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Preface

Stochastic differential equations (SDE) of different kinds are re-
cognized to play an important role in a wide range of problems
encountered in mathematics, physics, engineering, mathematical
finance, etc. The most important role has been played by Ito
diffusions, i.e., by solutions of SDEs driven by Gaussian random
measures, derived from a standard Brownian motion process. Re-
cent developments show that in many practical applications lea-
ding to acceptable stochastic models more general classes of in-
finitely divisible (ID) random measures are more appropriate. Of
particular interest is a class of ID random measures defined by
increments of a—stable Lévy motion processes. From the point of
view of classical stochastic analysis these problems can be re-
garded as special cases of SDEs involving stochastic integrals
driven by semimartingales, so we can relay on the theoretical re-
sults (existence, uniqueness, regularity and stability of solutions)
concerning of SDEs with semimartingale measures.

However, our main field of interest here is Numerical Probabi-
lity, a new domain in the probability theory. We focus our atten-
tion on numerical and statistical methods providing approximate
solutions of Ito type SDEs driven by some classes of ID random
measures. This leads to various problems concerning convergence
of such methods, and some of them are considered here.

Most of several problems presented here are treated in the
style of Computational Mathematics or Computational Physics,
two other comparatively new fields of science which have been
developing rapidly for some time. This can be explained by the
fact that attempts to get solutions in analytical closed form lead
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quite often to severe difficulties, while very useful and powerful
approximate numerical and computer simulation techniques are
available. Computer experiments providing information on solu-
tions of complicated stochastic models should stimulate theore-
tical investigations of their mathematical features. In this work
we present several examples of this kind. Some of them do not be-
long to the range of problems described by the finite dimensional
Ito type SDEs.

This monograph exploits some methods and facts from such
fields as theory of SDEs of different kinds; stochastic modeling in
computational physics, engineering, mathematical finance, etc.;
discrete and other approximate methods in stochastic analysis;
statistical estimation methods, computer simulations techniques
based on generation of pseudorandom variates and Monte—Carlo
type approximations and averaging; and, last but not least, nowa-
days very powerful computer graphics tools.

After preliminary remarks included in Chapter 1, in Chapter 2
we review various properties of the most important infinitely di-
visible laws and recall some methods of construction of basic sto-
chastic processes such as Brownian motion, a—stable Lévy motion
or Poisson process, as well.

It turns out that with the use of suitable statistical estimation
techniques, computer simulation procedures, and numerical dis-
cretization methods described in Chapters 3 — 6 it is possible to
construct approximations of stochastic integrals and SDEs with
infinitely divisible random measures as integrators. Their up-
dated mathematical theory is systematically presented in Chap-
ters 4 and 6. The most valuable statistical estimation methods
are briefly recalled in Chapter 5. As a consequence we obtain
an effective general method allowing us to construct approximate
solutions to a wide class of SDEs involving such integrals. Some
new results on convergence of discrete methods approximating
stochastic integrals and SDEs with a—stable integrators are con-
tained in Chapter 6. Applications of computer graphics provide
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useful quantitative and visual information on various features of
SDEs with jumps and show what distinguishes them from their
commonly used Gaussian counterparts. It is possible to demon-
strate time evolution of densities with heavy tails of various sto-
chastic processes, visualize the effect of jumps of trajectories, etc.
We try to demonstrate that especially a—stable variates can be
very useful in stochastic modeling of various problems arising in
science and engineering.

Chapters 6 and 7 contain various examples of application of our
approach to different stochastic models arising in mathematical
physics, mathematical finance, etc.

Results of computer investigations on fractal and geometric
structures (cellular and clustering effects) characteristic for solu-
tions of 1 and 2 dimensional Burgers equations (nonlinear partial
differential equations) with random initial data or random exter-
nal forces are presented in Chapter 8.

Some theoretical results — based on author’s papers and more
or less of original character — are presented in Chapters 3, 4 and
6. Chapters 7 and 8 are based on author’s recent papers con-
sisting in application of computational mathematics methods to
experimental investigation of several stochastic models.

In Appendices we enclose the computer program SDE-Lm.cpp
which was employed to produce several graphical examples con-
tained in this work. Running the program one can solve approx-
imately stochastic differential equations driven by the a—stable
Lévy motion process. Another program (Burgers.cpp) simulates
the time evolution of passive tracer densities in Burgers flows of

different kind.

This work should be regarded as a continuation of or supple-
ment to the following fundamental monograph:

JANICKI, A. and WERON, A. (1994). Simulation and Chaotic
Behavior of a—stable Stochastic Processes, Marcel Dekker, New
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York,

which can serve as a source of basic information on topics which
are only briefly recalled here. Most of the results (including two
original topics of this monograph: computer simulation of stable
processes and their chaotic behavior) are presented with details
there.

Here we present mainly the new facts and results of experi-
ments performed after preparation of the book.

The mathematical content, all figures and computer programs
providing them, and the IATEX source code of the whole text,
i.e. everything in the book, were produced by the author himself.
There is no one to blame for possible occasional mistakes but the
author.

[ am happy to acknowledge my indebtedness to Professor Alek-
sander Weron, who introduced me to and has governed my paths
through these new and fascinating fields of numerical and com-
putational probability for several years.

I want to thank Professor W. A. Woyczynski for inviting me
to CWRU in Cleveland, Ohio for the academic year 1994/95, and
for guiding my steps in computer investigation of geometric and
statistical properties of stochastic Burgers flows.

Finally, I want to express my gratitude to my colleagues P.
Kokoszka, Z. Michna, and K. Podgorski, younger co—authors of a
few papers.

Aleksander Janicki



Chapter 1

Preliminaries

1.1 Introduction

Modern theory of stochastic differential equations relays on the stochastic in-
tegration theory, which originated in the early work of Wiener. Stochastic in-
tegrals with respect to Brownian motion were defined by It6 (1944). Doob
(1953) proposed a general integral with respect to L?*-martingales. On the ba-
sis of the Doob—Meyer decomposition theorem, Kunita and Watanabe (1967)
further developed the theory of this integral. Doleans—Dade and Meyer (1970)
extended the definition of the stochastic integral to all local martingales and
subsequently to semimartingales. The natural role of semimartingales was made
evident thanks to the contribution of Dellacherie (1980) and Bichteler (1981),
who established that semimartingales are the most general class of integrators
for which one can have a reasonable definition of stochastic integral against pre-
dictable integrands. Basic facts concerning some aspects of stochastic analysis
and the theory of stochastic integrals of different types can be found, for exam-
ple, in Elliott (1982), Jacod and Shiryaev (1987), Karatzas and Shreve (1988),
Revuz and Yor (1991), or Kwapien and Woyczynski (1992).

Our main tool of description of stochastic models are stochastic integrals
with respect to a standard a-—stable Lévy motion. The a-stable Lévy motion
together with the Poisson process and Brownian motion are the most important
examples of Lévy processes, which together provide the most important examples
of Markov processes as well as of semimartingales.

Thus, on the one hand, the class of SDEs in which we are interested is much
broader than the class of SDEs with random measures defined by Gaussian pro-
cesses and, on the other, it is contained in the class of SDEs driven by infinitely
divisible measures, which itself is contained in the class of semimartingales.

1.2 Stochastic Differential Equations

Let a usual complete probability space (Q, F, P), together with a filtration {F;}
be given. A vast class of R"—valued stochastic diffusions {X(¢) : ¢ > 0} in

1



2 CHAPTER 1

(Q,F, P,{F:}) driven by a—stable stochastic measures induced by a class of a—
stable Lévy motion processes {L, 5(t) : t > 0}, with given drift and dispersion
coefficients, can be described by the following stochastic differential equation

d X(1) = a(t, X(t—=)) dt +b(t, X(t—)) dLas(t); t>0, X(0)= Xo,

that can be rewritten in the following integral form

X(t) = Xo + /Ota(s,X(s—)) ds + /Ot b(s, X (5—)) dLus(s). (1.2.1)

Several examples of application of such SDEs to stochastic modeling can be
found in Janicki and Weron (1994a), (1994b).

This class includes commonly well understood an IR"-valued Ito diffusion
process {X(¢) : t > 0} driven by the Wiener process (Brownian motion), with
given drift and dispersion coefficients, i.e., a process which can be obtained as
a solution of the following stochastic differential equation

X(1) = Xo + /Ot a(s, X(s)) ds + /Ot bs, X(s) dB(s),  (1.2.2)

where { B(t)} stands for the standard Brownian motion process. There is a huge
amount of possible applications of such SDEs in stochastic modeling (see, e.g.,
Gardiner (1983), Gardner (1986) or Sobczyk (1991)).

The theory of stochastic differential equations driven by Gaussian random
measures (see Arnold (1974) or Karatzas and Shreve (1988)) has been developed
for a long time.

It is clear that SDEs involving stochastic integrals with a standard a—stable
Lévy motion as an integrator include the above equation as a special case.

Still more general are the so—called stochastic differential equations with
jumps. In the simplest case of real-valued process the problem is to find the
solution {X(¢) : t € [0,00)} of the equation

X(t) = X0+/Ot [ FOX (), 0) N(ds, de), (1.2.3)

where N(ds,dx) is a Poisson measure of a suitable point process with a given
intensity measure ds dv(z) (see, e.g., Ikeda and Watanabe (1981)). All types
of stochastic equations described above are special cases of general SDEs driven
by semimartingales, i.e., equations of the form

X(t) = Xo + /Ot F(X(s5—)) dY(s), (1.2.4)

where {Y(¢)} stands for a given semimartingale process. There is a vast lite-
rature concerning this topic (for theorems on existence, uniqueness, regularity
of solutions, etc., one can consult, e.g., Elliot (1982) or Protter (1990) and the
bibliography therein).
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1.3 Approximation and Computer Simulation
of SDEs

Numerical Probability and Computational Mathematics are two main fields of in-
terest in this monograph. Numerical probability contains as a substantial part
methods of discretization of SDEs driven by Brownian motion, i.e., stochastic
equations in the form (1.2.2), and the theory of convergence of such methods.
A path of development of such methods, which can be understood as stochastic
versions of well developed numerical methods of approximation of finite systems
of ordinary differential equations, can be followed through the following (far from
completeness) sequence of papers: Maruyama (1955), Milstein (1974), (1978),
Yamada (1976), Kloeden and Pearson (1977), Clark and Cameron (1980), Platen
(1980), Rootzen (1980), Talay (1983), Pardoux and Talay (1985). A fundamen-
tal monograph by Kloeden and Platen (1992) summarizes all recent develop-
ments on approximate methods solving equation (1.2.2). However at the end of
a brief survey of stochastic numerical methods it contains the following

We conclude this brief survey with the remark that the theoretical
understanding and practical application of numerical methods for
stochastic differential equations are still in their infancy.

Kloeden and Platen (1992), p. XXXV
Book by Janicki and Weron (1994a) is the first available work which deals with

a significantly more general problem of computer constructions of approximate
solutions of SDEs driven by a standard a-stable Lévy motion processes, i.e.,
written in the form (1.2.1). Some basic ideas on convergence of numerical meth-
ods can be derived from the literature on the stability theory of stochastic in-
tegrals and SDEs with jumps (see, e.g., Jakubowski, Mémin and Pages (1989),
Stominski (1989), Kasahara, Yamada (1991), Kurtz and Protter (1991)). Here
we present a new version of a theorem on weak convergence in the Skorokhod
topology in the space ID[0,T,IR) of numerical approximations of SDE (1.2.1)
based on summation of independent increments of appropriate processes induc-
ing random measures (see Janicki, Michna and Weron (1996)), but there are still
many open questions concerning this problem. Also of interest is a theorem on
the rate of convergence of approximations of stochastic integrals with a—stable
random measures represented by infinite random series (see Janicki (1996a)).

One of basic new ideas in Janicki and Weron (1994a) was to represent the
discrete time processes approximating stochastic processes with continuous time
by appropriately constructed finite sets of random samples derived from random
samples approximating underling random measures. Such approach provides
us with estimators of densities and quantiles of these processes on finite sets
of values of discretized time and with useful quantitative information on time
evolution of investigated stochastic processes. This leads to another set of open
theoretical problems.



4 CHAPTER 1

Another achievement of Janicki and Weron (1994a) was a significant progress
(in comparison, for example, with rather elementary, not to say naive, methods
utilized in the parallelly prepared books by Bouleau and Lépingle (1994), Kloe-
den, Platen and Schurz (1994), or Samorodnitsky and Taqqu (1994)) in de-
velopment of methods of visualization of stochastic processes of different kinds
based on application of modern computer techniques. There is a rapidly grow-
ing number of works (particularly in the fields of Computational Physics and
Mathematical Economy) where the proper use of such approach (computer gra-
phics combined with numerical and statistical methods) provides useful and
sometimes surprisingly interesting information helping for better understanding
of phenomena that are of complicated, chaotic or stochastic nature (see Ja-
nicki (1995b), Janicki and Weron (1994a), (1995a), (1995b), Janicki, Popova,
Ritchken and Woyczynski (1996)). For other developments in physics consult,
e.g., a collection of papers edited by Garbaczewski, Wolf and Weron (1995).

In this monograph we present several new examples of this kind. In our
approach we feel strongly inspired by the work of S. M. Ulam, former Stefan
Banach’s favorite student, who was one of the first enthusiasts of application
of computer methods not only to scientific calculations or to the construction
of mathematical models of physical phenomena but even to the investigation
of new universal laws of nature; consult e.g., Stein and Ulam (1963) or Ulam
(1980).

This last remark defines, more or less, what we mean by Computational
Mathematics.

1.4 Burgers Flows

Chapter 8 of this work, based on papers by Janicki (1996b), (1996¢), Janicki
and Woyczynski (1997), Janicki, Surgailis and Woyczynski (1995), is devoted
to the computer study of geometric structures of solution of Burgers equations
with random initial conditions or random potential of external forces. These
equations are applicable in constructions of adhesion models of an expanding
Universe, when it is reasonable to assume that the time evolution of multidi-
mensional velocity fields v = v(¢,x) can be described by the relation

aa—: + (v,V)v = pAv — 2uV P, (1.4.1)

and when the density of matter p = p(t,x) satisfies the continuity equation

dp . B
e + div(pv) =0, (1.4.2)

for (t,x) € (0,00) x R%. (Assymptotic behavior when ||x|| — oo and proper
initial conditions are discussed in Chapter 8.)



