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Abstract

We model signalling in two-sided sequential search with heterogeneous agents
and transferable utility. Search via meetings is time-consuming and thereby
costly due to discounting. Search via signals is costless, so that agents can
avoid almost all search costs if only the signals are truthful. We show that
signals will indeed be truthful if the match output function is sufficiently super-
modular. The unique separating equilibrium is then characterised by perfect
positive assortative matching despite the search frictions. In this equilibrium,
agents successfully conclude their search after a single meeting, and overall
match output is maximised. These results continue to hold when there are
also explicit search costs in addition to discounting.
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1 Introduction

A number of important markets bring trade partners together in pairs. In such two-
sided matching markets, it is a pervasive phenomenon that likes tend to match with likes:
more accomplished workers tend to be hired by more successful firms, more educated
women tend to marry more educated men, more reliable tenants tend to secure nicer
apartments.1 This sorting of likes along some dimensions, known as positive assortative
matching (PAM), is relevant to economic research in at least two ways. First, assortative
matching is typically more efficient than, say, random matching: highly skilled workers
are better placed in complex work environments than unskilled workers, for example. If
economists understand what drives assortative matching, they will be in a position to
avoid mismatch in market design or to improve efficiency in existing markets by making
PAM more pronounced. Second, PAM serves as a test on the validity of theoretical
models: any model of a matching market with heterogeneous agents that cannot generate
PAM appears to have missed something important.

There is a small and young literature focussing on how assortative matching is gen-
erated. The literature identifies some form or another of complementarity among the
inputs into a match as the driver of PAM. Thinking of the value generated by a match
as the match output, a match production function specifies how agents’ inputs translate
into match output. Then simple complementarity among the inputs is equivalent to su-
permodularity of the match production function: the marginal effect on output from a
change in one input is increasing in the other input. However, simple complementarity
among inputs, i.e. supermodularity as such, often does not suffice for PAM to arise, and
various more complicated forms of supermodularity are then resorted to.

Following Smith (2006), we would classify the models in the literature by two crite-
ria. One is whether or not utility is transferable between agents. The literature refers
to non-transferable utility whenever agents divide the match output according to a pre-
imposed split, like an employer and her employee do when the employee’s wage is already
determined by an agreement between unions and employer associations.2 In cases of trans-
ferable utility, there is no pre-imposed split and agents have to bargain over the match
output and agree on a split. The other criterion is the kind of frictions in the model as cap-
tured by the costs of search. The seminal article by Becker (1973) considers a frictionless
setting (i.e. agents search costlessly) where utility is transferable, and supermodularity
as such turns out to suffice for PAM, in fact even perfect PAM: the types on one side
of the market match exclusively with exactly corresponding types on the other side.3 In
a setting with frictions, the costs of search may be expressed as implicit costs through
discounting or as explicit additive costs. An influential contribution by Shimer and Smith
(2000) examines a setting with discounting and transferable utility. They conclude that
the match production function, the logarithm of its first derivative, and the logarithm of
its cross-partial derivative all need to be supermodular for PAM to arise in this setting.
For the same setting with non-transferable utility, Smith (2006) shows that PAM will only
arise if the match production function is log-supermodular.

While supermodularity as such is a very natural condition, the combination of three
conditions required for PAM in Shimer and Smith (2000) is criticised by Atakan (2006)

1As an exemplary reference for these stylised facts, see Mare (1991).
2See Burdett and Coles (1999), p. F311.
3Using Becker’s (1973) work, it is quickly found that a frictionless setting with non-transferable utility

leads to PAM even without supermodularity: see Smith (2006), section II.
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as restrictive.4 His own model features transferable utility, as in Shimer and Smith
(2000), but explicit costs instead of discounting. Morgan (1998) builds a model with
non-transferable utility and explicit costs.5 In both models, supermodularity as such
gives rise to PAM. However, limiting oneself to explicit costs provides no answer to the
paradox that real-world agents in all sorts of matching markets both discount and sort
into PAM despite the restrictive conditions identified by Shimer and Smith (2000). Nor
is it a solution to conclude that utility must then be non-transferable in most real-world
matching markets - many if not most real-world matching markets involve some form of
bargaining, so that utility must be transferable. And even if utility was typically non-
transferable, production functions would still have to be log-supermodular according to
Smith (2006), arguably not the least restrictive of conditions.

This paper offers a solution by appealing to another, equally pervasive phenomenon in
matching markets: the use of signals. Signals come in the form of job advertisements and
applications on the labour market, dress style and body language on the marriage market,
online photographs of apartments and flat hunters on the market for rented housing, to
name but a few. Such signals may allow agents to search selectively, thereby avoiding some
explicit search costs, and to conclude search sooner, thereby limiting implicit search costs
overall. Hence, signals can potentially reduce the effect of search frictions and thus bring
a setting with frictions closer to a frictionless setting, in which mild conditions suffice for
PAM to arise. Of course, signals will only have this beneficial effect if they are actually
informative. In the famous signalling model by Spence (1973), years of education are an
informative signal for ability because more able workers find it easier to acquire education
than less able workers do. The model thus relies on signals being costly and on a single-
crossing property. Unfortunately, when agents signal their type through applications or
advertisements, the costs are typically small and a single-crossing property can in general
not be expected to hold: writing a forged CV is as costly as writing a truthful CV, and
painting an advertised job in unduly bright colours is as costly as honestly laying out its
dull nature. Yet, as shown by contributions such as Crawford and Sobel (1982), signals
will be informative even in an environment of such cheap talk if the interests of senders and
receivers are sufficiently aligned. Then the costs of signals can just as well be normalised
to zero.

The model we build introduces costless signals into a search model with transferable
utility very close to that of Shimer and Smith (2000). Our model is more general in so
far as explicit search costs are also included and as different parameters apply to the
two sides of the market, while parameters are identical and explicit costs are zero in
Shimer and Smith (2000). Throughout the paper, we spell out our key results also for
this special case, while we would in general argue that real-world differences between the
two sides of the market justify differential treatment. Our model is less general in so far as
we assume discrete uniform type distributions instead of general type distributions. We
prove a unique separating equilibrium in which matching is not only positively assortative
but perfectly positively assortative whenever the match production function is sufficiently
supermodular (and explicit search costs are not prohibitively high). In this equilibrium,
each agent finds it optimal to signal truthfully and to target her search on only one type.
The key idea is that an agent will in fact not necessarily prefer matches with higher
types because higher types appropriate larger shares of match output, thanks to more

4See Atakan (2006), p. 667.
5Morgan (1998) is the revised version of the mimeo with the same title dating from 1995.
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comfortable fall-back positions in bargaining. Indeed, sufficient supermodularity leads to
a preference for an exactly corresponding type, thereby perfectly aligning the interests
of agents from the two sides of the market and ensuring informative signals. Intuitively,
perfect PAM is then to be expected: if signals are fully informative, agents can replace
(almost all) costly search via meetings by costless search via signals and can therefore
behave like in a frictionless setting.

The separating equilibrium has a number of desirable efficiency properties. Above
all, agents match at the very first opportunity, so that no time is wasted on unsuccessful
search and search costs are minimised. In labour market terms, this would mean that
frictional unemployment disappears almost completely. An extension offers a realistic
scenario implying that a weaker condition on the supermodularity of the match production
function can suffice to ensure truthful signalling in reality. In any case, it appears that
our model requires less restrictive conditions than the model by Shimer and Smith (2000),
and yet it achieves perfect PAM instead of merely PAM. Finally, we report non-separating
equilibria of our model, which are a special case of the equilibrium in Shimer and Smith
(2000), except for elements specific to models with signals.

Our paper belongs to a small wave of current papers that consider signalling in the
context of matching. In a model built by Chade (2006), a noisy signal uncontrolled by
the agent provides some information about the agent’s type. Although agents discount
and no supermodularity is assumed (albeit some other conditions), matching is shown to
exhibit PAM in a stochastic sense: the distribution of types a high type might match with
first-order stochastically dominates this distribution for a low type. Chade (2006) further
finds that an assumption of log-supermodularity of the production function reinforces
these results. Our set-up primarily differs from Chade’s (2006) in that signals are not
stochastic but deliberately chosen by agents. We believe real-world agents will exert as
much control as possible over the signals of their types, given how important the signals
can be for their payoffs. A comparison between Chade’s (2006) model and ours thus gives
an indication of the efficiency gains from all agents learning to control their signals.

Next, Hopkins (2007) and Hoppe et al. (2008) build two similar models of a matching
tournament with signalling: match partners are essentially prizes for ex-ante choices of
costly signals. In both models, agents first select a costly signal of their unobservable
type like in Spence (1973) and then, based on these signals, match roughly like in Becker
(1973). In the symmetric equilibrium, agents’ signals are strictly increasing in their types,
even without the assumption of a single-crossing property. Assuming supermodularity
whenever utility is transferable (otherwise, no assumption is needed), this then leads to
perfect PAM at the matching stage - just as one would have expected, given Becker’s
(1973) findings. That a single condition on supermodularity ensures both informative
signals and perfect PAM in Hopkins (2007) and Hoppe et al. (2008) is a parallel to our
model: no additional assumption of a single-crossing property or, in our cheap-talk setting,
the sufficient alignment of agents’ interests is needed. However, since search frictions do
not exist in matching tournaments, neither of the two papers helps us to resolve the
paradox in Shimer and Smith (2000).

Finally, a model by Eeckhout and Kircher (2008) features the key elements of models
of directed search (also known as competitive search), including signals in the form of
sellers’ posted offers. Buyers observe the posted offers and simultaneously choose which
seller to visit in the current round. The only way frictions enter this process is through
congestion: buyers cannot coordinate, so that queues result and only some buyers manage
to buy in each round. It is shown that the matching of buyers and sellers will exhibit PAM
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if the square root of the match production function is supermodular.6 Shimer (2005) looks
at PAM in a standard directed search model of the labour market and finds, at least for
the case of only two worker types, that there will be some stochastic form of PAM as long
as workers of low type do not have a comparative advantage when working for employers
of high type. While these models simply assume that signals are truthful (a criticism
we would level against almost any directed search model), these models cannot resolve
the paradox mainly because of their limitation to frictions from congestion. Findings on
signals in models with these frictions unfortunately do not carry over to models with other
frictions in any obvious way.

Apart from the differences to existing models we have outlined here, three unique
features of our model are worth noting. To the best of our knowledge, it is the only
model that generates perfect PAM despite discounting. Moreover, it appears to be the
only model to examine assortative matching with both discounting and explicit search
costs, and consequently the only model to generate perfect PAM even in this context.
Nevertheless, we have the impression that our model is considerably simpler than any
model of signalling in a matching context that we are aware of.

The paper proceeds as follows. Section 2 specifies the environment and procedures
of search in our model. Section 3 characterises a putative separating equilibrium whose
main parts are to be examined one at a time. Section 4 derives the search strategies
from optimal behaviour. Section 5 identifies a condition on supermodularity under which
signalling will be truthful. In section 6, the proof of perfect PAM under this same condition
completes the proof of the separating equilibrium, which is concisely stated and found
to be unique as well as efficient in section 7. Section 8 extends by deriving a weaker
condition on supermodularity from a different but realistic scenario. Section 9 considers
non-separating equilibria, section 10 explores the relation of our model to directed search
models, and section 11 concludes.

2 Set-up

2.1 Search environment

The two sides of the matching market in our model are a set NX of agents indexed by
a productivity type x ∈ Θ and a set NY of agents likewise indexed by y ∈ Θ, where Θ
is a large but finite subset of [0, 1]. The numbers of agents, |NX | and |NY |, are both
finite but sufficiently large so that each agent’s market power ex ante is negligible. The
productivity types are exogenously given and verifiable, but not distantly observable.
To convey information about their types from a distance, agents can freely choose any
element of Θ as a public and costless signal of their type. Types are discretely distributed
according to the respective distribution functions LX : NX 7→ Θ and LY : NY 7→ Θ that
have the same discrete support, which may be justified by thinking of types as ranks in a
ranking over agents on the respective side of the market.

Assumption 1 (Type distributions). In steady state, the distributions LX and LY are
uniform with probability mass functions lX and lY , respectively.

6A somewhat comparable model is offered by Coles and Niederle (2007) where buyers signal their
preferences over sellers to the sellers, who then determine which buyer to offer the transaction. However,
the issue of PAM is not considered in their paper.
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Assumption 1 allows us to rule out that any part of agents’ behaviour is driven by dif-
ferences in the frequency of types. To this end, it might well suffice to assume a smooth
type distribution, so that there are no dramatic differences in the probabilities of adjacent
types. By specifying uniform distributions we simply select perfectly smooth distributions.
In fact, when there are dramatic discontinuities between adjacent types’ probabilities, this
will typically create incentives for agents close to this discontinuity to slightly change their
type. The standard logic of arbitrage thus suggests that discontinuities will be evened out
at least in steady state, so that assumption 1 does not seem totally implausible. While
it is common in the real world for secretaries to become call centre agents when there is
an abundance of secretaries and a shortage of call centre agents, we do not attempt to
model such type changes here.

Under assumption 1, the identical discrete support of LX(·) and LY (·) conveniently
implies an equal number of different types on both sides of the market: LX(·) and LY (·)
span an identical support without gaps. Normalising the flow output generated by an
unmatched agent to zero, a match between a type x and a type y generates a constant
flow output f(x, y).

Assumption 2 (Regularity conditions). The match production function f(·, ·) is sym-
metric (f(x, y) ≡ f(y, x)) and takes only positive values (f : Θ2 7→ R+).

Our assumption of symmetry follows the literature. It may again appear less restrictive
if one thinks of inputs x and y as ranks, which are typically much more comparable
than concrete productive inputs and can therefore reasonably be assumed to enter the
production function in the same way.

Assumption 3 (Supermodularity). For all x > x′ and y > y′, the match production
function satisfies f(x, y) − f(x′, y) > γ [f(x, y′)− f(x′, y′)] where γ ≥ 1. We call this
“strict supermodularity of degree γ”.

The standard notion of supermodularity would have γ = 1 and would mean that the effect
on output from a change in one input is increasing in the other input. The notion here
requires that this increase be strong enough. One aim of our analysis will be to identify
which value of γ is needed in equilibrium. Unfortunately, our notion of supermodularity
relies on sufficiently discrete type distributions: for any given γ > 1, the statement in
assumption 3 will eventually fail if y′ is allowed to become arbitrarily close to y. (As the
definition of a derivative involves taking the limit such that (y − y′) → 0, assumption
3 therefore cannot be expressed in terms of a cross-partial derivative.) The minimum
distance between two types in LY so that assumption 3 just holds can be the smaller the
smaller this distance is in LX and vice versa.7 The minimum distance must be the greater
the greater is γ.

Since utility is transferable, the parties to the match have to bargain over the division
of the match output before the match is consummated. Each agent’s flow utility during the
match equals the output share obtained. An agent x discounts future utility at discount
rate rX , while an agent y discounts at rate rY , with 0 < rX , rY < ∞. All agents are

7To see this, let y′ become closer and closer to a given y. Because of supermodularity, the difference
f(x, y′)− f(x′, y′) will grow, and will grow the faster the more different x and x′ are. Hence, with more
different x and x′, a growing y′ will sooner run into the constraint that assumption 3 has to hold, thus
leaving a greater difference between y and y′. In turn, let x′ become closer and closer to a given x.
Because of supermodularity, f(x, y)−f(x′, y) will fall faster than f(x, y′)−f(x′, y′), and the more so the
more different y and y′ are.
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risk-neutral and seek to maximise the present discounted value (pdv) of their expected
utility. Throughout the paper, ‘payoff’ refers to the pdv, not to the flow utility.

2.2 Search procedure

Our model features two-sided search in continuous time with an infinite horizon. Consider
an agent x who enters the pool of searchers at some point in time. Upon entering, she
begins sending a costless and public signal denoted x̃ ∈ Θ, which may or may not be an
accurate signal of her type x. She can always instantly and costlessly change the signal
she is sending. In turn, she observes sequentially the signals sent by the other side of the
market, while she cannot observe the true types at this stage. Whenever she observes
such a signal ỹ ∈ Θ, she can only form a belief µX(y|ỹ) about the probability that the
true type is y, given the signal ỹ. The time and the costs involved in observing and
evaluating signals are negligible. What we have in mind here is best represented by an
online platform where the next advertisement is only a click away.

However, before x can match with some agent y, a meeting between the two will
have to occur. Naturally, a meeting between two agents will only occur if each is willing
to meet the other, given the observed signals. Precisely because agents observe signals,
meetings are non-random: agents arrange meetings only with agents they would like
to meet. Thanks to modern technology, communication between agents only takes a
negligible amount of time. Once two agents have agreed to meet, however, the meeting
does not take place instantly. Rather, opportunities for meetings only present themselves
at certain rates.

Assumption 4 (Arrival rates). Any agent x ∈ Θ manages to meet an agent y to whom
she appears acceptable at exogenous Poisson rate ηX . Likewise, any agent y ∈ Θ manages
to meet an agent x to whom she appears acceptable at exogenous Poisson rate ηY , with
0 < ηX , ηY <∞.

While agents on the same side of the market may face slightly different meeting rates,
the point of assumption 4 is that any such differences do not affect search behaviour, so
that all agents on one side of the market behave as if they faced identical meeting rates.
Of course, assumption 4 is strong nevertheless. We make this assumption because we do
not see causes for substantively different meeting rates in our model: given assumption
1, different relative frequencies of types cannot be a cause here, nor can any notion of
distance, since communication through modern technology is equally rapid for all types.
Among the few potential causes that remain are congestion frictions, but section 10 will
explain why congestion frictions do not arise in our model and why our set-up actually
all but implies identical meeting rates.

What we would argue underlies agents’ inability to meet instantly are practical issues
that apply to all types more or less equally: agents might be busy with other things, so
that they only have time for a meeting at some later point, or agents need time to travel
to the meeting, or they might deliberately allow some time to prepare for this meeting.
All agents are therefore constrained by how many arranged meetings they can attend
over a given time period. Because of discounting, the time that elapses before a meeting
makes meetings costly, as opposed to observing and evaluating signals. In addition, any
agent x ∈ Θ incurs explicit costs cX ≥ 0 each time she attends a meeting, while any agent
y ∈ Θ incurs cY ≥ 0. Note that a model without explicit search costs will result if cX and
cY are set to zero.
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During the meeting, the agents bargain over the division of the match output that
they would produce between them.8 The shares agreed are given by the generalised Nash
bargaining solution where q ∈ (0, 1) represents the bargaining power of any agent x ∈ Θ
and 1 − q that of any agent y ∈ Θ.9 Since agents cannot recall previous offers, they can
only threaten to walk out of the meeting and continue searching. If both agents agree to
match, they each receive their agreed share of f(x, y) as flow utility. For the duration of a
match, shares are constant and the agents involved do not belong to the pool of searchers
(i.e. on-the-job search is ignored). Matches dissolve exogenously at constant Poisson rate
δ, and in this case the agents return to the pool of searchers. In all this, we assume agents
to have the following information:

Assumption 5 (Information). Each agent knows her own type, the match production
function f(·, ·), discount rates rX and rY , costs cX and cY , the parameter of bargaining
power q as well as the rates ηX , ηY , and δ.

Before moving on, we finally define a number of sets that will be useful in the analysis
below. Let D(x) denote the set of signals ỹ such that an agent of type x would like to
meet the agent sending such a signal, that is, the meeting strategy (or, in marriage market
terms, the dating strategy) of agent x. Then the set of signals ỹ whose senders would be
willing to meet x, given her signal x̃, is her opportunity set

Ω(x) ≡ {ỹ : x̃ ∈ D(y)}.
Combining these sets, R(x) ≡ D(x)∩Ω(x) denotes the set of signals ỹ such that a meeting
(or a rendez-vous) between x and y would in fact result. Next, the set of types y whom
agent x would accept for a match constitutes her stopping rule S(x). Then the matching
set is the set of types y such that a match between x and y would result:

M(x) ≡ S(x) ∩ {y : x ∈ S(y)}.
Of course, D(y), Ω(y), R(y), S(y), and M(y) are all defined analogously.

2.3 Steady state

We denote the probability mass function for unmatched agents by uX(·) ≤ lX and uY (·) ≤
lY , respectively. Then uX(x)|NX | gives the mass of unmatched agents of type x, while
[lX − uX(x)]|NX | gives the mass of matched agents of type x. These quantities and the
corresponding quantities for agents with a type y ∈ Θ are determined endogenously.
Previously matched agents of type x flow into the pool of searchers at rate δ, while
previously unmatched agents of type x flow out of the pool at rate ηX times the probability
that the meeting leads to a match. In a pointwise steady state, inflow and outflow just
balance for every type:

δ[lX − uX(x)]|NX | = ηX Pr(y ∈M(x)|ỹ ∈ R(x))uX(x)|NX | (1)

for all x ∈ Θ and correspondingly

δ[lY − uY (y)]|NY | = ηY Pr(x ∈M(y)|x̃ ∈ R(y))uY (y)|NY | (2)

for all y ∈ Θ. As agents only match in pairs, the total flow of agents x ∈ Θ out of (or
into) the pool of searchers must always equal the total flow of agents y ∈ Θ.

8The fact that there is no uncertainty about the (future) match output is termed a no learning
restriction by Burdett and Coles (1999) (p. F311).

9We limit ourselves to q ∈ (0, 1) rather than q ∈ [0, 1] here because the generalised Nash bargaining
solution would not be defined for q ∈ {0, 1}.
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Example 1 The set-up employed by Shimer and Smith (2000) as well as by Smith (2006)
features only one type distribution of agents who match randomly among themselves.
Such a set-up is easily derived from our two-sided set-up by letting all differences between
the two sides disappear so that only one set of agents exists, indexed by a type z ∈ Θ. In
particular, this requires

lZ ≡
lX |NX |+ lY |NY |
|NX |+ |NY |

and uZ(z) ≡ uX(x)|NX |+ uY (y)|NY |
|NX |+ |NY |

∀x = y

as well as ηX = ηY ≡ ηZ and (normalising) |NX | + |NY | = 1. Since identical agents use
the same strategies and have the same opportunity sets, it holds here that

Pr(y ∈M(x)|ỹ ∈ R(x)) = Pr(x ∈M(y)|x̃ ∈ R(y)) ∀x = y.

Equations (1) and (2) then add up to the condition for the pointwise steady state:

δ[lZ − uZ(z)] = ηZ Pr(z′ ∈M(z)|z̃′ ∈ R(z))uZ(z) ∀z ∈ Θ (3)

This is the same as the set-up in Shimer and Smith (2000) but for our assumption 1.

3 Putative equilibrium situation

3.1 Concept and present values

As is natural when signals are involved, we look for a perfect Bayesian equilibrium (PBE)
of our model. We focus our attention on separating equilibria and only turn to equilibria
where signals are effectively uninformative in section 9. As signals are costless, all PBE
will necessarily be cheap-talk equilibria. We first describe a putative equilibrium situation
below that consists of three main building blocks: truthful signalling, individual strategies
for meeting and stopping, and perfect positive assortative matching (PPAM) in the market;
that is, x = y in all matches. We then proceed to prove that these building blocks form
indeed a PBE by proving one block at a time, taking the two others as given.

Following this procedure, we will show in section 4 that optimising agents choose their
strategies for meeting and stopping as specified in the putative equilibrium situation,
given truthful signalling and PPAM. Section 5 will confirm that agents find it optimal
to signal truthfully, given their meeting strategies and stopping rules and given PPAM.
Finally, section 6 will prove that PPAM results when signals are truthful and agents
pursue optimal meeting strategies and stopping rules. A concise characterisation of the
separating PBE thus established is then provided in section 7.1. For now, we can only
define in general terms (that also apply to non-separating equilibria) what counts as an
equilibrium of our model:

Definition 1 (Search equilibrium). Equilibrium requires that the pointwise steady state
holds and that each agent chooses her signal optimally, pursues an optimal meeting strat-
egy, employs an optimal stopping rule, and holds beliefs that are reinforced by equilibrium
play.

The putative equilibrium situation we propose is characterised by the following be-
haviour. All agents participate in the market, signal their type truthfully, and correctly
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believe all other agents to be also signalling truthfully. Each agent seeks to meet exclu-
sively those agents in her opportunity set who send the most promising signals; that is,
whose signals suggest the type the agent most prefers among the types she can meet.
Provided the degree of supermodularity is high enough, each agent most prefers agents of
exactly corresponding types, so that meetings only occur between exactly corresponding
types: x = y in every meeting. Stopping rules are such that every meeting results in a
match, and the matching thus exhibits PPAM.

We now derive the present values that various states carry in the putative equilibrium
situation. Let V (x̃|ỹ) be the present value to agent x when she is unmatched while she
signals her type as x̃ and would only like to meet an agent signalling ỹ (according to her
optimal meeting strategy). Next, let W (x|y) be the present value to x from a match with
y. Of course, V (ỹ|x̃) and W (y|x) are defined analogously. As signals are truthful here,
x̃ = x and ỹ = y. Note that no optimising agent would knowingly attend a meeting that
will not lead to a match, due to the costs associated with meetings. When truthful signals
allow agents to know everything in advance, every meeting that occurs will therefore lead
to a match. Hence an agent x effectively incurs the explicit search costs each time she
matches, so that the payoff from matching is W (x|y)− cX . The relation between V (x̃|ỹ)
and W (x|y) can be derived from an asset equation that equates the return on being
unmatched with the gain from being matched incurred at rate ηX :

rXV (x̃|ỹ) = ηX [W (x|y)− cX − V (x̃|ỹ)] (4)

We can likewise find an asset equation for W (x|y). Recall that the flow utility to an agent
from a match equals her share of the match output. For an agent x in a match with an
agent y, we denote the share as π(x|y). Writing U(x) for the present value of having to
begin searching from scratch,

rXW (x|y) = π(x|y)− δ[W (x|y)− U(x)] (5)

captures that agent x receives the flow π(x|y) while matched but incurs a loss W (x|y)−
U(x) if the match dissolves, which happens at rate δ. To close the circle, note that the
stationarity of an equilibrium situation implies that x will continue to signal truthfully
and seek a meeting with an exactly corresponding type again:

U(x) = V (x̃|ỹ) where x̃ = x = ỹ. (6)

3.2 Shares in bargaining

On the basis of the relations between agents’ present values, we now turn to bargaining
over the match output f(x, y) (a flow). Because agents will not leave anything on the
table, we know that

π(x|y) + π(y|x) = f(x, y) (7)

If bargaining fails, each agent simply continues to search. In flow terms, the threat point
of agent x is therefore rXV (x̃|ỹ). By equation (4), this is

rXV (x̃|ỹ) =
ηX

rX + ηX
[rXW (x|y)− rXcX ]

⇔ (rX + ηX)rXV (x̃|ỹ) = ηX [π(x|y)− δ [W (x|y)− V (x̃|ỹ)]− rXcX ]
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where the second line draws on equations (5) and (6). From equation (4), we infer

W (x|y) =
rX + ηX
ηX

V (x̃|ỹ) + cX

which allows us to substitute W (x|y) out:

(rX + ηX)rXV (x̃|ỹ) = ηX

[
π(x|y)− δ

[
rX
ηX
V (x̃|ỹ) + cX

]
− rXcX

]
= ηX [π(x|y)− δcX − rXcX ]− δrXV (x̃|ỹ)

⇔ rXV (x̃|ỹ) =
ηX

rX + δ + ηX
[π(x|y)− cX(rX + δ)] (8)

By analogy also

rY V (ỹ|x̃) =
ηY

rY + δ + ηY
[π(y|x)− cY (rY + δ)] (9)

Hence the total surplus agents derive from match output is a strictly positive expression:

f(x, y)− rXV (x̃|ỹ)− rY V (ỹ|x̃) = [π(x|y)− rXV (x̃|ỹ)] + [π(y|x)− rY V (ỹ|x̃)] (10)

However, to ensure that agents are willing to engage in search and attend meetings in
the first place, we also need V (x̃|ỹ) ≥ 0 and V (ỹ|x̃) ≥ 0. Lemma 1 below takes up this
issue. Here we only solve for shares π(x|y) and π(y|x). It is not clear a priori how the
surplus is to be split, and thus agents bargain. The solution to this bargaining is given
here by the generalised Nash bargaining solution (generalised NBS), i.e. the combination
of shares that maximises the weighted product of the individual surpluses:

arg max
π(x|y),π(y|x)

[π(x|y)− rXV (x̃|ỹ)]q [π(y|x)− rY V (ỹ|x̃)]1−q , (11)

recalling that q ∈ (0, 1) represents the bargaining power of any agent x ∈ Θ. Once π(y|x)
has been replaced by f(x, y) − π(x|y) in line with equation (7), the first-order condition
with respect to π(x|y) returns

1− q
q

=
f(x, y)− π(x|y)− rY V (ỹ|x̃)

π(x|y)− rXV (x̃|ỹ)
(12)

From this, one obtains the shares in the familiar split-the-surplus formulation:

π(x|y) = rXV (x̃|ỹ) + q [f(x, y)− rY V (ỹ|x̃)− rXV (x̃|ỹ)]

π(y|x) = f(x, y)− π(x|y) = rY V (ỹ|x̃) + (1− q) [f(x, y)− rY V (ỹ|x̃)− rXV (x̃|ỹ)]

While we will also employ this general formulation in later sections, we take a different
route from equation (12) here in order to obtain concise solved-out expressions for the
shares. To simplify the exposition, define

ψX ≡
ηX

rX + δ + ηX
cX(rX + δ) and ψY ≡

ηY
rY + δ + ηY

cY (rY + δ) (13)

Using ψX and ψY in equations (8) and (9) and then substituting for rXV (x̃|ỹ) and
rY V (ỹ|x̃) in equation (12) gives us

1− q
q

=
f(x, y)− π(x|y)− ηY

rY +δ+ηY
π(y|x) + ψY

π(x|y)− ηX
rX+δ+ηX

π(x|y) + ψX
(14)
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With the substitution π(y|x) = f(x, y)− π(x|y) once again, this becomes

1− q
q

=
[f(x, y)− π(x|y)]

[
1− ηY

rY +δ+ηY

]
+ ψY

π(x|y)
[
1− ηX

rX+δ+ηX

]
+ ψX

⇔
[
π(x|y)

rX + δ

rX + δ + ηX
+ ψX

]
1− q
q

= [f(x, y)− π(x|y)]
rY + δ

rY + δ + ηY
+ ψY

Dividing through by rY +δ
rY +δ+ηY

, we rewrite this as

π(x|y)a = f(x, y)− π(x|y) +
rY + δ + ηY
rY + δ

ψY −
1− q
q

rY + δ + ηY
rY + δ

ψX (15)

where

a ≡ rX + δ

rX + δ + ηX

1− q
q

rY + δ + ηY
rY + δ

(16)

With the definitions of ψX and ψY above, we note that

rY + δ + ηY
rY + δ

ψY = ηY cY and
1− q
q

rY + δ + ηY
rY + δ

ψX = aηXcX (17)

Hence, finally solving equation (15) for π(x|y) returns

π(x|y) =
1

1 + a
[f(x, y) + ηY cY − aηXcX ] (18)

Then π(y|x) is derived as follows:

π(y|x) = f(x, y)− π(x|y)

= f(x, y)− 1

1 + a
[f(x, y) + ηY cY − aηXcX ]

= f(x, y)

(
1− 1

1 + a

)
− 1

1 + a
[ηY cY − aηXcX ]

= f(x, y)
a

1 + a
− a

1 + a

[
a−1ηY cY − ηXcX

]
=

1

1 + b
[f(x, y) + ηXcX − bηY cY ] (19)

where

b ≡ a−1 =
rY + δ

rY + δ + ηY

q

1− q
rX + δ + ηX
rX + δ

(20)

As one would expect, the share obtained by an agent is increasing in her bargaining power,
in the rate at which she can attend meetings, and in the other agent’s discount rate (i.e. in
the other agent’s impatience). It is falling in her own impatience, in the other agent’s rate
of meetings, in her own explicit costs but increasing in the other agent’s explicit costs.

Example 2 When rX = rY ≡ r, ηX = ηY ≡ η, and q = 1 − q, then a = b = 1 and the
shares given by equations (18) and (19) simplify to

π(x|y) =
1

2
[f(x, y) + η(cY − cX)] and π(y|x) =

1

2
[f(x, y) + η(cX − cY )]

When in addition cX = cY or cX = cY = 0 as in Shimer and Smith (2000) agents simply
split the match output in halves, as is to be expected when agents are in symmetric
bargaining positions.
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3.3 Participation

The following lemma turns to the problem that explicit costs in the putative equilibrium
situation must not be so high that some agents refuse to engage in search.

Lemma 1 (Cost limits). No agent will strictly prefer not to engage in search in the
putative equilibrium situation if the following conditions both hold:

cX ≤
f(x, y) + ηY cY

(rX + δ)(1 + a) + aηX
, cY ≤

f(x, y) + ηXcX

(rY + δ)(1 + b) + bηY

where x = minx∈Θx and y = miny∈Θy.

Proof. Consider only types x and y for the moment. The equilibrium match that would
normally occur between these types depends on both types participating in the market
and engaging in search. To do so, agent x requires

V (x̃|ỹ) ≥ 0 where x = x = y.

Focus on the case when x is indifferent, i.e. V (x̃|ỹ) = 0. To keep the algebra tractable,
we begin by finding the output shares that x and y obtain in this particular case. The
first-order condition for the NBS, corresponding to equation (14), becomes:

1− q
q

=
f(x, y)− π(x|y)− ηY

rY +δ+ηY
π(y|x) + ψY

π(x|y)

Using π(y|x) = f(x, y)− π(x|y) as usual leads to

π(x|y)
1− q
q

=
[
f(x, y)− π(x|y)

] rY + δ

rY + δ + ηY
+ ψY

⇔ π(x|y)
1− q
q

rY + δ + ηY
rY + δ

= f(x, y)− π(x|y) +
rY + δ + ηY
rY + δ

ψY

⇔ π(x|y) =
f(x, y) + ηY cY

1 + 1−q
q

rY +δ+ηY
rY +δ

(21)

where the last step uses the first part of equation (17). Next, we deduce from equation
(8) that V (x̃|ỹ) = 0 implies

cX(rX + δ) = π(x|y)

and using our result for π(x|y), this says

cX =
f(x, y) + ηY cY

(rX + δ)
(

1 + 1−q
q

rY +δ+ηY
rY +δ

)
Note that the denominator can be rewritten as

(rX + δ) + a(rX + δ + ηX) = (rX + δ)(1 + a) + aηX

As equation (8) indicates that V (x̃|ỹ) is strictly decreasing in cX , we can conclude that

cX ≤
f(x, y) + ηY cY

(rX + δ)(1 + a) + aηX
(22)
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is needed for V (x̃|ỹ) ≥ 0. A similar reasoning applies to y. If V (ỹ|x̃) = 0, then

π(y|x) =
f(x, y) + ηXcX

1 + q
1−q

rX+δ+ηX
rX+δ

and V (ỹ|x̃) ≥ 0 requires

cY ≤
f(x, y) + ηXcX

(rY + δ)(1 + b) + bηY
(23)

Finally, if cX and cY respectively meet the conditions (22) and (23) when the match
output is f(x, y), they will always meet these conditions when the match output ex-
ceeds f(x, y). As the match output in all other equilibrium matches must exceed f(x, y),
no agent faces prohibitive search costs whenever conditions (22) and (23) are satisfied. �

As an aside, the share π(x|y) derived in equation (21) will be weakly smaller than the
share in equation (18) if and only if V (x̃|ỹ) ≥ 0 (i.e. equation (22) holds): in the presence
of explicit search costs, V (x̃|ỹ) may be negative, and in such a case x will be better off if
V (x̃|ỹ) = 0.

Section 6 will find that the separating equilibrium depends on there being equal num-
bers of types on both sides of the market. This is the case in our set-up when the conditions
in lemma 1 are met, so that all types participate. That these conditions are indeed met
is henceforth treated as a part of the putative equilibrium situation. In other words, we
analyse behaviour in the putative equilibrium situation below under the premise that all
agents participate. Should some types be discouraged by high explicit costs, however, the
putative equilibrium situation still applies to the participating types, and all results go
through, as long as the numbers of participating types are still equal.

Example 3 When rX = rY ≡ r, ηX = ηY ≡ η, q = 1 − q, and also cX = cY ≡ c the
conditions on cX and cY in lemma 1 each simplify to a single condition on c,

c(2(r + δ) + η) ≤ f(x, y) + ηc ⇔ c ≤
f(x, y)

2(r + δ)

so that the share obtained after the first meeting, discounted at effective discount rate
r + δ, needs to outweigh the explicit costs of this one meeting.

4 Equilibrium strategies

Recall that the putative equilibrium situation we described in the previous section consists
of three main building blocks: truthful signalling, individual strategies for meeting and
stopping, and PPAM. Beginning with the simplest building block, this section will address
individual strategies, given truthful signalling and PPAM.

We turn first to agents’ meeting strategies. Consider an agent x ∈ Θ who sequentially
searches the signals sent by agents with a type y ∈ Θ. Recall that the present value of this
initial stage of the search is U(x), and recall that the present value when she seeks to meet
an agent signalling ỹ while she herself signals her type as x̃ is denoted V (x̃|ỹ). For any
observed signal ỹ ∈ Θ, the agent will switch from U(x) to V (x̃|ỹ) only if V (x̃|ỹ) ≥ U(x).
As she seeks to meet agents in accordance with her meeting strategy D(x), this switch
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implicitly determines her meeting strategy: a switch from U(x) to V (x̃|ỹ) indicates that
ỹ ∈ D(x). Our task is now to identify the optimal meeting strategy of agent x. With σX
denoting the rate at which x encounters signals of agents y, we can state the following
asset equation:

rXU(x) = σX

 ∑
ỹ∈Ω(x)

max[V (x̃|ỹ), U(x)]lY − U(x)

 (24)

The logic behind equation (24) is as follows. The return on the state of search among
signals equals the potential gain that comes along with looking at signals, which arrive
at rate σX . For each ỹ, either ỹ ∈ D(x) or ỹ 6∈ D(x). Whenever ỹ ∈ D(x), agent x would
like to meet the agent who is sending the signal ỹ, implying max[V (x̃|ỹ), U(x)] = V (x̃|ỹ).
Agent x thereby incurs a gain of V (x̃|ỹ) − U(x). Whenever ỹ 6∈ D(x), nothing changes,
so that the gain is 0. In principle, x can decide for any ỹ ∈ Θ whether she would like
a meeting. However, if she seeks a meeting when ỹ 6∈ Ω(x) while signalling her type
truthfully, she will be turned down straight away and be left with U(x), with no time lost
because agents’ communication only takes negligible amounts of time (see section 2.2).10

Formally, V (x̃|ỹ) = U(x) for all ỹ 6∈ Ω(x). Then the gain is 0 and we can leave such
signals out of the equation altogether. To express the expected gain under the meeting
strategy D(x), the expectation is thus simply taken over all ỹ ∈ Ω(x), where we have put
lY instead of the probability of ỹ because ỹ = y under truthful signalling.

If other agents’ signals are encountered at rate σX , the time it takes in expectation
before another signal arrives is 1

σX
. Of course, we have already clarified in section 2.2

that observing signals only takes a negligible amount of time. This implies not only that
every signal is considered only very briefly, but also that another signal is encountered
more or less immediately. Formally, we thus require that 1

σX
→ 0, or σX →∞. Rewriting

equation (24) first as

rXU(x)

σX
=
∑
ỹ∈Ω(x)

max[V (x̃|ỹ), U(x)]lY − U(x)

we then take the limit:

lim
σX→∞

rXU(x)

σX
= 0 ⇒

∑
ỹ∈Ω(x)

max[V (x̃|ỹ), U(x)]lY = U(x)

⇔
∑
ỹ∈Ω(x)

max[V (x̃|ỹ)− U(x), 0]lY = 0 (25)

While these steps may appear to depend crucially on continuous time, an effectively
equivalent argument can in fact be made for discrete time.11 Next, let us focus on the

10By such trial and error through costless communication, agents can learn their opportunity set in
no time at all. Alternatively, it can be argued that agents understand the equilibrium and infer their
opportunity set, and the asset equations in this section therefore presuppose that agents know their
opportunity set. To instead make learning through trial and error explicit, the possibility of recall would
have to be introduced much like it is in Weitzman (1979).

11The key is to note that the Bellman equation for U(x) in discrete time would not include a discount
factor on the right-hand side, as arbitrarily many signals may be encountered and considered within one
time period.
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potentially largest addend on the left-hand side of equation (25), i.e. on

max

[
max
ỹ∈Ω(x)

V (x̃|ỹ)− U(x), 0

]
lY .

Suppose we had
U(x) < max

ỹ∈Ω(x)
V (x̃|ỹ).

Then the largest addend would be strictly positive. It could not be offset by any strictly
negative addend since all addends are at least 0, so that the sum would be strictly positive
and violate equation (25). Instead, as Adachi (2003) observed, it will hold if

U(x) ≥ max
ỹ∈Ω(x)

V (x̃|ỹ)

as now max[V (x̃|ỹ)−U(x), 0] = 0 always. Next, note that maxỹ∈Ω(x) V (x̃|ỹ) is the highest
present value that agent x can possibly achieve as a direct result of her search among
signals, given her opportunity set. Hence, the present value of search among signals
cannot exceed this, and so we conclude that

U(x) = max
ỹ∈Ω(x)

V (x̃|ỹ). (26)

Because signals are, like types, discretely distributed maxỹ∈Ω(x) V (x̃|ỹ) exists and is asso-
ciated with a unique ỹ. Equation (26) then implies that x switches from U(x) to V (x̃|ỹ)
only in response to a unique ỹ. In other words, the meeting strategy of x must be a
singleton, i.e. |D(x)| = 1:

D(x) = {ỹ : V (x̃|ỹ) = max
ỹ∈Ω(x)

V (x̃|ỹ)} (27)

Given that signals are truthful, the optimal meeting strategy is thus to seek meetings
exclusively with the agents whose signal is the most promising in the opportunity set. As
a more intuitive explanation, an agent will stop searching among signals when the expected
marginal benefit of continued search is less than or equal to the expected marginal cost.
Section 2.2 specified that the time and costs involved in observing and evaluating signals
are negligible, so that the marginal cost of continued search is zero. Hence, the agent will
find it optimal to continue searching until the expected marginal benefit is zero as well,
i.e. until the most promising signal in the opportunity set is encountered. Note that these
conclusions do not depend on the particular approach we have taken. We have set up the
choice of meeting strategy as a problem of sequential search among signals because that
seems a good description of reality to us. For example, search among advertisements or
profiles in an online database proceeds sequentially, even if an automated query returns
a selection of non-trivial size. Yet, if one instead assumed that agents observe all current
signals at once, the result for the meeting strategy would be the same.

On the background of equation (26), the optimal stopping rule S(x) is quickly deter-
mined. If x is already in a meeting, in the putative equilibrium situation she will obtain
the payoff U(x) as specified above simply by not accepting the match. For x to accept,
her payoff will have to (weakly) exceed this, and so S(x) is found as

S(x) = {y : W (x|y) ≥ U(x)} = {y : W (x|y) ≥ max
ỹ∈Ω(x)

V (x̃|ỹ)}. (28)
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The optimal meeting strategy and stopping rule for any agent y ∈ Θ are exactly analogous.
This section has thus shown that each agent desires a meeting only with agents who send
the most promising signal in her opportunity set, given truthful signalling. Moreover, the
stopping rules imply that every meeting then results in a match. Both results confirm
what we proposed as part of the putative equilibrium situation and will be specified
further when we concisely state the entire equilibrium in section 7.1.

5 Truthful signalling

5.1 Agents’ preferences over matches

In this section and the next, truthful signalling is placed under scrutiny, taking the in-
dividual strategies and PPAM as given. We proceed in two steps: this section explores
agents’ preferences over matches, while the next section employs the results to examine
whether any agent has a unilateral incentive to deviate from truthful signalling in the pu-
tative equilibrium situation. We will find that there will be no such incentive to deviate
if the degree of supermodularity is sufficiently high.

The reason why we need to worry about false signals in the first place is the existence of
search frictions. For an agent who is bargaining with another agent, search frictions make
switching to another bargaining partner costly and thereby give market power to the agent
she is currently bargaining with. Agents may send false signals in order to manoeuvre
themselves into this very position of market power, and then exploit this power to ensure
that they are accepted by higher types who would normally not even want to meet them.
For example, consider an agent with a rather high type yH who matches with an exactly
corresponding type xH under truthful signalling. If yH finds she has been lured into a
meeting with a type xL < xH by a false signal, she will nevertheless grudgingly accept
whenever xL is not so far below xH that the costs of another meeting would be justified.
Therefore, there can in principle be an incentive to send false signals.

However, we demonstrate below that agents will actually not desire matches with
higher types for sufficient degrees of supermodularity γ, and will thus have no incentive
to overstate their type. This must appear counterintuitive: after all, f(x, y) is increasing in
both arguments irrespectively of the degree of supermodularity, so that higher is better in
this sense. Yet we show that this logic does not carry over to bargaining situations: higher
types also have higher threat points in bargaining. Therefore, an agent who matches with
a high type may end up with a lower share than in a match with some low type.

Our task is to show that each agent prefers her match in the putative equilibrium
situation (henceforth the equilibrium match) to any alternative match. We consider con-
secutively three classes of alternative matches: “matches with no-one” (i.e. the agent
remains unmatched for the expected duration of a match), matches with higher types,
and matches with lower types. In the spirit of the one-deviation principle, we always
assume agents to consequently revert to the behaviour prescribed by the putative equi-
librium situation. The next section will draw on these results to analyse the incentives to
deviate from truthful signalling. For the first class of alternative matches we find:

Lemma 2 (Matches with no-one). No agent in the putative equilibrium situation
prefers being unmatched to her equilibrium match, but each agent strictly prefers her
equilibrium match in all but extreme cases (when q → 0 or q → 1).

17

ha
ls

hs
-0

05
85

98
6,

 v
er

si
on

 1
 - 

14
 A

pr
 2

01
1



Proof. Consider some agent x ∈ Θ. Recall the present value of her equilibrium match
from equation (5) as

rXW (x|y) = π(x|y)− δ[W (x|y)− U(x)]

⇔ W (x|y) =
π(x|y) + δU(x)

rX + δ
, (29)

deliberately leaving U(x) in the equation. Write W (x|0) for the present value of a match
with no-one, that is, remaining unmatched for the expected duration 1/δ. Also write
π(x|0) for the flow payoff during this time; of course, π(x|0) = 0. Then

rXW (x|0) = π(x|0)− δ[W (x|0)− U(x)]

⇔ W (x|0) =
π(x|0) + δU(x)

rX + δ
(30)

Equations (29) and (30) imply

W (x|y) ≥ W (x|0) ⇔ π(x|y) ≥ π(x|0) = 0. (31)

Hence preference for the equilibrium match requires

π(x|y) =
1

1 + a
[f(x, y) + ηY cY − aηXcX ] ≥ 0 (32)

⇔ f(x, y) + ηY cY ≥ aηXcX (33)

If a = 0, equation (33) will hold, for any cY . If a > 0, this equation requires

cX ≤
f(x, y) + ηY cY

aηX
(34)

Now note that since x participates, cX must weakly satisfy equation (22). Then it will
strictly satisfy equation (34) because (rX + δ)(1 + a) > 0. We conclude that equation
(32) holds for any agent x who participates, proving a weak preference for the equilibrium
match. The preference is strict whenever a < ∞ (a ≥ 0 by definition). Since all other
parameters are bounded away from 0 by definition, a→∞ if and only if q → 0. Similarly,
b ≥ 0 implies that a agent y ∈ Θ has always at least a weak preference for the equilibrium
match. It is a strict preference unless b→∞ due to q → 1. �

Next, we focus on matches with higher types. Without loss of generality, let us take the
perspective of some agent with a type xL < maxx∈Θ x, so that higher types necessarily
exist. We want to compare being matched with an exactly corresponding type yL = xL, as
in the equilibrium match, to being matched with a higher type yH > xL. The comparison
W (xL|yL) > W (xL|yH) reduces to π(xL|yL) > π(xL|yH) along the lines of equations (29)
through (31), where π(xL|yH) is the share obtained by xL in a match with yH . In order to
determine this share, we have to begin with the first-order condition for the NBS again.12

The equivalent of equation (12) is in this case:

1− q
q

=
f(xL, yH)− π(xL|yH)− rY V (ỹH |x̃H)

π(xL|yH)− rXV (x̃L|ỹL)
(35)

12We cannot simply plug f(xL, yH) into equation (18), as its derivation relied on match output being the
same in the current match and in following matches, due to the stationarity of an equilibrium situation.
When we consider a deviation in the spirit of the one-deviation principle, this no longer holds.
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where V (ỹH |x̃H) indicates that yH would otherwise match with an exactly corresponding
type xH at the next opportunity and V (x̃L|ỹL) indicates that xL would otherwise match
with an exactly corresponding type yL at the next opportunity, as prescribed by the
putative equilibrium situation.13 In order to solve for π(xL|yH), rewrite equation (35) as

(1− q) [π(xL|yH)− rXV (x̃L|ỹL)] = q [f(xL, yH)− π(xL|yH)− rY V (ỹH |x̃H)] .

We then rearrange to obtain the familiar split-the-surplus form

π(xL|yH) = (1− q)rXV (x̃L|ỹL) + q [f(xL, yH)− rY V (ỹH |x̃H)]

= rXV (x̃L|ỹL) + q [f(xL, yH)− rY V (ỹH |x̃H)− rXV (x̃L|ỹL)] (36)

Let us contrast this with the share obtained in an equilibrium match, also written out in
the split-the-surplus form here for convenience:

π(xL|yL) = rXV (x̃L|ỹL) + q [f(xL, yL)− rY V (ỹL|x̃L)− rXV (x̃L|ỹL)]

Agent xL strictly prefers the match with yL if π(xL|yL) > π(xL|yH), i.e.

f(xL, yL)− rY V (ỹL|x̃L) > f(xL, yH)− rY V (ỹH |x̃H)

⇔ rY V (ỹH |x̃H)− rY V (ỹL|x̃L) > f(xL, yH)− f(xL, yL) (37)

Equation (37) has a straightforward interpretation. The right-hand side is the increase in
total match output that results when xL matches with yH instead of yL. The left-hand
side is the difference in the threat points of agents yH and yL. With our result for π(y|x)
from equation (19), we find the threat points of yH and yL from equation (9) as

rY V (ỹH |x̃H) =
ηY

rY + δ + ηY

[
1

1 + b
[f(xH , yH) + ηXcX − bηY cY ]− cY (rY + δ)

]
(38)

rY V (ỹL|x̃L) =
ηY

rY + δ + ηY

[
1

1 + b
[f(xL, yL) + ηXcX − bηY cY ]− cY (rY + δ)

]
(39)

When we subtract the latter from the former, all terms involving explicit costs cancel,
and thus we rewrite equation (37) as

ηY
rY + δ + ηY

1

1 + b
[f(xH , yH)− f(xL, yL)] > f(xL, yH)− f(xL, yL) (40)

It is now clear that the left-hand side of equation (37) is weakly positive (strictly for
b < ∞, i.e. q < 1) because yH would obtain more match output in her equilibrium
match than yL. Recall from the definition of surplus in equation (10) that a higher match
output increases the surplus, while a higher rY V (ỹ|x̃) reduces it. Whenever the reduction
outweighs the increase, so that equation (37) holds, the surplus in a match between xL
and yH is unambiguously lower than in a match between xL and yL, since rXV (x̃|ỹ)
remains constant. Such an overall fall in surplus renders a match with yH less preferred,
as equation (37) claims, because xL still obtains the same proportion q of the surplus,
as can be seen from the formulation in equation (36). Hence, if the surplus falls while
rXV (x̃|ỹ) is constant, her share will also fall, leaving her worse off than in her equilibrium
match. Intuitively, yH receives additional compensation for her higher opportunity costs,
which may outweigh the marginal contribution by yH vis-à-vis yL to match output. This
explains why higher is not necessarily better here.

13As mentioned before, this follows the one-deviation principle: we do not consider any other V (x̃|ỹ)
instead of V (x̃L|ỹL) nor any V (ỹ|x̃) instead of V (ỹH |x̃H), as these could only arise from a second deviation
from the putative equilibrium situation.
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Example 4 When rX = rY ≡ r, ηX = ηY ≡ η, and q = 1 − q as in Shimer and Smith
(2000), equation (40) is

η

r + δ + η

1

2
[f(xH , yH)− f(xL, yL)] > f(xL, yH)− f(xL, yL)

⇔ η

r + δ + η
>

2 [f(xL, yH)− f(xL, yL)]

f(xH , yH)− f(xL, yL)
. (41)

It is easily shown that the right-hand side, as the left-hand side, is strictly less than one.14

Hence, condition (41) can in principle be met and is met the more easily the greater η rel-
ative to r+ δ. Intuitively, the higher r, the less agents care about shares from alternative
matches that could only take place in the future, so that alternative matches (and changes
therein) have less impact on current bargaining. An increase in η brings the alternative
match closer and thus has the opposite effect (which becomes weaker as agents value time
savings less, i.e. as r falls).

Having explored why an agent may prefer her equilibrium match to a match with a higher
type, we now turn to the degree of supermodularity needed for this to be indeed the case.

Lemma 3 (Matches with higher types). In the putative equilibrium situation, any
agent x ∈ Θ will strictly prefer the equilibrium match to a match with a higher type if the
degree of supermodularity γ obeys

γ ≥
1 + q ηX

rX+δ

(1− q) ηY
rY +δ

Proof. As shown, a match with a higher type will not be preferred to the equilibrium
match by any agent xL < maxx∈Θ x if equation (40) holds, i.e.

ηY
rY + δ + ηY

1

1 + b
f(xH , yH) > f(xL, yH)−

[
1− ηY

rY + δ + ηY

1

1 + b

]
f(xL, yL)

which we then expand by subtracting the same term in f(xL, yH) on both sides:

ηY
rY + δ + ηY

1

1 + b
[f(xH , yH)− f(xL, yH)] > (42)[

1− ηY
rY + δ + ηY

1

1 + b

]
[f(xL, yH)− f(xL, yL)] (43)

Next, note that we can write

f(xL, yH) = f(yL, xH) (44)

14The denominator on the right-hand side needs to exceed the numerator:

f(xH , yH)− f(xL, yL) > 2 [f(xL, yH)− f(xL, yL)]
⇔ f(xH , yH)− f(xL, yH) > f(xL, yH)− f(xL, yL)
⇔ f(xH , yH)− f(xL, yH) > f(xH , yL)− f(xL, yL)

where equation (46) allows us to replace f(xL, yH) by f(xH , yL) in the last step. Of course, the last
equation must hold by supermodularity (see assumption 3).
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because xL = yL and yH = xH , and in turn

f(yL, xH) = f(xH , yL) (45)

by symmetry (see assumption 2). Therefore of course

f(xL, yH) = f(xH , yL) (46)

which we use to substitute out f(xL, yH) on the right-hand side of equation (42) only.
Also dividing through by ηY

rY +δ+ηY

1
1+b

, we are left with

f(xH , yH)− f(xL, yH) >

[
rY + δ + ηY

ηY
(1 + b)− 1

]
[f(xH , yL)− f(xL, yL)] .

For this to hold by supermodularity, we need γ to weakly exceed the term in brackets:

γ ≥ rY + δ + ηY
ηY

(1 + b)− 1 =
rY + δ + ηY

ηY
− 1 +

rY + δ + ηY
ηY

b =

rY + δ

ηY
+
rY + δ

ηY

rX + δ + ηX
rX + δ

q

1− q
=
rY + δ

ηY

[
1 +

q

1− q
+

q

1− q
ηX

rX + δ

]
=

rY + δ

ηY

1

1− q

[
1 + q

ηX
rX + δ

]
=

1 + q ηX
rX+δ

(1− q) ηY
rY +δ

(47)

To complete the proof, note that for a type x̄ = maxx∈Θ x, a higher type than in the
equilibrium match does not exist. �

Lastly, we turn to matches with lower types. Without loss of generality, consider some
agent with a type xH > minx∈Θ x, so that lower types necessarily exist. For a match
between xH and a type yL < xH , the analysis is largely analogous to the case of matches
with higher types. We will therefore limit ourselves to the important steps. As before,
the comparison W (xH |yH) > W (xH |yL) reduces to π(xH |yH) > π(xH |yL). To determine
π(xH |yL), let us take the first-order condition for the NBS:

1− q
q

=
f(xH , yL)− π(xH |yL)− rY V (ỹL|x̃L)

π(xH |yL)− rXV (x̃H |ỹH)
(48)

Rearranging leads to the split-the-surplus formulation:

π(xH |yL) = rXV (x̃H |ỹH) + q [f(xH , yL)− rY V (ỹL|x̃L)− rXV (x̃H |ỹH)] (49)

As xH would, in her equilibrium match, obtain a share

π(xH |yH) = rXV (x̃H |ỹH) + q [f(xH , yH)− rY V (ỹH |x̃H)− rXV (x̃H |ỹH)]

she will strictly prefer the equilibrium match if π(xH |yH) > π(xH |yL), i.e.

f(xH , yH)− f(xH , yL) > rY V (ỹH |x̃H)− rY V (ỹL|x̃L) (50)

or f(xH , yH)− f(xH , yL) >
ηY

rY + δ + ηY

1

1 + b
[f(xH , yH)− f(xL, yL)] (51)

after substitution, where all terms involving explicit costs again cancel out. The left-hand
side is the surplus fall due to lower overall match output. The right-hand side is the
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surplus increase due to the fact that type yL has lower opportunity costs and thus needs
less compensation than yH . If the former outweighs the latter, the surplus shrinks overall
and so does the proportion q of the surplus that xH obtains. Then a match with a lower
type will not be preferred to the equilibrium match. The next question is, what degree of
supermodularity is needed for equation (51) to hold.

Lemma 4 (Matches with lower types). In the putative equilibrium situation, any
agent x ∈ Θ will strictly prefer the equilibrium match to a match with a lower type if the
degree of supermodularity γ obeys

γ ≥
(1− q) ηY

rY +δ

1 + q ηX
rX+δ

Proof. For any agent xH > minx∈Θ x, equation (51) applies. From equation (51),[
1− ηY

rY + δ + ηY

1

1 + b

]
f(xH , yH) > f(xH , yL)− ηY

rY + δ + ηY

1

1 + b
f(xL, yL)

We now expand by subtracting the same term in f(xL, yH) on both sides:[
1− ηY

rY + δ + ηY

1

1 + b

]
[f(xH , yH)− f(xL, yH)] >

f(xH , yL)−
[
1− ηY

rY + δ + ηY

1

1 + b

]
f(xL, yH)− ηY

rY + δ + ηY

1

1 + b
f(xL, yL)

For the first two terms on the right-hand side, the equivalence of f(xH , yL) and f(xL, yH)
implies (see equations (44) through (46)):

f(xH , yL)−
[
1− ηY

rY + δ + ηY

1

1 + b

]
f(xL, yH) =

ηY
rY + δ + ηY

1

1 + b
f(xH , yL)

We then divide through by ηY
rY +δ+ηY

1
1+b

to arrive at[
rY + δ + ηY

ηY
(1 + b)− 1

]
[f(xH , yH)− f(xL, yH)] > f(xH , yL)− f(xL, yL).

By equation (47), the first bracketed term on the left-hand side simplifies to

1 + q ηX
rX+δ

(1− q) ηY
rY +δ

and hence γ needs to weakly exceed the inverse of this term for supermodularity to im-
ply equation (51). Finally, note that for a type x = minx∈Θ x, a lower type than in the
equilibrium match does not exist. �

The condition that matches with higher types are not preferred does not imply the
condition that matches with lower types are not preferred, nor vice versa, as is easily
shown.15 Hence, the equilibrium match will be strictly preferred to matches with other

15It is legitimate to merge the conditions as stated by equations (37) and (50) into

f(xH , yH)− f(xH , yL) > rY V (ỹH |x̃H)− rY V (ỹL|x̃L) > f(xL, yH)− f(xL, yL)

because the outer inequality holds by our assumption of supermodularity. This merged expression de-
scribes a bounded interval on the real line; if one condition implied the other, it would describe an
unbounded interval.

22

ha
ls

hs
-0

05
85

98
6,

 v
er

si
on

 1
 - 

14
 A

pr
 2

01
1



types only if both conditions hold. The next section will derive the implications of the
entire analysis in this section for agents’ signalling behaviour, and will also take into
account that corresponding conditions apply from the perspective of some agent y ∈ Θ.

5.2 Implications for signalling

This section collects the implications of the analysis thus far for agents’ signalling be-
haviour in the putative equilibrium situation. Concretely, we consider one agent’s unilat-
eral incentive to deviate from truthful signalling when all other agents signal truthfully.
The following proposition shows that, if supermodularity is sufficiently strong, indeed no
agent will have such an incentive.

Proposition 1 (Truthful signalling). Each agent in the putative equilibrium situation
weakly prefers (strictly unless q → 0 or q → 1) to signal her type truthfully as long as the
degree of supermodularity satisfies

γ ≥ max

[
max

[
1 + q ηX

rX+δ

(1− q) ηY
rY +δ

,
(1− q) ηY

rY +δ

1 + q ηX
rX+δ

]
,max

[
1 + (1− q) ηY

rY +δ

q ηX
rX+δ

,
q ηX
rX+δ

1 + (1− q) ηY
rY +δ

]]

Proof. Choose and fix some arbitrary unmatched agent with a type x ∈ Θ and call
this type xE. To this exemplary type, a type yE exactly corresponds. By PPAM, an
agent of type xE is matched with an agent of type yE unless there is a deviation. As
every match is preceded by a meeting, types xE and yE will also meet unless there is a
deviation. Hence, if xE does not deviate, but sends a truthful signal x̃E = xE, it must
be that x̃E ∈ R(yE). Since R(yE) ≡ D(yE) ∩ Ω(yE), also x̃E ∈ D(yE). Recalling from
equation (27) that |D(yE)| = 1, we have x̃′E 6∈ D(yE) and also x̃′E 6∈ R(yE) for any non-
truthful signal x̃′E 6= xE. If a deviating agent of type xE thus cannot even meet an agent
of type yE at the next opportunity for a meeting (i.e. after an expected waiting time of
1/ηX), she will have to settle on some alternative at that opportunity. We find it useful
to exhaustively categorise the alternatives as follows: (1) meet and match with some
type y 6= yE at the next opportunity,16 (2) “match with no-one” at the next opportunity,
(3) remain inactive at the next opportunity and meet and match with a type y ∈ Θ or
no-one only at the following opportunity.17 We address each alternative in order and
show that the deviating agent never ends up better off than had she not deviated from
truthful signalling. To show this for the first alternative, it suffices to compare the shares
π(xE|y 6= yE) and π(xE|yE). Now the condition on γ in proposition 1 nests the conditions
on γ of both lemma 3 and lemma 4, which therefore apply, together implying a strict
preference for the equilibrium match:

π(xE|yE) > π(xE|y 6= yE) ∀y 6= yE.

For the second alternative, lemma 2 states that the equilibrium match is weakly preferred
(strictly unless q → 0 or q → 1) to a match with no-one. For the third alternative, suppose
the deviating agent ends up in an equilibrium match at the following opportunity, which

16More precisely, she can always only meet with types that exactly correspond to her signal (i.e. y = x̃′E):
any agent of type y ∈ Θ only wants to meet exactly corresponding types and takes signals at face value
because all agents but the deviant signal truthfully.

17Note that letting just one opportunity pass is not the same as a “match with no-one”, which has an
expected duration of 1/δ.
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arises at a time t′. Had she not deviated, she would have obtained an equilibrium match
at the first opportunity, i.e. at some time t < t′. Since rX > 0, this delay will make her
strictly worse off.18 By our examination of the first and second alternatives, any other
match at the following opportunity will not make the deviating agent better off than an
equilibrium match at the following opportunity, which is itself not a profitable deviation.

Finally, because the agent of type xE was arbitrarily chosen, all this extends to any
agent x ∈ Θ. The proof for any agent y ∈ Θ is exactly analogous, where the reasoning
for the first alternative requires that

γ ≥ max

[
1 + (1− q) ηY

rY +δ

q ηX
rX+δ

,
q ηX
rX+δ

1 + (1− q) ηY
rY +δ

]

so that the equilibrium match is also strictly preferred to any other match by any agent
y ∈ Θ (in analogy to lemmas 3 and 4). As the condition in proposition 1 nests this
requirement, no agent has a profitable deviation from truthful signalling. �

Looking at the denominators in the condition on γ in proposition 1, it is clear that the
condition will very likely fail when q → 1 or q → 0 as two of the fractions will inevitable
become very large unless ηY

rY +δ
→ ∞ or ηX

rX+δ
→ ∞, respectively. Proposition 1 thus

implies that signals are most unlikely to be truthful whenever the balance of bargaining
power is grossly unequal. Note that, when we therefore leave the cases q → 1 or q → 0
out of the picture, the proposition only features strict preferences for truthful signals. We
do not have to worry, however, about cases where q = 0 or q = 1 because q ∈ (0, 1).

Example 5 Suppose again rX = rY ≡ r, ηX = ηY ≡ η, and q = 1 − q as in the set-up
of Shimer and Smith (2000). The condition in proposition 1 then becomes

γ ≥ max

[
max

[
1 + 1

2
η
r+δ

1
2

η
r+δ

,
1
2

η
r+δ

1 + 1
2

η
r+δ

]
,max

[
1 + 1

2
η
r+δ

1
2

η
r+δ

,
1
2

η
r+δ

1 + 1
2

η
r+δ

]]

⇒ γ ≥
1 + 1

2
η
r+δ

1
2

η
r+δ

=

(
1

2

η

r + δ

)−1

+ 1 = 1 + 2
r + δ

η
(52)

We can use this to obtain an idea of the numerical range that γ has to lie in. Consider the
steady state equation (3) and note that Pr(z′ ∈M(z)|z̃′ ∈ R(z)) equals 1 in the putative
equilibrium situation, since section 4 showed that every meeting will lead to a match.
Then equation (3) implies that u(z) is the same across types (ignoring the subscript Z):

δ

η
=

u(z)

l − u(z)
∀z ∈ Θ

In most of the developed economies, the right-hand side is small, so that δ should be
small relative to η in the real world. In addition, r should be small because agents tend
to be patient when searching for long-term matches. In conclusion, 2 r+δ

η
may be fairly

small, which illustrates that γ does not necessarily have to be substantially greater than
one for proposition 1 to hold in a set-up à la Shimer and Smith (2000). In the light of

18In the spirit of the one-deviation principle, we do not consider additional deviations in the future, so
that the delay cannot be justified by some future gain vis-à-vis not deviating.
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assumption 3, it also suggests that LX and LY would not have to be very discrete.

Proposition 1 concludes an extensive but essentially simple reasoning: if the degree of su-
permodularity γ is high enough, each agent prefers a match with an exactly corresponding
type to all other matches. As the putative equilibrium situation leads to matches with
exactly corresponding types as long as signals are truthful, each agent finds it optimal to
signal truthfully. The condition in proposition 1 on γ may appear demanding, as if γ had
to be on a par with the maximum of four values. In fact, since the paired fractions are
inverses of each other, only one of them will exceed unity. Hence, for any choice of pa-
rameters, γ has to be on a par with the maximum of only two values, while the remaining
two values cannot possibly be a binding constraint on γ.

Nevertheless, the condition in proposition 1 is the most immediate restriction on the
entire equilibrium we propose here. But note that the condition ensures more than is
necessary for equilibrium: lemmas 3 and 4 derive conditions under which agents prefer
the equilibrium match to matches with any higher and any lower types. Yet it would
suffice if agents preferred the equilibrium match to matches with those higher or lower
types that would, once in a meeting, grudgingly accept them. Preferences for matches
with higher or lower types who would not accept such a match are irrelevant, as they will
not lead to false signals. Potentially, a weaker condition on γ could therefore achieve the
same as the condition in proposition 1, and we hope to present such a condition in a later
version of this paper. In any case, we develop a realistic scenario in section 8 in which a
weaker condition on γ still ensures truthful signalling.

6 Equilibrium matching

To close the circle, we focus on the overall matching (or “sorting”) of agents as the third
building block of the putative equilibrium situation. This section shows that PPAM is
an equilibrium matching, given truthful signalling and optimal individual strategies, and
also that PPAM is even the unique equilibrium matching. Because section 4 concluded
that every meeting results in a match when signals are truthful, PPAM with respect to
meetings implies PPAM with respect to matches and vice versa. This section can thus
focus just on matches without loss of generality.

First we need to clarify what criterion a matching has to meet to be called an equilib-
rium matching.19 In Becker’s (1973) seminal matching model, a matching is an equilibrium
matching whenever it is in the core. A standard definition of the core as used by Becker
is offered by Telser (1978):

Definition 2 (Core). Call the set C of agents a coalition, and let Z(C) give the highest
possible sum of flow utility the coalition can obtain under the most adverse conditions,
with Z(∅) = 0. Associated with any matching is a vector p = (π1, . . . , πn) specifying for
each matched agent i the flow utility πi obtained in this matching, where n is the total
number of matched agents. The matching is said to be in the core only if∑

i∈C

πi ≥ Z(C) for all legal coalitions C.

19Search models usually define equilibrium matchings only indirectly: as matchings that result from
each agent pursuing an optimal individual strategy (see, for example, Shimer and Smith (2000) p. 348/49).
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In our model, the only legal coalitions are those with |C| ∈ {0, 1, 2}, where we also require
that one element of NX and one of NY be involved whenever |C| = 2. In words, the core
is defined as the set of matchings such that no legal coalition can ensure more flow utility
for all its members than obtained under the matching. However, this definition of the
core is problematic in the context of our model. While an individual agent will only be
willing to join a coalition if she thereby personally obtains more utility, it is the sum of
utility obtained by the coalition that counts in the definition above. Hence, the standard
definition of the core assumes side payments within the coalition. Indeed, side payments
are crucial in Becker’s (1973) reasoning: an individual agent then always prefers, among
all matches available to her, the match generating the highest match output, since her
partner in this match will use the extra output to outbid any other potential match
partners. Yet in our model output is always divided according to the NBS and an agent’s
share in the match generating the highest output may fall short of her share in another
match. For this reason, Becker’s (1973) elegant proof of PPAM as the unique equilibrium
matching is no help to us.

Instead, we would have to modify the definition of the core to ensure that each agent’s
πi weakly exceeds the utility she obtains in any legal coalition available to her. With the
size of legal coalitions limited to two members or less, such a modified definition reduces to
two requirements: πi has to weakly exceed agent i’s utility of being single (|C| = 1), and
no match (|C| = 2) is available to i in which she obtains strictly more than πi. Thanks to
our results in section 4, we can identify a match that is available to i with a match where
the match partner is better off than in any other available match.20 Then the modified
definition of the core coincides with the standard definition of a stable matching :

Definition 3 (Stable matching). A matching is stable if the associated vector p =
(π1, . . . , πn) of flow utilities satisfies πi ≥ 0, ∀i and there is no match between any agents
xi and yj such that π(xi|yj) > πi and π(yj|xi) > πj.

Therefore, if the definition of the core is adapted to our model, the set of matchings in the
core and the set of stable matchings will coincide, a finding not uncommon in two-sided
contexts. A proof that PPAM is the unique stable matching would thus also prove that
it is the unique matching in the core of our model, and hence the unique equilibrium
matching.

To further prepare precisely such a proof, let us characterise agents’ payoffs in equilib-
rium matchings other than PPAM (in case they exist). Any such matching must include
matches between types that do not exactly correspond. Focus on such a match and call
the higher type involved xH and the lower yL (the analysis for a match between some
yH and xL is analogous). Given that signals are truthful, xH must have sought to meet
yL before being matched with her. Moreover, given that each agent’s optimal meeting
strategy is a singleton, xH has been willing to meet only yL. Therefore, we can write the
payoff of xH before she was matched as V (x̃H |ỹL), where x̃H = xH and ỹL = yL. As a
consequence of truthful signals, such a match results at the first opportunity:

rXV (x̃H |ỹL) = ηX [W (xH |yL)− cX − V (x̃H |ỹL)] (53)

20The meeting strategies derived in section 4 state that each agent seeks to meet, among the agents she
can meet, only those sending the unique most promising signal. Due to truthful signalling, this implies
that these agents prefer the resulting matches to any other matches available to them. Hence, when a
match is available to i in the sense that i’s opportunity set permits the meeting, this match must make
the other agent strictly better off than any other available match; otherwise the other agent would not
have sought the meeting in the first place.
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while in turn
rXW (xH |yL) = π(xH |yL)− δ [W (xH |yL)− U(xH)] (54)

Now if the matching we are considering here is an equilibrium matching, the stationarity
of equilibrium implies that xH always seeks to meet a type yL when unmatched, so that

U(xH) = V (x̃H |ỹL) (55)

The same is true whenever bargaining fails, and thus the threat point of agent xH is

rXV (x̃H |ỹL) =
ηX

rX + δ + ηX
[π(xH |yL)− cX(rX + δ)] (56)

as obtained from equations (53) through (55) by exactly the same algebraic manipulations
that determined equation (8). Of course, the threat point of yL is analogously found as

rY V (ỹL|x̃H) =
ηY

rY + δ + ηY
[π(yL|xH)− cY (rY + δ)] (57)

The NBS for the match between xH and yL is

arg max
π(xH |yL),π(yL|xH)

[π(xH |yL)− rXV (x̃H |ỹL)]q [π(yL|xH)− rY V (ỹL|x̃H)]1−q ,

and with the threat points found above, taking the first-order condition and applying the
same steps as in equations (12) through (19) returns

π(xH |yL) =
1

1 + a
[f(xH , yL) + ηY cY − aηXcX ] (58)

and π(yL|xH) =
1

1 + b
[f(xH , yL) + ηXcX − bηY cY ] . (59)

In short, given that the matching is supposed to be an equilibrium matching, given truthful
signalling, and given optimal individual strategies, agents’ shares in this matching are
exactly analogous to the shares in the putative equilibrium situation. Only match outputs
differ. We are now ready to prove the following proposition:

Proposition 2 (Perfect assortative matching). Given truthful signalling and individ-
ual strategies as in the putative equilibrium situation, perfect positive assortative matching
is a stable matching and the unique equilibrium matching whenever the degree of super-
modularity satisfies the condition in proposition 1.

Proof. Consider the two top types x̄ = maxx∈Θ x and ȳ = maxy∈Θ y, which we call xH
and yH here for expositional reasons. Suppose there was a stable matching, given truthful
signalling and individual strategies as in the putative equilibrium situation, in which xH
and yH are not matched with each other. As higher types do not exist, both must then
be matched with lower types, which we call yL and xB with exactly corresponding types
xL and yB. No particular order is assumed, i.e. yL S yB. Focus on the match between xH
and yL. Recall the argument leading up to lemma 4 in section 5: xH does not desire such
a match if the loss of match output outweighs the fall in the threat point of the other
agent, so that the surplus falls. For PPAM, equation (50) gives this condition as

f(xH , yH)− f(xH , yL) > rY V (ỹH |x̃H)− rY V (ỹL|x̃L) (60)

implying γ ≥
(1− q) ηY

rY +δ

1 + q ηX
rX+δ
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by the proof of lemma 4. We seek a corresponding condition for the matching where xH
and yH match with lower types instead of PPAM. Suppose xH , while in a match with
yL, has the opportunity to deviate and match with a type yH instead. Along the lines
of equations (29) through (31), the comparison W (xH |yL) > W (xH |yH) reduces to the
comparison π(xH |yH) > π(xH |yL) (because U(xH) = V (x̃H |ỹL) in both cases). Writing
both shares in the split-the-surplus formulation:

π(xH |yL) = rXV (x̃H |ỹL) + q [f(xH , yL)− rY V (ỹL|x̃H)− rXV (x̃H |ỹL)]

π(xH |yH) = rXV (x̃H |ỹL) + q [f(xH , yH)− rY V (ỹH |x̃B)− rXV (x̃H |ỹL)]

In the spirit of the one-deviation principle, the threat points of both agents are given here
by continued search for the kind of match they deviate from. Then xH will not desire the
match with yL but strictly prefer the deviation if π(xH |yH) > π(xH |yL), i.e.

f(xH , yH)− rY V (ỹH |x̃B) > f(xH , yL)− rY V (ỹL|x̃H)

⇔ f(xH , yH)− f(xH , yL) > rY V (ỹH |x̃B)− rY V (ỹL|x̃H) (61)

The left-hand sides of equations (60) and (61) are the same. As to the right-hand sides,
rY V (ỹL|x̃H) is given by combining equations (57) and (59) to

rY V (ỹL|x̃H) =
ηY

rY + δ + ηY

[
1

1 + b
[f(xH , yL) + ηXcX − bηY cY ]− cY (rY + δ)

]
(62)

To see how this compares to rY V (ỹL|x̃L), recall equation (39):

rY V (ỹL|x̃L) =
ηY

rY + δ + ηY

[
1

1 + b
[f(xL, yL) + ηXcX − bηY cY ]− cY (rY + δ)

]
Hence we find rY V (ỹL|x̃H) > rY V (ỹL|x̃L) since f(xH , yL) > f(xL, yL). The same rea-
soning allows us to conclude rY V (ỹH |x̃B) < rY V (ỹH |x̃H) since f(xB, yH) < f(xH , yH).
Therefore, the right-hand side of equation (61) is unambiguously smaller than that of
equation (60). The latter thus implies the former, and while

γ ≥
(1− q) ηY

rY +δ

1 + q ηX
rX+δ

is not necessary for equation (61) to hold, it must be sufficient, so that xH will indeed
strictly prefer deviating to a match with yH if γ meets this condition. By the definition of a
stable matching, such a preference will only render a matching instable if it is reciprocated,
so that yH also strictly prefers to be matched with xH instead of xB. The reasoning from
the perspective of yH is analogous and arrives at the sufficient condition

γ ≥
q ηX
rX+δ

1 + (1− q) ηY
rY +δ

(63)

As both conditions are included in the condition in proposition 1, we conclude that the
top types xH and yH would both strictly prefer to be matched with each other, so that no
matching where they are not matched with each other can be stable. Now consider any
matching where the two top types are matched with each other but the second-highest
types are not. The second-highest types cannot be matched with one of the top types
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because the top types exclusively match with each other, and must therefore be matched
with some lower types. Hence, the entire reasoning we have applied to the two top types
now carries over to the second-highest types, yielding the same conditions. Since the
set-up of our model results in an equal number of types on both sides of the market, the
logic applies successively down to the two bottom types x and y.

In conclusion, whenever there is a match between types that do not exactly corre-
spond, the matching cannot be stable, provided the condition on γ in proposition 1 holds.
Then PPAM remains as the only candidate for a stable matching. Lemmas 3, 4 and
analogous lemmas for an agent y ∈ Θ imply that, under the condition in proposition 1,
not even a single agent wishes to be matched with another type in a situation of PPAM.
Lemma 2 shows that πi ≥ 0 ∀i, so that no agent prefers to be single either. Hence PPAM
is the unique stable matching and therefore the unique equilibrium matching. �

A couple of comments on proposition 2 and its proof are in order. First, PPAM might still
be a stable matching even if the condition on γ is not met. However, this is irrelevant for
the separating equilibrium because proposition 1 requires this very condition on γ in any
case. Second, much of the proof may appear as just a repetition of the proof of lemma
4. Yet the latter examined the unilateral incentive to deviate from truthful signalling,
given PPAM, while the former examines the incentives of two agents to deviate from some
matching, given truthful signals. Third, a stable matching is a most unusual result in a
model with search frictions. In standard search models, agents cannot search selectively
and might thus be matched with any type from a certain range of types. Of course,
many of these types are only accepted because search frictions make continued search
undesirable. A stable matching as in definition 2 cannot be expected to arise under such
circumstances and is very unlikely to arise by chance whenever the number of different
types is not trivially small. By requiring that an equilibrium matching in our model
be a stable matching, we have applied a very demanding criterion that is normally only
applied in matching models (i.e. models without search frictions), and that normally only
matching models meet.

Lastly, but most importantly, the result of PPAM in a model with search frictions is,
to the best of our knowledge, new to the literature. Shimer and Smith (2000) establish
assortative matching, albeit not perfect assortative matching, in a model with search fric-
tions in the form of discounting under the condition that the match production function,
the logarithm of its first derivative, and the logarithm of its cross-partial derivative are
all supermodular. Atakan (2006) replaces discounting in that model by explicit additive
search costs. He shows that strict supermodularity as such ensures positive assortative
matching, albeit not perfect positive assortative matching as in Becker’s (1973) friction-
less model. His results crucially depend on search costs being identical for all agents.
Our set-up essentially adds signals to the model in Shimer and Smith (2000), maintains
discounting, but also allows for differential explicit costs. This set-up achieves PPAM just
with sufficiently strong supermodularity of the production function.

With proposition 2 established, each of the three building blocks of the putative equi-
librium situation has been examined, taking the two others as given. Our finding is
that the putative equilibrium situation is indeed an equilibrium whenever the degree of
supermodularity is sufficiently high. The next section recollects this equilibrium.
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7 Equilibrium properties

7.1 Complete characterisation of equilibrium behaviour

The previous three sections have each shown one building block of the putative equilibrium
situation to hold, given the other two building blocks. This section collects the results
and concisely states the separating equilibrium whose existence we have thereby proven,
and leads up to a discussion of some equilibrium properties. Reflecting our definition of
search equilibrium in definition 1, the PBE entails the following elements:

Steady state. The pointwise steady state was given by equations (1) and (2) but left
Pr(y ∈ M(x)|ỹ ∈ R(x)) and Pr(x ∈ M(y)|x̃ ∈ R(y)) undetermined. As noted before,
both probabilities turn out to equal 1 because every meeting leads to a match (see section
4). Solved for the probabilities of unmatched types, the conditions for the steady state
then require

uX(x) =
δlX

ηX + δ
∀x ∈ Θ and uY (y) =

δlY
ηY + δ

∀y ∈ Θ

Signalling. If the degree of supermodularity γ satisfies the condition in proposition 1,
each agent x ∈ Θ will find it optimal to always signal her type truthfully as x̃ = x, and
likewise for each agent y ∈ Θ.

Beliefs. The putative equilibrium situation postulated that each agent believes all
other agents to signal truthfully. Formally, µX(y|ỹ) = 1 for all ỹ = y, and µY (x|x̃) = 1
for all x̃ = x. As all agents do indeed signal truthfully, these beliefs correctly describe
equilibrium play, as is required in a PBE. There are no off-equilibrium signals that would
necessitate beliefs for such signals.

Matching. If the degree of supermodularity γ satisfies the condition in proposition 1,
optimal behaviour will lead agents to meet and match in accordance with PPAM.

Shares and payoffs. In a match between x and y with x = y, the share for x is

π(x|y) =
1

1 + a
[f(x, y) + ηY cY − aηXcX ]

where a is given by equation (16). For the payoffs to x in the various states, we found

U(x) = V (x̃|ỹ) =
ηX

rX(rX + δ + ηX)

[
1

1 + a
[f(x, y) + ηY cY − aηXcX ]− cX(rX + δ)

]
and, using equation (4),

W (x|y) =
rX + ηX
ηX

V (x̃|ỹ) + cX

Analogous results, with b (see equation (20)) replacing a, were obtained for π(y|x), U(y),
V (ỹ|x̃), and W (y|x).

Individual strategies. As agents correctly believe that they can trust observed signals,
each agent only meets with agents who send the most promising signal in her opportunity
set. From PPAM we know that the most promising ỹ in the Ω(x) of any agent x ∈ Θ who
signals truthfully is ỹ = y = x, i.e. the truthful signal of the exactly corresponding type:

D(x) = {ỹ : V (x̃|ỹ) = max
ỹ∈Ω(x)

V (x̃|ỹ)} = {ỹ : ỹ = x}
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The strategy D(y) is the mirror image. Hence Ω(y) = {x̃ : ỹ = x̃} and Ω(x) = {ỹ : x̃ = ỹ}.
Meetings thus occur only between types x and y where x̃ = ỹ and also x = y. The stopping
rule is

S(x) =

{
y : W (x|y) ≥ max

ỹ∈Ω(x)
V (x̃|ỹ)

}
= {y : W (x|y) ≥ V (x̃|ỹ)}

with the V (x̃|ỹ) just specified, and likewise for S(y). Since W (x|y) > V (x̃|ỹ) for the
W (x|y) in equilibrium, all meetings result in matches.

7.2 Uniqueness

While we have shown that the putative equilibrium situation exists as a separating equi-
librium (for γ high enough), there might also be other separating equilibria. However,
the following result arises as a corollary of propositions 1 and 2:

Corollary 1 (Uniqueness). The separating equilibrium described by the putative equi-
librium situation is the unique separating equilibrium whenever it exists.

No formal proof is needed, since all elements of the separating equilibrium as stated in
the last section turn out to be unique. Least obvious is the uniqueness of the equilibrium
matching, which is proven in proposition 2. That apart, the steady state conditions
uniquely determine a probability mass for the unmatched agents of each type. Agents
have only one way of signalling their types truthfully. Then no other specification of
beliefs will be compatible with the fact that all agents signal truthfully. Finally, section
4 shows that each agent’s meeting strategy and stopping rule are uniquely determined by
the opportunity set. As every meeting leads to a match, a unique equilibrium matching
then implies a unique sorting already in the meetings and thereby a unique equilibrium
opportunity set for each agent. With all elements of the separating equilibrium being
unique, so must be the equilibrium as a whole.

7.3 Efficiency

The unique separating equilibrium we have identified is efficient in a number of important
respects. First and foremost, search costs are minimised, both for each agent individually
and overall: in equilibrium, truthful signals allow each agent to ensure that no meeting is
wasted, but that every meeting she attends results in a match. Hence, whenever an agent x
searches, she attends a meeting and also matches at the first opportunity, that is, after an
expected search time of 1/ηX . This is the absolute minimum because a meeting necessarily
precedes a match. Without truthful signals, x would still attend meetings at rate ηX but
would only match whenever y happens to be in the matching set M(x). In a standard
search model, each match would typically be preceded by a number of pointless meetings,
and only by chance will the first meeting of an agent result in a match. Therefore, search
costs in standard search models are at least as high from the individual perspective as in
our model with truthful signals, and much higher in expectation as well as on aggregate.

Second, not only is each agent matched at the first opportunity in equilibrium, but
each agent is also matched with the type she most prefers among the types in the matching
set (as she only meets agents of this type). This again contrasts starkly with standard
search models, where the type that an agent x expects in a match is the expectation
over M(x), not the most preferred element of it. In fact, matches in our separating
equilibrium are even with the type that is most preferred among all types on the market.
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Yet this arises here due to sufficiently strong supermodularity: for lower γ, higher or
lower types outside M(x) may be the globally most preferred type, instead of the exactly
corresponding type y = x. The coincidence of the most preferred type in M(x) and the
globally most preferred type can therefore not be expected in a standard search model.

Finally, note that all agents match in equilibrium so that there is no unrealised surplus
left in the form of unmatched agents. On the contrary, the combination of supermodu-
larity and PPAM maximises aggregate match output; a proof of this can be found in the
appendix of Becker (1973). Standard search models, be it with or without supermodular-
ity of the match production function, do generally not maximise aggregate match output,
as they lead to a certain degree of mismatch instead of PPAM.

8 Extension: an alternative scenario

We briefly present a scenario in this section that is arguably more realistic than the
base model and leads to a weaker condition on the degree of supermodularity. Suppose
types are not verifiable. Instead, an agent can deceive potential match partners even in a
meeting and can enter into a match undetected. If, however, she is found out at any point
during a match, the match will terminate immediately. The reasons for the immediate
end of the match in such a case might be of a legal nature, or the match partner might be
concerned about her reputation, or the break of trust might make any further co-operation
practically impossible. All these reasons are outside our model. A good example of what
we have in mind is false doctors: on the basis of forged qualifications, such doctors have
often practised illegally for years before they are detected (which suggests that many
more cases are never detected). False doctors are rarely detected because they manage in
practice to somehow make up for their lack of formal qualifications. Yet whenever they
are detected, they are immediately and permanently removed from their positions despite
sometimes years of good work, typically for the aforementioned reasons.

We model this as follows. Any agent can signal to be of some type, not necessarily
her true type, and can then behave and match just as the emulated type could, provided
the adjustment due to the discrepancy between her true type and the emulated type falls
entirely on herself. When her true type differs from her signalled type, the actual match
output differs from the match output one would expect, given the signals. Adjustment
then means that the agent whose signal is false gives up as much of her own share as is
necessary to bridge the gap when actual output is lower than the signals would suggest.
When actual output is higher she quietly pockets excess output. As the latter would
typically be considered fraudulent, a match would thus also terminate if an agent is found
out to have a higher type than signalled. In any case, everything seems perfectly normal
to her match partner as long as the necessary adjustment is secretly ensured. The deceit
will be detected, however, as soon as there is a lack of adjustment. In that moment, the
match terminates and both agents join the pool of searchers again.

In this set-up, no agent would admit to a false signal in the meeting. Even if the po-
tential match partner would rather accept the agent despite the false signal than continue
searching, this will be out of the question. For the example of false doctors, a potential
employer would in legal terms become an accomplice of the false doctor if she nevertheless
accepted her for a match. In addition, due to reputational effects, the existence of the
entire clinic might be at risk if the employer did accept her. And indeed, false doctors
will not be knowingly accepted in practice, even if that appears more opportune than
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continued search.
We start again from the putative equilibrium situation outlined in section 3 but with-

out explicit costs. An agent who sends a false signal will only agree to the match if the
present value of being in this match exceeds the present value of search, which implies
that she would then always prefer remaining in the match to recommencing search. Hence
an optimising agent will either not deviate from the putative equilibrium situation or will
both send a false signal and keep her true type secret in the meeting as well as for the
entire match duration. We assume that there is no other way to detect false signals, so
that such a match lasts just as long as any other match, a time 1/δ in expectation, unless
one agent voluntarily reveals that her signal was false.

To re-examine agents’ incentives to deviate from truthful signalling in this scenario,
we begin with their preferences over matches. Turning first to matches with higher types,
consider a type xL < maxx∈Θ x. Along the lines of equations (29) through (31), the
choice between the equilibrium match with a type yL and a match with a higher type
yH > yL reduces to the choice between flow utilities obtained during the match. Her
gross share in a match with yH will be the same as the share a type xH would obtain,
as she will successfully emulate a type xH . Since xH and yH are matched with each
other in the putative equilibrium situation, the gross share is given by equation (18) for
a match output f(xH , yH). Her net share, however, is the flow utility left for her after
the adjustment due to lower match output, i.e. after subtracting f(xH , yH) − f(xL, yH).
Hence, xL will strictly prefer her equilibrium match if

π(xL|yL) > π(xH |yH)− [f(xH , yH)− f(xL, yH)]

⇔ 1

1 + a
f(xL, yL) >

1

1 + a
f(xH , yH)− [f(xH , yH)− f(xL, yH)]

⇔ f(xL, yL) > (1 + a)f(xL, yH)− af(xH , yH) (64)

Rearranging gives

a [f(xH , yH)− f(xL, yH)] > f(xH , yL)− f(xL, yL) (65)

where we have replaced f(xL, yH) on the right-hand side by f(xH , yL) due to the symmetry
of the match production function. This equation directly implies that xL will strictly
prefer the equilibrium match if γ ≥ a−1 = b. From the perspective of a type yL <
maxy∈Θ y, the same approach leads to the condition γ ≥ b−1 = a, as is easily verified.

Next, we turn to matches with lower types. A type xH > minx∈Θ x will strictly prefer
her equilibrium match if

π(xH |yH) > π(xL|yL) + [f(xH , yL)− f(xL, yL)]

⇔ 1

1 + a
f(xH , yH) >

1

1 + a
f(xL, yL) + [f(xH , yL)− f(xL, yL)]

⇔ f(xH , yH) > (1 + a)f(xH , yL)− af(xL, yL)

⇔ f(xH , yH)− f(xL, yH) > a [f(xH , yL)− f(xL, yL)]

where we have replaced f(xH , yL) on the left-hand side by f(xL, yH). Hence, γ ≥ a is
required, and a similar argument from the perspective of an agent yH > miny∈Θ y leads
to γ ≥ b. Altogether, we thus find that any agent x ∈ Θ or y ∈ Θ who can in principle
deviate strictly prefers her respective equilibrium match as long as γ ≥ max[a, b]. Based
on the arguments above and lemma 2 as before (but no longer on lemmas 3 and 4),
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a straightforward adaptation of proposition 1 and its proof implies that γ ≥ max[a, b]
ensures truthful signalling in this alternative scenario.

In order to compare the condition γ ≥ max[a, b] to the condition on γ stated in
proposition 1, consider first a type xL < maxx∈Θ x again who might match with higher
types. For such types to strictly prefer the equilibrium match, γ ≥ b is required in this
scenario. According to lemma 3, the base model requires

γ ≥
1 + q ηX

rX+δ

(1− q) ηY
rY +δ

=
rY + δ + ηY

ηY
(1 + b)− 1

where the equality derives from equation (47). Now since

1 + b <
rY + δ + ηY

ηY
(1 + b) (66)

the condition in the base model is more restrictive in this example. However, for a type
xH > minx∈Θ x who might match with lower types, the inverses apply. Then equation
(66) implies that the condition in the alternative scenario is more restrictive this time:

a = b−1 >

(
rY + δ + ηY

ηY
(1 + b)− 1

)−1

=
(1− q) ηY

rY +δ

1 + q ηX
rX+δ

(67)

Importantly, this last observation helps us adapt proposition 2 to the alternative scenario:
γ ≥ a implies that γ is also weakly greater than the last term in equation (67). The latter
condition was needed to ensure that equation (60) holds. This equation was shown in the
proof of proposition 2 to imply equation (61). The relation must still hold with γ ≥ a, so
that, in any matching where the the top types x̄ and ȳ are not matched with each other,
x̄ prefers to deviate from a match with some yL < ȳ to the match with ȳ. We then need
to show that ȳ would also deviate from her current match with some xB < x̄ to the match
with x̄. It was found that this is indeed the case whenever equation (63) holds. Since

b = a−1 >

(
rX + δ + ηX

ηX
(1 + a)− 1

)−1

=
q ηX
rX+δ

1 + (1− q) ηY
rY +δ

the alternative scenario’s requirement γ ≥ b is again more restrictive than the base model
and implies equation (63). We can conclude that the reasoning of the proof of proposition
2 is still valid in the alternative scenario: PPAM remains as the only candidate for a
stable matching. By lemma 2 and our arguments above, PPAM will be a stable matching
if γ ≥ max[a, b].

In the alternative scenario, the condition γ ≥ max[a, b] thus ensures both truthful
signalling and PPAM. While the condition is more restrictive with respect to matches
with lower types than in the base model, it appears weaker overall than that in the base
model in two ways. Firstly, since a and b are inverses of each other, γ ≥ max[a, b] requires
γ to be on a par with only one value greater than one, not with two values greater one as
in the base model. Secondly, the condition in the alternative scenario is unambiguously
weaker in the important special case when a = b = 1 as in Shimer and Smith (2000): the
alternative scenario then only requires γ ≥ 1, i.e. supermodularity as such, while equation
(52) tells us that the base model would require γ ≥ 1 + 2 r+δ

η
.
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9 Non-separating equilibria

9.1 Babbling equilibrium

As is typically the case in cheap-talk models, there may be a babbling equilibrium of our
basic model in which all agents simply ignore any signal so that signals are irrelevant for
the equilibrium. Our model has added signals to a framework close to that in Shimer and
Smith (2000); it therefore does not come as a surprise that, when signals are rendered
irrelevant in a babbling equilibrium, this equilibrium is close to that in Shimer and Smith
(2000). However, Shimer and Smith do not provide solved-out expressions, and the differ-
ences between our model and theirs may nevertheless make it hard to see correspondences.
Therefore, we fully explore here what a babbling equilibrium would consist of, while we
do not investigate existence of such an equilibrium.

By the nature of a babbling equilibrium, neither a signal sent nor a signal received
makes any difference to an agent’s situation:

V (x̃|ỹ) = U(x) ∀x̃, ỹ, x and V (ỹ|x̃) = U(y) ∀ỹ, x̃, y

Agents still manage to attend meetings at the same rates as before,21 but since signals
cannot guide any agent’s search, the types met are now random draws from the market.
We follow Shimer and Smith (2000) in assuming that more frequent types on the market
will accordingly be met more frequently: the probability of drawing a type y is uY (y), and
the probability of meeting a type y belonging to the matching set M(x) is

∑
y∈M(x) uY (y).

This leads to the following conditions for a pointwise steady state:

δ[lX − uX(x)]|NX | = ηXuX(x)|NX |
∑

y∈M(x)

uY (y) ∀x ∈ Θ (68)

δ[lY − uY (y)]|NY | = ηY uY (y)|NY |
∑

x∈M(y)

uX(x) ∀y ∈ Θ (69)

When types are ex ante indistinguishable, there are only two rational meeting strategies:
either seize on every opportunity for a meeting, or do not engage in search at all. The
latter carries a present value of 0, while the former will be weakly positive if explicit costs
are not prohibitively high, which we henceforth assume. This immediately implies that
we can write the meeting strategy of agent x as

D(x) = {ỹ : ỹ ∈ Θ} i.e. ỹ ∈ D(x),∀ỹ (70)

Next, the asset equation for U(x) is:

rXU(x) = ηX
∑

y∈M(x)

[W (x|y)− cX − U(x)]uY (y) (71)

The summation gives the expected gain in payoffs over all types y ∈ M(x), as a match
will result only in these cases. For any y 6∈M(x), the gain is always zero. Meanwhile, the

21Effectively, every agent x appears to be acceptable to every y and vice versa. By assumption 4, x(y)
can attend meetings with y (x) to whom she appears acceptable at rate ηX (ηY ).

35

ha
ls

hs
-0

05
85

98
6,

 v
er

si
on

 1
 - 

14
 A

pr
 2

01
1



asset equation for W (x|y) has the same form as before:

rXW (x|y) = π(x|y)− δ [W (x|y)− U(x)]

⇔ W (x|y) =
π(x|y) + δU(x)

rX + δ

⇔ W (x|y)− U(x) =
π(x|y)− rXU(x)

rX + δ
(72)

which allows us to rewrite equation (71) as

rXU(x) = ηX
∑

y∈M(x)

(
π(x|y)− rXU(x)

rX + δ
− cX

)
uY (y)

⇔ rXU(x) +
ηX

rX + δ
rXU(x)

∑
y∈M(x)

uY (y) =
ηX

rX + δ

∑
y∈M(x)

(π(x|y)− cX(rX + δ))uY (y)

⇔ rXU(x) =

∑
y∈M(x) (π(x|y)− cX(rX + δ))uY (y)

rX+δ
ηX

+
∑

y∈M(x) uY (y)
(73)

In words, the flow utility from search is determined by the expected share in a match
with some y ∈ M(x) conditional on y ∈ M(x) in the first place. We can solve this out
further if we determine π(x|y), here in the split-the-surplus form:

π(x|y) = rXU(x) + q[f(x, y)− rYU(y)− rXU(x)]

= q[f(x, y)− rYU(y)] + (1− q)rXU(x)

Letting
∑

y∈M(x) uY (y) ≡ α to simplify the notation, equation (73) thus becomes

rXU(x) =
q
∑

y∈M(x) [f(x, y)− rYU(y)]uY (y) + α[(1− q)rXU(x)− cX(rX + δ)]
rX+δ
ηX

+ α

⇔ rXU(x)

[
rX + δ

ηX
+ α− α(1− q)

]
= q

∑
y∈M(x)

[f(x, y)− rYU(y)]uY (y)− αcX(rX + δ)

⇔ rXU(x) =
q
∑

y∈M(x) [f(x, y)− rYU(y)]uY (y)− αcX(rX + δ)
rX+δ
ηX

+ qα
(74)

The last line specifies the reservation flow utility rXU(x) of agent x in terms of others’
reservation flow utilities rYU(y), which she has to take as given. We can now obtain the
optimal stopping rule of agent x: she accepts a match whenever W (x|y)−U(x) ≥ 0, and
by equation (72) this means

π(x|y)− rXU(x)

rX + δ
≥ 0 ⇒ π(x|y) ≥ rXU(x)

We conclude that the optimal stopping rule is

S(x) = {y : W (x|y) ≥ U(x)}

=

{
y : π(x|y) ≥

q
∑

y∈M(x) [f(x, y)− rYU(y)]uY (y)− αcX(rX + δ)
rX+δ
ηX

+ qα

}
(75)
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It remains to determine the matching set that we defined as

M(x) ≡ S(x) ∩ {y : x ∈ S(y)}, (76)

itself depending on S(x). From the perspective of an individual agent who takes all
others’ strategies as given, the stopping rule and the definition of the matching set are
two equations in the two unknowns M(x) and S(x).22 As agents’ choice of signal does
not matter, it only remains to specify beliefs for the babbling equilibrium. Given that
randomly drawn types are met, the only belief of an agent x consistent with actual
equilibrium play is

µX(y|ỹ) = uY (y) ∀y, ỹ ∈ Θ (77)

and there are no off-equilibrium signals that would necessitate any more beliefs. The
following proposition collects the results in this section:

Proposition 4 (Babbling equilibrium). Any babbling equilibrium that exists will entail
individual strategies like in equations (70) and (75), matching sets like in equation (76),
and beliefs like in equation (77) for each x ∈ Θ and for each y ∈ Θ, together with the
pointwise steady state in equations (68) and (69).

While we do not investigate existence of a babbling equilibrium in our model, note that
a babbling equilibrium of our model with rX = rY ≡ r, ηX = ηY ≡ η, q = 1 − q, and
cX = cY = 0 is a special case of the equilibrium in Shimer and Smith (2000), whose
existence they do prove.23

9.2 Pooling equilibrium

The only structural difference between the babbling equilibrium and a pooling equilibrium
of our model is that signals have some role to play in every pooling equilibrium: each
agent x ∈ Θ wants to meet only those agents y ∈ Θ who send the pooled equilibrium
signal ỹP . Likewise, only agents signalling x̃P will be accepted for a meeting with some
y ∈ Θ. This translates into the following meeting strategies for the pooling equilibrium:

D(x) = {ỹ : ỹ = ỹP} ∀x ∈ Θ and D(y) = {x̃ : x̃ = x̃P} ∀y ∈ Θ. (78)

Since every y ∈ Θ indeed sends the signal ỹP in equilibrium, the strategy D(x) prescribes
that each agent x ∈ Θ seeks a meeting every time. By the same logic, each agent y ∈ Θ
seeks a meeting every time, so that a meeting in fact results at every opportunity. This
means that the type an agent actually faces in a meeting is a random draw from the other
side of the market, just as in the babbling equilibrium. Assuming again that more frequent
types will accordingly be met more frequently, the steady state in pooling equilibrium,
the stopping rules as well as the matching sets are all as derived in the previous section.
The only element of the babbling equilibrium to be adapted is agents’ beliefs. Since all
agents send the pooled signals in equilibrium, beliefs about the pooled signal will only be
consistent with equilibrium play if

µX(y|ỹP ) = uY (y) ∀y ∈ Θ and µY (x|x̃P ) = uX(x) ∀x ∈ Θ (79)

22Recall that π(x|y) in the stopping rule is also given by the split-the-surplus formulation in terms of
known variables.

23See the proof of proposition 1 in Shimer and Smith (2000), p. 351-353.
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In addition, beliefs about off-equilibrium signals have to ensure that no agent has an
incentive to meet anyone sending an off-equilibrium signal. Any pooling equilibrium
will be of this form, leading to exactly the same expected payoffs as in the babbling
equilibrium (apart from merely formal differences, e.g. U(x) = V (x̃P |ỹP )). As usual in
signalling models, there is potentially a great number of pooling equilibria, one for every
combination of pooled signals with according beliefs.

10 Relation to directed search models

10.1 Differences in frictions

Since directed search models feature signals in a matching context, it is more than legiti-
mate to ask how our model differs and what it can contribute in relation to this particular
literature. Directed search models commonly collect the interaction of employers and ho-
mogeneous job seekers on the labour market into three stages for each period. Firstly,
all employers simultaneously choose wage offers that they advertise. Next, all job seekers
observe the advertised wage offers and simultaneously choose which employer to apply to
in this period. Finally, job seekers and employers match as follows. An employer who
received exactly one application hires this one applicant. An employer who received sev-
eral applications somehow selects, perhaps randomly, one of these applicants for the job.
Employers who did not receive any applications can try again in the next period, as can
job seekers who are not hired.

In principle, such a model could incorporate each kind of frictions: discounting, ex-
plicit search costs, and congestion. Congestion frictions clearly arise in directed search
models because of a lack of co-ordination among job seekers, so that some employers
receive several applications in a given period while others receive none, with the undesir-
able consequence that some job seekers remain unemployed in the current period alongside
some unfilled vacancies. As to discounting and explicit search costs, however, it is highly
problematic that virtually the entire directed search literature assumes commitment by
employers to the wage offers they advertise, so that employers will not send a mislead-
ingly attractive signal and then renege on it. Yet we explained in section 5.1 that the
very existence of discounting or explicit search costs creates an incentive to mislead and
then renege. Since the work of Diamond (1971) reneging has been known as a funda-
mental problem that can lead to complete market break-down even with infinitesimally
small frictions of this kind. Hence, simply assuming that employers are committed to
their advertised offers sidesteps these issues and typically renders discounting and explicit
search costs irrelevant for agents’ behaviour in the model. Accordingly, these two kinds
of search frictions do not even appear anymore in recent contributions to this literature
such as Burdett et al. (2001) and Shimer (2005) that focus entirely on congestion.

By contrast, our model incorporates discounting and explicit search costs and does
not rule out reneging but leads to conditions for truthful signalling. In turn, congestion
frictions are absent in our model. This is partly due simply to time being continuous
in our model. In directed search models, the stages are effectively the same as discrete
time periods in which agents move simultaneously. With continuous time, however, si-
multaneous moves happen with zero probability. Hence, in a model with homogeneous
job seekers, one job seeker would always be the first applicant, and the employer cannot
gain from waiting for more applicants. Then congestion never arises.
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Of course, congestion frictions do exist in the real world despite continuous time, as
many employers (though not all) accept applications until some specified deadline and
interview only after the deadline. If the employer instead met the first applicant with
a suitable signal, this would always save her some costs (at least the expected costs
of processing further applications and of losing the first suitable applicant to another
employer in the meanwhile). To wait until the deadline nevertheless must therefore carry
some benefit for the employer. There may be an option value of waiting because the
employer is uncertain what types of applicants might be attracted by the job offer, i.e. the
first suitable applicant might still be less suitable than later applicants. In particular, it
may take some time for word of the job offer to reach the most suitable applicants.
Another explanation could be that some signals are imprecise or deliberately misleading,
prompting employers to interview a selection of applicants and compare their interview
performance. Yet in the separating equilibrium of our model, none of these benefits
exist: agents know with whom they can match, communication is instant, and signals are
both precise and truthful. In our model, employers therefore do meet and hire the first
applicant with a (uniquely) suitable signal, thereby preventing any congestion.

10.2 Exogenous arrival rates

Following the work of Peters (1991), it has become a central theme of directed search
models that employers seek to influence the arrival rate they face by their choice of wage
offer. Such endogenous arrival rates are then the higher the more competitive is the wage
offer. In a standard model with homogenous job seekers, this implies a trade-off for job
seekers between a high wage and a high probability of obtaining the advertised job: a
comparatively high wage attracts many applicants, only one of which will be hired. But
this appears to be largely driven by the homogeneity of job seekers: with heterogeneous
job seekers, employers would select the applicant with the highest type. For this applicant,
it is irrelevant how many job seekers with lower types apply.24 Because this applicant is,
however, still more likely to face competition from equally high types for a high-wage job
than for a low-wage job, a (much reduced) trade-off may remain with heterogeneous job
seekers.25

The heterogeneous agents in our model signal their types truthfully in the separating
equilibrium, so that some of them can be selected for meetings on the basis of their signals.
Hence those who would be selected do not fear the competition of lower types. Moreover,
as we explained in the preceding section, it does not happen in our model that two
equal types apply simultaneously, so that not even the reduced trade-off remains. There
remains the possibility that certain lower types are somehow easier to meet because there
are more of them around. Assumption 1 formally rules out different frequencies of types,
but we motivated it only as the assumption of a smooth type distribution in steady state,
resulting from a logic of arbitrage in type changes. With a smooth type distribution, the
gains from higher meeting rates with lower types are unlikely to outweigh the utility loss
over the entire match duration. To formalise this point, consider an agent y ∈ Θ who,

24As a real-world example, the congestion for jobs at certain top consultancies does not discourage
truly qualified applicants: recruiters very quickly identify outstanding applications and the congestion
thus does not have a significant impact on these applicants’ meeting rates.

25The findings of Inderst (2005) even suggest that the trade-off disappears completely in an equilibrium
à la Moen (1997) with heterogeneous job seekers: in his model, the high type obtains a higher wage and
matches faster than the low type.

39

ha
ls

hs
-0

05
85

98
6,

 v
er

si
on

 1
 - 

14
 A

pr
 2

01
1



for the next meeting only, has the choice between meeting a high type xH at rate η1 or
meeting a lower type xL at rate η2, where η2 > η1. In expectation, a meeting with xL will
then occur a time 1

η1
− 1

η2
earlier than a meeting with xH . We suppose that the meeting

leads to a match in either case, we discount to the beginning of the match with xL, and
we ignore that a match with xH is expected to terminate later in time because any utility
at that time is heavily discounted. The higher meeting rate will make agent y opt for
meeting xL if ∫ 1

δ

0

π(xL|y)e−rY tdt >

∫ 1
δ

1
η1
− 1
η2

π(xH |y)e−rY tdt

⇔
∫ 1

η1
− 1
η2

0

π(xL|y)e−rY tdt >

∫ 1
δ

1
η1
− 1
η2

[π(xH |y)− π(xL|y)]e−rY tdt

When xL is close to xH in this condition, a smooth type distribution implies that meeting
rates are also close. A small 1

η1
− 1

η2
then allows the condition to fail even when π(xH |y)−

π(xL|y) is small. In turn, when the former is large, the condition can still fail because
the latter is then also large. Therefore, a smooth type distribution tends to imply that
differences in type frequencies do not affect agents’ behaviour. Then one can just as well
assume exogenous and identical meeting rates, as we did in assumption 4.

11 Conclusions

This paper has introduced costless signals into a setting of two-sided search with transfer-
able utility and search frictions. We find a unique separating equilibrium characterised by
perfect positive assortative matching, minimised incidence of search costs, and maximised
overall match output. The non-separating equilibria of our model can be identified with
the equilibrium in Shimer and Smith (2000), abstracting from elements that are specific
to models with signals. Given strong incentives for effective communication to facilitate
search and given the pervasive use of such communication in real-world matching markets,
the unique separating equilibrium appears as the only practically relevant equilibrium of
our model. Positive assortative matching in this equilibrium only relies on a sufficient
degree of supermodularity of the match production function. This implies that our model
proposes a solution to the paradox in Shimer and Smith (2000), where positive assorta-
tive matching requires not only supermodularity as such, but also log-supermodularity
of the first derivative and log-supermodularity of the cross-partial derivative. In fact,
the comparatively weak condition on supermodularity in our model does not merely en-
sure positive assortative matching despite discounting, but perfect positive assortative
matching despite discounting and explicit search costs.

We are aware of only one other solution to this paradox, the model by Chade (2006),
where a form of stochastic positive assortative matching arises without any condition on
supermodularity. However, these results rely on exogenous yet informative signals. We
believe that real-world agents can strategically influence their signals, so that the issue
of deliberately misleading signals cannot be ignored. Our paper has gone to great length
to show that the same condition on supermodularity ensures both truthful signalling and
perfect positive assortative matching. While assortative matching in real-world markets
is typically imperfect, this is not necessarily due to signals being beyond agents’ control.
To name but three potential explanations among many more, actual types might be
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multidimensional or otherwise much less clear-cut than simple scalars, agents might be
imperfectly informed about their own type, or agents’ personal networks might undermine
meritocratic sorting. Our results suggest that, if appropriate policies made real-world
matching markets more similar to the simplified world of our model, the efficiency gains
could be large.

Future work might introduce a long side to the matching market, so that there are
excess types, and examine how such a situation might converge to an equilibrium. A
comparative statics analysis appears worthwhile, in particular with regards to the induced
changes in efficiency. More generally, we would argue that assortative matching becomes
more important as technological and societal progress favours specialisation. At the same
time, new means have appeared of effective and rapid communication that might, as in
our paper, support assortative matching. The combination of these two developments
offers ample scope for further research.
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