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Goals of Bank Supervisors

• Allocate capital according to a risk-focused approach to the
quantification of operational risk

• Provide incentives for banks to measure and manage operational risks
– Promote sound internal policies / controls / procedures
– Motivate investment in operational risk infrastructure to reduce

operational risk

• Ensure appropriate consideration of stress testing / systemic risk
– Consideration of systemic implications of operational risk decisions made

by individual firms
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Role for OpRisk Quantification

• Enables measurement of capital based on historical experience of firm
– Most accurate measure of idiosyncratic risk of individual firms
– Rewards firms that can reduce operational risk

• Improves bank decision making
– Provides framework for explicitly measuring gains from reducing risk

• Provides a mechanism for better understanding “tail events,” those
that may be outside a bank’s historical experience

• Provides method for measuring the effect of risk mitigation tools
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FRB Boston Operational Loss Data Initiative

• Several institutions, of varying size and product mixes, provided us
with operational loss data

• Data is considered strictly confidential
– Bank-specific information is used solely for supervisory purposes

• We have detailed discussions with banks regarding data collection
issues and quantification methods

• General observations about quantification methods:
– AMA methods are within the reach of most large institutions

• main cost is data collection
• with data, loss distributions can be calculated relatively easily
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Data Discussion
• To maintain the confidentiality of bank-specific data, all empirical

examples provided in this presentation are based on a “constructed”
database, not actual bank-level data.  The database was constructed in
a manner so that it would be impossible to uncover bank-specific
information, but still provide empirical results that mirror our general
findings from actual data.

• The constructed database:
– omitted several banks that supplied us with data
– combined business lines from several banks
– contains no bank in its entirety
– transformed data that was used

• Thus, the axes on each of the graphs in this presentation are not
relevant and not reflective of any bank.
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Overview of Quantification Techniques

Generally, the estimation of operational loss distribution involve 3 steps:
1. Estimating a frequency distribution
2. Estimating a severity distribution
3. Running a statistical simulation to produce a loss distribution
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Overview of Quantification Techniques

• The estimated operational loss distribution would take the
form of something similar to:

S e v e r ity  o f  L o s s

P ro b a b ility  o f  L o s s

E x p e c te d  L o s s  -
E x p e n s e  /  P ro v is io n

U n e x p e c te d  L o s s  –
R e s e rve s  /  In s u ra n c e  / C a p ita l

C a ta s t ro p h ic  L o s s  -
In s u ra n c e  ?

.10
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Quantification: Distributional Assumptions

• Selection of distributional assumptions are important

– Parametric vs. Non-Parametric

– Appropriate distributional assumption likely differs
• by business lines
• by institution

• Supervisors must be concerned about incentives banks have to
choose a specific methodology
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Distributional Assumptions Matter

Non-Parametric Parametric

Frequency of Operational Loss Events: BL1
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Quantification: Scaling of Data
• Why scale data?

– Level and mix of business activity changed so that historic data are
not reflective of current loss rates

• impact on frequency distribution - more/less frequent events
• impact on severity distribution -  exposure increases/decreases

– Thus, blindly using historical operational loss data can be misleading

• Conceptually, scaling is straightforward

• In practice, implementing is quite difficult
– What variable / methodology  should be used to scale?
– The return of the exposure indicator?
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Scaling Matters

Non-Parametric, No Scaling of Data Non-Parametric, Scaling of Frequency Data
Frequency of Operational Loss Events: BL1
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Scaling Matters

Non-Parametric, Scaling of Frequency and
Severity Data

Impact of Scaling

• Required capital at the 99.9%
confidence level, no scaling of
data: = 85M

• If scale frequency data:
= 100M (18% increase)

• If scale both frequency and
severity data:
= 111M (30% increase)
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Implementation Details are Important
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Quantification: How to Handle “Tail Events”

• How does a bank with no experience with high-severity events incorporate
the possibility that such an event could occur at their institution?

– External data?
– Scenario analysis?

• How does a bank that experienced a high-severity event deal with that
event in their quantification analysis?

– Loss distributions are sensitive to the inclusion of extreme events
– How long should the bank retain the extreme event in their database?
– If problem is corrected / controls enhanced, should event remain in

database?



15

Quantification: Risk Mitigation Techniques

• Insurance: outstanding issues regarding conversion of
operational risk to credit / legal risk

• Insurance as capital offset:
– Using information about deductibles/limits, “event policies” can

be thought of as altering the severity  distribution

• Incorporating this mitigation technique into the quantification
analysis can significantly affect the tail of the operational loss
distribution

• Quantification techniques discussed above provide firms with
the framework to determine appropriate insurance coverage
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Benefits of Quantifying OpRisk

• Allows banks to identify operational loss outcomes that they have
exposure to, but have yet to experience.

– example: bad cluster of high frequency, low impact events

• Provides a framework for modeling extreme events.
– “Scenario Analyses” of low frequency, high impact events
– example: business interruption

• Large potential payoff to banks :
– Help incorporate the quantification of “risk reduction” into the decision

making process of whether to make a particular technological
investment or not.

– Banks that measure and manage operational risk can significantly
reduce costs

– Banks that measure and manage operational risk are likely
to be less susceptible to systemic problems
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Significant Challenges for Bank Supervisors

• What modeling assumptions are reasonable?

• Many different types of models will be employed by banks
– models idiosyncratic to firm
– models idiosyncratic to business line
– models idiosyncratic to controls

• Attaining flexible firm-specific modeling and consistency of
treatment across organizations will be difficult

• Supervisory staff will need to understand modeling issues as well as
the nature of operational risk for different business lines.


