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Abstract

This paper considers the joint problem of model estimation and implemen-
tation of monetary policy in the face of uncertainty regarding the process of
structural change in the economy. We model unobserved structural change
through time variation in the natural rates of interest and unemployment. We
show that certainty equivalent optimal policies perform poorly when there is
model uncertainty about the natural rate processes. We then examine the
properties of combined estimation methods and policy rules that are robust
to this type of model uncertainty. We find that weighted averages of sample
means perform well as estimators of natural rates. The optimal policy under
uncertainty responds more aggressively to inflation and less so to the perceived
unemployment gap then the certainty equivalent policy. This robust estima-
tion/policy combination is highly effective at mitigating the effects of natural
rate mismeasurement.

JEL Classification System: E52



1 Introduction

The U.S economy has undergone substantial change over the past two decades.

The IT revolution alone has transformed inventory management, fostered in-

creased globalization of trade in goods and services, and improved the effi-

ciency of labor and goods markets. These and other changes have had wide

ranging effects on the economy. The magnitude of macroeconomic fluctuations

has declined dramatically. The underlying rate of productivity growth may

have risen by 1-1/2 percentage points. And the natural rate of unemployment

appears to have declined by at least a percentage point. The implications of

structural change for the conduct of monetary policy has attracted increased

attention from researchers and policymakers, as evidenced by last year’s Jack-

son Hole conference entitled “Monetary Policy and Uncertainty: Adapting to a

Changing Economy.” The goal of this paper is to examine issues related to the

design of monetary policy in an economy that regularly undergoes structural

change and where there is considerable uncertainty as to the precise nature of

the underlying process of change.

We represent structural change by medium- and low-frequency variation in

the natural rates of interest and unemployment. For our purposes, the natu-

ral rate of unemployment is defined to be unemployment rate consistent with

stable long-run inflation. Correspondingly, the natural rate of interest is de-

fined to be the real short-term interest rate consistent with the unemployment

rate equaling its natural rate in the long run. We focus on shifts in natural

rates, rather than other changes in other aspects in the economy, because the

empirical evidence is clearest for changes in natural rates.1

If the true data generating processes for the natural rates were known,

1For example, Rudebusch and Svensson (1999) find no evidence of a break in slope co-
efficients in their model, while Estrella and Fuhrer (2003) find strong evidence for a break
when testing jointly for intercepts — which represent the natural rates — and slope param-
eters. See also Kozicki and Tinsley (2001). The evidence for change in other macroeconomic
relationships, such as the autocorrelation of inflation, is the subject of ongoing debate; see
Bernanke and Mihov (1998), Cogley and Sargent (2001, 2002), Sims (2001), Boivin and
Giannoni (2003), and Stock and Watson (2003).
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then certainty equivalence would obtain and the optimal policy rule would

be the same as if their were no uncertainty.2 However, the assumption that

policymakers know the processes generating natural rates with certainty is

surely highly unrealistic even as an approximation to reality, as emphasized

by Orphanides and Williams (2002).3 Indeed, even if one were certain that

one possessed the correct model of structural change, estimates of parameters

of that model are likely to be very imprecise, as documented by Laubach

and Williams (2003) in the case of the Kalman filter. Moreover, Sims (2001)

and Cogley and Sargent (2002) provide evidence that the variance of the shock

processes has changed over time; such time variation in higher moments implies

that the parameters of the optimal filters are themselves changing over time,

further impairing the ability to infer the true data generating process from the

data. Thus, a key assumption of our approach is that the pervasive uncertainty

regarding the process of structural change and that this uncertainty is unlikely

to vanish in the foreseeable future.

We implement the idea of uncertainty regarding the processes generating

the natural rates by considering a set of potential data generating processes

(DGP) for natural rates. We then analyze policies that perform “well” across

the set of DGPs. This method of examining robust monetary policy under

model uncertainty follows the approach advocated by McCallum (1988) and

implemented by Taylor (1999), Levin, Wieland, and Williams (1999, 2003),

and others.4 We consider three “reasonable” DGPs for natural rates that

yield very different implications for the specification of the optimal filter. The

DGPs are a highly persistent AR(1), a long-memory or fractionally-integrated

2See Simon (1956), Theil (1958), Chow (1975) and Kalchbrenner and Tinsley (1975)
for early analysis of certainty equivalence, and Swanson (2000), Svensson and Woodford
(2002), Woodford (2003), and Giannoni and Woodford (2004) for recent analysis. Stochastic
natural rates are a form of additive uncertainty and therefore certainty equivalence applies
for optimal policies and optimal filters. Certainty equivalence does not apply to uncertainty
about slope parameters, as analyzed by Brainard (1967).

3See also Stock and Watson (1997) and Orphanides and van Norden (2003).
4See, for example, Orphanides and Williams (2002), Laxton and Pesenti (2003), Levin

and Williams (2003), Brock, Durlauf, and West (2003), and Onatski and N. Williams (2004).
Cogley and Sargent (2003) extend this type of analysis tot the case where the policymaker
continuously updates his or her priors over models.
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process, and a Markov switching process. In addition, we consider three dif-

ferent calibrations of each DGP.

The primary contribution of the paper is the analysis of the joint problem

of estimation and policy feedback when there is uncertainty about the data

generating process underlying structural change. A number of researchers have

examined the effects of natural rate mismeasurement on the performance and

optimal specification of monetary policy rules, but most of these papers have

treated natural rate mismeasurement as exogenous noise.5 In this paper, we

directly examine the performance of real-time estimation strategies and policy

rules where the true natural rates vary over time.6 Thus, the occurrence of

natural rate misperceptions and their correlation with other variables arises

endogenously and depends on both the estimation method and the policy rule.

We assume that the policymaker must choose an estimation method and

policy rule in advance without knowledge of which DGP is the true one. We

evaluate the performance of a combination of estimation method and policy

rule coefficients in terms of a standard loss function equal to a weighted sum

of the unconditional variances of the inflation rate, the difference between the

unemployment rate and its natural rate, and the difference between the interest

rate and its natural rate. We consider two approaches to model uncertainty.

In one, the policymaker has well-formed priors regarding the various DGPs.

In that case, we analyze the estimation/policy combination that minimizes the

expected loss, integrating over the various DGPs. The second case corresponds

to Knightian uncertainty, in which the policymaker does not have priors over

the models. In that case, we follow the robust control literature and analyze

the estimation/policy combinations that minimize the maximum loss.

We conduct our analysis using a variant of the Rudebusch-Svensson (1999)

backward-looking model estimated on 50 years of postwar U.S. data. We

focus on this model because Orphanides and Williams (2002) have shown

5See, for example, Orphanides et al (2000), Smets (2002), Orphanides (2002), Rudebusch
(2001, 2002), and Orphanides and Williams (2002).

6The use of the term “real-time” to problems of this sort is due to Diebold and Rudebusch
(1991).
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that natural rate mismeasurement is relatively easy to overcome in forward-

looking and hybrid models by specifying the policy rule in terms of changes

of the interest rate reacting to inflation and the change in the unemployment

rate. But such a strategy is far less effective in models of the Rudebusch-

Svensson type, which have strong empirical support, as shown by Estrella and

Fuhrer (2003).7 In addition, the model has been extensively studied in the

monetary policy literature, facilitating the comparison of results from studies

by Rudebusch (2001, 2002), Onatski and N. Williams (2002), Brock, Durlauf,

and West (2003), and Levin and Williams (2003).

We find, consistent with many other studies, that there can be very large

costs, especially in terms of inflation variability, of ignoring natural rate un-

certainty. However, we also show that it is possible to design estimation and

monetary policy rules that are robust to a variety of models of natural rate

evolution. In the terminology of Levin and Williams (2003), such estima-

tion/policy combinations display a high degree of fault tolerance in the face of

model uncertainty about natural rates. We find that weighted sample means,

where the weights on past data decline gradually, of the real interest rate and

the unemployment rate yield surprisingly good estimates of their respective

natural rates. In the face of uncertainty about natural rates, the robust policy

responds much more aggressively to inflation than under certainty. By keep-

ing its eye on the “inflation” ball, such a policy automatically counteracts the

unavoidable policy “mistakes” resulting from natural rate mismeasurement.

2 The Model

We use a version of the Rudebusch-Svensson (1999) model for our analysis.

Note that expectations in this model are assumed to be adaptive and implicitly

captured by the lags of the dependent variable. Following Orphanides and

7The assumption of adaptive expectations is not without cost, as this framework ignores
the endogenous response of expectations, which can exacerbate the problems associated with
policy errors induced by faulty estimates of model parameters, as discussed by Orphanides
and Williams (2002), (2004), and others. The extension of the analysis of this paper to
other models of expectations formation is left for future work.
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Williams (2002), the model is specified in terms of the unemployment rate gap

as opposed to the output gap specification of Rudebusch and Svensson and we

allow for time variation in the natural rates of interest and unemployment.

2.1 Unemployment and Inflation Dynamics

The IS curve equation relates the unemployment rate, ut, to its lags, its natural

rate, u∗
t , and the lagged difference between the two-quarter average of the real

federal funds rate, rt, and its natural rate, r∗t ,

ut = (1−β1−β2)u
∗
t−1 +β1ut−1 +β2ut−2 +β3

(
(rt−1 + rt−2)/2 − r∗t−1

)
+ εt, (1)

where εt ∼ N(0, σ2
ε . The real federal funds rate is defined to be the difference

between the nominal federal funds rate and a measure of expected inflation

assumed to equal to the inflation rate over the past four quarters:

rt ≡ it − π̄t,

where π̄t denotes the four-quarter moving average of the inflation rate. Each

period is one quarter of a year.

The Phillips curve equation relates the inflation rate, πt, to its own lags

(with a unity sum imposed on the coefficients) and the lagged difference be-

tween the unemployment rate and its natural rate:

πt = γ1πt−1 +
1 − γ1

3

4∑
j=2

πt−j + γ2(ut−1 − u∗
t−1) + ηt, (2)

where ηt ∼ N(0, σ2
η. As noted above, the natural rates of interest and unem-

ployment are allowed to be time varying and are therefore identified with time

subscripts. We describe the data generating process for these processes in the

next section.

2.2 Modeling Natural Rates

As noted in the introduction, there is considerable uncertainty regarding the

specification of the data generating processes (DGP) for the natural rates of in-

terest and unemployment. We restrict ourselves to stationary processes for the
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Figure 1: Characteristics of AR(1) and Long-Memory Processes
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natural rates.8 We consider three types of time series models for time-varying

natural rates: an AR(1), a fractionally-integrated long-memory process, and

a two-state Markov switching model. We chose these models because they

can generate highly persistent stationary series, but, importantly for our pur-

poses, they imply different optimal filters. For each model, we consider three

parameterizations of the variance of the process, as described below.

The first type of model is the standard AR(1), according to which the

variable z follows the law of motion:

zt = (1 − ρ)z + ρzt−1 + τt, (3)

where z is the unconditional mean of z, |ρ| < 1, and τt is assumed to be a

white noise innovation.

The second type of model is a fractionally integrated or “long-memory”

model studied by Granger (1980) and Diebold and Rudebusch (1989). In this

case, the law of motion is given by:

(1 − L)d(zt − z) = νt, (4)

where |d| < 1
2

and νt is a white noise innovation. We approximate this process

8Based on the ADF test, one can reject the null of nonstationarity of the unemployment
and real federal fund rate over 1950–2003 at the 5 percent level.
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by its binomial expansion, truncated after 5000 terms,

zt = z +
5000∑
j=1

(−1)j−1

∏j
i=1(d − i + 1)

j!
(zt−j − z) (5)

Granger (1980) shows conditions under which such a long-term memory pro-

cess approximates the aggregate process resulting from aggregating AR(1)

processes over individuals with different values of ρ.

The fractionally integrated model differs from the AR(1) model in two im-

portant respects. First, the autocorrelation of an AR(1) decays geometrically,

as shown by the dashed line in Figure 1 for the case of with ρ = 0.95, while

that of the long-memory process displays approximately hyperbolic decay, as

shown by the solid line (for d = 0.45). Thus, the long-term memory process is

able to generate low frequency variability without resorting to near unit root

behavior. Second, the two processes differ markedly in their impulse responses,

as shown in the figure. The impulse response function (IRF) for an AR(1) de-

clines geometrically, while that of the long-memory process falls rapidly for

the first several periods, but then declines very gradually. Evidently, the long-

memory process behaves like a combination of a weighted sum of two AR(1)

processes, one with a relatively low root and the other with a root near unity.

Finally, the third process is a two-state Markov switching process as de-

scribed by Hamilton (1989), in which with some probability, p, the natural

rate shifts from its current state to the other. We assume that the probability

of switching states is the same for each state, so that the mean time spent in

each state is the same, and the unconditional mean of the natural rate is the

average of the values in the “low” and “high” states.

Each of these three DGP are described by two parameters, one related

to the persistence of the state and the second related to the variance of the

innovations. Because we are interested in medium and low frequency variation

in the natural rates, we assume values of ρ = 0.99, d = 0.48, and p = 0.99,

which yield a high degree of persistence. We allow for uncertainty regarding the

behavior of these processes by including three sets of values for the innovation

variances, as discussed in the next section.
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2.3 Monetary Policy

We assume that the objective of the monetary policymaker is to minimize the

expected unconditional squared deviations of the four-quarter inflation rate

from its target rate, π∗, the unemployment rate from its natural rate, and

the deviation of the nominal interest rate from the natural rate of interest.

Specifically, the loss, L is given by:

L = E
{
(πt − π∗)2 + λu(ut − u∗

t )
2 + λi(it − π∗ − r∗t )

2
}

, (6)

where expectations are taken with respect to the innovations to the unem-

ployment rate and inflation, {εt}∞t=0 and {ηt}∞t=0, respectively, as well as the

naturate rates of unemployment and interest, {u∗
t , r

∗
t }∞t=0. A loss function of

approximately this functional form can be derived from a consumer welfare

maximization criterion, as in Woodford (2003). In the following, we treat the

weights, λu and λi, as fixed, and consider a range of values.9

The expectation in the loss function takes into account both uncertainty

about the realization of future innovations, but also uncertainty about the

data generating processes for the natural rates. Let S denote the set of such

data generating processes (which may differ across variables). Assume for

the present purposes that the policymaker has well-defined prior beliefs over

the distribution of s ∈ S, denoted by F (s). Let L(s) denote the expected

policymaker loss for the data generating process s. Then, the unconditional

loss is given by:

L =

∫
S

L(s) dF (s). (7)

In practice, as described above, we approximate this expectation with a finite

set of discrete elements, {si}Ns
i=1} of S, weighted by ωi:

L �
Ns∑
i=1

L(si) ωi, (8)

9In a micro-founded model, the weights λu and λi are functions of parameters describing
technology and preferences. As discussed in Levin and Williams (2003), uncertainty about
such parameters also implied uncertainty regarding these weights. In this paper, we ignore
this link and hold the weights fixed.
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where
∑

ωi = 1. In the example studied in this paper, Ns = 7.

We assume that monetary policy is implemented by setting the federal

funds rate according to a monetary policy rule taking the form of a modified

Taylor (1993) rule. Rudebusch and Svensson (1999) show that such a rule

yields performance very close to the first-best optimal policy under commit-

ment in their model. And Levin and Williams (2003) shows that such rules

are robust under model uncertainty. In particular, the federal funds rate is set

according to:

it = r̂∗t−1 + π̄t−1 + θ1π̄t−1 − θ2(ut−1 − û∗
t−1), (9)

where r̂∗t and û∗
t are the policymaker’s estimates of the natural rates of interest

and unemployment, respectively. We assume that the inflation target is zero

and abstract from the zero lower bound on interest rates. Note that the

policymaker’s estimates of the natural rates of interest and unemployment,

are allowed to vary over time, as discussed below.

3 Model Estimation

In order to analyze the performance of filtering and monetary policies, we

need to estimate the basic model and calibrate the set of data generating

processes for the natural rates of interest and unemployment. We start with

the estimation of the “slope” parameters of the IS and Phillips curve equations.

3.1 Unemployment and Inflation Dynamics

If the natural rates of interest and unemployment were constant, OLS esti-

mation of the parameters of the IS and Phillips curve equations would yield

consistent estimates of the parameters of the IS and Phillips curve equations.

If, however, the natural rates are changing (and unobserved), omitted variable

bias is likely to affect all model parameters. To reduce this effect, we used the

Congressional Budget Office’s (CBO) estimate of the natural rate of unem-

ployment as a proxy for the true values and we estimated the two equations

9



Figure 2: Rolling Regression Estimates
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using rolling regressions in which each sample contains only 15 years of data.

Given our sample of data of 1950-2003, we were able to run 156 regressions.

We take the median estimate of each parameter from this set of 156 estimates.

Figure 2 plots the rolling regression estimates of the model parameters. In

each case, the dashed line indicates the median estimate. The first column

of charts reports the estimates pertaining to the Phillips curve equation; the

second column to the IS curve equation. For the Phillips curve equation, we

plot a version of the model equation that includes a constant and excludes
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the CBO estimate of the natural rate of unemployment; the bottom left panel

shows the resulting rolling regression estimate of the natural rate of unemploy-

ment, given by the ratio of the estimated intercept divided by the estimate

of γ2. In the case of the IS curve equation, we use the CBO estimate of the

natural rate of unemployment; the bottom right panel reports the resulting

estimates of the natural rate of interest, given by the ratio of the estimated

intercept divided by the negative of the estimate of β3.

The rolling regression estimates of the natural rates vary considerably over

time, lending some support either for time variation in the true processes or

the difficulty in their real-time estimation. Interestingly, the estimate of γ1,

the coefficient on the first lag of inflation in the Phillips curve equation also

displays considerable time variation. Note that this occurs despite imposing

the unit restriction on the sum of inflation lags in the Phillips curve equation as

this characteristic also obtains when the sum restriction is not imposed.10 The

slope of the IS curve displays a downward trend over the sample. Finally, the

estimates of the slope of the Phillips curve and the lags of the unemployment

rate in the IS curve are very stable over the sample.

The median estimates from the rolling regressions yield the following two

equations, which we use the analysis that follows:

ut = 0.09u∗
t−1 + 1.54ut−1 − 0.63ut−2 + 0.04

(
(rt−1 + rt−2)/2 − r∗t−1

)
+ εt, (10)

πt = 0.46πt−1 + 0.54
1

3

4∑
j=2

πt−j − 0.23(ut−1 − u∗
t−1) + ηt. (11)

These estimates are similar to those from full-sample estimation and conform

with estimates from similar models, such as Rudebusch and Svensson (1999)

and Orphanides and Williams (2002). A key difference is that full-sample

estimation through 2003 yields a much lower value for β3, the slope of the IS

curve, suggesting the possibility of bias resulting from the implicit assumption

10In fact, the sum restriction is clearly satisfied for the sample from 1970 to 2003. Only
during the 1960s is the sum well below unity. See Orphanides and Williams (2003) for a
discussion of this issue.
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Table 1: Calibration of Natural Rate DGP Models

Innovation Natural Rate
Standard Deviation Stand. Dev.

Natural Rate DGP ε η r∗ u∗ r∗ u∗

Zero variance (constant) 0.280 1.13 0.00 0.00 0.00 0.00
Baseline variance

AR(1) 0.276 1.12 0.11 0.22 0.78 1.56
Long-memory 0.265 1.11 0.43 0.87 0.78 1.56
Markov switching 0.271 1.12 — — 0.78 1.56

High variance
AR(1) 0.257 1.10 0.22 0.44 1.56 3.12
Long-memory 0.210 1.03 0.84 1.75 1.56 3.12
Markov switching 0.253 1.07 — — 1.56 3.12

of a constant natural rate of interest. The implied “sacrifice ratio” is 2-1/4,

that is, if the unemployment rate is 2-1/4 percentage points above its natural

rate for one year, the inflation rate will eventually decline by 1 percentage

point.

3.2 Natural Rates of Interest and Unemployment

In addition to the uncertainty regarding the structure of the DGP for natu-

ral rates there exists a great deal of uncertainty regarding the parameters of

any specific model for the natural rates. For example, the Kalman filter has

been extensively used to estimate time-varying natural rates of interest and

the unemployment.11 A key finding in this literature is that the parameters

describing the law of motion of natural rates are very imprecisely estimated

(Laubach and Williams 2003). In particular, the innovation variance for the

highly persistent component of natural rates is estimated with little precision.

Thus, the data provides frustratingly little guidance on this key parameter.

We now describe the calibration of the three natural rate DGP models and

11See, for example, Staiger, Stock, and Watson (1997, 2002), Gordon (1998),Brainard
and Perry (2000), and Laubach (2001), for Kalman filter estimates of the natural rate of
unemployment. See Laubach and Williams (2003) and Orphanides and Williams (2002) for
Kalman filter estimates of the natural rate of interest.
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the various parameterizations of each. The results of this calibration are sum-

marized in Table 1. For each DGP, we consider three parameterizations that

span the set of values that are consistent with the data. In one, the innovation

variance for the natural rates is set to zero, corresponding to constant natu-

ral rates. In the second, the innovation variance is set to the baseline value

computed as described below. In the third parameterization, the innovation

variance is set to a larger value that lies within the range of other published

estimates. In the cases of a zero natural rate variance, the three DGPs col-

lapse into one, so in the end we have seven alternative specifications of the

DGP in all; we do not consider the various alternative combinations of these

underlying processes for the two natural rates.

We follow the same basic procedure for calibrating both the natural rate of

unemployment and interest. Starting with the natural rate of unemployment,

we estimate the Phillips curve equation using the Kalman filter, assuming that

the natural rate follows a random walk.12 From this we extract our baseline

estimate of the standard deviation of the innovation to the AR(1) model of the

natural rate of unemployment, τt, of 0.22. The resulting “smoothed” estimate

of the natural rate of unemployment is shown in Figure 3, and is similar to

the CBO estimate.

To capture the uncertainty regarding the innovation standard deviation, we

consider two representative alternative values of zero and 0.44. The value of

zero corresponds to a constant natural rate and the latter yields an estimate of

the natural rate similar, albeit smaller, to that of Stock and Watson (2001), as

seen in the figure. In terms of in-sample fit of the inflation equation, the data

cannot clearly distinguish between the baseline values and the two alternatives.

We use these values of the innovation standard deviations to calibrate our three

DGP for the natural rate of unemployment. Of course, a zero innovation

standard deviation implies a constant natural rate of unemployment, so in all

three DGPs, the “zero” alternative is the same.

12For this purpose, we use the Stock and Watson (1998) median-unbiased estimator. The
sample is 1970-2003.
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Figure 3: Estimates of the Natural Rate of Unemployment
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For the AR(1) model, we assume that ρ = 0.99. For the baseline calibra-

tion, we set the standard deviation of the innovation, τt, to 0.22, the baseline

Kalman filter estimate. The resulting process for the natural rate of unem-

ployment has an unconditional standard deviation of 1.56 percentage points.

For the “’high” variance version of the AR(1)model, we set the standard de-

viation of τt to 0.44; this yields an unconditional standard deviation of 3.12

percentage points.

We do not formally estimate the long-memory process and the Markov-

switching models for the natural rate of unemployment, but instead calibrate

them to have the same unconditional variances as those of the AR(1) process.

For thelong-memory process model, we set d = 0.48. For the Markov-switching

model, we set the common switching probability p = 0.99 and set the difference

between the values at the states at 3.12 percentage points; for the high-variance

variant, we set the difference between the states to 6.24 percentage points.

The strategy for calibrating the DGPs for the natural rate of interest is the

same as for the natural rate of unemployment. We use the same values of ρ, d,

and p as before. Kalman filter estimation of the IS curve yields an innovation
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Figure 4: Estimates of the Natural Rate of Interest
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standard deviation of 0.11 percentage points, which we use for the baseline

AR(1) process (and again assume ρ = 0.99). This implies an unconditional

standard deviation for the natural rate of interest of 0.78 percentage points.

For the high-variance alternative, we set the innovation standard deviation to

0.22 percentage points, which is in the range of estimates reported by Laubach

and Williams (2003). The resulting smoothed estimates are shown in Figure 4.

For the two variants of the long-memory process, we again set d = 0.48 and

set the innovation standard deviations so that they match those from AR(1)

model. For the baseline Markov switching model, we again set p = 0.99 and

set the difference between the two states at 1.56 percentage points, and for

the high-variance alternative, the difference is set at 3.12 percentage points.

In order to make the seven DGPs equivalent in the sense of the implied

overall variability of inflation and unemployment rate gap, we adjust the stan-

dard deviations of the innovation to the Phillips curve and IS curve equations,

as indicated in Table 1. In the case of constant natural rates, we use the me-

dian estimate of the standard error of the regression for the fifteen-year rolling

regressions used to estimate the parameters of the model as described above.
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This yields a Phillips curve innovation standard deviation of 1.13 percent-

age points and an IS curve innovation standard deviation of 0.28 percentage

points. For each other DGP, we set the Phillips curve and IS curve innovation

standard deviations so that the median estimate of the standard errors of the

regression of the Phillips curve and IS curve for rolling fifteen-year-sample re-

gressions on simulated data yields the same estimated standard deviations (of

1.13 for the Phillips curve and 0.28 for the IS curve). The results are shown

in the table.

4 Real-time Estimation of Natural Rates

We assume the policymaker makes an ex ante commitment to methods of

estimating the natural rates of interest and unemployment. We additionally

assume that the degree of uncertainty regarding the nature of time-variation

in the natural rates variables is fixed. Thus, the policymaker is able to adapt

to changes in the natural rates, but cannot deduce the true data generating

process.

We analyze two commonly-used methods for estimating natural rates. The

first method is the weighted sample mean, in which the the estimate of the

natural rate of interest (unemployment) equals a weighted sample mean of

the real interest (unemployment) rate over the past n periods. In the case of

constant weights, this method is simply the sample mean. Hodrick-Prescott

and Bandpass filter estimates of the current level of the trend component of a

series belong to this weighted sample mean class of estimators.13

The second method estimates the natural rates indirectly from the IS curve

and Phillips curve equations. In each case, the dynamic equation is estimated

with the natural rate term replaced by an intercept. In implementing this

approach, we assume the slope parameters are known with certainty, thus, we

are overestimating the real-world precision of this estimator. In estimating

13See Hodrick and Prescott (1997), Baxter and King (1999), and Christiano and Fitzgerald
(2002) for descriptions of these univariate filters. See Orphanides and Wiiliams (2002) for
a discussion of their real-time properties.
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the natural rate of interest, estimates of the natural rate of unemployment

are needed as they appear in the IS curve. Thus, inaccuracy in estimates

of the natural rate of unemployment spills over to estimates of the natural

rate of interest. As before, two variants of this estimator are common. In

the first, used for example by Rudebusch (2001), the natural rate is assumed

to be constant over the sample period and the natural rate estimate equals

the estimated constant divided by the negative of the estimated coefficient

multiplying the unemployment rate gap (in the case of the Phillips curve)

or the natural rate gap (in the case of the IS curve). In the second variant,

ordinary least squares is replaced by weighted least squares, where the weights

decline with the difference between the date of the past observation and that of

the current quarter.14 In the case of geometrically declining weights, the latter

method is identical to the steady-state Kalman gain for the simple model of

a random walk natural rate discussed above and also is identical to constant-

gain least squares commonly used in the learning literature (see, for example,

Sargent 1999, Evans and Honkapohja 2002, and Orphanides and Williams

2004).

In the following, we will analyze the optimal choice of the free parameter for

each estimation method. For both methods with constant weighting, the one

free parameter is the sample length n. Throughout the following, we assume

that the maximum feasible choice of n is 200, consistent with the current

availability of about 50 years of U.S. quarterly data on the unemployment rate

and the inflation rate. For the methods that use weighted data, we assume 200

observations are used and we assume that the weights decline geometrically,

with the choice parameter being the decay factor, δ used in estimating both

the natural rate of unemployment and the natural rate of interest.

For either method, shortening the optimal sample length or increasing the

decay factor provides better protection against time variation in the natural

rate, but carries the cost of increased sampling variation and resulting loss in

14Ball and Mankiw (2002) use a method in this class to estimate the natural rate of
unemployment.
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Figure 5: Accuracy of Natural Rate of Unemployment Estimators
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precision. Figure 5 shows graphically the tradeoff associated with reducing

the effective sample size. For this figure, the natural rate of unemployment is

estimated from the Phillips curve equation assuming all slope parameters are

known. The vertical axis is the root-mean-squared-error (RMSE) of estimates

of the natural rate of unemployment, computed numerically. For the case of

constant weights, the horizontal axis shows the sample length, in quarters, used

in the rolling regressions. The lower solid curve shows the root mean squared

error of estimates of the natural rate of unemployment for samples ranging

from 10 years to 50 years in length. (This curve is simply a plot of σε

γ2
√

n
.)

The middle solid curve shows the average RMSE for the third DGPs (AR(1)),

long-memory process, and Markov switching) under the baseline calibration

for different values of n. The minimum RMSE is achieved for samples of

about 15 years. The upper thin solid line shows the average RMSE for the

high-variance variants of the DGPs. In this case, the optimal length is shorter

than 40 quarters. The ex ante best sample length depends on the relative

weights one places on the various DGPs.

Based on accuracy, the constant-gain least-squares (CGLS) estimators out-
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perform on average the rolling regression estimates. The lower dashed curve

shows the RMSE of CGLS estimators that yield the same accuracy under a

constant natural rate as the rolling regression for the sample size indicated on

the horizontal axis (this corresponds to a decay factor of between 0.005 and

0.025). As seen in the figure, the curve generated by the CGLS estimator for

the baseline calibration of the DGP lies under that generated by the rolling

regression estimator, and the same is true for the high-variance calibration.

These calculations are based on exogenous processes and are therefore invari-

ant to the particular implementation of monetary policy in the model. This

is not the case for the weighted sample mean estimators, however, the perfor-

mance of which depends on the behavior of endogenous variables. We evaluate

those estimators in the next section when we simulate the model.

5 Optimal Policy with a Known DGP

In this section, we compute optimized policies assuming the policymaker knows

the correct DGP for the natural rates. We start with the textbook case that the

natural rates are constant and known. We then analyze the optimal estimators

and policy rules for the seven DGPs assuming the policymaker has only 200

observations at hand.

To compute the policymaker loss under different policies, we perform stochas-

tic simulations of the model of 110,000 periods. We drop the first 10,000 pe-

riods to eliminate the effects of initial conditions, an compute moments from

the remaining 100,000 (25,000 years of) simulated observations.

5.1 Optimal Policies for Known Natural Rates

As a benchmark for comparison, we consider the performance of rules de-

signed based on the belief that the natural rates are constant and known with

certainty. We assume one particular set of weights in the policymaker loss

function: λu = 1, λi = 0.5; qualitatively, our results are not sensitive to mod-

erate variations in these parameters, as discussed below. For the chosen policy
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loss parameters, the optimized policy rule assuming known natural rates is

characterized by θ1 = 1.35 and θ2 = 1.25.

We then evaluate the optimal policy based on the assumption of known nat-

ural rates using model simulations in which the natural rates are in fact gener-

ated by one of the seven DGPs described above. In implementing these policies

we assume that the policymaker uses natural rate estimates constructed from

200 unweighted quarterly observations, either using the sample mean estima-

tor or the estimator based on the dynamic equations. Table 2 reports the

results for this experiment for the seven different natural rate DGPs; the up-

per part of the table refers to simulations in which the sample mean is used

to estimate the natural rates and the lower part refers to simulations in which

the natural rate is estimated using the dynamic equations (assuming the slope

coefficients are known). Each row corresponds to one particular natural rate

DGP. The first two columns report the simulated unconditional standard de-

viations of the real-time natural rate errors. The next three columns show the

unconditional standard deviations of the four-quarter inflation rate, the differ-

ence between the unemployment rate and its natural rate, and the difference

between the interest rate and its natural rate. The final column indicates the

resulting value of the loss function for the specified loss function parameters.

Not surprisingly, increasing the variance of the natural rate innovations

reduces the accuracy of the natural rate estimates. Given this policy rule, the

estimator based on the IS and Phillips curve equations does a better job of real-

time estimation of the natural rate of unemployment than the sample mean.

The opposite is generally true for the natural rate of interest, though. The

relatively poor performance of the natural rate of interest estimator based on

the IS curve in part reflects the fact that this estimator incorporates estimates

of the natural rate of unemployment, and measurement error of that natural

rate adds noise to the estimates of the natural rate of interest.

Under the policy rule optimized assuming known natural rates, macroe-

conomic performance deteriorates modestly under the baseline calibrations of

the natural rate DGPs, but declines dramatically under the high variance al-
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Table 2: Policy Rule Optimized Assuming Known Natural Rates

Loss parameters: λu = 1, λi = 0.5
Optimized policy rule parameters: θ1 = 1.35, θ2 = 1.25

Standard Deviation Loss

Natural Rate DGP û − u∗ r̂ − r∗ π̄ u − u∗ i − r∗ L
Estimator: Sample mean (unweighted)

Zero variance (constant) 0.8 1.0 2.5 1.5 5.0 20.5
Baseline variance

AR(1) 1.5 1.2 2.7 1.5 5.1 22.9
Long-memory 1.5 1.2 2.6 1.7 5.0 21.7
Markov switching 1.6 1.3 2.7 1.5 5.1 22.5

High variance
AR(1) 2.7 1.7 3.4 1.6 5.5 29.2
Long-memory 2.7 1.5 2.8 2.3 4.8 24.9
Markov switching 3.0 1.8 3.4 1.8 5.4 29.1

Estimator: dynamic equations (unweighted)

Zero variance (constant) 0.4 0.8 2.3 1.4 4.8 19.1
Baseline variance

AR(1) 1.4 2.1 2.5 1.7 4.9 24.6
Long-memory 1.3 1.4 2.3 1.6 4.3 21.0
Markov switching 1.5 1.9 2.9 1.5 5.1 23.6

High variance
AR(1) 2.7 3.8 4.4 1.6 6.1 40.7
Long-memory 2.6 2.5 3.0 2.3 4.9 26.3
Markov switching 2.7 3.1 4.1 1.8 5.8 36.6

ternatives. The loss in the case of the Markov switching model is more than

double that implied by constant natural rates. In the cases of the AR(1) and

Markov-switching processes, the rise in inflation variability accounts for much

of the increase in the loss; in contrast, for the long-memory process, the vari-

abilities of both the inflation rate and the unemployment rate gap contribute

to the higher value of the loss. This latter result is due to the high-frequency

component of the long-memory process that causes variability in the natural

rate of unemployment that has little direct effect on inflation because these

movements in the natural rate are short lived.
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5.2 Optimal Policies with Known DGPs

Some of the decline in macroeconomic performance as the variance of the nat-

ural rate processes increases is unavoidable: more volatile unobserved natural

rates are “bad” for monetary policy. But, as we show, mistakes in natural

rate estimation is the primary culprit explaining the dramatic increases in the

policymaker loss seen in Table 2.

To provide a benchmark of attainable performance under each natural

rate DGP, we now compute the optimal policies for each DGP, assuming that

the true DGP is known. In this model, certainty equivalence applies if the

natural rate DGP is known wither certainty. As a result, the best attainable

outcome is that with the fully optimal policy under certainty using natural rate

estimates generated by the optimal filter implied by the DGP. However, for

purposes of comparison with our robust estimation and policy combination, we

focus on the simple estimation techniques and the simple Taylor style policy

rule as described above. Thus, certainty equivalence does not apply and the

coefficients of the estimators and the policy rule will differ from those implied

by optimal filtering and the certainty equivalent policy, respectively.

Table 3 shows the optimized policies for each DGP and the performance

under that DGP. The upper part of the table reports results for the weighted

sample mean estimator where the common decay factor for the two natural

rate estimates and the policy rule parameters are simultaneously chosen to

minimize the loss. The lower part of the table shows the CGLS estimator

based on the intercepts of the IS and Philips curve equations, where again

the decay factor is chosen as well as the policy rule coefficients. The results

from the rolling regression versions to these two estimators are very similar to

those shown here, but the weighted mean and the CGLS estimators perform

better on average over the seven DGPs so, in the following, we focus on these
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Table 3: Policy Rules Optimized Assuming Known DGPs

Loss parameters: λu = 1, λi = 0.5

Coefficients Standard Deviation Loss
Natural Rate DGP δ θ1 θ2 π̄ u − u∗ i − r∗ L∗

Estimator: weighted sample mean

Zero variance 0.000 1.5 1.4 2.3 1.5 5.0 19.7
Baseline variance

AR(1) 0.003 1.5 0.9 2.4 1.6 5.1 21.4
Long-memory 0.001 1.5 1.1 2.3 1.7 4.9 20.6
Markov switch. 0.002 1.5 0.8 2.5 1.6 5.1 21.5

High variance
AR(1) 0.006 1.5 0.6 2.6 1.8 5.3 23.6
Long-memory 0.003 1.5 0.9 2.3 2.4 4.7 22.3
Markov switch. 0.004 1.6 0.6 2.6 1.9 5.3 24.6

Estimator: dynamic equations

Zero variance 0.000 1.4 1.3 2.3 1.4 4.9 19.1
Baseline variance

AR(1) 0.006 1.6 1.0 2.5 1.6 5.2 22.5
Long-memory 0.003 1.5 1.1 2.3 1.7 4.9 20.6
Markov switch. 0.002 1.6 0.9 2.5 1.6 5.2 22.2

High variance
AR(1) 0.011 1.8 0.7 2.7 1.9 5.7 27.1
Long-memory 0.006 1.7 0.9 2.4 2.4 4.9 23.5
Markov switch. 0.003 2.0 0.8 2.8 2.0 5.6 27.3

estimators.15

For both estimators, the optimal choice of the decay is very small and well

below the values implied by minimizing the accuracy of natural rate estimates

for time-varying processes.

The policies that use the weighted sample mean outperform those based on

CGLS estimates from the dynamic equations for the high variance alternatives

and perform slightly worse in the case of a constant natural rates. Given

15Performance under the AR(1) and long-memory processes is slightly better using
weighted sample means than rolling regression sample means, but under the Markov switch-
ing process, performance is better with the rolling regressions sample means over a truncated
sample.
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that we have exaggerated the accuracy of the CGLS estimator based on the

dynamic equations by assuming away sampling error in the slope coefficients

in these models, we conclude that the weighted sample mean is a more robust

method of estimating natural rates. An important aspect of this finding is that

policies that effective stabilization policies also improve accuracy of natural

rate estimates from from sample averages

The optimized policies compensate for the lack of accurate estimates of

the natural rates by responding more aggressively to inflation and less to the

perceived unemployment rate gap, and in so doing dramatically reduce the

“cost” associated with natural rate mismeasurement. Relative to the optimal

policy in the case of no uncertainty, the optimal policies with uncertainty are

biased towards combatting inflation relative to controlling variability in the

unemployment gap. This bias is even stronger under the high variance DGP,

and even is present to a small extent under the assumption of constant, but

unknown, natural rates.

6 Robust Policies with DGP Uncertainty

A striking result implied by Table 3 is that a single estimation/policy combi-

nation is likely to perform well under all seven DGPs. The optimal policies

for the six cases with time-varying natural rates feature small decay rates,

combined with a response to inflation of between 1-1/2 and 2 and a response

to the perceived negative unemployment gap of between 1/2 and 1. We now

formalize this intuition by analyzing the choice of estimation and policy rule

parameters that minimize the expected loss, where the expectation incorpo-

rates the uncertainty regarding the natural rate DGPs.

6.1 Robust Policy with Priors across DGPs

We initially assume that the policymaker has well-formed priors over the seven

DGPs; we turn to the case where policymaker does not have priors below. Fol-

lowing the logic that the policymaker must commit to estimation method and
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Table 4: Robust Policy with DGP Uncertainty (with priors)

Loss parameters: λu = 1, λi = 0.5

Estimator: weighted sample mean
Optimal policy: θ1 = 1.50, θ2 = 0.87, δ = 0.003

Standard Deviation Loss
Natural Rate DGP π̄ u − u∗ i − r∗ L L∗

Zero variance (constant) 2.3 1.6 5.0 20.2 19.1
Baseline variance

AR(1) 2.4 1.6 5.1 21.4 21.4
Long-memory 2.3 1.8 5.0 20.8 20.6
Markov switching 2.4 1.6 5.1 21.5 21.5

High variance
AR(1) 2.8 1.7 5.2 24.6 23.6
Long-memory 2.3 2.4 4.7 22.3 22.3
Markov switching 2.9 1.9 5.2 25.2 24.6

Weighted average 21.7 21.2

policy in advance, we assume that the policymaker does not update these pri-

ors based on incoming data. As a benchmark case, we assume equal weights on

the three baseline DGPS with the sum adding to 0.5, a weight of 0.25 on the

zero variance DGP, and equal weights adding up to 0.25 on the high variance

DGPs. For a given combination of parameterized estimation method and pol-

icy rule parameters, we compute the loss in each model and sum the weighted

losses to obtain the expected loss. We then use a hill-climber routine to find

the free parameters to minimize this loss. Table 4 reports the results. The

final column reports the minimum attainable loss (within the classes of estima-

tors and policy rule considered here) assuming the DGP is known, calculated

above, and denoted L∗. In this table and for the remainder of the paper, we

focus exclusively on weighted sample mean estimation of natural rates because

these policies outperformed those based on natural rates estimated based on

dynamic equations.

As expected, the robust estimation/policy does very well for all DGPs.

This combination is very effective at stabilizing the economy even under the

25



Table 5: Robust Policy with DGP Uncertainty (with priors)

Estimator: weighted sample mean

Loss parameters: λu = 0.5, λi = 0.25
Optimal policy: θ1 = 1.81, θ2 = 0.99, δ = 0.004

Standard Deviation Loss
Natural Rate DGP π̄ u − u∗ i − r∗ L L∗

Zero variance (constant) 2.1 1.6 5.2 12.7 12.3
Baseline variance

AR(1) 2.3 1.7 5.3 13.5 13.5
Long-memory 2.1 1.9 5.2 13.0 12.8
Markov switching 2.4 1.6 5.1 13.7 13.6

High variance
AR(1) 2.6 1.8 5.3 15.4 14.8
Long-memory 2.2 2.4 4.9 13.7 13.7
Markov switching 2.7 1.9 5.4 16.3 15.7

Weighted average 13.7 13.4
Loss parameters: λu = 2, λi = 2

Optimal policy: θ1 = 1.21, θ2 = 0.75, δ = 0.001
Zero variance (constant) 2.5 1.5 4.9 58.4 57.1
Baseline variance

AR(1) 2.7 1.5 5.0 61.5 61.5
Long-memory 2.5 1.7 4.8 59.2 58.6
Markov switching 2.4 1.7 5.2 62.5 61.7

High variance
AR(1) 3.1 1.6 5.2 69.4 67.2
Long-memory 2.6 3.3 4.6 60.4 60.4
Markov switching 3.2 1.8 5.3 72.4 70.3

Weighted average 62.0 61.1

high variance DGPs, at negligible cost in terms of performance under the

zero variance DGP. Again, the rate of decay used in weighting past data is

surprisingly small.

This finding that a single estimation/policy combination is robust to nat-

ural rate model uncertainty generalizes to other parameterizations of the loss

function. The upper part of Table 5 shows results for a case where policymak-

ers place more weight on the goal of inflation stabilization (λu = 0.5, λi = 0.25);

the lower part of the table shows results for a case where policymakers place

relatively more weight on the goals of unemployment and interest rate stabi-
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Table 6: Min-max Robust Policy with DGP Uncertainty

Loss parameters: λu = 1, λi = 0.5

Estimator: weighted sample mean
Optimal policy: θ1 = 1.57, θ2 = 0.67, δ = 0.004

Standard Deviation Loss
Natural Rate DGP û − u∗ r̂ − r∗ π̄ u − u∗ i − r∗ L

Zero variance (constant) 0.4 1.1 2.2 1.6 5.2 21.1
Baseline variance

AR(1) 1.4 1.2 2.3 1.7 5.2 21.8
Long-memory 1.3 1.1 2.2 1.9 5.1 21.6
Markov switching 1.4 1.2 2.3 1.7 5.2 21.7

High variance
AR(1) 2.5 1.5 2.6 1.8 5.3 23.7
Long-memory 2.5 1.5 2.2 2.5 4.8 22.7
Markov switching 2.9 1.8 2.6 1.9 5.2 24.0

lization (λu = 2, λi = 2). For comparison, the final column of the table shows

the minimum feasible loss within this class of estimator and policy rule, L∗,

assuming the natural rate DGP were known.

As seen by comparing the final two columns of the table, the robust policy

delivers performance nearly on par with the first-best policy for each DGP.

As before, the decay factor used in estimating natural rates is very small, and

the robust policies respond more aggressively to inflation and less so to the

unemployment gap than would be optimal assuming the natural rates were

known.

6.2 Robust Policy with a Min-Max Objective

We now consider the case where the policymaker does not have well-formed

priors over the different DGPs, but instead follows a min-max approach of

choosing the estimation method and policy rule coefficients ti minimize the

maximum loss in any of the 7 states of the world corresponding to different

DGPs. This is the approach taken in the robust control literature (see Sargent

1999, Hansen and Sargent 2002). Table 6 results the results.
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Finally, we explored the effects of modifying the parameters of the DGP,

ρ, d, and p, and found that the results were not v very sensitive to the values

of these parameters.

The min-max policy minimizes the ‘worst” state: the high variance version

of the Markov switching process. The policy responds even more aggressively

to inflation and is less responsive to the perceived unemployment gap than

the robust policy assuming a priors over all seven DGPs examined above. The

decay parameter used in constructing the sample mean is nearly the same as

before. Under this policy, the loss under the time-varying natural rate model

is only slightly higher than if policy were optimized for that particular DGP.

6.3 The Performance of More Complicated Policy Rules

The preceding analysis assumed that policy followed a simple Taylor-style

policy rule and that that the same estimation method and parameter were

used for estimating both natural rates. Orphanides and Williams (2002) argue

that policies that respond to the change in the unemployment rate, as well as

the perceived unemployment rate gap, perform markedly better when there is

uncertainty about the natural rate of unemployment. In addition, given the

different processes for the natural rates and their observed counterparts, the

use of the same parameterized estimator for each natural rate may be a costly

restriction.

We now gauge the importance of these modifications to the estimation and

policy rule specifications by allowing the decay factor to differ for the two

processes and by specifying a generalized version of the policy rule given by:

it = r̂∗t−1 + π̄t−1 + θ1π̄t−1 − θ2(ut−1 − û∗
t−1) + θ4(ut−1 − ut−2) + θ5πt−1. (12)

Note that we have added two new free parameters to the policy rule, one

on the change in the unemployment rate and the second on the annualized

inflation rate in the most recent quarter. We consider the weighted sample

mean estimator with decay factors, δu and δr, applied to the unemployment

rate and real interest rate, respectively. We assume again that the policymaker
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Table 7: Robust Policy with DGP Uncertainty (with priors)

Estimator: weighted sample mean

Loss parameters: λu = 1, λi = 0.5
Optimal policy: θ1 = 0.17, θ2 = 0.78, θ3 = −2.03, θ4 = 1.38

Optimal estimator: δu = 0.010, δr = 0.000
Standard Deviation Loss

Natural Rate DGP π̄ u − u∗ i − r∗ L
Zero variance (constant) 2.2 1.4 4.9 18.9
Baseline variance

AR(1) 2.3 1.5 5.0 19.9
Long-memory 2.2 1.7 4.9 19.6
Markov switching 2.3 1.5 5.0 20.0

High variance
AR(1) 2.6 1.6 5.1 22.2
Long-memory 2.2 2.3 4.6 21.1
Markov switching 2.7 1.8 5.1 23.2

Weighted average 20.2

has priors over the various models, as described above, and assume λu = 1

and λi = 0.5.

This generalization of the policy rule and the estimation method reduces

average loss by about 7 percent relative to the simpler robust estimator/policy

combination, but does not change the main conclusions of the paper. The

optimal decay for estimating the natural rate of unemployment is larger than

before, but still relatively small. The optimal decay for estimating the natural

rate of interest is zero, reflecting the relatively low innovations variances for

the natural rate of interest process and the relatively high overall variability

of real interest rates. The overall response to inflation is stronger than that if

the natural rates are assumed to be known and the response to the perceived

unemployment gap is weaker. The sum of the responses to inflation for the

robust policy is 1.56, relative to 1.38 for the same specification of the policy rule

under the assumption of known natural rates; the response to the perceived

unemployment gap in the robust policy is 0.78, relative to 1.07 if the natural

rate is assumed to be known.
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7 Conclusion

This paper studied the joint problem of model estimation and the robust mon-

etary policy in an environment in which the policymaker is uncertain as to the

true model of movements in the natural rates of interest and unemployment.

We show that the costs of ignoring natural rate uncertainty can be very large.

Thus, there is a danger that policymakers could fall into a similar pattern

of mistakes as occurred during the late 1960s and 1970s, when natural rate

misperceptions contributed to the stagflation of that period as argued in Or-

phanides and Williams (2003) . However, it is possible to design estimation

and monetary policy rules that are remarkably robust to a variety of models

of natural rate evolution. Weighted sample means, where the weights on past

data decline very gradually, of the real interest rate and the unemployment

rate yield surprisingly good estimates of the respective natural rates.

A key finding is that in the face of uncertainty about natural rates, the

robust policy responds much more aggressively to inflation than would be

optimal if natural rates were known. This finding reinforces that of Orphandies

and Williams (2004) who show that learning on the part of private agents calls

for policies that react more strongly to deviations of the inflation rate from its

target.

The analysis can be extended in a number of fruitful ways, including the

incorporation of private expectations and time variation in other model pa-

rameters. In addition, we have assumed that the policymaker does not update

their priors over the various natural rate data generating processes based on

the incoming data. An interesting extension of the model would allow such

updating of beliefs about the various DGPs in the context of time variation in

the innovation variances.
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