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by Giorgio CALZOLARI and Lorenzo PANATTONI

Centro Scientifico IBM
via S.Maria 67

56700 Pisa
&R 050-47383

The drawbacks of forecasts obtained with the usual deterministic solution mcthods in nonlinear systems of stochastic
equations have been widely investigated in the literature. Most of the proposed therapies are based on some estimation of the
conditional mean of the endogenous variables in the forecast period. This however provides a solution to the problem which
does not respect the internal coherency of the model, and in particular does not satis{fy nonlinear identities. At the same time,
for analogy with univariate skewed distributions, the conditional mean may be cxpected to lie on the wrong side of the
deterministic solution, meaning that it moves towards values of the variables where the probability density is lower, rather than
towards the most probable values.

In a previous study, Brillet, Calzolari and Panattoni (1986) proposed to estimate the mode of the joint distribution of the
endogenous variables as an alternative optimal predictor. The method proposed in that paper maximized the joint density of
a subset of the endogenous variables, corresponding to stochastic equations only (analogously to FIML estimation where, at
least conceptually, identities are first substituted into stochastic equations, and then the likelthood is defined and maximized).
Fxperimental results were given in that paper for a large scale macroeconomic mode! of the French economy developed at
INSEE. After suggestions and comments received from F.J. Henk Don, Steven G. Hall, Frederic P. Sterbenz and Kenneth
F. Wallis, we tackle here the problem from a more general point of view. Mirclla Damiani supplied the data and the model
experimented with at the end of the paper. Giorgio Letta suggested us the mathematical framework that underlines the new
method. We are greatly indebted to all of them, but retain full responsibility for any errors. A full paper is in preparation, and
will be presented at the /988 Furopean Meeting of the Econometric Society (Bologna).

‘The more general approach here proposed is designed to maintain the identitics. The model with identities is viewed as a
mapping between the space of the random errors and an hypersurface in the higher dimensional space of the endogenous
variables; maximization is performed on such a hypersurface. Experimental results on the two alternative mode predictors are
provided for a macro model of the Italian economy.

I.et the simuitaneous equation model be represented as

(n ftv,.x,.a)=[';’] t=12,..T

where p, is the M X 1 vector of endogenous variables at time 1, x, is the vector of predetermined variables at time ¢, a is the
vector of all unknown structural coefficients in the model, and fis the M X | vector of structural form operators. The model
is supposed to contain m < M stochastic equations and M - m identities. The m X | vector of random error terms at time ¢,
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is assumed to be independently and identically distributed as N (0, L) with the m X m covariance matrix T completely
unknown, apart from being symmetric and positive definite. The vector w, is followed by a vector of M- m zeroes in the
structural form equations (1). We also decompose the vector p, in two subvectors of length m and M - m, respectively
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There is a certain freedom in ordering the endogenous variables inside the subvectors pf!) and p{® . A choice that is rather
obvious, but not necessarily unique, is to put into y, , the variable which is explained by the structural equation whose error
term is ) , , put into y,, the variable which is explained by the structural equation whose error term is 1, , and so on, till
Vmy and u,, . We have filled in this way the subvector pf») . The subvector pf? is filled in some way from the remaining
M - m endogenous variables.

It is usually assumed that a simultaneous equations system like (1) uniquely defines the values of the elements of y, once
values for the coefficients, the predetermined variables, and the disturbance terms are given. This means that the structural
form equations (1) implicitly define a system of reduced form equations

4) v =8(x.a,4)

Since all predictors are conditional on model’s parameters and predetermined variables, we shall often indicate the reduced form
simply as

(5) Iy =g (uy)

The way the problem is tackled here reminds the full information maximum likelihood estimation of simultaneous equations
systems (e.g. Amemiya, 1983). Since the model (1) includes M - m identities, we Mrst substitute these identities into the m
stochastic equations. The notations could be made more accurate by dividing the vector f in two subvectors of functions, and
considering more carefully the mappings implied by them. A more precise notation, however, is not strictly necessary in what
follows, and is not introduced for the sake of simplicity. The resulting model may be written as

(6) p" %, a) = q, t=12,..,T

where the m X 1 vector of functions p is obtained from the vector of lunctions f (eq.1) alter substitutions.

We assume that, given the coefficients and the predetermined variables, the functions vector p such that , = p(pjl)) is a
continuous and differentiable one fo one mapping from a subset of R™ onto the whole R™ (4, is multivariate normal, and
-therefore it spans the whole R™ space, while p{!? may be restricted to a subspace: for example, some of its elements may not
assume negative values) and that the inverse function is also continuous and differentiable.

The joint density of the elements of pf!) can thus be obtained, as usual, [rom the density ol &, and the Jacobian determinant.
Apart from an additive constant, the log-density of the m - dimensional random vector p§!) is
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where the vertical bar indicates absolute value, while the slash indicates determinant.

To obtain the mode predictor at time h, we must first compute the subvector pf!) that maximizes (7), given the predetermined
Xariables x;, , the coefficients @ and the covariance matrix I (for @ and E, of course, we shall use the available estimates a and
¥). Given pf!), we must then solve the subsystem of identities, obtaining yf2) , and thus the complete M X 1 predictor for all
the endogenous variables.

It is well known from the theory of maximum likelihood estimation that the boring operation of substituting the identities
can be bypassed (see, for example, Rothenberg and Leenders, 1964, pp.71-72). In fact, the same values (and therefore the same
maximum) of I, can be obtained il we partition the M X M Jacobian corresponding to all equations into 4 blocks
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(7) L, = -%log JE] + log /

(the 1,1 block corresponds to stochastic cquations) and instead of /dp,/dyf!)’/ we use in (7) the ratio between the determinant
of the M X M Jacobian matrix of the complete system, and the determinant of the (M-m) X (M-m) submatrix
corresponding to identities
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To simplify notations, in what follows the time subscripts 1 and A will sometimes be suppressed, when this does not create
confusion.

For an easier comparison with the approach of next section, we modify the expression of the density given in cquation (7).
Virst, rather than viewing 1, as a function of yt!} | we view it as a function of « . T'o do this, we simply substitute & to p in the
Jast term, and consider the Jacobian matrix of first derivatives of the clements ol p{') with respect to the clements of ¢ {which
is simply the inverse of the matrix dp/3y!) used above)
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Then we simply substitute to the absolute value of the Jacobian determinant the square root of the determinant of the product
between the transpose of the Jacobian matrix and the matrix itself
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Maximizing (11) in the forecast period, A
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provides a value for the m X 1 vector of random errors u, . Inserting this vector into the model (1) and solving the model at
time A (that is, at least conceptually, the same as inserting it into the reduced form cquations 4 or 5), we obviously get the same
M X 1 predictor yy, discussed above.

The values of the endogenous variables computed in this way provide only a partial answer to our problem. In fact, the
value computed for the first subvector (pf!)) is the mode of the joint distribution of the elements of this subvector, but the
second subvector (pf2) is simply calculated to preserve the internal coherency of the model (the whole vector y, is, in fact, a
solution of the system). Suppose now that we interpret the mode predictor as the most likely joint value of the endogenous
variables in the forecast period. Then only p{!) can be interpreted in this way, but the whole vector y, is not the most likely
joint value of all the endogenous variables.

In order to maximize the joint density function of a/f the endogenous variables of the model, we must first consider the type
of mapping implied by the model, then some concepts on the measure of a regular (hyper)surface, and finally introduce a
suitable definition of the probability density, with respect to this measure. To clarify the problem, let us consider the simplest
cases.

Suppose that our modcl consists of two equations, the former is stochastic while the latter is an identity. Given coelficients
and predetermined variables, solving the model we get the value of the two endogenous variables for one value of the error
term. If the solution is unique and the error term is normally distributed, this gives a mapping from R! into R2. The reverse
is not true; we can, in fact, enter y; , and y,, into the first equation and compute 1, as a residual {and this will certainly be
unique), but we cannot take two arbitrary valucs for the endogenous variables, since they are constrained by the second
equation (a point that is welf known to the model builders: coherent historical data muss satisfy all the identities). The values
of yy, and y,, must tie on a curve in the two-dimensional plane. Thercfore our model can be viewed as a mapping from R}
onto a one-dimensional subset of RZ, that is a curve in the plane.

Suppose that our model consists of three equations, two of which arc stochastic. If for any value of the random errors uj
and uy, (in R?) the model provides a unique solution for y; , y,, and yy, , the values of the y's will neither span the full R3
space, nor any three-dimensional subset of &%, but will lie on a surface. The model, therefore, can be regarded as a mapping
from R? onto a two-dimensional surface in R3 .

In the gencral case of M cquations, m of which are stochastic, the model (in the forecast period, given predetermined
variables and parameters) can be vicwed as a mapping from R™ onto an m -dimensional hypersutface in the R space (being
m = M), We cail Y this hypersurface. Under the two assumptions

1y for any w in IR™ the solution p is unique;
2) for any y in ¥ we gel a unique vector « ;

then we are dealing with a one fo one mapping between R”™ and the m -dimensionat hypersurface ¥ in RM™ . As in equation
(5). we indicate this mapping as g: R7™ —> ¥ (the reduced form) and its inverse as gt: ¥ —> Rm™ (practically the first
m X 1 subvector of the structural form functions vector f).

The first assumption is somewhat restrictive, but widely adapled and accepted in the treatinent of nonlinear systems. The
second, on the contrary, is not restrictive at all, given the way in which model builders write the structural form equations of
a model like (1). In fact, il a vector of endogenous variables belongs to ¥, it certainly satisfies the constraint of the M - m
identitics. In such a case, if we plug this vector into the m stochastic equations, we get a unique vector of residuals.



[Taving defined the nature of this one to one mapping, we now assume, as in the previous section, continuity and
difTerentiability (in both directions), and finally assume that the M X /m Jacobian matrix G(u) = dpjdu’ = dg(u){du’ has full
rank (= m).

Ina M X m rectangular matrix, a substitute for the notion of delerminant of a square matrix is the concept of modulus (it
will be indicated with vertical bars). It is defined as the square root of the sum of all the (% squared determinants of order
m obtained by cancelling M - m rows. A simple way of computing the modulus, even when M and m are large, is obtained
applying a well known theorem of linear algebra on the determinant of the product of two rectangular matrices; it is the square

root of the determinant of the product between the m X M transpose and the matrix itself. For our Jacobian, G(a), it is

1
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Tiaving assumed full rank (= m) for the Jacobian, the modulus is # 0. The m - dimensional hypersurface ¥ defined by the
model is, under all these assumptions, a regular hypersurface.

We need now to define a measure on the regular m - dimensional hypersurface Y. As well known, the M -dimensional
1 ebesgue measure of any m - dimensional hypersurface in RM (m < M) is zero (c.g. Sikorski, 1969, p.299). This is consistent
with intuition: the two-dimensional measure (area) of a curve in the plane is zero; the three-dimensional measure (volume) of
a curve or of a surface in R3 is also zero, etc. But we can define a special one-dimensional measure on curves, consistent with
the intuitive notion of length; or a special two-dimensional measure on surfaces, consistent with the intuitive notion of area.
Existence and uniqueness of such a measure, for a regular m -dimensional hypersurface ¥ in RM (m < M) is stated, for
example, in Sikorski (1969, p.327, theorem 1.1), and is given by
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This theorem can be applied to derive a probability density with respect to the hypersurface measure py. I @(«) is the
probability density for # in R™, the measure of the probability that p belongs to an clement of the hypersurface Y, resulting
{through p = g(u)) from the element du of R™ , is given by

(15) dny = ¢(u) du

and can easily be developed as follows

(16) dny = o(u)da = I%((%))I— |G| de
o{g'[y1}
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oe' oy T
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is taken as the definition of the probability density of the vector p on the regular m -dimensional hypersurface Y. It is rather
obvious that y (y) respects the usual conditions for density functions, being always > 0 and being equal 1 its integral, over the
whole ¥, with respect to the m -dimensional hypersurface measure jiy .

We now indicate with Ly the log-density

(18) Ly = loglwy 0]

that will obviously be Ly , for the values of y at time f, or Ly, in the forecast period, . Being ¢ the density of the m -variate
normal N(@, £) , we have, apart from a constant term

(19) Ly = - log /£/-1og [G{g Ty} [ - 2- [ ] =" [2" 0]



Iy in equation (19) is conceptually defined as a function of the M X 1 veclor p, whose domain is the m - dimensional
hypersurface ¥ in RM . The M X 1 vector p, that maximizes /.y in ¥ (that is, y is constrained on Y), is the mode predictor

(209 max { - Liogz/-tog [6{e 'L} |- 3 [£'0)) ="' 0)] }

ysY

Il we interpret it as the most likely joint value of the endogenous variables in the forecast period, such an interpretation applies
to all the endogenous variables, unlike the result derived in the previous section. Numerical values of Ly can easily be
calculated by replacing g*!'(y) with u

(21) ——;—log /E/—loglG(u)I-%u’ 2l
Pquation (21) provides a function of the m X | vector « , that must be maximized for u without constraints in R™
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in the forecast period, A. Inserting the resulting vector «), into the model (1), then solving the model in the forecast period, we
obtain the M X 1 mode predictor y,, .

FFrom a technical point of view, the process is quite similar to what we did in for equation (12). The only difference is that
in equation (12) we have the modulus of the m X m square matrix dy{(1)/3u’ | while here we have the modulus of the M X m
rectangular matrix dy/du’ .

The two functions to be maximized for the two methods described above are given in equations (11) and (21), respectively.
Maximization is to be done with respect to the vector ;, , while predetermincd variables are given, as well as coefficients and
covariance matrix of the random error process (set at their estimated values 2 and L). The [irst term in both equations is a
constant. We must therefore compute the vector u, which maximizes the sum ol the second and third term of equations (11)
and (21). The third term in both equations is particularly simple, being a positive delinite quadratic form, whose Hessian is the
matrix 1 .

We have used the well known updating formula due to Broyden, Fletcher, Goldfarb and Shanno (BFGS, see {or example
Dennis and More’, 1977). ‘The algorithm is based on an iterative updating of an initial (m X m) positive definite matrix. Since
the computational efficiency is greatly improved if the initial matrix approximates the tessian, it was rather obvious in both
cases to use the available estimate of 1.

The algorithm also requires the evaluation at each step of the gradient of the lunction. This revealed to be a rather serious
problem and at this stage it has been solved by the numerical computation of first derivatives. This approach however has two
main drawbacks. Tirst of all it requires a long computation time, but nevertheless it came out to be computationally more
efficient than rival maximizing algorithms which require only the computation of the function value. T'o quantify this aspect
we can mention that in the case of the Italian model here considered (sce below for description) the maximization of the
quantities defined by equations (11) and (21), with a tolerance of ten significant digits on the function’s value, in both cases
required five iterations. The computation globally took about 14 minutes of CPU time on an IBM 4341 computer in both
cases. However for the first method we can maximize the expression of the density given in equation (9), rather than (11); in
this case the computation is much faster (only SO seconds). This is mainly due to the lact that the elements of the Jacobian
matrices in equations (11) and (21) are obtained from differences betwecn two solutions of the simultaneous equation system,
while the corresponding elements in equation {9) are simply computed from the diffcrences between the residuals of the single
equations: obviously the latter computation is much faster than the former. Unfortunately, we are unable to provide a similar
simplification for the other method.

A second main drawback lies in a possible lack of accuracy in the computation of the derivatives. In order to assess the
robustness of the results versus the way in which derivatives are computed, several formulas (i.e. two, three and five points
formulas with difTerent sizes of the increment) were experimented with. The results proved to be very robust versus both the
choice of the formula and the choice of the numerical increment, provided that a centered formula is used.

For some of the main endogenous variables of the model (listed in table 1), table 2 presents in per thousand form the
differences between the deterministic predictor and the two mode predictors previously delined (the two columns are labelled
M-mode and m-maode, respectively).

de de
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(23) -1000

Comparisons with the mean predictors (not displayed here; results are in preparation) suggest that mean and mode are not
necessarily on opposite sides with respect to the deterministic solution. ‘Therefore, abandoning the deterministic forecast in
favor of the (more cfficient) mean predictor, we are not necessarily moving towards a region of less likely values.

Between the two mode predictors, the global approach ( M-mode) produces values that are considerably more distant from
the deterministic solution. The distance is also considerably larger than for the mean predictors.



-6 -

Table 1

List of the main endogenous variables

PREMINS] = Deflator for domestic private consumption (growth rate).
PREXPSI = [lxport price index (growth rate).

msr = Production per hourt in the industrial seclor (growth rate).
S$I = Wage per hour in the industrial scctor (growth rate).
INVIDKST = Gross fixed investment in the industrial sector (growth rate).
PR7 = Profit rate.

PREINGSI = Wholesale price index (growth rate).

VAINDKSI = Value added in the industrial sector at constant prices (growth rate).
DISTSI = Unemployment (growth rate).

0CCD3I = ‘T'otal dependent employment (growth rate).

OCSRDSI = Imployment in the sector of services (growth rate).
EXFOBK3! = Exports at constant prices (growth rate).

IMFOBKSI = Imports at constant prices (growth rate).

PILKSI = Gross domestic product at constant prices (growth rate).
COFAMK 1 = Domestic private consumptions.

Tahle 2

One-period forecast at 1986
Per thousand deviations from deterministic forccasts

M - mode m - mode
PREMINSI 3975 0445
PREXPSI 9.592 6288
s -33.57 -4.008
S$1 1.271 -0214
INVIDKSI 8.838 -1.402
PR7 8109 1591
PREINGSI 2.931 0883
VAINDKSI -10.79 -2.864
DISTSI 54.41 2.169
occpsi 26.64 -3355
OCSRDSI 1.788 ~0155
EXFOBRKSI 1.308 3365
IMFOBKSI -15.72 -2.809
PILKS] 5.811 -1.721
COFAMK I 11.47 2.439
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