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We show that bounds like those of Al-Najjar and Smorodinsky (J. Econ.
Theory, 2000) as well as of Gradwohl et al. (Math. Oper. Res., 2009) on the
number of α-pivotal agents can be obtained by decomposition of variance.
All these bounds have a similar asymptotic behaviour, up to constant fac-
tors. Our bound is weaker than that of Al-Najjar and Smorodinsky, but we
require only pairwise independent—rather than independent—types. Our
result strengthens the bound of Gradwohl et al.
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1 Introduction

In a mechanism design problem, an agent is called α-pivotal with respect to some col-

lective outcome if a variation in the agent’s type can lead to a change in the expected

outcome of at least α. Often, α-pivotality leads to necessary conditions for a mechanism

to be incentive-compatible or individually rational. A participation fee, for instance,

may make α-pivotality a precondition for voluntary participation, as an agent will want

to pay the fee only if he can influence the outcome sufficiently.

Al-Najjar and Smorodinsky (2000a) provide an upper bound on the number of α-pivotal

agents if the outcome is bounded, the agents’ types are independent, and the type space
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is finite. The upper bound depends on the distribution of types as well as on α, but is

independent from the number of agents. This result has several interesting applications:

It allows the derivation of upper bounds for the probability that a public project is

realized (Al-Najjar and Smorodinsky, 2000a; Neeman, 2004), or for the size of a public

project (Al-Najjar and Smorodinsky, 2000b; Birulin, 2006). Al-Najjar (2001) uses it

in the analysis of authority relationships. Al-Najjar and Smorodinsky (2007) prove

the efficiency of competitive mechanisms if the number of traders is sufficiently large.

Al-Najjar and Smorodinsky (2001) derive an upper bound for the number of players

not playing the short-term best response in a repeated game, and Gerardi and Yariv

(2008) analyse how to design an optimal mechanism for information acquisition through

a committee. Influence is an important issue in agenda-setting and voting models, as,

for instance, analysed by Gersbach (2009), when participation in the political process is

costly.

Al-Najjar and Smorodinsky (2000a) demonstrate their result by explicitly constructing

a mechanism in which the number of α-pivotal agents is maximal. This mechanism is

a majority voting. The topic was taken up recently by Gradwohl et al. (2009), who

generalize the results of Al-Najjar and Smorodinsky in various directions—in particular,

they introduce the notion of (p, α)-pivotality, relax the assumption of independent types

to pairwise independence, and consider the influence of coalitions. For proving their

result, the authors consider binary type spaces first and then reduce the general case to

this special case.

The purpose of the present note is to show that similar upper bounds for the number

of α-pivotal or (p, α)-pivotal players can be reached in a direct way by a very simple

argument based on decomposition of variance. Our proof highlights the role of Al-Najjar

and Smorodinsky’s assumption that the type space is finite. The method we use is closely

related to an argument in Appendix 1 of Mailath and Postlewaite (1990, p. 364), where

the idea appears as “Bessel’s inequality”. Our bound on the number of α-pivotal players

will turn out to be less sharp than the one by Al-Najjar and Smorodinsky, but much

easier to compute. It displays a similar asymptotic behaviour, up to a constant factor.

Our result for (p, α)-pivotality is somewhat sharper than that of Gradwohl et al.

The present paper is structured as follows: In Section 2 we develop the main argument.

In Section 3 we derive our upper bound for the number of α-pivotal agents. In Section 4

we compare this bound to the result of Al-Najjar and Smorodinsky (2000a). In Section 5

we refer to Gradwohl et al. (2009) and consider (p, α)-pivotality.
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Throughout the paper, we assume that all random variables are defined on some prob-

ability space, which we do not mention explicitly. The probability measure is denoted

by P .

2 Decomposition of Variance

The following proposition is our central argument.

Proposition 1. Let X be a real-valued random variable with finite variance, and suppose

the random variables T1, . . . , TN are pairwise independent. Then,1

VarX ≥
N∑

i=1

Var E(X | Ti) .

Proof. For i = 1, . . . , N , let Yi := E(X | Ti), and let Z := X −∑N
i=1 Yi. Since X =

Z +
∑N

i=1 Yi, we have

VarX =
N∑

i=1

VarYi + VarZ + 2
∑

1≤i<j≤N
Cov(Yi, Yj) + 2

N∑

i=1

Cov(Yi, Z). (1)

For i 6= j, the random variables Yi and Yj are independent because Ti and Tj are

independent; hence Cov(Yi, Yj) = 0. By the Law of Iterated Expectations, we have

EYi = EX for all i = 1, . . . , N . Together with the Ti-measurability of Yi, this yields

Cov(Yi, Z) = Cov(Yi, X)−
N∑

j=1

Cov(Yi, Yj) = Cov(Yi, X)− Cov(Yi, Yi)

= E
[
Yi ·X

]
− EYi · EX −VarYi = E

[
E(Yi ·X | Ti)

]
− (EYi)

2 −VarYi

= E
[
Yi · E(X | Ti)

]
− (EYi)

2 −VarYi = VarYi −VarYi = 0.

As VarZ ≥ 0, the assertion now follows from Equation (1).

1Note that for each i, the conditional expectation E(X | Ti) is a random variable; it can be seen as a
function of Ti.
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3 The Bound for α-Pivotality

We adopt the setup of Al-Najjar and Smorodinsky (2000a). We consider a set {1, . . . , N}
of agents. The type of agent i is given by the random variable Ti. We assume the random

variables Ti to be pairwise independent. Further, we assume:

Finiteness Assumption. For each i, the support of Ti, denoted by Ti, is a finite set.

Under this assumption, we define

ε := min
i=1,...,N

min
t∈Ti

P (Ti = t),

and note that ε > 0.

The random variable X represents some collective outcome.2 We assume that X has

finite variance. The following definition is due to Al-Najjar and Smorodinsky (2000a,

p. 323):

Definition 1. Suppose the Finiteness Assumption holds. Let α > 0. We say that

i ∈ {1, . . . , N} is α-pivotal for X if

max
t∈Ti

E(X | Ti = t)−min
t∈Ti

E(X | Ti = t) ≥ α. (2)

The term on the left-hand side of the inequality is called the influence of agent i.

To illustrate this definition, we give an interpretation for the case of a direct mechanism

if the agents are risk-neutral, types are independent, and each agent’s type is private

information to this agent. Let X be the outcome of the mechanism if the agents truly

report their types. The outcome X need not be a function of T1, . . . , TN ; our arguments

hold as long as agent i’s expected utility from reporting type ti ∈ Ti is given by E(X |
Ti = ti). Then, the quantity on the left-hand side of Inequality (2) is an upper bound for

what agent i can gain from misreporting his type.3 This interpretation underlies most

of the examples cited in the Introduction.

2Al-Najjar and Smorodinsky (2000a, p. 321) give the following examples: “the level of pollution,
output of team production, a principal’s reward, etc., or the probability of a binary outcome, e.g.,
the probability that a public project is undertaken.”

3If types are not independent, one has to be very careful with this interpretation of α-pivotality.
Consider, for instance, N > 1 agents who are either all of type 0 or all of type 1. The outcome
X shall be zero if the agents are of type 0 and one if the agents are of type 1. In this setting, the
influence of each agent is one, but, with the mechanism appropriately designed, what an agent could
gain from misreporting his type could be strictly larger than one, since a single agent’s misreporting
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As a consequence of the Finiteness Assumption, α-pivotality transforms into a lower

bound for the variance of the conditional expectation E(X | Ti).

Proposition 2. If i is α-pivotal, then Var E(X | Ti) ≥ 1
2εα

2.

Proof. For each i, the conditional expectation E(X | Ti) is a random variable; it takes

each of the values ai := maxt∈Ti E(X | Ti = t) and bi := mint∈Ti E(X | Ti = t) with a

probability of at least ε. Taking into account that bi ≤ EX ≤ ai and that i is α-pivotal,

we reach

Var E(X | Ti) = E
[(

E(X | Ti)− EX
)2] ≥ ε

(
ai − EX

)2
+ ε
(
bi − EX

)2

≥ ε
(
ai − 1

2(ai + bi)
)2

+ ε
(
bi − 1

2(ai + bi)
)2

= 1
2ε(ai − bi)2 ≥ 1

2εα
2.

From Propositions 1 and 2 we now obtain the desired upper bound for the number of

α-pivotal agents:

Theorem 1.

#
{
i ∈ {1, . . . , N}

∣∣ i is α-pivotal
}
≤ 2 VarX

εα2
.

4 Comparison

We compare our bound to the one of Al-Najjar and Smorodinsky (2000a). They define

K∗α to be the largest4 integer K satisfying R(ε,K) ≥ α, with R(ε,K) being a player’s

influence in a majority decision of K agents, where every agent votes “Yes” with a

probability of ε, “No” with a probability of ε, and abstains from voting with a probability

leads to a reported strategy profile that is not within the support of the type distribution. Of course,
in this example, the agents’ types are not even pairwise independent, so our analysis does not apply,
anyway. The same problem of interpretation, however, would appear in an example of Gradwohl et
al. (2009, Sec. 4.1., p. 979), to which our analysis does apply. In their example, in which there are
N = 2k − 1 agents (k ≥ 2), types are identically Bernoulli-distributed and pairwise independent, but
the support concentrates on the zero vector as well as on N other strategy profiles, in each of which
exactly (N + 1)/2 agents are of type 1. Again, a single agent’s misreporting would lead to a strategy
profile outside the support, which means that the influence introduced in Definition 1 need not be
an upper bound for what an agent can gain from misreporting his type.

4Al-Najjar and Smorodinsky (2000a) define it to be the smallest integer, which is obviously a mistake.
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of 1 − 2ε. The authors prove that if the range of X is a subset of [0; 1], the number of

α-pivotal players is bounded by K∗α, and that in a symmetric environment this bound is

sharp. Using Stirling’s formula, they derive the asymptotics5

R(ε,K) ' 1√
πεK

for K →∞. (3)

This transforms into the following asymptotics for K∗α:

Proposition 3.

K∗α '
1

πεα2
for α→ 0. (4)

Proof. Let K̃α := 1/(πεα2). By the results of Al-Najjar and Smorodinsky (2000a), we

have K∗α →∞ for α→ 0; hence, by (3),

lim inf
α→0

K̃α

K∗α
= lim inf

α→0

1

α2πεK∗α
≥ lim inf

α→0

(
1

R(ε,K∗α)
√
πεK∗α

)2

= 1

and, as R(ε,K∗α + 1) < α by the definition of K∗α,

lim sup
α→0

K̃α

K∗α + 1
= lim sup

α→0

1

α2πε(K∗α + 1)
≤ lim sup

α→0

(
1

R(ε,K∗α + 1)
√
πε(K∗α + 1)

)2

= 1.

This yields K̃α/K
∗
α → 1 for α→ 0.

In order to compare this to the bound from Theorem 1, we first note that by the

following—rather trivial—observation, range(X) ⊆ [0; 1] establishes a constraint on

VarX.

Proposition 4. Let Z be a real-valued random variable such that range(Z) ⊆ [z1; z2]

for some z1, z2 ∈ R, z1 ≤ z2. Then, VarZ ≤ 1
4(z2 − z1)2.

Proof. We only have to consider the case z1 < z2. Let λ := (z2−z1)/2, z∗ := (z1+z2)/2,

and Z̃ := (Z − z∗)/λ. Then,

VarZ = Var(Z − z∗) = λ2 Var Z̃ = λ2
(

E
(
Z̃2
)
−
(
E Z̃

)2) ≤ λ2 E
(
Z̃2
)
≤ λ2,

where the last inequality follows from |Z̃| ≤ 1.

5Two functions f(x) and g(x), with g(x) 6= 0 for all x, are defined to be asymptotically equivalent for
x→ x0 (notation: f(x) ' g(x) for x→ x0) if f(x)/g(x)→ 1 for x→ x0.
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By Proposition 4, range(X) ⊆ [0; 1] implies VarX ≤ 1
4 ; hence Theorem 1 yields an upper

bound of
1

2εα2
,

which differs from the right-hand side of (4) only by a constant factor of π/2. As the

fact that this factor is strictly larger than 1 suggests, and as an explicit calculation of

K∗α for some examples shows, the upper bound 1/(2εα2) is not sharp.

The difference in the upper bounds might be due to the fact that we require only pairwise

independence, as compared to the independence assumption of Al-Najjar and Smorodin-

sky (2000a). It remains, however, an open question whether it is possible to construct

a model with pairwise independent, but not independent types in which the number of

α-pivotal agents is strictly larger than K∗α.

5 The Bound for (p,α)-Pivotality

Gradwohl et al. (2009, p. 972) modify the concept of α-pivotality by defining (p, α)-

pivotality. We are going to use this notion in the following sense:

Definition 2. 6 Let α > 0 and p ∈ [0; 1]. A player i is called (p, α)-pivotal for X if

P
(∣∣E(X | Ti)− EX

∣∣ ≥ α
)
≥ p.

This definition is meaningful even if the supports of the type variables Ti are not finite;

hence we can drop the Finiteness Assumption. Like α-pivotality, (p, α)-pivotality enables

us to bound the variances of the conditional expectations E(X | Ti) from below, so we

can replicate our arguments from Section 3. The following proposition is the analogue

to Proposition 2.

Proposition 5. If player i is (p, α)-pivotal, then Var E(X | Ti) ≥ pα2.

Proof. This immediately follows from Chebyshëv’s inequality, which says that

P
(∣∣E(X | Ti)− EX

∣∣ ≥ α
)
≤ Var E(X | Ti)

α2
.

6Gradwohl et al. (2009) use strict inequalities (“>” instead of “≥”) in their definition. For the present
paper, the given—weaker—definition of (p, α)-pivotality is sufficient.
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Propositions 1 and 5 yield an upper bound for the number of (p, α)-pivotal agents:

Theorem 2.

#
{
i ∈ {1, . . . , N}

∣∣ i is (p, α)-pivotal
}
≤ VarX

pα2
.

For a comparison of Theorems 1 and 2, suppose that the Finiteness Assumption holds.

Since

min
t∈Ti

E(X | Ti = t) ≤ EX ≤ max
t∈Ti

E(X | Ti = t),

and since thus α-pivotality implies (ε, α/2)-pivotality, Theorem 2 yields

#
{
i ∈ {1, . . . , N}

∣∣ i is α-pivotal
}
≤ 4 VarX

εα2
.

This is by factor 2 worse than the bound given by Theorem 1.

Theorem 2 corresponds to Theorem 2.1 in Gradwohl et al. (2009), which says that if

range(X) ⊆ [−1; 1], the number of (p, α)-pivotal players is not greater than 8/(pα2).

By Proposition 4, range(X) ⊆ [−1; 1] implies VarX ≤ 1; hence Theorem 2 yields a

bound of 1/(pα2). Theorem 2 is thus stronger than Theorem 2.1 of Gradwohl et al.

This strengthening can be transferred to Theorem 2.2 of Gradwohl et al. by building the

proof on the above Theorem 2 instead of Theorem 2.1.
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