Capital Allocation for Operational Ris

Implementation Challenges for Bank Supervisors

Eric Rosen Senior Vice Presi Federal Reserve Bank of Bo Joint Operational Risk Confer November 15, 2

Goals of Bank Supervisors

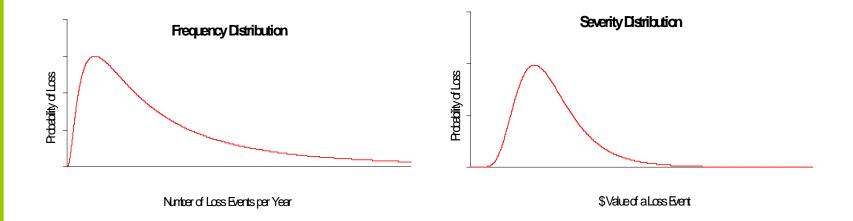
- Allocate capital according to a risk-focused approach to the quantification of operational risk
- Provide incentives for banks to measure and manage operational risks
 - Promote sound internal policies / controls / procedures
 - Motivate investment in operational risk infrastructure to reduce operational risk
- Ensure appropriate consideration of stress testing / systemic risk
 - Consideration of systemic implications of operational risk decisions made by individual firms

Role for OpRisk Quantification

- Enables measurement of capital based on historical experience of firm
 - Most accurate measure of idiosyncratic risk of individual firms
 - Rewards firms that can reduce operational risk
- Improves bank decision making
 - Provides framework for explicitly measuring gains from reducing risk
- Provides a mechanism for better understanding "tail events," those that may be outside a bank's historical experience
- Provides method for measuring the effect of risk mitigation tools

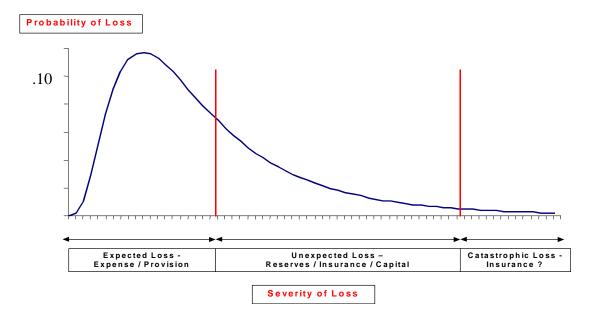
FRB Boston Operational Loss Data Initiative

- Several institutions, of varying size and product mixes, provided us with operational loss data
- Data is considered strictly confidential
 - Bank-specific information is used solely for supervisory purposes
- We have detailed discussions with banks regarding data collection issues and quantification methods
- General observations about quantification methods:
 - AMA methods are within the reach of most large institutions
 - main cost is data collection
 - with data, loss distributions can be calculated relatively easily


Data Discussion

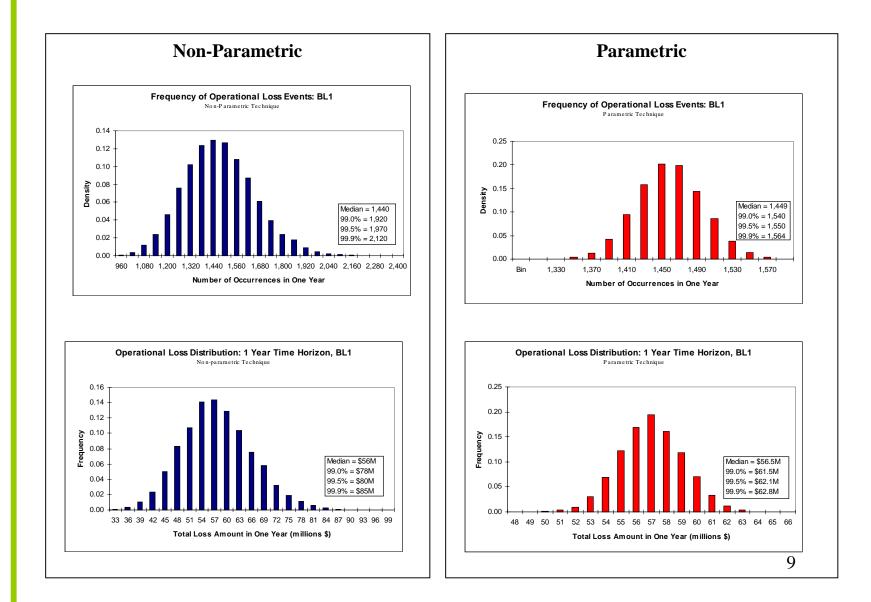
- To maintain the confidentiality of bank-specific data, all empirical examples provided in this presentation are based on a "constructed" database, *not* actual bank-level data. The database was constructed in a manner so that it would be impossible to uncover bank-specific information, but still provide empirical results that mirror our general findings from actual data.
- The constructed database:
 - omitted several banks that supplied us with data
 - combined business lines from several banks
 - contains no bank in its entirety
 - transformed data that was used
- Thus, the axes on each of the graphs in this presentation are *not* relevant and *not* reflective of any bank.

Overview of Quantification Techniques


Generally, the estimation of operational loss distribution involve 3 steps:

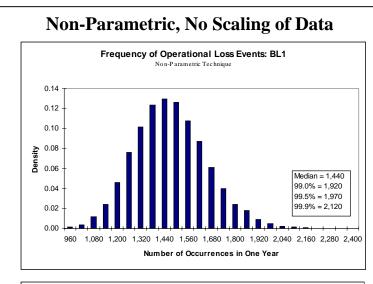
- 1. Estimating a frequency distribution
- 2. Estimating a severity distribution
- 3. Running a statistical simulation to produce a loss distribution

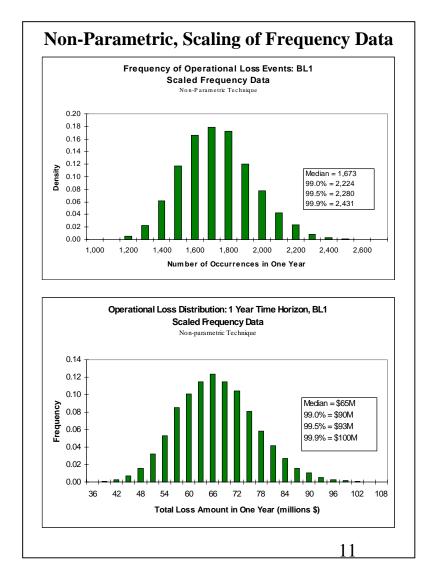
Overview of Quantification Techniques


• The estimated operational loss distribution would take the form of something similar to:

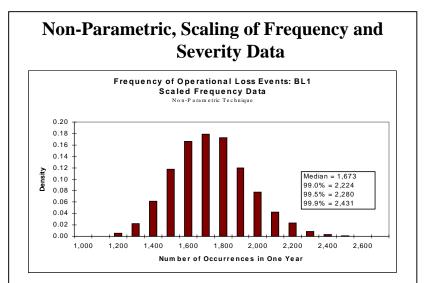
Quantification: Distributional Assumptions

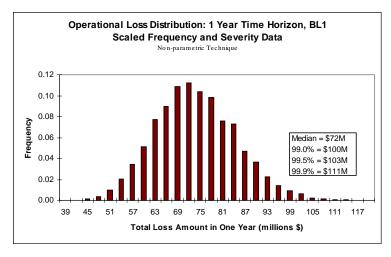
- Selection of distributional assumptions are important
 - Parametric vs. Non-Parametric
 - Appropriate distributional assumption likely differs
 - by business lines
 - by institution
- Supervisors must be concerned about incentives banks have to choose a specific methodology


Distributional Assumptions Matter

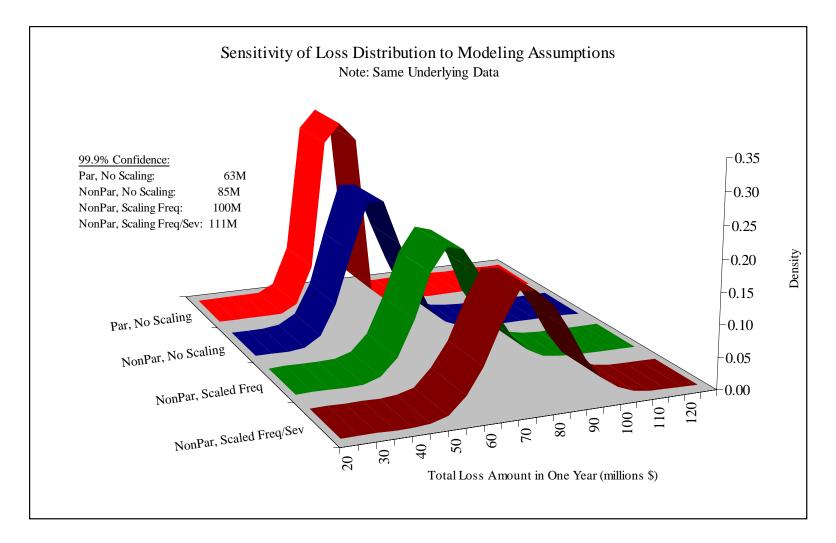

Quantification: Scaling of Data

- Why scale data?
 - Level and mix of business activity changed so that historic data are not reflective of current loss rates
 - impact on frequency distribution more/less frequent events
 - impact on severity distribution exposure increases/decreases
 - Thus, blindly using historical operational loss data can be misleading
- Conceptually, scaling is straightforward
- In practice, implementing is quite difficult
 - What variable / methodology should be used to scale?
 - The return of the exposure indicator?


Scaling Matters



Scaling Matters



Impact of Scaling

- Required capital at the 99.9% confidence level, no scaling of data: = 85M
- If scale frequency data: = **100M** (18% increase)
- If scale both frequency and severity data:
 = 111M (30% increase)

Implementation Details are Important

Quantification: How to Handle "Tail Events"

- How does a bank with *no* experience with high-severity events incorporate the possibility that such an event could occur at their institution?
 - External data?
 - Scenario analysis?
- How does a bank that experienced a high-severity event deal with that event in their quantification analysis?
 - Loss distributions are sensitive to the inclusion of extreme events
 - How long should the bank retain the extreme event in their database?
 - If problem is corrected / controls enhanced, should event remain in database?

Quantification: Risk Mitigation Techniques

- Insurance: outstanding issues regarding conversion of operational risk to credit / legal risk
- Insurance as capital offset:
 - Using information about deductibles/limits, "event policies" can be thought of as altering the severity distribution
- Incorporating this mitigation technique into the quantification analysis can significantly affect the tail of the operational loss distribution
- Quantification techniques discussed above provide firms with the framework to determine appropriate insurance coverage

Benefits of Quantifying OpRisk

- Allows banks to identify operational loss outcomes that they have exposure to, but have yet to experience.
 - example: bad cluster of high frequency, low impact events
- Provides a framework for modeling extreme events.
 - "Scenario Analyses" of low frequency, high impact events
 - example: business interruption
- Large potential payoff to banks :
 - Help incorporate the quantification of "risk reduction" into the decision making process of whether to make a particular technological investment or not.
 - Banks that measure and manage operational risk can significantly reduce costs
 - Banks that measure and manage operational risk are likely to be less susceptible to systemic problems

Significant Challenges for Bank Supervisors

- What modeling assumptions are reasonable?
- Many different types of models will be employed by banks
 - models idiosyncratic to firm
 - models idiosyncratic to business line
 - models idiosyncratic to controls
- Attaining flexible firm-specific modeling and consistency of treatment across organizations will be difficult
- Supervisory staff will need to understand modeling issues as well as the nature of operational risk for different business lines.