 1157.62
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Figure 1 : Recursive Variance of the Density Ratio

This figure plots the variance of the density ratio w(θ, ψ) = p(y|θ, ψ)/g(y|θ, ψ) for the model with
ρµ = ρσ = 0, using 500 through 75,000 successive simulated values of the latent states θi. In Panel
A, the parameters ψ are set to representative starting values of the SML estimator. In Panel B,
the ratios are evaluated at the SML estimates.
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Figure 2 : Returns and Predictors

This figure plots the monthly returns on the value-weighted CRSP index in excess of the one-month
Treasury bill rate as well as of the short rate, term premium, and default premium from January
1946 through December 1998. It also plots as dashed and dotted lines the NBER dates of the peak
and trough of every business cycle in the sample, respectively.
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Figure 3 : Estimates of the Conditional Mean, Volatility, and Sharpe Ratio

This figure plots the annualized full-information (or smoothed) estimates of the conditional mean
E[µt|y1, . . . yT ], volatility E[σt|y1, . . . yT ], and Sharpe ratio E[µt|y1, . . . yT ]/E[σt|y1, . . . yT ]. Panels A
and B correspond to Model C without conditioning variables and the extended model with the
short rate, term premium, and default premium as conditioning variables, respectively.

Panel A: Model C Panel B: Extended Model C
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Figure 4 : Impulse Response Functions

This figure plots the contemporaneous and lagged responses of the conditional mean, volatility,
and Sharpe ratio to a one-standard deviation mean innovation (in Panel A) and a one-standard
deviation orthogonalized volatility innovation (in Panel B) for Model C. The solid and dashed lines
correspond to unrestricted and restricted (a21= a12= 0) estimates.

Panel A: Response to Mean Innovation Panel B: Response to Orthogonal Volatility
Innovation

0 12 24 36 48 60
−0.008

      

−0.004

      

 0.000

      

 0.004

      

 0.008

E
xp

ec
te

d 
R

et
ur

n

Months
0 12 24 36 48 60

−0.008

      

−0.004

      

 0.000

      

 0.004

      

 0.008

E
xp

ec
te

d 
R

et
ur

n

Months

0 12 24 36 48 60
−0.03

−0.02

−0.01

 0.00

 0.01

 0.02

 0.03

V
ol

at
ili

ty

Months
0 12 24 36 48 60

−0.03

−0.02

−0.01

 0.00

 0.01

 0.02

 0.03

V
ol

at
ili

ty

Months

0 12 24 36 48 60
−0.05

     

 0.00

     

 0.05

     

 0.10

     

 0.15

     

 0.20

Sh
ar

pe
 R

at
io

Months
0 12 24 36 48 60

−0.20

     

−0.15

     

−0.10

     

−0.05

     

 0.00

     

 0.05

Sh
ar

pe
 R

at
io

Months

48



Figure 5 : Cross-Autocorrelations

This figure plots the cross-autocorrelations of the conditional mean and volatility, where the offset denotes
the number of months the volatility is lagged (negative offset) or led (positive offset) relative to the mean.
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