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1 Introduction

Theoretical predictions on investment, asset prices, and the cost of business cycles, depend

crucially on assumptions about the relationship between risk aversion and wealth.1 Although

characterizing this relationship has long been in the research agenda of empirical finance and

economics, progress has been hindered by the difficulty of disentangling the shape of the utility

function from preference heterogeneity across agents and changes in beliefs over time. For

example, the bulk of existing work is based on comparisons of risk aversion across investors

of different wealth, which requires assuming that agents have the same preference function.

If agents have heterogeneous preferences, however, cross sectional analysis leads to incorrect

inferences about the shape of the utility function when wealth and preferences are correlated.

Such a correlation may arise, for example, if agents with heterogenous propensity to take risk

make different investment choices, which in turn affect their wealth.2 To both characterize the

properties of the joint distribution of preferences and wealth in the cross section, and estimate

the parameters describing the utility function, one needs to observe how the risk aversion of the

same individual changes with wealth shocks.

Important recent work improves on the cross-sectional approach by looking at changes in

the fraction of risky assets in an investor’s portfolio that stem from the time series variation

in investor wealth (Brunnermeier and Nagel (2008) and Calvet, Campbell and Sodini (2009)).

The crucial identifying assumption required for using the share of risky assets as a proxy for

investor Relative Risk Aversion (RRA) in this setting, is that all other determinants of the share

of risky assets remain constant as the investor’s wealth changes. One must assume, for example,

that changes in investors’ beliefs about the expected return of risky assets, or about the returns

1See Kocherlakota (1996) for a discussion of the literature aiming at resolving the equity premium and low
risk free rate puzzles under different preference assumptions. Campbell and Cochrane (1999), for example, model
preferences with habit formation that produce cyclical variations in risk aversion, and decreasing relative risk
aversion after a positive wealth shock. Gollier (2001) shows that wealth inequality raises the equity premium if
the absolute risk aversion is concave in wealth.

2Guvenen (2009) and Gomes and Michaelides (2008) propose a model with preference heterogeneity that
endogenously generates cross sectional variation in wealth. Alternatively, an unobserved investor characteristic,
such as having more educated parents, may jointly affect wealth and the propensity to take risk.
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of unobservable components of wealth such as human capital, are uncorrelated with shocks

to financial wealth. Attempts to address this identification problem through an instrumental

variable approach have produced mixed results: the estimated sign of the elasticity of RRA to

wealth varies across studies depending on the choice of instrument.3

The present paper exploits a novel environment to obtain unbiased measures of investor

risk aversion and relate them to investor wealth. We analyze the risk taking behavior of 2,168

investors based on their actual financial decisions in Lending Club (LC), a person-to-person

lending platform in which individuals invest in diversified portfolios of small loans. We develop

a methodology to estimate the local curvature of an investor’s utility function (Absolute Risk

Aversion, or ARA) from each portfolio choice. The key advantage of this estimation approach

is that it does not require characterizing investors’ outside wealth. We exploit the fact that

the same individuals make repeated investments in LC to construct a panel of risk aversion

estimates. We use this panel to both characterize the cross sectional correlation between risk

preferences and wealth, and to obtain reduced form estimates of the elasticity of investor-specific

risk aversion to changes in wealth.

Our estimation method is derived from an optimal portfolio model where investors not only

hold the market portfolio, but also securities for which they have subjective insights (Treynor

and Black (1973)). We treat investments in LC as special-insight securities, with returns that are

correlated with other securities through a common systematic factor (Sharpe’s Diagonal Model).

This implies that LC returns can be decomposed into a systematic component, correlated with

macroeconomic fluctuations, and a pure idiosyncratic component. We use the idiosyncratic

component to characterize investors’ preferences: an investor’s ARA is given by the additional

expected return that makes her indifferent about allocating the marginal dollar to a loan with

higher idiosyncratic default probability. Estimating risk preferences from the idiosyncratic com-

ponent of returns implies that the estimates are independent from the investors’ overall risk

exposure or wealth. Moreover, by measuring the curvature of the utility function directly from

3See Calvet et al. (2009) and Calvet and Sodini (2009) for a discussion.
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the first order condition of this portfolio choice problem, we do not need to impose a specific

shape of the utility function. We show that our method obtains consistent estimates for the

curvature of the utility function under alternative preference specifications, such as expected

utility (EU) over wealth, EU over wealth and income, loss aversion, and narrow framing.

The average ARA implied by the tradeoff between expected return and idiosyncratic risk

in our sample of portfolio choices is 0.037. Our estimates imply an average income-based Rel-

ative Risk Aversion (income-based RRA), a commonly reported risk preference parameter in

experimental studies obtained assuming that the investor’s outside wealth is zero, of 2.85, with

substantial unexplained heterogeneity and skewness.4 We use experimental measurements of

risk aversion to benchmark our estimates because investors in our model face choices that are

similar to those faced by typical experimental subjects along important dimensions: Our model

transforms a complex portfolio choice problem into a choice between well defined lotteries of

pure idiosyncratic risk, where returns are characterized by a discrete failure probability (i.e.,

default) and the stakes are small relative to total wealth (the median investment in LC is $375).

The level, distribution, and skewness of the estimated risk aversion parameters are similar to

those obtained in laboratory and field experiments.5 These similarities indicate that investors

in our sample, despite being a self selected sample of individuals who invest on-line, have similar

risk preferences to individuals in other settings.

Using imputed net worth as a proxy for wealth in the cross section of investors, we find that

wealthier investors exhibit lower ARA and higher RRA when choosing LC loan portfolios.6 Our

preferred specification, which corrects for measurement error in the wealth proxy using house

prices in the investor’s zip code as an instrument, obtains an elasticity of ARA to wealth of

-0.059, which implies a cross sectional wealth elasticity of the RRA of 0.94.7

4The income-based RRA, often reported in the experimental literature, is defined as ARA · E[y], where E[y]
is the expected income from the lottery offered in the experiment.

5See for example Barsky, Juster, Kimball and Shapiro (1997), Holt and Laury (2002), Choi, Fisman, Gale and
Kariv (2007), and Harrison, Lau and Rutstrom (2007b).

6Net worth is imputed by Acxiom as of October 2007. Acxiom is a third party specialized in recovering
consumer demographics based on public data.

7Although the wealth-based RRA is not directly observable, we compute its elasticity from the following
relationship: ξRRA,W = ξARA,W + 1,where ξRRA,W and ξARA,W refer to the wealth elasticities of RRA and ARA,
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The results demonstrate that there is a link between heterogeneity in risk preferences and

wealth in the cross section. Existing empirical evidence on this link, which is increasingly relevant

for modeling asset prices, is inconclusive. When the risk aversion parameters are estimated from

the share of risky and riskless assets, the sign of the correlation between risk aversion and wealth

is sensitive to the definition of wealth and the categorization of assets into risky and riskless

(see, among others, Blume and Friend (1975), Cohn, Lewellen, Lease and Schlarbaum (1975),

Morin and Suarez (1983), and Blake (1996)). Guiso and Paiella (2008) and Cicchetti and Dubin

(1994) avoid this problem by estimating risk aversion from answers to an hypothetical lottery

and data on insurance against phone line troubles, respectively. These studies find, as we do, a

positive cross sectional correlation between Relative Risk Aversion and wealth.

To characterize the shape of the utility function for the average investor, we estimate the

elasticity of risk aversion to changes in wealth in an investor fixed-effect specification. As a

wealth shock, we use the decline in house prices in the investor’s zip code during our sample

period—October 2007 to April 2008. The results indicate that the average investor’s RRA

increases after experiencing a negative housing wealth shock, with an estimated elasticity of

−1.82. Under reasonable assumptions about the relationship between housing and total wealth

during this period, the point estimates imply that the curvature of the value function increases

after a negative wealth shock. This is consistent with investors exhibiting decreasing Relative

Risk Aversion, and with theories of habit formation (as in Campbell and Cochrane (1999)), and

incomplete markets (as in Guvenen (2009)).8

A novel feature of our estimation approach is that it disentangles the measurement of risk

aversion from investors’ assessments about the systematic risk of LC loans. On average, the LC

systematic risk premium increases from 6.3% to 9.2% between the first and last three months

of the sample, indicating that investors’ priors on LC’s systematic risk increase substantially

during the period.

respectively.
8These preference specifications are also consistent with the empirical findings in Calvet et al. (2009). Brun-

nermeier and Nagel (2008), on the other hand, find support for CRRA.
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Overall, the results confirm that not accounting for preference heterogeneity and changes

in beliefs may bias estimates of the relationship between risk preferences and wealth. First,

the contrasting signs of the cross sectional and investor-specific wealth elasticities indicate that

inference on the elasticity of risk aversion to wealth from cross sectional data will be biased,

since risk taking behavior in the cross section of investors depends not only on the shape of the

utility function but also on the joint distribution of preferences and wealth.9 Second, our finding

that the expected return on LC systematic risk increases after house prices decline indicates that

wealth shocks are potentially correlated with general changes in investors’ beliefs. This implies

that the share of risky assets may not be a valid measure for investor RRA in the presence of

wealth shocks. In our context, for example, inference based on the share of risky assets alone

would have overestimated the elasticity of risk aversion to wealth.

The LC environment allows us to test for estimation bias due to misspecification of investors’

beliefs. An investor in LC can choose her investment portfolio manually or through an optimiza-

tion tool. When the choice is manual, she selects loans by processing herself the information on

interest and idiosyncratic default rates provided on LC’s website. When she uses the tool, the

tool processes this information for her, by providing all the possible efficient (minimum variance)

portfolios that can be constructed with the available loans. The investor then chooses among the

efficient portfolios according to her own risk preferences. Importantly, our estimation procedure

and the tool use the same information on risk and return, and the same modeling assumptions

regarding a common systematic component across all potential loans. Any bias due to mis-

specified beliefs will result in a wedge between the risk aversion estimates based on manual and

automatic choices. Instead, we obtain the same risk aversion estimates when investors choose

portfolios manually or through the tool, which validates our modeling assumption.

We provide additional validity to our estimates by testing whether the level and wealth

9Chiappori and Paiella (2008) find the bias from the cross sectional estimation to be economically insignificant.
In their case, however, changes in agent’s wealth are not exogenous, and risk aversion is measured through the
share of risky assets. Tanaka, Camerer and Nguyen (2010) use rainfall across villages in Vietnam as an instrument
for wealth and find significant difference between the OLS and IV estimators. However, to obtain the elasticity
of the agent-specific risk aversion, they must assume that preferences are equal across villages otherwise.
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elasticity of risk aversion are consistent across different investors’ decisions within LC. We test

the consistency of the estimated level of risk aversion using a revealed preference argument.

The median investor has in her portfolio only a subset of the loans available at the time of her

investment decision. We use the foregone loans to perform an out-of-sample validation of the

ARA estimate obtained from the loans in the portfolio. We confirm that including the foregone

loans in the portfolio would lower the investor’s expected utility if her preferences are described

by the estimated ARA.

We also verify the consistency of the estimated elasticities of RRA to wealth by testing

the following predictions of the standard EU framework: when relative risk aversion decreases

(increases) in outside wealth, the share of wealth invested in LC will increase (decrease) in

outside wealth. Since our risk aversion measures are obtained solely from the composition of

each investment, these predictions can be tested out of sample by independently estimating

the elasticity of the total amount invested in LC to wealth. We find that the implied signs of

the RRA and total investment elasticities, both in the cross section and within investor, are

consistent with the predictions above.

The rest of the paper is organized as follows. Section 2 describes the Lending Club platform.

Section 3 solves the portfolio choice model and sets out our estimation strategy. Section 4

describes the data and the sample restrictions. Section 5 presents and discusses the empirical

results and provides a test of the identification assumptions. Section 6 explores the relationship

between risk preferences and wealth. Section 7 tests the consistency of the investor preferences

across different decisions within LC. And Section 8 concludes.

2 The Lending Platform

Lending Club (LC) is an online U.S. lending platform that allows individuals to invest in portfo-

lios of small loans. The platform started operating in June 2007. As of May 2010, it has funded

$112,003,250 in loans and provided an average net annualized return of 9.64% to investors.10

10For the latest figures refer to: https://www.lendingclub.com/info/statistics.action.
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Below, we provide an overview of the platform and derive the expected return and variance of

investors’ portfolio choices.

2.1 Overview

Borrowers need a U.S. SSN and a FICO score of 640 or higher in order to apply. They can

request a sum ranging from $1,000 to $25,000, usually to consolidate credit card debt, finance a

small business, or fund educational expenses, home improvements, or the purchase of a car.

Each application is classified into one of 35 risk buckets based on the FICO score, the

requested loan amount, the number of recent credit inquiries, the length of the credit history,

the total and currently open credit accounts, and the revolving credit utilization, according to

a pre-specified published rule posted on the website.11 LC also posts a default rate for each

risk bucket, taken from a long term validation study by TransUnion, based on U.S. unsecured

consumer loans. All the loans classified in a given bucket offer the same interest rate, assigned

by LC based on an internal rule.

A loan application is posted on the website for a maximum of 14 days. It becomes a loan

only if it attracts enough investors and gets fully funded. All the loans have a 3 year term with

fixed interest rates and equal monthly installments, and can be prepaid with no penalty for the

borrower. When the loan is granted, the borrower pays a one-time fee to LC ranging from 1.25%

to 3.75%, depending on the credit bucket. When a loan repayment is more than 15 days late,

the borrower is charged a late fee that is passed to investors. Loans with repayments more than

120 days late are considered in default, and LC begins the collection procedure. If collection is

successful, investors receive the amount repaid minus a collection fee that varies depending on

the age of the loan and the circumstances of the collection. Borrower descriptive statistics are

shown in Table 1, panel A.

Investors in LC allocate funds to open loan applications. The minimum investment in a loan

is $25. According to a survey of 1,103 LC investors in March 2009, diversification and high

11Please refer to https://www.lendingclub.com/info/how-we-set-interest-rates.action for the details of the clas-
sification rule and for an example.
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returns relative to alternative investment opportunities are the main motivations for investing

in LC.12 LC lowers the cost of investment diversification inside LC by providing an optimization

tool that constructs the set of efficient loan portfolios for the investor’s overall amount invested in

LC—i.e., the minimum idiosyncratic variance for each level of expected return (see Figure 1).13

In other words, the tool helps investors to process the information on interest rates and default

probabilities posted on the website into measures of expected return and idiosyncratic variance,

that may otherwise be difficult to compute for an average investor (these computations are

performed in Subsection 2.2).14 When investors use the tool, they select, among all the efficient

portfolios, the preferred one according to their own risk preferences. Investors can also use the

tool’s recommendation as a starting point and then make changes. Or they can simply select

the loans in their portfolio manually.

Of all portfolio allocations between LC’s inception and June 2009, 39.6% was suggested by

the optimization tool, 47.1% was initially suggested by the tool and then altered by the investor,

and the remaining 13.3% was chosen manually.15

Given two loans that belong to the same risk bucket (with the same idiosyncratic risk), the

optimization tool suggests the one with the highest fraction of the requested amount that is

already funded. This tie-breaking rule maximizes the likelihood that loans chosen by investors

are fully funded. In addition, if a loan is partially funded at the time the application expires,

LC provides the remaining funds.

12To the question “What would you say was the main reason why you joined Lending Club”, 20% of respondents
replied “to diversify my investments”, 54% replied “to earn a better return than (...)”, 16% replied “to learn more
about peer lending”, and 5% replied “to help others”. In addition, 62% of respondents also chose diversification
and higher returns as their secondary reason for joining Lending Club.

13During the period analyzed in this paper, the portfolio tool appeared as the first page to the investors. LC
has recently changed its interface and, before the portfolio tool page, it has added a stage where the lender can
simply pick between 3 representative portfolios of different risk and return.

14The tool normalizes the idiosyncratic variance into a 1–0 scale. Thus, while the tool provides an intuitive
sorting of efficient portfolios in terms of their idiosyncratic risk, investors always need to analyze the recommended
portfolios of loans to understand the actual risk level imbedded in the suggestion.

15We exploit this variation in Subsection 5.2 to validate the identification assumptions.
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2.2 Return and Variance of the Risk Buckets

All the loans in a given risk bucket z = 1, ..., 35 are characterized by the same scheduled monthly

payment per dollar borrowed, Pz, over the 3 years (36 monthly installments). The per dollar

scheduled payment Pz and the bucket specific default rate πz fully characterize the expected

return and variance of per project investments, µz and σ2z .

LC considers a geometric distribution for the idiosyncratic monthly survival probability of

the individual projects, Pr (T = τ) = πz (1− πz)τ for T ∈ [1, 36]. The resulting expectation and

variance of the present value of the payments, Pz, of a project in bucket z are:

µz = Pz

[
1−

(
1− πz
1 + r

)36
]

1− πz
r + πz

σ2z =
35∑
t=1

πz (1− πz)t
(

t∑
τ=1

Pz
(1 + r)τ

)2

+

(
36∑
τ=1

Pz
(1 + r)τ

)2

(1− πz)36 − µ2z

where r is the risk-free interest rate. Although LC considers all risk to be idiosyncratic, our

estimations are not affected by the introduction of a non-diversifiable risk component, Vz. The

resulting variance of the return on investment in bucket z is given by:

var
[
Riz
]

= Vz + var
[
riz
]

where riz is the idiosyncratic component of the bucket’s return Riz.

The idiosyncratic risk associated with bucket z decreases with the level of diversification

within the bucket; that is, the number of projects from bucket z in the portfolio of investor i,

niz. The resulting idiosyncratic variance is therefore investor specific:

var
[
riz
]

=
1

niz
σ2z . (1)

The expected return of an investment in bucket z is not affected by the number of loans in

the investor’s portfolio and is equal to the expected return of the representative project in that
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bucket, µz, which is constant across investors:16

E [Rz] = E
[
Riz
]

= µz. (2)

3 Estimation Procedure

The portfolio model in this section is based on Treynor and Black (1973). This framework

considers investors that, instead of simply holding a replica of the market portfolio, also hold

securities based on their own subjective insights.

Person-to-person lending markets, including LC, are not well known investment vehicles

among the general public. The decision to invest in LC depends on investors’ knowledge of its

existence and their subjective expectation that LC is, indeed, a good investment opportunity.

Thus, it is reasonable to assume that investors in LC have special insights, which explains why,

as we show later, their portfolio departs from just replicating the market; exactly the case

considered in Treynor and Black (1973).

This theoretical framework starts by recognizing that there is a high degree of co-movement

between securities, and specifically to our case, the probability of default of all loans in LC

is potentially correlated with macroeconomic fluctuations. We use Shape’s Diagonal Model of

covariance among securities to capture this insight. It assumes that returns are related only

through a common systematic factor (i.e., market or macroeconomic fluctuations). Under this

assumption, returns on LC loans can be decomposed into this common systematic factor and a

pure idiosyncratic component (we also refer to it as independent return).

The virtue of the model developed here is that the optimal portfolio depends only on the

expected return and variance of the idiosyncratic component. In other words, the optimal

amount invested in each LC loan does not depend on the return covariance with the investor’s

overall risk exposure, nor does it require knowing the amount and characteristics of her outside

16The analysis in subsection 5.2 confirms that investors’ beliefs about the probabilities of default do not differ
substantially from those posted on the website and, therefore, σz and µz are constant across investors.
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wealth. The optimality condition is such that the investor is indifferent about allocating an

extra dollar in a riskier bucket: the extra idiosyncratic risk would be exactly compensated by

the increase in expected return, given the risk aversion of the investor. Based on this optimality

condition, and having computed the expected return and the variance of the loans idiosyncratic

risk in Subsection 2.2, we infer the investor specific risk aversion.

3.1 The Model

Each investor i chooses the share of wealth to be invested in the Z + 2 available securities: a

security m that represents the market portfolio, with return Rm; a security f , with risk-free

return equal to 1; and Z securities that are part of the active portfolio of the investor, with

return Rz.

We consider investments in LC as part of the active portfolio. We also allow for the existence

of unobservable outside active risky investments. That is, the 35 risk buckets in LC are denote

z = 1, ..., 35, with 35 ≤ Z.17 The resulting portfolio of investor i is

ci = W i

[
xif + ximRm +

Z∑
z=1

xizR
i
z

]
(3)

where ci stands for the investor’s consumption and xf , xm, and {xz}Zz=1 correspond to the share

of wealth, W i, invested in the risk-free asset, the market portfolio, and the securities in the

active portfolio, respectively.

A projection of the return of each active security z = 1, ..., Z against the market gives two

factors. The first is the market sensitivity, or beta, of the security, and the second its independent

return:

Riz = βiz ·Rm + riz (4)

We consider all risk buckets to have the same systematic component, and allow the prior

17In an alternative hypothesis, participants in LC do not have special insights and their investment in LC is
not part of the active component but only a fraction of the market portfolio. In that case, the composition of risk
buckets within LC is not given by the investor’s risk aversion, as the optimal shares in the market portfolio are
constant across investors. This hypothesis is strongly rejected by the data in the results section.
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about the market sensitivity of LC returns to be investor specific. That is, for all z = 1, ..., 35 :

βiz = βiL. This assumption is tested in Subsection 5.2.18

We can rewrite the investor’s budget constraint in the following way:

ci = W i

[
xif + xiZ+1Rm +

Z∑
z=1

xizr
i
z

]
(5)

where xiZ+1 is the total exposure to market risk, given both by the investor’s direct holdings of

market portfolio, xim, and, indirectly, by her accumulation of market risk as a by-product of the

position in the active portfolio:

xiZ+1 = xim +
Z∑
z=1

xizβ
i
z (6)

Following Treynor and Black (1973), we use Sharpe’s Diagonal Model for covariance among

securities. It posits that the returns of the different investment opportunities are related to each

other only through their relationships with a common underlying factor. In the case of LC, the

loans in the program are assumed to be related to other securities only through the market’s

effect on LC systematic risk. That is, the independent returns, defined in equation (4), are

uncorrelated.

Assumption 1. Sharpe’s Diagonal Model19

for all n 6= h : cov
[
rin, r

i
h

]
= 0

To grasp the intuition behind this assumption consider, for example, how an increase in

macroeconomic risk (i.e., financial crisis) is captured in the model. Macro fluctuations, which

can trigger correlated defaults across buckets, represent an underlying common factor. Such

a common factor is reflected in the systematic component of equation (4) and can vary across

investors and time.
18Note that under this assumption, the prior about the systematic risk Vz introduced in Subsection 2.2 is

investor specific and it is given by V i
z =

(
βi
L

)2 · var [Rm], for all z = 1, ..., 35.
19Allowing a time dimension, the independent returns are also uncorrelated across time. That is, the portfolio

choices within LC are time-independent.
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Under assumption 1, our theoretical framework transforms the original investor budget con-

straint in equation (3) into the portfolio in equation (5), composed of a risk-free asset and Z+ 1

mutually independent securities. The investor is constrained to non-negative positions in all the

LC buckets: xz ≥ 0 for z = 1, ..., 35. The following problem describes the portfolio choice of

investor i:

max
xf ,{x}Z+1

z=1

Eu

(
W i

[
xf + xZ+1Rm +

Z∑
z=1

xzr
i
z

])

For all active buckets with xz > 0, the first order condition characterizing the optimal portfolio

share is:20

foc
(
xiz
)

: E
[
u′
(
ci
)
·W i

(
riz − 1

)]
= 0

A first-order linearization of the first order condition around expected consumption results

in the following optimality condition:

E
[
riz
]
− 1 =

(
−
u′′
(
E
[
ci
])

u′ (E [ci])

)
·W ixiz · var

[
riz
]
. (7)

Note that, even when LC projects are affected by market fluctuations, the optimal investment

in bucket z is independent of market risk considerations, or the volatility of the investor’s

securities outside LC. This is because the holding of market portfolio, xZ+1 in equation (6),

optimally adjusts to account for the indirect market risk imbedded in LC or any other security

in the active portfolio of the investor. The optimal LC portfolio depends only on the investor’s

risk aversion, and the expectation and variance of the independent return of each bucket z.

Rewriting investor-specific idiosyncratic risk in terms of the common parameter σz, com-

puted in equation (1), and substituting the expectation of the independent return, E
[
riz
]
, with

expected return E [Rz], common across investors, computed in equation (2), we derive our main

empirical equation. Let Ai be the set of all active risk buckets —i.e. Ai =
{
z ≤ 35|xiz > 0

}
−,

20The minimum investment per loan is $25. This limit results in discrete intervals over which the number of
projects financed, ni

z, is unaltered by a marginal change in xz. The following first order condition characterizes
the optimal portfolio within these discrete intervals.
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then for all z ∈ Ai :

E [Rz] = θi +ARAi · W
ixiz
niz

σ2z (8)

where:

θi ≡ 1 + βiLE [Rm] (9)

ARAi ≡ −
u′′
(
E
[
ci
])

u′ (E [ci])
(10)

The parameter ARAi corresponds to the Absolute Risk Aversion. It captures the extra ex-

pected return needed to leave the investor indifferent when taking extra risk. The parameter θi

collects the systematic component of the LC investment, which is constant across buckets. We

estimate this parameter as a person-specific constant (the constant is investment-specific when

investors make multiple portfolio choices). Thus, our estimation procedure does not require the

computation of the LC portfolio covariance with the market. Our main estimation procedure

exploits only the active risk buckets (z ∈ Ai); we show in Subsection 7.1 that the estimated risk

preferences are consistent with those implied by the forgone buckets (z /∈ Ai).

We show in Appendix A that the same equation characterizes the optimal LC portfolio

and allows recovering the curvature of the utility function under three alternative preference

specifications: 1) when investors are averse to losses in their overall wealth, 2) an extreme version

of narrow framing in which investors’ preferences within LC are independent from their attitude

towards risk in other settings, and 3) when investor utility depends in a non-separable way on

both the overall wealth level and the income flow from specific components of the portfolio (for

example, as in Barberis and Huang (2001), Barberis, Huang and Thaler (2006), and Cox and

Sadiraj (2006)).

The expected lifetime wealth of the investors is unknown and we therefore cannot compute

the Relative Risk Aversion (RRA).21 However, for the purpose of comparing our estimates with

21Although we cannot compute RRA, in Section 6 we infer its elasticity with respect to wealth, based on the
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results from laboratory experiments, we follow that literature and define a relative risk aversion

based solely on the income generated by investing in LC (income-based RRA), which we denote

ρ (see, for example, Holt and Laury (2002)):

ρi ≡ ARAi · IiL ·
(
E
[
RiL
]
− 1
)

(11)

where IiL is the total investment in LC, IiL = W i
∑35

z=1 x
i
z, and E

[
RiL
]

is the expected return

on the LC portfolio, E
[
RiL
]

=
∑35

z=1 x
i
zE [Rz].

4 Data and Sample

Our sample covers the period between October 2007 and April 2008. Below we provide summary

statistics of the investors’ characteristics and their portfolio choices, and a description of the

sample construction.

4.1 Investors

For each investor we observe the home address zip code, verified by LC against the checking

account information, and age, gender, marital status, home ownership status, and net worth, ob-

tained through Acxiom, a third party specialized in recovering consumer demographics. Acxiom

uses a proprietary algorithm to recover gender from the investor names, and matches investor

names and home addresses to available public records to recover age, marital status, home own-

ership status, and an estimate of net worth. Such information is available at the beginning of

the sample.

Table 1, panel B, shows the demographic characteristics of the LC investors. The average

investor in our sample is 43 years old, 8 years younger than the average respondent in the

Survey of Consumer Finances (SCF). As expected from younger investors, the proportion of

married participants in LC (56%) is lower than in the SCF (68%). Men are over-represented

elasticity of ARA: ξRRA,W = ξARA,W + 1.
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among participants in financial markets, they account for 83% of the LC investors; similarly, the

faction of male respondents in the SCF is 79%. In terms of income and net worth, investors in LC

are comparable to other participants in financial markets, who are typically wealthier than the

median U.S. households. The median net worth of LC investors is estimated between $250,000

and $499,999, significantly higher then the median U.S. household ($120,000 according to the

SCF), but similar to the estimated wealth of other samples of financial investors. Korniotis and

Kumar (2010), for example, estimate the wealth of clients in a major U.S. discount brokerage

house in 1996 at $270,000.

To obtain an indicator of housing wealth, we match investors’ information with the Zillow

Home Value Index by zip code. The Zillow Index for a given geographical area is the value of the

median property in that location, estimated using a proprietary hedonic model based on house

transactions and house characteristics data, and it is available at a monthly frequency. Figure

2 shows the geographical distribution of the 1,624 zip codes where the LC investors are located

(Alaska, Hawaii, and Puerto Rico excluded). Although geographically disperse, LC investors

tend to concentrate in urban areas and major cities. Table 1 shows the descriptive statistics of

median house values on October 2007 and their variation during the sample period—October

2007 to April 2008.

4.2 Sample Construction

We consider as a single portfolio choice all the investments an individual makes within a calendar

month.22 The full sample contains 2,168 investors, 5,191 portfolio choices, which results in 50,254

investment-bucket observations. To compute the expected return and idiosyncratic variance of

the investment-bucket in equations (2) and (1), we use as the risk free interest rate, the 3-year

yield on Treasury Bonds at the time of the investment. Table 2, panel A, reports the descriptive

statistics of the investment-buckets. The median expected return is 12.2%, with an idiosyncratic

22This time window is arbitrary and modifying it does not change the risk aversion estimates. We chose a
calendar month for convenience, since it coincides with the frequency of the real estate price data that we use to
proxy for wealth shocks in the empirical analysis.
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variance of 3.6%. Panel B, describes the risk and return of the investors’ LC portfolios. The

median portfolio expected return in the sample is 12.2%, almost identical to the expectation

at the bucket level, but the idiosyncratic variance is substantially lower, 0.0054%, due to risk

diversification across buckets.

Our estimation method imposes two requirements for inclusion in the sample. First, es-

timating risk aversion implies recovering two investor specific parameters from equation (8).

Therefore, a point estimate of the risk aversion parameter can only be recovered when a port-

folio choice contains more than one risk bucket.

Second, our identification method relies on the assumption that all projects in a risk bucket

have the same expected return and variance. Under this assumption investors will always prefer

to exhaust the diversification opportunities within a bucket, i.e., will prefer to invest $25 in

two different loans belonging to bucket z instead of investing $50 in a single loan in the same

bucket. It is possible that some investors choose to forego diversification opportunities if they

believe that a particular loan has a higher return or lower variance than the average loan in the

same bucket. Because investors’ private insights are unobservable to the econometrician, such

deviations from full diversification will bias the risk aversion estimates downwards. To avoid

such bias we exclude all non-diversified components of an investment. Thus, the sample we base

our analysis on includes: 1) investment components that are chosen through the optimization

tool, which automatically exhausts diversification opportunities, and 2) diversified investment

components that allocate no more than $50 to any given loan.

After imposing these restrictions, the analysis sample has 2,168 investors and 3,745 portfolio

choices. The descriptive statistics of the analysis sample are shown in Table 2, column 2.

As expected, the average portfolio in the analysis sample is smaller and distributed across a

larger number of buckets than the average portfolio in the full sample. The average portfolio

expected return is the same across the two samples, while the idiosyncratic variance in the

analysis sample is smaller. This is expected since the analysis sample excludes non-diversified

investment components.
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In the wealth analysis, we further restrict the sample to those investors that are located in zip

codes where the Zillow Index is computed. This reduces the sample to 1,806 investors and 3,145

portfolio choices. This final selection does not alter the observed characteristics of the portfolios

significantly (Table 2, column 3). To maintain a consistent analysis sample throughout the

discussion that follows, we perform all estimations using this final subsample unless otherwise

noted.

5 Risk Aversion Estimates

Our baseline estimation specification is based on equation (8). We allow for an additive error

term, such that for each investor i we estimate the following equation:

E [Rz] = θi +ARAi · W
ixiz
niz

σ2z + εiz (12)

There is one independent equation for each active bucket z in the investor’s portfolio. The

median portfolio choice in our sample allocates funding to 10 buckets, which provides us with

multiple degrees of freedom for estimation. We estimate the parameters of equation (12) with

Ordinary Least Squares.

Figure 3 shows four examples of portfolio choices. The vertical axis measures the expected

return of a risk bucket, E [Rz], and the horizontal axis measures the bucket variance weighted by

the investment amount, W ixizσ
2
z/n

i
z. The slope of the linear fit is our estimate of the absolute

risk aversion and it is reported on the top of each plot.

The error term captures deviations from the efficient portfolio due to the $25 constraint

for the minimum investment, measurement errors by investors, and real or perceived private

information. The OLS estimates will be unbiased as long as the error component does not vary

systematically with bucket risk. We discuss and provide evidence in support of this identification

assumption below.
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5.1 Results

The descriptive statistics of the estimated parameters of equation (8) for each portfolio choice

are presented in Table 3. The average estimated ARA across all portfolio choices is 0.0368.

Investors exhibit substantial heterogeneity in risk aversion, and its distribution is left skewed:

the median ARA is 0.0439 and the standard deviation 0.0246. This standard deviation overesti-

mates the standard deviation of the true ARA parameter across investments because it includes

the estimation error that results from having a limited number of buckets per portfolio choice.

Following Arellano and Bonhomme (2009), we can recover the variance of the true ARA by sub-

tracting the expected estimation variance across all portfolio choices. The calculated standard

deviation of the true ARA is 0.0237, indicating that the estimation variance is small relative to

the variance of risk aversion across investments.23 The range of the ARA estimates is consistent

with the estimates recovered in the laboratory. Holt and Laury (2002), for example, obtain

ARA estimates between 0.003 and 0.109, depending on the size of the bet.

The experimental literature often reports the income-based RRA, defined in equation (11).

To compare our results with those of laboratory participants, we report the distribution of the

implied income-based RRA in Table 3. The mean income-based RRA is 2.85 and its distribution

is right-skewed (median 1.62). This parameter scales the measure of absolute risk aversion

according to the lottery expected income; therefore, it mechanically increases with the size of the

bet. Table 3 reports the distribution of expected income from LC. The mean expected income

is $130, substantially higher than the bet in most laboratory experiments. Not surprisingly,

although the computed ARA in experimental work is typically larger than our estimates, the

income-based RRA parameter is smaller, ranging from 0.3 to 0.52 (see for example Chen and

Plott (1998), Goeree, Holt and Palfrey (2002), Goeree, Holt and Palfrey (2003), and Goeree

and Holt (2004)). Our results are comparable to Holt and Laury (2002), who also estimate risk

23The variance of the true ARA is calculated as:

var
[
ARAi

]
= var

[
ÂRA

i
]
− E

[
σ̂2
ARAi

]
where the first term is the variance of the OLS ARA point estimates across all investments, and the second term
is the average of the variance of the OLS ARA estimates across all investments.
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aversion for agents facing large bets and (implicitly) find income-based RRA similar to ours,

1.2. Finally, Choi et al. (2007) report risk premia with a mean of 0.9, which corresponds to an

income-based RRA of 1.8 in our setting. That paper also finds right skewness in their measure

of risk premia.

Our findings imply that the high levels of risk aversion exhibited by experimental subjects

extrapolate to actual small-stake investment choices. Rabin and Thaler (2001) and Rabin and

Thaler (2002) emphasize that such levels of risk aversion with small stakes are difficult to rec-

oncile, within the expected utility framework over total wealth, with the observable behavior of

agents in environments with larger stakes. This suggests that EU framework on overall wealth

cannot describe agents behavior in our environment. We show in the Appendix that the ARA

estimated here describes the curvature of the utility function in other preference frameworks

that are consistent with observed risk behavior over small and large stake gambles (Barberis

and Huang (2001) and Cox and Sadiraj (2006)). In such alternate preference specifications,

agents’ ARA depends on, both, the level of initial wealth and the income generated by the

gamble. This implies that the estimated level of ARA may change with the expected income

of investments. Nevertheless, the elasticity of ARA with respect to investor’s wealth, our focus

in the next section, is consistent across different investment decisions and levels of expected

income in these frameworks. We provide evidence in Section 7 that our conclusions regarding

the relationship between investor risk aversion and wealth extrapolates to other decisions within

LC.

The parameter θ, defined in equation (9), captures the systematic component of LC. In

our framework, the systematic component is driven by the common covariance between all LC

bucket returns and the market, βL. The average estimated θ is 1.086, which indicates that the

average investor requires a systematic risk premium of 8.6%. The estimated θ presents very

little variation in the cross section of investors (coefficient of variation 2.7%), when compared

to the variation in the ARA estimates (coefficient of variation of 67%).24 Note that our ARA

24As with the ARA, the estimation variance is small relative to the variance across investments. The standard
deviation of θ̂ is 0.0269, while the standard deviation of θ after subtracting the estimation variance is 0.0260.
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estimates are not based on this risk premium; instead, they are based on the marginal premium

required to take an infinitesimally greater idiosyncratic risk.

Table 4 presents the average and standard deviation of the estimated parameters by month.

The average ARA increases from 0.032 during the first three months, to 0.039 during the last

three. This average time series variation is potentially due to heterogeneity across investors as

well as within investor variation, since not all investors participate in LC every month. The

analysis in the next section disentangles the two sources of variation.

The estimated θs imply that the average systematic risk premium increases from 6.3% to

9.2% between the first and last three months of the sample period. Note that the LC web page

provides no information on the systematic risk of LC investments. Thus, this change is solely

driven by changes in investors’ beliefs about the potential correlation between the likelihood

of default of LC loans and aggregate macroeconomic shocks (covariance between LC returns

and market returns, βL), or about the expected market risk premium (E [Rm]). This pattern

indicates that wealth shocks are potentially correlated with changes in investors’ beliefs about

risk and return on financial assets. Thus, we cannot infer the elasticity of RRA to wealth by

observing changes in the share of risky assets after a wealth shock, as they may be simply

reflecting changes in beliefs about the underlying distribution of risky returns. Our proposed

empirical strategy in the next section overcomes this identification problem.

5.2 Belief Heterogeneity and Bias: The Optimization Tool

Above we interpret the observed heterogeneity of investor portfolio choices as arising from dif-

ferences in risk preferences. Such heterogeneity may also arise if investors have different beliefs

about the risk and returns of the LC risk buckets. Note that differences in beliefs about the

systematic component of returns will not induce heterogeneity in our estimates of the ARA. This

type of belief heterogeneity will be captured by variations in θ across investors. The evidence in

the previous section suggests that investors have relatively common priors about this systematic

component of the returns, i.e., common priors about LC’s beta, βL.
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However, the parameter θ will not capture heterogeneity of beliefs that affects the relative risk

and expected return across buckets. This is the case if investors believe the market sensitivity

of returns to be different across LC buckets, i.e. if βiz 6= βiL for some z = 1, ..., 35; or if investors’

priors about the stochastic properties of the buckets idiosyncratic return differ from the ones

computed in equations (1) and (2), i.e. Ei [Rz] 6= E [Rz] or σiz 6= σz for some z = 1, ..., 35. In

such cases, the equation characterizing the investor’s optimal portfolio is given by:

E [Rz] = θi +
[
ARAi ·Bi

σ +Bi
µ +Bi

β

]
· W

ixiz
niz

σ2z

This expression differs from our main specification equation (8) in three bias terms: Bσ ≡(
σiz/σz

)2
, Bµ ≡

(
E [Rz]− Ei [Rz]

)
/
(
W ixizσ

2
z/n

i
z

)
, and Bβ ≡

(
βiz − βiL

)
/(W ixizσ

2
z/n

i
z).

Two features of the LC environment allow us to estimate the magnitude of the overall bias

from these sources. First, LC posts on its website an estimate of the idiosyncratic default

probabilities for each bucket. Second, LC offers an optimization tool to help investors diversify

their loan portfolio. The tool constructs the set of efficient loan portfolios, given the investor’s

total amount in LC —i.e., the minimum idiosyncratic variance for each level of expected return.

Investors then select, among all the efficient portfolios, the preferred one according to their own

risk preferences. Importantly, the tool uses the same modeling assumptions regarding investors’

beliefs that we use in our framework: the idiosyncratic probabilities of default are the ones

posted on the website and the systematic risk is common across buckets, i.e. βz = βL.25

Thus, we can measure the estimation bias by comparing, for the same investment, the ARA

estimates obtained independently from two different components of the portfolio choice: the

loans suggested by the tool and those chosen manually. If investors’ beliefs do not deviate

systematically across buckets from the information posted on LC’s website and from the as-

sumptions of the optimization tool, we should find investor preferences to be consistent across

the two measures. Note that our identification assumption does not require that investors agree

with LC assumptions. It suffices that the difference in beliefs does not vary systematically across

25See Appendix B for the derivation of the efficient portfolios suggested by the optimization tool.
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buckets. For example, our estimates are unbiased if investors believe that the idiosyncratic risk

is 20% higher than the one implied by the probabilities reported in LC, across all buckets. Note,

moreover, that our test is based on investors’ beliefs at the time of making the portfolio choices.

These beliefs need not to be correct ex post.

For each investment, we independently compute the risk aversion implied by the compo-

nent suggested by the optimization tool (Automatic buckets) and the risk aversion implied by

the component chosen directly by the investor (Non-Automatic buckets). Figure 4 provides an

example of this estimation. Both panels of the figure plot the expected return and weighted id-

iosyncratic variance for the same portfolio choice. Panel A includes only the Automatic buckets,

suggested by the optimization tool. Panel B includes only the Non Automatic buckets, chosen

directly by the investor. The estimated ARA using the Automatic and Non-Automatic bucket

subsamples are 0.048 and 0.051 respectively for this example.

We perform the independent estimation above for all portfolio choices that have at least

two Automatic and two Non-Automatic buckets. To verify that investments that contain an

Automatic component are representative of the entire sample, we compare the extreme cases

where the entire portfolio is suggested by the tool and those where the entire portfolio is chosen

manually. The median ARA is 0.0440 and 0.0441 respectively, and the mean difference across

the two groups is not statistically significant at the standard levels. This suggests that our focus

in this subsection on investments with an Automatic component is representative of the entire

investment sample.

Table 5, panel A, reports the descriptive statistics of the ARA estimated using the Auto-

matic and the Non-Automatic buckets. The average ARA is virtually identical across the two

estimations (Table 5, columns 1 and 2), and the means are statistically indistinguishable at

the 1% level. This implies that, if there is a bias our ARA estimates induced by differences in

beliefs, its mean across investments is zero. Column 3 shows the descriptive statistics of the

investment-by-investment difference between the two ARA estimates. The mean is zero and the

distribution of the difference is concentrated around zero, with kurtosis 11.72 (see Figure 5).
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This implies that the bias is close to zero not only in expectation, but investment-by-investment.

These results suggest that investors’ beliefs about the stochastic properties of the loans in LC

do not differ substantially from those posted on the website. They also suggest that investors’

choices are consistent with the assumption that the systematic component is constant across

buckets. Overall, these findings validate the interpretation that the observed heterogeneity

across investor portfolio decisions is driven by differences in risk preferences.

In Table 5, panels B and C, we show that the difference in the distribution of the estimated

ARA from the automatic and non-automatic buckets is insignificant both during the first and

second half of the sample period. This finding is key for interpreting the results in the next

section, where we explore how the risk aversion estimates change in the time series with changes

in housing prices. There, we interpret any observed time variation in the ARA estimates as a

change in investor risk preferences over time.

Table 5, columns 4 through 6, show that the estimated risk premia, θ, also exhibit almost

identical mean and standard deviations when obtained independently using the Automatic and

Non-Automatic investment components. The mean difference is not statistically difference at

the 1% confidence level. This suggests that our estimates of the risk premium are unbiased.26

It is worth reiterating that these findings do not imply that investors’ beliefs about the

overall risk of investing in LC do not change during the sample period. On the contrary, the

observed average increase in the estimated systematic risk premium in Table 4 is also observed

in panels B and C of Table 5: θ increases by 2.5 percentage points between the first and second

halves of the sample. The results in Table 5 imply that changes in investors’ beliefs are fully

accounted for by a common systematic component across all risk buckets and, thus, do not bias

our risk aversion estimates.

26In Appendix B we show that a bias in the risk premia estimate may arise because the optimization tool’s
suggestion is potentially suboptimal relative to the one implied by condition (8). The intuition is that, for any
given return, condition (8) minimizes the variance of the investor’s entire risky portfolio, while the optimization
tool minimizes the variance of the LC portion of her portfolio only. The results imply that the inclusion of the
Automatic component of investments does not bias our estimations and further validates the conclusions of this
section.
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6 Risk Aversion and Wealth

This section explores the relationship between investors’ risk taking behavior and wealth. We

estimate the elasticity of ARA with respect to wealth, and use it to obtain the elasticity of RRA

with respect to wealth, based on the following expression:

ξRRA,W = ξARA,W + 1, (13)

where ξRRA,W and ξARA,W refer to the wealth elasticities of RRA and ARA, respectively. For

robustness, we also estimate the elasticity of the income-based RRA in equation (11), ξρ,W .

We exploit the panel dimension of our data and estimate these elasticities, both, in the cross

section of investors and, for a given investor, in the time series. In the cross section, wealthier

investors exhibit lower ARA and higher RRA when choosing their portfolio of loans within LC;

we refer to these elasticity estimates with the superscript xs to emphasize that they do not

represent the shape of individual preferences (i.e., ξxsARA,W , ξxsRRA,W , ξxsρ,W ). And, in the time

series, investor specific RRA increases after experiencing a negative wealth shock; that is, the

preference function exhibits decreasing RRA. The contrasting signs of the cross sectional and

investor-specific wealth elasticities indicate that preferences and wealth are not independently

distributed across investors.

6.1 Wealth and Wealth Shock Proxies

Below, we describe our proxies for wealth in the cross section of investors, and for wealth shocks

in the time series. Since the bulk of the analysis uses housing wealth as a proxy for investor

wealth, we focus the discussion in this section on the subsample of investors that are home-

owners.27

27None of the results in this section is statistically significant in the subsample of investors that are renters.
This is expected since housing wealth and total wealth are less likely to be correlated for renters, particularly in
the time series. However, this is also possibly due to lack of power, since only a small fraction of the investors in
our sample are renters.
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6.1.1 Cross Section

We use Acxiom’s imputed net worth as of October 2007 as a proxy for wealth in the cross

section of investors. As discussed in Section 4, Acxiom’s imputed net worth is based on a

proprietary algorithm that combines names, home address, credit rating, and other data from

public sources. To account for potential measurement error in this proxy, we use a separate

indicator for investor wealth in an errors-in-variable estimation: median house price in the

investor’s zip code at the time of investment. Admittedly, house value is an imperfect indicator

wealth; it does not account for heterogeneity in mortgage level or the proportion of wealth

invested in housing. Nevertheless, as long as the measurement errors are uncorrelated across the

two proxies, a plausible assumption in our setting, the errors-in-variable estimation provides an

unbiased estimate of the cross-sectional elasticity of risk aversion to wealth.

The errors-in-variables approach works in our setting because risk preferences are obtained

independently from wealth. If, for example, risk aversion were estimated from the share of

risky and riskless assets in the investor portfolio, this estimate would inherit the errors in the

wealth measure. As a result, any observed correlation between risk aversion and wealth could

be spuriously driven by measurement errors. This is not a concern in our exercise.

6.1.2 Wealth Shocks

House values dropped sharply during our sample period. Since housing represents a substantial

fraction of household wealth in the U.S., this decline implied an important negative wealth shock

for home-owners.28 We use this source of variation, to estimate the wealth elasticity of investor-

specific risk aversion in the subsample of home-owners that invest in LC. In this subsample the

average zip code house price declines 4% between October 2007 and April 2008.29

The drop in house value is an incomplete measure of the change in the investor overall wealth.

28According to the Survey of Consumer Finances of 2007, the value of the primary residence accounts for
approximately 32% of total assets for the median U.S. family (see Bucks, Kennickel, Mach and Moore (2009)).

29In addition, the time series house price variation is heterogeneous across investors: the median house price
decline is 3.6%.
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It is important, then, to analyze the potential estimation bias introduced by this measurement

error. Any time-invariant measurement error or unobserved heterogeneity across investors is

captured by the investor fixed effect and does not affect our elasticity estimates. However, the

estimate of the wealth elasticity of risk aversion will be biased if the percentage change in wealth

is different from the drop in house values. If the drop in house prices is disproportionately large

relative to the change in overall wealth, our estimates of the elasticity will be biased towards

zero. And, alternatively, if the percentage decline in house values underestimates the change in

the investor’s total wealth, then the wealth elasticity of risk aversion will be overestimated (in

absolute value). Finally, if the measurement error in the computation of the wealth shock is not

systematic, we will estimate the elasticity with the classic attenuation bias, in which case our

estimates provide a lower bound for the elasticities of risk aversion to wealth. In subsection 6.3,

we analyze how our conclusions are affected under different types of measurement error.

6.2 Cross-Sectional Evidence

We begin by exploring non-parametrically the relationship between the risk aversion estimates

and our two wealth proxies for the cross section of home-owner investors in our sample. Figure 6

plots a kernel-weighted local polynomial smoothing of the risk aversion measure. The horizontal

axis measures the (log) net worth and the (log) median house price in the investor’s zip code at

the time of the portfolio choice. ARA is decreasing in both wealth proxies, while income-based

RRA is increasing.

Turning to parametric evidence, we estimate the cross sectional elasticity of ARA to wealth

using the following regression:

ln (ARAi) = β0 + β1 ln (NetWorthi) + ωi. (14)

The left hand side variable is investor i’s average (log) ARA, obtained by averaging the

ARA estimates recovered from the investor’s portfolio choices during our sample period. The

right-hand side variable is investor i’s imputed net worth. Thus, the estimated β1 corresponds
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to the cross-sectional wealth elasticity of ARA, ξxsARA,W .

To account for measurement error in our wealth proxy we estimate specification (14) in an

errors-in-variables model by instrumenting imputed net worth with the average (log) house value

in the zip code of residence of investor i during the sample period. Since the instrument varies

only at the zip code level, in the estimation we allow the standard errors in specification (14) to

be clustered by zip code.

Table 6 shows the estimated cross sectional elasticities with OLS and the errors-in-variables

model (panels A and B respectively). Our preferred estimates from the errors-in-variables model

indicate that the elasticity of ARA to wealth in the cross section is -0.059 and statistically

significant at the 1% confidence level (Table 6, column 1). The non-parametric relationship

is confirmed: wealthier investors exhibit a lower ARA. The OLS elasticity estimate is biased

towards zero. This attenuation bias is consistent with classical measurement error in the wealth

proxy.

The estimated ARA elasticity and equation (13) imply that the wealth-based RRA elasticity

to wealth is positive, ξ̂xsRRA,W = 0.94. Column 2 shows the result of estimating specification

(14) using the income-based RRA as the dependent variable. The income-based RRA increases

with investor wealth in the cross section, and the point estimate, 0.12, is also significant at the

1% level. The sign of the estimated elasticity coincide with that implied by the ARA elasticity.

Overall, the results consistently indicate that the RRA is larger for wealthier investors in the

cross section.

6.3 Within-Investor Estimates

The above elasticity, obtained from the variation of risk aversion and wealth in the cross section,

can be taken to represent the form of the utility function of the representative investor only under

strong assumptions. Namely, when the distributions of wealth and preferences in the population

are independent.30 To identify the functional form of individual risk preferences we estimate the

30Chiappori and Paiella (2008) formally prove that any within-investor elasticity of risk aversion to wealth can
be supported in the cross section by appropriately picking such joint distribution.
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ARA elasticity using within-investor time series variation in wealth:

ln (ARAit) = αi + β2 ln (HouseV alueit) + ωit. (15)

The left-hand side variable is the estimated ARA for investor i in month t. The right-hand side

variable of interest is the (log) median house value of the investor’s zip code during the month

the risk aversion estimate was obtained (i.e., the month the investment in LC takes places). The

right-hand side of specification (15) includes a full set of investor dummies as controls. These

investor fixed effects (FE) account for all cross sectional differences in risk aversion levels. Thus,

the elasticity β2 recovers the sensitivity of ARA to investor-specific shocks to wealth.

By construction, the parameter β2 can be estimated only for the subsample of investors that

choose an LC portfolio more than once in our sample period. Although the average number of

portfolio choices per investor is 1.8, the median investor chooses only once during our analysis

period. This implies that the data over which we obtain the within investor estimates using

(15) comes from less than half of the original sample. To insure that the results below are

representative for the full investor sample, we also show the results of estimating specification

(15) without the investor FE to corroborate that the conclusions of the previous section are

unchanged when estimated on the subsample of investors that chose portfolios more than once.

Table 7 reports the parameter estimates of specification (15), before and after including the

investor FE (Panels A and B respectively). The FE results represent our estimated wealth

elasticities of ARA, ξARA,W . The sign of the estimated within-investor elasticity of ARA to

wealth (column 1) is the same as in the cross section: absolute risk aversion is decreasing in

investor wealth.

Equation (13) and the estimated wealth elasticity of ARA imply a negative wealth-based

RRA to wealth changes for a given investor, ξRRA,W , of -1.82. Column 2 reports the result of

estimating specification (15) using the income-based RRA as the dependent variable. The point

estimate, -4.18, also implies a negative relationship between this alternative measure of RRA

and wealth. These results consistently suggest that investors’ utility function exhibits decreasing
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relative risk aversion.

Measurement error in our proxy for wealth is unlikely to change this conclusion. Classical

measurement error would imply that the point estimate is biased towards zero; this estimate is

therefore a lower bound (in absolute value) for the actual wealth elasticity of risk aversion. The

(absolute value) of the elasticity could be overestimated if the percentage decline in house values

underestimates the change in the investor’s total wealth. However, for error in measurement

to account for the sign of the elasticity, the overall change in wealth has to be three times

larger than the percentage drop in house value.31 This is unlikely in our setting since stock

prices dropped 10% and investments in bonds had a positive yield during our sample period.32

Therefore, even if measurement error biases the numerical estimate, it is unlikely to affect our

conclusions regarding the shape of the utility function.

The observed positive relationship between investor RRA and wealth in the cross section

from the previous section changes sign once one accounts for investor preference heterogeneity.

The comparison of the estimates with and without investor FE of panels A and B in Table 7

confirms it. This implies that investors preferences and wealth are not independently distributed

in the cross section. Investors with different wealth levels may have different preferences, for

example, because more risk averse individuals made investment choices that made them wealth-

ier. Alternatively, an unobserved investor characteristic, such as having more educated parents,

may cause an investor the be wealthier and to be more risk averse. The results indicate that

characterizing empirically the shape of the utility function requires, first, accounting for such

heterogeneity.

31We estimate the elasticity of ARA with respect to changes in house value to be –2.82. Let W be overall
wealth and H be house value, then: ξARA,W = d lnARA

d lnW
= −2.82 · d lnH

d lnW
. The wealth elasticity of RRA is positive

only if ξARA,W > −1, which requires d lnW
d lnH

> 2.82.
32Between October 1, 2007 and April 30, 2008 the S&P 500 Index dropped 10% and the performance of U.S.

investment grade bond market was positive —Barclays Capital U.S. Aggregate Index increased approximately
2%.
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7 Consistency of Preferences

In this section we show that the estimated level and wealth elasticity of risk aversion consistently

extrapolate to other investors’ decisions. For that, we exploit the different dimensions of the

investment decision in LC: the total amount to invest in LC, the loans to include in the portfolio,

and the portfolio allocation across these loans.

7.1 Foregone Risk Buckets

The investor-specific ARA is estimated in Section 5 based on the allocation of funds across the

risk buckets included in her portfolio. Yet, investors select in their portfolio only a subset of the

buckets available. We show in this subsection that including the foregone buckets in the median

investor’s portfolio would lower her expected utility given her estimated ARA. Thus, investors’

estimated level of risk aversion is consistent with the preferences revealed by their selection of

loans.

The median investor in the analysis sample assigns funds to 10 out of 35 risk buckets (see

Table 2, panel B). Our empirical specification (12) characterizes the allocation of the median

investment among the 10 active buckets without using the corresponding equations describing

the choice of the foregone 25 buckets. We use these conditions to develop a consistency test for

investors’ choices.

For each investor i, let Ai be the set of active risk buckets. The optimal portfolio model

described in Section 3, predicts that, for all foregone risk buckets z /∈ Ai, the first order condition

(8), evaluated at the minimum investment amount per project of $25, is negative—i.e. the

nonnegative constraint is binding. The resulting linearized condition for all z /∈ Ai is:

focforegone = E [Rz]− θi −ARAi · 25 · σ2z < 0

We test this prediction by calculating focforegone for every foregone bucket using the parameters{
θ = θ̂i, ARAi = ÂRA

i}
estimated with specification (12). To illustrate the procedure, suppose
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that investor i chooses to allocate funds to 10 risk buckets. From that choice we estimate a

constant θ̂i and an absolute risk aversion ÂRA
i

using specification (12). For each of the 25

foregone risk buckets we calculate focforegone above. Then we repeat the procedure for each

investment in our sample and test whether focforegone is negative.

Using the procedure above we calculate 85,366 values for focforegone. The average value

for the first order condition evaluated at the foregone buckets is −0.000529, with a stan-

dard deviation of 0.0000839. This implies that the 95% confidence interval for focforegone is

[−0.00069,−0.00036]. The null hypothesis that the mean is equal to zero is rejected with a

t = −6.30. If we repeat this test investment-by-investment, the null hypothesis that mean of

focforegone is zero is rejected for the median investment with a t = −1.99.

These results confirm that the risk preferences recovered from the investors’ portfolio choices

are consistent with the risk preferences implied by the foregone investment opportunities in LC.

7.2 Amount Invested in LC

In this subsection we test whether the cross-sectional and within-investor elasticities of risk

aversion to wealth consistently extrapolate to the investor’s decision of how much to invest

in LC. Our model in Section 3 delivers testable implications for the relationship between an

investor’s risk preferences and her overall holdings of the efficient LC portfolio. Namely, when

relative risk aversion decreases (increases) in wealth, then the share of wealth invested in LC will

increase (decrease) in wealth (see Appendix C). We can use these predictions, both, to provide

an independent validation for the results on the elasticity of risk aversion to wealth based on the

risk aversion estimates obtained in Section 5, and to explore the connection between investors’

risk preferences across different types of choices.

We test the above implications by estimating specifications (14) and (15) using the (log)

amount invested in LC as dependent variable. Table 6 and 7 (column 3) report the estimated

cross sectional and within investor elasticities.

We find that the investment amount is increasing with investor wealth in the cross section
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(Table 6, column 3). The elasticity is smaller than one, which suggests that the ratio of the

investment to wealth is decreasing. These estimates are consistent with decreasing ARA and

increasing RRA cross sectional elasticities reported in Tables 6. That is, agents that exhibit

larger risk aversion in their portfolio choice within LC are also characterized by lower risk

tolerance when choosing how much to invest in the program.

The estimated wealth elasticity of total investment in LC is positive and grater than one

when we add investor fixed effects (Table 6 column 3). This implies that, for a given investor, the

ratio of investment to wealth is increasing. These results mirror those in the previous subsection

concerning the estimates of the elasticity of investor specific ARA with respect to changes in

wealth. We can therefore conclude that changes in wealth have same qualitative effect on the

investors’ attitudes towards risk, both, when deciding her portfolio within LC and when choosing

how much to allocate in LC relative to other opportunities.

Providing evidence of this link is impossible in a laboratory environment where the invest-

ment amount is exogenously fixed by the experiment design. Our results suggest that preference

parameters obtained from marginal choices can plausibly explain decision making behavior in

broader contexts.

8 Conclusion

In this paper we estimate risk preference parameters and their elasticity to wealth based on the

actual financial decisions of a panel of U.S. investors participating in a person-to-person lending

platform. The average absolute risk aversion in our sample is 0.0368. We also measure the

relative risk aversion based on the income generated by investing in LC (income-based RRA).

We find a large degree of heterogeneity, with an average income-based RRA of 2.85 and a

median of 1.62. These findings are similar to those obtained in laboratory studies; they provide

an external validation in a real life investment environment to the estimates obtained from
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laboratory experiments.33

We exploit the panel dimension of our data and estimate the elasticity of ARA and RRA

with respect to wealth, both, in the cross section of investors and, for a given investor, in the

time series. In the cross section, wealthier investors exhibit lower ARA and higher RRA when

choosing their portfolio of loans within LC. In the time series, investor specific RRA increases

after experiencing a negative wealth shock; that is, the preference function exhibits decreasing

RRA. The contrasting signs of the cross sectional and investor-specific wealth elasticities indicate

that investors’ preferences and wealth are not independently distributed in the cross section.

Therefore, to empirically characterize the shape of the utility function, one needs to take the

properties of the joint distribution of preferences and wealth into account.

Parallel to experimental results, in settings where agents maximize expected utility over total

wealth, the observed levels of risk aversion inside LC are difficult to reconcile with reasonable

choices in large stake environments.34 Our findings are consistent with a behavioral model in

which utility depends (in a non-separable way) on both the overall wealth level and the flow of

income from specific components of agent’s portfolio. This is in line with Barberis and Huang

(2001) and Barberis et al. (2006), which propose a framework where agents exhibit loss aversion

over changes in specific components of their overall portfolio, together with decreasing relative

risk aversion over their entire wealth. In the expected utility framework, Cox and Sadiraj (2006)

propose a utility function with two arguments (income and wealth) where risk aversion is defined

over income, but it is sensitive to the overall wealth level. Since our estimates of risk aversion refer

to the local curvature of preferences over changes in income, they characterize risk preferences

over income irrespectively of the form of the utility function over total wealth. Indeed, we show

in the Appendix that our estimates of risk aversion characterize the local curvature of preferences

over changes in income for different preference frameworks —i.e., expected utility, loss aversion,

33For estimation of risk aversion in real life environments, see also Jullien and Salanie (2000), Jullien and Salanie
(2008), Bombardini and Trebbi (2007), Cohen and Einav (2007), Harrison, Lau and Towe (2007a), Chiappori,
Gandhi, Salanie and Salanie (2008), Post, van den Assem, Baltussen and Thaler (2008), Chiappori, Gandhi,
Salanie and Salanie (2009), and Barseghyan, Prince and Teitelbaum (2010).

34This is commonly referred to as the Rabin’s Critique (Rabin (2000) and Rabin and Thaler (2001)). See also
Rubinstein (2001) for an alternative interpretation of this phenomenon within the expected utility theory.
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and narrow framing–.

References

Arellano, Manuel, and Stephane Bonhomme (2009) ‘Identifying Distributional Characteristics
in Random Coefficients Panel Data Models.’ Working Paper

Barberis, Nicholas, and Ming Huang (2001) ‘Mental Accounting, Loss Aversion, and Individual
Stock Returns.’ The Journal of Finance 56(4), 1247–1292

Barberis, Nicholas, Ming Huang, and Richard H. Thaler (2006) ‘Individual preferences, mone-
tary gambles, and stock market participation: A case for narrow framing.’ The American
Economic Review 96(4), 1069–1090

Barseghyan, Levon, Jeffrey Prince, and Joshua Teitelbaum (2010) ‘Are Risk Preferences Stable
Across Contexts? Evidence from Insurance Data.’ The American Economic Review

Barsky, Robert B., F. Thomas Juster, Miles S. Kimball, and Matthew D. Shapiro (1997) ‘Prefer-
ence Parameters and Behavioral Heterogeneity: An Experimental Approach in the Health
and Retirement Study.’ The Quarterly Journal of Economics 112(2), 537–579

Blake, David (1996) ‘Efficiency, Risk Aversion and Portfolio Insurance: An Analysis of Finan-
cial Asset Portfolio Held by Inverstors in the United Kingdom.’ The Economic Journal
106(136), 1175–1192

Blume, Marshall, and Irwin Friend (1975) ‘The Demand for Risky Assets.’ The American Eco-
nomic Review 65(5), 900–922

Bombardini, Matilde, and Francesco Trebbi (2007) ‘Risk Aversion and Expected Utility Theory:
an Experiment with Large and Small Stakes.’ Working Paper

Brunnermeier, Markus, and Stefan Nagel (2008) ‘Do Wealth Fluctuations Generate Time-
Varying Risk Aversion? Micro-evidence on Individuals.’ The American Economic Review
98(3), 713–36

Bucks, Brian, Arthur Kennickel, Traci Mach, and Kevin Moore (2009) ‘Changes in U.S. Family
Finances from 2004 to 2007: Evidence from the Survey of Consumer Finances.’ Federal
Reserve Bulletin 95, A1–A55

Calvet, Laurent, and Paolo Sodini (2009) ‘Twin Picks: Disentangling the Determinants of Risk-
Taking in Household Portfolios.’ Working Paper

Calvet, Laurent E., John Y. Campbell, and Paolo Sodini (2009) ‘Fight or Flight? Portfolio
Rebalancing by Individual Investors.’ The Quarterly Journal of Economics 124(1), 301–348

Campbell, John, and John Cochrane (1999) ‘By Force of Habit: A Consumption Based Expla-
nation of Aggregate Stock Market Behavior.’ Journal of Political Economy 107, 205–251

36



Chen, Kay Yut, and Charles Plott (1998) ‘Non-linear Behavior in Sealed Bid First Price Auc-
tions.’ Games and Economic Behavior 25(1), 34–78

Chiappori, Pierre-Andre, Amit Gandhi, Bernard Salanie, and Francois Salanie (2008) ‘You Are
What You Bet: Eliciting Risk Attitudes from Horse Races.’ Working Paper

(2009) ‘Identifying Preferences under Risk from Discrete Choices.’ American Economic
Review 99(2), 356 – 362

Chiappori, Pierre-Andre, and Monica Paiella (2008) ‘Risk Aversion is Constant: Evidence from
Panel Data.’ Working Paper

Choi, Syngjoo, Raymond Fisman, Douglas Gale, and Shachar Kariv (2007) ‘Consistency and
Heterogeneity of Individual Behavior under Uncertainty.’ The American Economic Review
97(5), 1921–1938

Cicchetti, Charles, and Jeffrey Dubin (1994) ‘A Microeconomic Analysis of Risk Aversion and
the Decision to Self-Insure.’ Journal of Political Economy 102(11), 169–186

Cohen, Alma, and Liran Einav (2007) ‘Estimating Risk Preferences from Deductible Choice.’
The American Economic Review 97(3), 745–788

Cohn, Richard A., Wilbur G. Lewellen, Ronald C. Lease, and Gary G. Schlarbaum (1975)
‘Individual Investor Risk Aversion and Investment Portfolio Composition.’ The Journal of
Finance 30(2), 605–620

Cox, James, and Vjollca Sadiraj (2006) ‘Small- and Large-stakes Risk Aversion: Implications of
Concavity Calibration for Decision Theory.’ Games and Economic Behavior 56, 45–60

Goeree, Jacob, and Charles Holt (2004) ‘A Model of Noisy Introspection.’ Games and Economic
Behavior 46(2), 365–382

Goeree, Jacob, Charles Holt, and Thomas Palfrey (2002) ‘Quantal Response Equilibrium and
Overbidding in Private-Value Auctions.’ Journal of Economic Theory 104(1), 247–272

(2003) ‘Risk Averse Behavior in Generalized Matching Pennies Games.’ Games and Eco-
nomic Behavior 45(1), 97–113

Gollier, Christian (2001) ‘Wealth Inequality and Asset Pricing.’ Review of Econmic Studies
68(1), 181–203

Gomes, Francisco, and Alexander Michaelides (2008) ‘Asset Pricing with Limited Risk Sharing
and Heterogeneous Agents.’ The Review of Financial Studies 21(1), 415–448

Guiso, Luigi, and Monica Paiella (2008) ‘Risk Aversion, Wealth, and Background Risk.’ Working
Paper

Guvenen, Fatih (2009) ‘A Parsimonious Macroeconomic Model for Asset Pricing.’ Econometrica
77(6), 1711–1750

37



Harrison, Glenn, Morten Lau, and Charles Towe (2007a) ‘Naturally Occurring Preferences
and Exogenous Laboratory Experiments: A Case Study of Risk Aversion.’ Econometrica
75(2), 433–458

Harrison, Glenn, Morten Lau, and Elisabet Rutstrom (2007b) ‘Estimating Risk Attitudes in
Denmark: A Field Experiment.’ Scandinavian Journal of Economics 109(2), 341–368

Holt, Charles A., and Susan K. Laury (2002) ‘Risk Aversion and Incentive Effects.’ The American
Economic Review 92(5), 1644–1655

Jullien, Bruno, and Bernard Salanie (2000) ‘Estimating Preferences Under Risk: The Case of
Racetrack Bettors.’ The Journal of Political Economy 108(3), 503–530

(2008) ‘Empirical Evidence on the Preferences of Racetrack Bettors.’ In Efficiency of Sports
and Lottery Markets, ed. Don Hausch and Bill Ziemba pp. 27–49

Kocherlakota, Narayana (1996) ‘The Equity Premium: It’s Still a Puzzle.’ Journal of Economic
Literature 34(1), 42–71

Korniotis, George, and Alok Kumar (2010) ‘Do Older Investors Make Better Investment Deci-
sions?’ Review of Economics and Statistics. Forthcoming

Morin, Roger-A., and A. Fernandez Suarez (1983) ‘Risk Aversion Revisited.’ The Journal of
Finance 38(4), 1201–1216

Post, Thierry, Martijn J. van den Assem, Guido Baltussen, and Richard H. Thaler (2008) ‘Deal or
No Deal? Decision Making under Risk in a Large-Payoff Game Show.’ American Economic
Review 98(1), 38–71

Rabin, Matthew (2000) ‘Risk Aversion and Expected-Utility Theory: A Calibration Theorem.’
Econometrica 68(5), 1281–1292

Rabin, Matthew, and Richard Thaler (2001) ‘Anomalies: Risk Aversion.’ The Journal of Eco-
nomic Perspectives 15(1), 219–232

(2002) ‘Response from Matthew Rabin and Richard H. Thaler.’ The Journal of Economic
Perspectives 16(2), 229–230

Rubinstein, Ariel (2001) ‘Comments on the Risk and Time Preferences in Economics’

Tanaka, Tomomi, Colin F. Camerer, and Quang Nguyen (2010) ‘Risk and Time Preferences:
Linking Experimental and Household Survey Data from Vietnam.’ American Economic
Review 100(1), 557–571

Treynor, Jack, and Fischer Black (1973) ‘How to Use Security Analysis to Improve Portfolio
Selection.’ Journal of Business 46(1), 66–86

38



Appendix

A Alternative Utility Frameworks

A.1 Loss Aversion over Changes in Overall Wealth

Consider the following preferences, which exhibit loss aversion with coefficient α around a bench-
mark consumption c

U = α · E [u(c)|c < c] · Pr [c < c] + E [u(c)|c > c] · Pr [c > c]]

Since LC is a negligible part of the investor’s wealth and the return is bounded between
default and full repayment of all loans in the portfolio (see Table 2), the distribution of con-
sumption is virtually unaffected by the realization of the independent component of bucket z.
Then, we define ω ≡ c−Wxzrz, which is independent from rz, and approximate the distribution
of c with the distribution of ω: F (c) ≈ F (ω). Under this approximation, a marginal increase
in xz does not affect the distribution F (ω) and the first order condition that characterizes the
investor’s portfolio choice is:

foc(xz) : α · E
[
u′(c)(rz − 1)|ω < c

]
· Pr [ω < c] + E

[
u′(c)(rz − 1)|ω > c

]
· Pr [ω > c] = 0

Since ω and rz are independently distributed, a first order linearization of expected marginal
utility is given by:

E
[
u′(c)rz|ω < c

]
= u′(E[c|ω < c])E[rz] + u′′(E[c|ω < c])E [(ω − E[ω] + rz − E[rz])rz|ω < c]

= u′(E[c|ω < c])E[rz] + u′′(E[c|ω < c])var[rz]

Replacing, the first order condition is approximated by:

E[Rz] = θ + ÃRA ·Wxz · var[rz]

This condition is equivalent to the one in the body of the paper, irrespectively of the value of
c or the existence of multiple kinks. However, the absolute risk aversion estimated using this
equation is not the one evaluated around expected consumption, as in the body of the paper.
Instead, it is a weighted average of the absolute risk aversions evaluated in the intervals defined
by the loss aversion kinks:

ÃRA ≡ λ ·ARA− + (1− λ) ·ARA+

where : λ ≡ αF [c]

αF [c] + (1− F [c])

ARA− ≡ −u
′′(E [c|c < c])

u′(E [c|c < c])

ARA+ ≡ −u
′′(E [c|c > c])

u′(E [c|c > c])
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Still, as in the body of the paper, the optimal investment in a risk bucket z is not explained by
first order risk aversion; it is given by its expected return and second order risk aversion over
the volatility of its idiosyncratic component.

A.2 Narrow Framing

Consider the following preferences:

U =
K∑
k=1

E [uk (IkRk)]

k = 1, ...,K corresponds to the different sub-portfolios over which the investor exhibits local
preferences. yk = IkRk is the income generated by the portfolio component k, given by Ik and
Rk, the total amount allocated in the sub-portfolio and the corresponding return.

Consider LC to be one of these sub-portfolios, so for k = L, the investor chooses the shares
{xz}35z=1 to be invested in each risk bucket so to maximize her utility over LC, for a given amount

invested in the program, IL: E
[
uL

(
IL ·

∑35
z=1 xzRz

)]
The first order condition that characterizes all active buckets is:

foc(xz) : E

[
u′L

(
IL ·

35∑
z=1

xzRz

)
Rz

]
− µL = 0

where µL is the multiplier on the budget constraint
∑35

z=1 xz = 1.
A linearization around expected return results in the following expression:

u′L (E [yL])E [Rz] + u′′L (E [yL]) IL

35∑
z=1

xzE [(Rz − E [Rz]) ·Rz] = µL

From equation (4) and assuming βz = βL, the returns in LC are decomposed into a common
systematic factor βLRm and an idiosyncratic component rz. Moreover, under the Diagonal
Sharpe’s Ratio in Assumptions 1, returns from different buckets co-move only through their
market component. That is:

for all z 6= z′ : E [(Rz′ − E [Rz′ ])Rz] = β2L · var [Rm]

E [(Rz − E [Rz])Rz] = β2L · var [Rm] + var [rz]

Replacing, the optimal portfolio within LC is characterized by the following expression:

u′L (E [yL]) · E [Rz] + u′′L (E [yL]) · IL
(
β2L · var [Rm] + xz · var [rz]

)
= µL

Rearranging terms, this leads to the same empirical equation as in the body of the paper:

E [Rz] = θ +ARAL · ILxz · var [rz] (A.1)
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ILxz is the total amount invested in bucket z, equivalent to Wxz in the body of the paper. Note
that the systematic component is common to all risk buckets and therefore does not alter the
portfolio composition within LC. It is recovered by the investor specific constant, which is given
in this framework by:

θ ≡ µL
u′ (E [yL])

+ARAL · IL · β2L · var [Rm]

If investors behave according to these preferences the ARA obtained from this empirical equation
only characterizes the preferences within LC, uL, for a given amount invested in the program,
IL:

ARAL ≡ −
u′′L (E [yL])

u′L (E [yL])
.

We show in the paper this extreme version of narrow framing does not represent the prefer-
ences of the investors in LC. We show that the shape of the utility that follows from investors’
choices within LC extrapolates to other decisions. In particular, the amount invested in LC:
IL. Moreover, follows from the expression above, that if investors exhibit narrow framing as
presented here, realizations of returns in other sub-portfolios k 6= L do not affect risk preferences
ARAL. We show that this is not the case; changes in the value of the investors’ house affect the
preferences exhibited within LC. However, more general forms of narrow framing are consistent
with investors’ choices, as explained in the following subsection.

A.3 Preferences over Income and Wealth

Consider, for example, investor preferences over, both, wealth and income of specific components
of her portfolio:

U = u
(
{yk}Kk=1,W

)
where, as before, k = 1, ...,K corresponds to the different sub-portfolios over which the investor
exhibits local preferences, with income given by the amount invested in k and the respective
return, yk = IkRk. The LC sub-portfolio is denoted k = L, with income defined as in the
previous subsection: yL = IL

∑35
z=1 xzRz. W is the investor’s overall wealth.

The first order condition that characterizes the active bucket z within LC is similar to the
one in the subsection above:

foc (xz) : E
[
uL
(
{yk}Kk=1,W

)
Rz
]
− µL = 0

where uL corresponds to the partial derivative of the utility function with respect to the income
generated by the sub-portfolio L, and µL is the multiplier over the constraint

∑35
z=1 xz = 1. The

linearization of this expression around the vector of expected income {E[yk]}Kk=1 is equivalent
to expression (A.1):

E [Rz] = θ +ARAL · ILxz · var [rz]

Under Assumption (1), the investor specific parameter θ is defined as follows:

θ ≡ µL

uL
(
{E[yk]}Kk=1,W

) − K∑
k=1

ukL
(
{E[yk]}Kk=1,W

)
uL
(
{E[yk]}Kk=1,W

) · Ik · βkβL · var [Rm]
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where ukL is the cross derivative of the utility function with respect to the incomes generated
by components k and L. The absolute risk aversion recovers the investor’s preferences over
fluctuations in income; it is defined as follows:

ARAL ≡ −
uLL

(
{E[yk]}Kk=1,W

)
uL
(
{E[yk]}Kk=1,W

) .
This behavioral model, in which utility depends (in a non-separable way) on, both, the overall

wealth level and the flow of income from specific components of the agent’s portfolio, is in line
with Barberis and Huang (2001) and Barberis et al. (2006), which propose a framework where
agents exhibit loss aversion over changes in specic components of their overall portfolio, together
with decreasing relative risk aversion over their entire wealth, consistent with the findings of this
paper. In the expected utility framework, Cox and Sadiraj (2006) propose a utility function with
two arguments (income and wealth) where risk aversion is defined over changes in income but it
is sensitive to the overall wealth level. Their suggested functional form implies ∂ARAk

∂yk
< 0, which

can reconcile low levels of ARA over high stake gambles and high ARA found in experimental
literature when expected income from the lottery is small. Moreover, their functional form
implies ∂ARAk

∂W < 0, consistent with the findings in this paper.

B Optimization Tool

Those investors who follow the recommendation of the optimization tool make a sequential
portfolio decision. First, they decide how much to invest in the entire LC portfolio. And second,
they choose the desired level idiosyncratic risk in the LC investment, from which the optimization
tool suggests a portfolio of loans.

The first decision, how much to invest in LC, follows the optimal portfolio choice model in
Section 3, where the security z = L refer to the LC overall portfolio. The optimal investment
in LC is therefore given by equation (7):

E [rL]− 1 = ARAi ·W ixiL · var [rL] (A.2)

(E [rL]− 1) /var [rL] corresponds to the investor’s preferred risk-return ratio of the her LC
portfolio. Although this ratio is not directly observable, we can infer it from the Automatic
portfolio suggested by the optimization tool.

The optimization tool suggests the minimum variance portfolio given the investor’s choice
of idiosyncratic risk exposure. The investor marks her preferences by selecting a point in the
[0, 1] interval: 0 implies fully diversified idiosyncratic risk (typically only loans from the A1 risk
bucket) and 1 is the (normalized) maximum idiosyncratic risk. Figure 1 provides two snapshots
of the screen that the lenders see when they make their choice.

For each point on the [0, 1] interval, the website generates the efficient portfolio of risk
buckets. The loan composition at the interior of each risk bucket exhausts the diversification
opportunities, with the constraint that an investment in a given loan cannot be less than $25.
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The proposed share in each risk bucket sz ≥ 0 for z = 1, ..., 35 satisfies the following program:

min
{sz}35z=1

35∑
z=1

s2zvar [rz]− λ0

{
35∑
z=1

szE [Rz]− E [RL]

}
− λ1

{
35∑
z=1

sz − 1

}

var [rz] and E [Rz] are the idiosyncratic variance and expected return of the (optimally diver-
sified) risk bucket z, computed in equations (1) and (2); and E [RL] is the demanded expected
return of the entire portfolio.

Although the optimization tool operates under the assumption that LC has no systemic
component, i.e., βL = 0, the suggested portfolio also minimizes variance for a given overall
expected independent return, E [rL]. That is, the problem is not affected by subtracting a
common systematic component, βLE [Rm] on both sides of the expectation constraint. The
resulting efficient portfolio suggested by the website satisfies the following condition for every
active bucket z, for which sz > 0:

sz = λi0
E [rz]− λi1
var [rz]

(A.3)

That is, the share of LC investment allocated in bucket z is proportional to the bucket’s mean
variance ratio. And the proportionality factor, λi0, represents the risk preferences of the investor,
imbedded in her chosen point on the [0, 1] interval:

λi0 =
var [rL]

E [rL]− λi1
(A.4)

It is possible to recover, from the Automatic portfolio composition, the investor’s preferred
risk-return ratio. Combining equations (A.3) and (A.4) with the optimal LC investment condi-
tion (A.2), we obtain the following expression:

E [Rz] =
(
βLE [Rm] + λi1

)
+ARAi ·W ixiLs

i
z · var [rz]

(
E [rL]− λi1

)
(E [rL]− 1)

(A.5)

Note that W ixiLs
i
z is the total amount invested in bucket z, which is equivalent to W ixiz in

Section 3.
Our estimates from the specification (12) may be biased by the inclusion of the Automatic

choices. The magnitude of the bias is:

biasi =
E [RL]− θiA
E [RL]− θiN

− 1.

where θiN and θiA correspond to the investor specific constant in the specification equations (8)
and (A.5) respectively:

θiA ≡ λi1 + βLE [Rm]

θiN ≡ 1 + βLE [Rm]

We find that the intercepts estimated from Automatic and Non-Automatic choices (θA and θN )
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are equal (see Table 5). We therefore conclude that including Automatic choices does not bias
our results.

C Investment Amount

Limiting, for simplicity, the investor’s outside options to the risk free asset and the market
portfolio, the problem of investor i is:

max
x

Eu
(
W i
(
xif + ximRm + xiLRL

))
where RL is the overall return of the efficient LC portfolio. The efficient LC portfolio composition
is constructed renormalizing the optimal shares in equation (8): RL =

∑ZL
z=1 x̃zRz where x̃z ≡

xz/
∑35

z=1 xz. A projection of the return RL against the market, parallel to equation (4), gives
the investor’s market sensitivity, βiL, and independent return:

RL = βiL ·Rm + rL

The investor’s budget constraint can be rewritten as ci = W i
(
xif + x̃imRm + xiLrL

)
, where

x̃im = xim + xiLβ
i
L incorporates the market risk imbedded in the LC portfolio.

A linearization of the first order condition around expected consumption results in the fol-
lowing optimality condition:

E [RL] = θi +ARAi · IiL · var [rL]

where IiL is the total investment in LC, IiL = xiLW
i. The composition of the LC portfolio is

optimal; then, differentiating the expression above with respect to outside wealth and applying
the envelope condition, we derive the following result:

d ln (ARA) = −d ln (IL)

d ln (RRA) = −d ln

(
IL
W

)

ARA and RRA refer to absolute and wealth-based relative risk aversion: ARA ≡ −u′′(E[ci])
u′(E[ci])

and RRA ≡ −u′′(E[ci])
u′(E[ci])

W. We obtain the following testable implications:

Result 1. If the absolute risk aversion, ARA, decreases (increases) in outside wealth, then the
amount invested in LC, IL, increases (decreases) in outside wealth.

Result 2. If the wealth-based RRA decreases (increases) in outside wealth, then the share of
wealth invested in LC, IL/W, increases (decreases) in outside wealth.

We test these implications by estimating specifications (14) and (15) using the (log) amount
invested in LC.
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Figure 1: Portfolio Tool Screen Examples for a $100 Investment 
 
A. Screen 1: Interest rate – Normalized Variance “Slider” 
 

 

 
 
B. Screen 2: Suggested Portfolio Summary 
 

 
 
The website provides an optimization tool that suggests the efficient portfolio of loans for the investor's preferred risk 
return trade-off, under the assumption that loans are uncorrelated with each other and with outside investment 
opportunity. The risk measure is the variance of the diversified portfolio divided by the variance of a single investment 
in the riskiest loan available (as a result it is normalized to be between zero and one). Once a portfolio has been formed, 
the investor is shown the loan composition of her portfolio on a new screen that shows each individual loan (panel B). 
In this screen the investor can change the amount allocated to each loan, drop them altogether, or add others. 

The website provides an optimization tool that suggests the efficient portfolio of loans for the investor’s

preferred risk return trade-off, under the assumption that loans are uncorrelated with each other and

with outside investment opportunity. The risk measure is the variance of the diversified portfolio divided

by the variance of a single investment in the riskiest loan available (as a result it is normalized to be

between zero and one). Once a portfolio has been formed, the investor is shown the loan composition of

her portfolio on a new screen that shows each individual loan (panel B). In this screen the investor can

change the amount allocated to each loan, drop them altogether, or add others.

Figure 1: Portfolio Tool Screen Examples for a $100 Investment
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In color: zip codes with Lending Club investors. The color intensity reflects the total dollar amount

invested in LC by investors in each zip code.

Figure 2: Geographical Distribution of Lending Club Investors
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Figure 3: Examples of Risk Return Choices and Estimated RRA 
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Each plot represents one investment in our sample. The plotted points represent the risk and weighted return of each of 
the buckets that compose the investment. The dots are labeled with the corresponding risk classification of the bucket. 
The vertical axis measures the expected return of a risk bucket, and the horizontal axis measures the bucket variance 
weighted by the total investment in that bucket. The slope of the linear fit is our estimate of the absolute risk aversion 
(ARA). The intersection of this linear fit with the vertical axis is our estimate for the risk premium (Theta). 

Each plot represents one investment in our sample. The plotted points represent the risk and weighted

return of each of the buckets that compose the investment. The dots are labeled with the corresponding

risk classification of the bucket. The vertical axis measures the expected return of a risk bucket, and the

horizontal axis measures the bucket variance weighted by the total investment in that bucket. The slope

of the linear fit is our estimate of the absolute risk aversion (ARA). The intersection of this linear fit with

the vertical axis is our estimate for the risk premium (θ).

Figure 3: Examples of Risk Return Choices and Estimated RRA
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Figure 4: Example of Risk Aversion Estimation Using Automatic and Non-Automatic 
Buckets for the Same Investment 
 

A. Automatic Buckets 
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B. Non-Automatic Buckets 
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Both plots represent allocations to risk buckets of the same actual investment. As in Figure 3, the plotted points 
represent the risk and weighted return of each of the buckets that compose the investment. Panel A shows the buckets 
that were chosen by the portfolio tool (Automatic), and panel B shows buckets directly chosen by the investor (Non-
Automatic). The slope of the linear fit represents the absolute risk aversion (ARA), and its intersection with the vertical 
axis represents the risk premium (Theta).  

(a) Automatic Buckets
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Figure 4: Example of Risk Aversion Estimation Using Automatic and Non-Automatic 
Buckets for the Same Investment 
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B. Non-Automatic Buckets 
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Both plots represent allocations to risk buckets of the same actual investment. As in Figure 3, the plotted points 
represent the risk and weighted return of each of the buckets that compose the investment. Panel A shows the buckets 
that were chosen by the portfolio tool (Automatic), and panel B shows buckets directly chosen by the investor (Non-
Automatic). The slope of the linear fit represents the absolute risk aversion (ARA), and its intersection with the vertical 
axis represents the risk premium (Theta).  

(b) Non-Automatic Buckets

Both plots represent allocations to risk buckets of the same actual investment. As in Figure 3, the plotted

points represent the risk and weighted return of each of the buckets that compose the investment. Panel

A shows the buckets that were chosen by the portfolio tool (Automatic), and panel B shows buckets

directly chosen by the investor (Non-Automatic). The slope of the linear fit represents the absolute risk

aversion (ARA), and its intersection with the vertical axis represents the risk premium (θ).

Figure 4: Risk Aversion Estimation Example Using Automatic and Non-Automatic Buckets
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Figure 5: Distribution of the Difference in ARA and θ0 Estimates Obtained 
 from Automatic and Non-Automatic Buckets for the Same Investment 
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B. θ0 Non-Automatic – θ0 Automatic 
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Difference between the estimate for ARA and θ0 obtained using buckets chosen directly by investors (Automatic) and 
buckets suggested by optimization tool (Non-Automatic), for the same investment.   

(a) ARA: Automatic and Non-Automatic Choices
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B. θ0 Non-Automatic – θ0 Automatic 
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Difference between the estimate for ARA and θ0 obtained using buckets chosen directly by investors (Automatic) and 
buckets suggested by optimization tool (Non-Automatic), for the same investment.   

(b) θ: Automatic and Non-Automatic Choices

Difference between the estimate for ARA and θ obtained using buckets chosen directly by investors

(Non-Automatic) and buckets suggested by optimization tool (Automatic), for the same investment.

Figure 5: Investment-by-Investment Bias Distribution
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(b) Income-Based RRA and Wealth

Subsample: home-owners. The vertical axis plots a weighted local second degree polynomial smoothing of

the risk aversion measure. The observations are weighted using an Epanechnikov kernel with a bandwidth

of 0.75. The horizontal axis measures the (log) net worth and the (log) median house price at the investor’s

zip code at the time of the portfolio choice, our two proxies for investor wealth.

Figure 6: Risk Aversion and Wealth in the Cross Section
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Variable Mean Std. Dev. Median

A. Borrower Characteristics
FICO score 694.3 38.2 688.0
Debt to Income 0.128 0.076 0.128
Monthly Income ($) 5,427.6 5,963.1 4,250.0
Amount borrowed ($) 9,223.7 6,038.0 8,000.0

B. Investor Characteristics
Male 83% 100%
Age 43.4 15.0 40.0
Married 56% 100%
Home Owner 75% 100%
Net Worth, Imputed ($1,000) 663.0 994.4 375.0
Median House Value in Zip Code ($1,000) 397.6 288.0 309.6
% Change in House Price, 10-2007 to 04-2008 -4.0% 5.8% -3.6%

Sources: Lending Club, Acxiom, and Zillow. October 2007 to April 2008. FICO scores and debt to
income ratios are recovered from each borrower’s credit report. Monthly incomes are self reported during
the loan application process. Amount borrowed is the final amount obtained through Lending Club.
Lending Club obtains investor demographics and net worth data through a third party marketing firm
(Acxiom). Acxiom uses a proprietary algorithm to recover gender from the investor’s name, and matches
investor names, home addresses, and credit history details to available public records to recover age,
marital status, home ownership status, and net worth. We use investor zip codes to match the LC data
with real estate price data from the Zillow Home Value Index. The Zillow Index for a given geographical
area is the median property value in that area.

Table 1: Borrower and Investor Characteristics
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Sample/Subsample: All Investments Diversified investments With real estate data
(1) (2) (3)

Mean S.D Median Mean S.D Median Mean S.D Median

A. Unit of observation: investor-bucket-month
(N = 50,254) (N = 43,662) (N = 37,248)

Investment ($) 302.8 2,251.4 50.0 86.0 206.9 50.0 90.1 220.5 50.0
N Projects in Bucket 1.9 1.8 1.0 2.0 1.8 1.0 2.0 1.8 1.0
Interest Rate 12.89% 2.98% 12.92% 12.91% 2.96% 12.92% 12.92% 2.97% 12.92%
Default Rate 2.77% 1.45% 2.69% 2.78% 1.45% 2.84% 2.79% 1.45% 2.84%
E(PV $1 investment) 1.122 0.027 1.122 1.122 0.027 1.123 1.122 0.027 1.123
Var(PV $1 investment) 0.036 0.020 0.035 0.027 0.020 0.022 0.036 0.020 0.035

B. Unit of observation: investor-month
(N = 5,191) (N = 3,745) (N = 3,145)

Investment 2,932 28,402 375 1,003 2,736 375 1,067 2,934 400
N Buckets 9.7 8.7 7.0 11.7 8.4 10.0 11.8 8.5 10.0
N Projects 18.8 28.0 8.0 23.3 28.9 14.0 23.8 29.5 14.0
E(PV $1 investment) 1.121 0.023 1.121 1.121 0.021 1.121 1.121 0.021 1.121
Var(PV $1 investment) 0.0122 0.0159 0.0054 0.0052 0.0065 0.0025 0.0066 0.0070 0.0038

Each observation in panel A represents an investment allocation, with at least 2 risk buckets, by investor i in risk bucket z in month t.
In panel B, each observation represents a portfolio choice by investor i in month t. An investment constitutes a dollar amount allocation
to projects (requested loans), classified in 35 risk buckets, within a calendar month. Loan requests are assigned to risk buckets according
to the amount of the loan, the FICO score, and other borrower characteristics. Lending Club assigns and reports the interest rate and
default probability for all projects in a bucket. The expectation and variance of the present value of $1 investment in a risk bucket is
calculated assuming a geometric distribution for the idiosyncratic monthly survival probability of the individual loans and independence
across loans within a bucket. The sample in column 2 excludes portfolio choices in a single bucket and non-diversified investments. The
sample in column 3 also excludes portfolio choices made by investors located in zip codes that are not covered by the Zillow Index.

Table 2: Descriptive Statistics
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ARA θ
Expected Income
Income Based RRA

Mean 0.03679 1.086 130.1 2.85
sd 0.02460 0.027 344.3 3.62

p1 -0.00837 1.045 4.11 -0.16
p10 0.01126 1.059 8.08 0.28
p25 0.02271 1.075 16.0 0.56
p50 0.04395 1.086 45.9 1.62
p75 0.04812 1.094 111.1 3.66
p90 0.05293 1.105 297.1 7.29
p99 0.08562 1.157 1,255.1 17.18

N 3,145 3,145 3,145 3,145

Absolute Risk Aversion (ARA) and intercept θ obtained through the OLS estimation of the following
relationship for each investment:

E [Rz] = θi +ARAi · W
ixiz
niz

· σ2
z + ξiz

where the left (right) hand side variable is expected return (idiosyncratic variance times the investment
amount) of the investment in bucket z. The income based Relative Risk Aversion (RRA) is the estimated
ARA times the total expected income from the investment in Lending Club. pN represents the N th

percentile of the distribution.

Table 3: Unconditional distribution of estimated risk aversion parameters
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ARA θ
Expected Income
Income Based RRA

2007m10 0.028 1.057 173.3 1.229
(0.020) (0.014) (608.5) (0.980)

2007m11 0.032 1.065 111.3 1.195
(0.018) (0.013) (337.6) (0.952)

2007m12 0.037 1.066 78.5 1.446
(0.016) (0.013) (199.8) (1.527)

2008m1 0.036 1.083 175.9 2.774
(0.031) (0.040) (522.8) (3.676)

2008m2 0.040 1.089 123.3 3.179
(0.022) (0.018) (305.9) (3.906)

2008m3 0.037 1.097 146.4 3.841
(0.025) (0.023) (288.0) (4.302)

2008m4 0.039 1.089 63.9 2.011
(0.026) (0.023) (109.8) (2.275)

Absolute Risk Aversion (ARA) and intercept θ obtained through the OLS estimation of the following
relationship for each investment:

E [Rz] = θi +ARAi · W
ixiz
niz

· σ2
z + ξiz

where the left (right) hand side variable is expected return (idiosyncratic variance times the investment
amount) of the investment in bucket z. The income based Relative Risk Aversion (RRA) is the estimated
ARA times the total expected income from the investment in Lending Club. Standard deviations in
parenthesis.

Table 4: Mean risk aversion and systematic risk premium by month
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ARA θ
Automatic Non-Automatic ∆ Automatic Non-Automatic ∆

(1) (2) (3) (4) (5) (6)

A. Full Sample (n = 227)
0.0368 0.0356 -0.0012 1.079 1.080 0.001

(0.0215) (0.0194) (0.0204) (0.0209) (0.0226) (0.0213)

B. Subsample: October-December 2007 (n = 74)
0.0355 0.0340 -0.0016 1.062 1.063 0.001

(0.0235) (0.0192) (0.0223) (0.0132) (0.0193) (0.0168)

C. Subsample: January-April 2008 (n = 153)
0.0374 0.0364 -0.0011 1.087 1.089 0.002

(0.0206) (0.0195) (0.0195) (0.0188) (0.0190) (0.0232)

Descriptive statistics of the Absolute Risk Aversion (ARA) and θ obtained as in Table 3, over the
subsample of investments where the estimates can be obtained separately using Automatic (buckets
suggested by optimization tool) and Non-Automatic (buckets chosen directly by investor) bucket choices
for the same investment. The mean and standard deviation (in parenthesis) of both estimates and the
difference for the same investment are shown for the full sample and for 2007 and 2008 separately. The
mean differences are not significantly different from zero in any of the samples.

Table 5: Estimates from Automatic and Non-Automatic Buckets
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Dependent Variable: ARA Income based Investment First Stage
(in logs) RRA log (Net Worth)

(1) (2) (3) (4)

A. OLS
log (Net Worth) -0.009** 0.022*** 0.035***

(0.004) (0.008) (0.009)

R-squared 0.003 0.005 0.010
Observations (investors) 1,514 1,514 1,514

B. Errors-in-Variables (Instrument: House Value)
log (Net Worth) -0.059*** 0.123*** 0.203***

(0.019) (0.031) (0.038)

log (House Value) 1.664***
(0.146)

Observations (investors) 1,261 1,261 1,261 1,261

Estimated elasticity of risk aversion to wealth in the cross section. Panel A presents the OLS estimation
of the between model and Panel B presents the errors-in-variables estimation using the median house
value in the investor’s zip code as an instrument for net worth. The dependent variables are the (log)
absolute risk aversion (column 1), income-based relative risk aversion (column 2), and investment amount
in LC (column 3), averaged for each investor i across all portfolio choices in our sample. The right hand
side variable is the investor (log) net worth (from Acxiom). Column 4 reports the first stage of the
instrumental variable regression: the dependent variable is (log) net worth and the right hand side
variable is the average (log) median house price in the investor’s zip code (from Zillow). Standard errors
are heteroskedasticity robust and clustered at the zip code level. *, **, and *** indicate significance at
the 10%, 5%, and 1% levels of confidence, respectively.

Table 6: Risk Aversion and Wealth, Cross Section Estimates
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Dependent Variable: ARA Income based Investment
(in logs) RRA

(1) (2) (3)

A. No Fixed Effects
log (House Value) -0.166*** 0.192*** 0.367***

(0.047) (0.048) (0.070)

Risk Premium Controls Yes Yes Yes
Investor Fixed Effects No No No
R-squared 0.020 0.010 0.032
Observations 2,030 2,030 2,030
Investors 1,292 1,292 1,292

B. Investor Fixed Effects
log (House Value) -2.825* -4.815*** 1.290

(1.521) (1.611) (1.745)

Risk Premium Controls Yes Yes Yes
Investor Fixed Effects Yes Yes Yes
R-squared (adj) 0.008 0.011 0.001
Observations 2,030 2,030 2,030
Investors 1,292 1,292 1,292

Estimated investor-specific elasticity of risk aversion to wealth. The left hand side variables are the (log)
absolute risk aversion (column 1), income-based relative risk aversion (column 2), and investment amount
in LC (column 3), obtained for investor i for a portfolio choice in month t. The right hand side variables
are the (log) median house price in the investor’s zip code in time t, and an investor fixed effect (omitted).
Standard errors are heteroskedasticity robust and clustered at the zip code level. *, **, and *** indicate
significance at the 10%, 5%, and 1% levels of confidence, respectively.

Table 7: Risk Aversion and Wealth Shocks, Investor-Specific Estimates
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