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On Group Stability in Hierarchies and Networks

Gabrielle Demange
DELTA and Center for Economic Policy Research

A hierarchical structure is a widespread organizational form in many
areas. My aim in this paper is to provide a rationale for this fact based
on two premises. First, a group organizes itself so as to achieve efficient
coordination. Second, efficient coordination is achieved only if sub-
groups as well as individuals agree to cooperate. Even in situations in
which there are gains to coordination, the agreement of each possible
subgroup may be impossible to reach, resulting in instabilities. I argue
that a hierarchical organization avoids such instabilities by distributing
in an optimal way autonomy and blocking power to a restricted set
of subgroups. Comparisons with nondirected networks are drawn.

I. Introduction

A hierarchical structure is a widespread form of large, long-lived or-
ganizations, in a wide range of activities, including economic, political,
and military activities. My aim here is to propose an explanation for
this prevalence.

The basic premise of this explanation is that gains to coordinated
actions primarily drive the formation of organized groups. If indeed a
group organizes itself to exploit gains from coordination, a goal of a
good organization should be to promote coordination. A major difficulty
is that to achieve efficient coordination, subgroups (coalitions) as well
as individuals must agree to cooperate. To illustrate the difficulty, con-
sider the provision of a service, say a given amount of computing ca-
pability, to the different units within a firm. If providing the service is
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less costly through a unique system than through several separate sys-
tems, efficiency requires building a unique system. How does one al-
locate the overall cost among the different units? A natural requirement
is that a subgroup of units should not be charged with a greater cost
than it would pay for the same service with a separate system; otherwise
it may credibly threaten to acquire a separate system and “block” the
decision. In other words, to achieve efficiency, the allocation of costs
should be immune to blocking. However, if any subgroup is allowed to
block, such an allocation may not exist. Indeed, for a large range of
cost functions, the core is empty.1

There is nothing special in cost-sharing problems.2 Any organization
that faces many various decision problems requiring coordination is
bound to encounter similar difficulties: the possibility for subgroups to
block if they find it in their interest to do so may result in instabilities
and presumably prevent efficient coordination. This paper argues that
a hierarchical structure solves these difficulties in an optimal way. More
precisely, a hierarchical structure specifies a rigid and quite complex
collection of subgroups. These subgroups, called hereafter teams and
defined later on, enjoy some autonomy within a certain range of de-
cisions. For instance, a division in a multidivisional firm can refuse to
participate in a project, ask for some transfers, or negotiate with outside
parties. As a result, decisions are not fully centralized nor fully controlled
by the top of the hierarchy because, given their autonomy, even limited,
the teams can credibly challenge decisions. Emphasizing this aspect, (1)
I propose to view a hierarchy as allocating the blocking power to the
teams, and only to the teams, and (2) I argue that this allocation of
power guarantees stability and is maximal in doing so.3

A hierarchical structure is represented by a pyramidal network. A
single individual, called the principal, is at the top, and each other
individual is assigned a unique direct superior. The hierarchy structure
limits communication between the different individuals or units and
precisely defines the authority. Two units that want to perform a task
jointly typically have to inform a common superior and all the inter-
mediary units between them and this common superior. A team is de-

1 Shubik (1962) was the first to model the allocation of overhead costs within a firm as
a cooperative game. He initiated a large literature, surveyed by Young (1994).

2 Developing a new line of products and defining compatibility between the products
are subject to blocking within a firm. In public economics, deciding on levels of public
goods and their financing are also under the threat of secession and blocking. For an
explicit analysis, see Bewley (1981), Guesnerie and Oddou (1988), and Ray and Vohra
(2001), among others.

3 My explanation is in line with the analysis of Chandler (1962), who argues that the
emergence of large multidivisional firms in the middle of the nineteenth century is largely
attributed to the development of new technologies that generated large increasing returns
to scale and called for coordination.
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fined as a subgroup of individuals who can communicate through the
channels defined by the hierarchical structure and take actions on their
own, within a specific range, without the agreement of outsiders. The
set of teams depends on the structure of the hierarchy. In a two-tier
hierarchy in which each “agent” is directly subordinate to the principal,
any nontrivial team includes the principal. In general structures, the set
of teams is quite rich and complex.

I first show that, given a hierarchy, whatever the problem faced by
the group, there is a very natural decision process leading to an outcome
that no team can credibly block. The outcome, called hereafter the
hierarchical outcome, is essentially unique. So, by giving the blocking power
to the teams only, a hierarchical organization achieves efficiency and
avoids instability. One could argue that the blocking power is very re-
stricted. It turns out, however, that the blocking power is maximal. More
precisely, allowing any coalition in addition to the teams of a hierarchy
may generate instability.

An organized group has to solve many kinds of decision problems.
On important issues, the group is likely to face problems that are super-
additive, in which efficiency is achieved only through a joint coordination
of all members within the group. On a day-to-day basis, on some op-
erational options or minor issues, problems are likely not to be super-
additive, in which case the group optimally splits into smaller nonin-
teracting groups. Interestingly, the hierarchical process works whether
the problem is super-additive or not. In the former case, the hierarchical
process selects an efficient joint action for all members in the group;
in the latter, it selects a partition of the group into self-sufficient teams,
each one taking an action for its own members. In both cases the out-
come is not blocked by any team.

Whereas a hierarchy defines a set of directed bilateral relationships,
nondirected networks also play an important role in organizations.
Transportation and telecommunication networks connect units through
bilateral links, which are not directed. Also, the sociological literature
stresses the importance of networks of relationships. I compare the
relative performance of the two alternative organizations, hierarchies
and nondirected networks, still from the point of view of group stability.
Quite naturally the group of individuals who are connected through
the links are assumed to be the only coalitions that can block. Despite
the added flexibility, the networks that guarantee stability with respect
to connected coalitions are very similar to the hierarchical structures.
Furthermore, a hierarchical decision process is shown to be, in some
sense, much more efficient in reaching stable outcomes than other
processes.

This paper is related to several strands of literature. First, hierarchical
organizations differ from other organizational forms in a number of
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important ways. So, not surprisingly, the properties that drive their
choice have been investigated from many perspectives that are comple-
mentary to mine: To name a few, Sah and Stiglitz (1986) compare the
screening properties of nonhierarchical versus hierarchical structures,
and Radner (1993) and Bolton and Dewatripont (1994) study the op-
timal network structure for processing information from a planner’s
viewpoint. Second, collusion in principal-agent models has been the
subject of some recent studies, following Kofman and Lawarrée (1993).
Their main concern is collusion among agents in reporting information
to the principal. In contrast, the type of collusion I focus on always
involves individuals at different levels of the hierarchy. Finally, the recent
literature on network games mostly investigates the formation of links
between pairs of individuals from a noncooperative viewpoint (see, e.g.,
Jackson and Wolinsky 1996; Bala and Goyal 2000).

The paper is organized as follows. Section II describes the model,
illustrates the approach with examples within a firm and within a po-
litical party, and defines stability concepts. Section III constructs hier-
archical outcomes, studies their stability, and considers information rev-
elation. Section IV analyzes nondirected networks, and Section V
presents conclusions. Proofs are gathered in the Appendix.

II. Stability

Throughout the paper I consider a set of individuals, denoted by N,
who organize themselves as a group. A coalition is a nonempty subset S
of N. “Individuals” may be regarded as the units within a firm, the
subsidiaries within a conglomerate, or the citizens within a party. Once
formed, the group faces various decision problems. I start by describing
a given decision problem and the no-blocking condition in an abstract
setup. The examples that follow may be read first without inconvenience.

A. Stability within a Problem

The main point of this analysis is the impact that coalitions exercise on
final decisions through their blocking power. The effective blocking
power depends on two factors. First, what decisions can a coalition make
if its members decide to act together? Second, what are the benefits
derived by each member in exercising this possibility? A problem de-
scribes these two factors for each possible coalition.

Description of a problem.—All the individuals in N may collaborate to-
gether and make a collective decision, or take an action, which possibly
includes some personalized transfers. The notion of a collective decision
or action can accommodate various interpretations, as shown below in
some examples. Also, a coalition may form if its members are willing



758 journal of political economy

to act together. Coalition S can choose an action a in a nonempty set
. An action in is said to be feasible for S. The welfare of anA(S) A(S)

individual depends on the action taken by the coalition to which he
belongs.4 If a is chosen, agent i obtains a utility level . So a problemu (a)i

is given by (A, u), which specifies the feasibility sets A p (A(S))M(SON

and the utility profile5 .u p (u )i ip1,…,n

Gains to coordination.—Within a problem, there are gains to coordi-
nation if two disjoint coalitions can only improve their prospects by
acting together, a property called super-additivity. Formally, a problem
(A, u) is super-additive if for every two disjoint coalitions S and T, every
two actions a in and b in , there exists c in such thatA(S) A(T) A(S ∪ T)

u (a) for any i � Siu (c) ≥i {u(b) for any i � T.i

Faced with a super-additive problem, the entire group gains by acting
together: a splitting of the whole group into two distinct groups, or
more generally into a partition of several groups, each one taking a
feasible action for its own members, is always Pareto-dominated by a
joint action. An organized group presumably gains by coordinated ac-
tion. Thus, on important issues, it is likely to face problems that are
super-additive. So until Section IIIC, we shall focus on super-additive
problems.

Blocking condition.—In a super-additive problem, efficiency is reached
only through an action coordinated within the whole group N. Such a
collective action may, however, be subject to some objections stemming
from coalitions. The incentives for a coalition to form depend on the
payoffs the members of S can attain on their own. In what follows, we
shall assume that a coalition can credibly object to a proposed outcome
only if it can make each of its members better off by seceding: this is
the blocking condition used in cooperative game theory. Let us start
with the situation in which an action includes personalized transfers
and preferences are quasi-linear in money. Since monetary transfers
within a coalition amount to transfer utility among the members, the
payoffs that members of S can achieve on their own are described by a

4 This assumption excludes externalities (or spillovers) across coalitions in the following
sense: the feasibility set of a coalition and the members’ welfare if it forms are not affected
by the organization of outside agents (see Yi [1997] for an analysis of group formation
under some form of externalities). Note, however, that if the whole group splits into
coalitions as considered in Sec. IV, the opportunity for a group to deviate crucially depends
on this organization.

5 Throughout the paper, feasibility sets are assumed to be compact and individual utility
functions to be continuous.
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single number, the “value” .6 The utility payoffs that canv(S) x p (x )i i�S

be achieved by S are those that satisfy . So a decision is� x ≤ v(S)ii�S

blocked by S if

x ! v(S). (1)� i
i�S

More generally, given a problem (A, u), the set of utility levels that
members of S can attain on their own is given by

SV(S) p {x � R Fx ≤ u (a) Gi � S, for some a � A(S)}.i i

The definitions of blocking and stability with respect to a collection of
coalitions follow.

Definition 1. Let (A, u) be a super-additive problem. Action a is
blocked by coalition S if there is an action b in such thatA(S) u (b) 1i

for each i in S. Given , a collection of coalitions of N, action a isu (a) Ci

said to be -stable if a is feasible for N and is not blocked by any coalitionC
in . The core is the set of -stable actions in which is the collectionC C C
of all coalitions.

I illustrate the setup first with problems within a firm under quasi-
linear preferences. Transferable utility is, however, a very restrictive as-
sumption, as illustrated by example 3 below, which describes problems
within a party.7

Example 1: Coordination within a firm.—Consider a firm that undertakes
a new project, say develops a new line of products. Each product is
developed and produced by a specialized unit. The return to be ex-
pected from the line of products depends not only on the characteristics
of each product but also on whether the products can be sold separately
and on their degree of compatibility, in short, on the complementarity
among the products. Choosing the characteristics of the products and
splitting the rewards between the different units define a problem as
follows.

Each unit’s utility function is given by the monetary amount the unit
gets. A coalition of units S that jointly determine the characteristics of
their products expects a maximal joint return denoted by . Thev(S)
complementarity across products is described by the super-additivity of
the function v:

v(S ∪ T) ≥ v(S) � v(T) for every S, T s.t. S ∩ T p M. (2)

Under super-additivity, efficiency is achieved only through a joint de-

6 A decision within S may be represented by , where describes balanced(d, (t ) ) (t )i i�S i i�S

transfers within the coalition. So the value of coalition S is defined as the maximumv(S)
of the sum of utilities over the set of decisions d available to S.� v (d)ii�S

7 Furthermore, as will be made clear later on, restricting attention to problems with
transferable utility does not facilitate the analysis and does not affect the results.
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termination of all product characteristics. How does one allocate the
overall profit, , among the different units? An allocation of thev(N )
profit is described by the profit to be allocated to unit i under thexi

constraint . The no-blocking condition states the natural� x p v(N )ii�N

requirement that a coalition should not get a lower profit than it would
get with a separate determination of the coalition products. Indeed, if

, coalition S has simply no incentives to comply with the� x ! v(S)ii�S

proposed product characteristics: by coordinating together, each unit
in S can achieve a larger payoff. Coalition S blocks the profit allocation
if it has the power to do so.

A simple example motivates the concept of guarantee of stability in-
troduced in the next section. There are only three units, N p {1, 2,

, which face the super-additive value function v:8 ,3} v(i) p 0 0 ! v(i,
, . An allocation of the profit belongs to the core ifj) ! 1 v(N ) p 1

(feasibility), , and (no blocking).x � x � x p 1 x ≥ 0 x � x ≥ v(i, j)1 2 3 i i j

Whenever , no allocation satisfies allv(1, 2) � v(2, 3) � v(3, 1) 1 2
conditions: the core is empty. Instability results; hence it is dubious
whether efficiency can be achieved. Notice that the core is empty for a
large class of nonpathological games. For example, in symmetric games
in which each doubleton gets an identical value, , the core isv(i, j) p b
empty for b strictly larger than two-thirds, whereas super-additivity holds
for b not greater than one.

Example 2: Cost sharing.—A firm, or any organization, has to allocate
various common costs among its units. Simple cost-sharing and coor-
dination problems have a very similar structure. Consider a service, say
a given amount of computing capability, to be provided to units. Let

be the cheapest way that provides all the units of coalition S withc(S)
the service. Assume i’s utility to be linear, given by , where isb � m bi i i

i’s utility for the service, and is i’s contribution. The problem ismi

described by the value function v: . Thev(S) p max (0, � b � c(S))ii�S

no-blocking condition states two natural requirements: no coalition
should be charged with a greater cost than it would pay for the same
service with a separate system, and no coalition should be charged with
a cost that outweighs the overall benefits derived from the service by
its members.

Example 3: Agreeing on a position within a political party.—A political
party, whether in power or not, must take a position or make a proposal
on various political and economic issues. Whereas presumably the mem-
bers of the party agree on some general principles, they do not agree
on each particular issue. Furthermore, unexpected issues arise. Hence,
before making public statements on a new issue, the party members

8 To simplify notation, denotes , and similarly for . Notice that any super-v(i) v({i}) v(i, j)
additive v can be normalized so as to be null on singletons and equal to one on N.
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need to coordinate among themselves. This naturally leads one to as-
sociate to each issue a “problem” among N, the set of party members,
as I describe now.

Given the issue to be discussed, party members contemplate various
alternatives or proposals. For instance, if reforming social security is
under discussion, each proposal describes a new architecture, deter-
mines the level of contribution rates, specifies how the pension benefits
are computed, and so on. The set of possible alternatives is denoted by
X. A coalition that forms announces a proposal. The impact that the
announcement may have on political life depends on the composition
of the coalition through the members’ notoriety, their number, and the
range of their political sensibilities. Accordingly, a party member who
joins a group S is concerned not only by the proposal chosen by S, say
x, but also by the composition of the group itself. To account for this,
a feasible action a for coalition S is described by a pair formed with the
proposal and the group itself, , andA(S) p {a p (x, S) where x in X }
preferences over actions are represented by for each i memberu (x, S)i

of S. It is quite natural to assume that (1) for a fixed S to which i belongs,
coincides with i’s “intrinsic” preferences over proposals; and (2)u (7, S)i

new supporters for a proposal are always welcome: for each x, u (x, S)i

increases with the coalition S to which i belongs. Two basic forces are
at work.9 On one hand, the (possible) diversity in intrinsic preferences
encourages the members of the party to split into distinct groups, each
one stating a distinct opinion. On the other hand, the fact that the
impact of a message increases with its support promotes coordination.

What does super-additivity mean in this problem? Super-additivity
holds if two disjoint coalitions, each one stating an opinion, can always
find a joint announcement that is mutually advantageous: for every
disjoint S and T, every proposal x and y, there is a proposal z for which

u (x, S) for any i � Siu (z, S ∪ T) ≥i {u(y, T) for any i � T.i

Notice that this condition may hold even if each member of S prefers
x to z and each member of T prefers y to z. Basically, the problem is
super-additive if the diversity in preferences is sufficiently small relative
to the benefit to be expected from a unique message (the increasing
returns to size effect). In such a case, a splitting of the party into distinct
groups, each one stating its position on this particular issue, can always
be improved on by an adequate common position. The question is
whether the party will indeed agree on a common position. Indeed to
reach an agreement, the various interests of the subgroups to secede
must be taken into account. This is precisely the concern of the no-

9 These assumptions are not necessary but allow me to describe a usual trade-off.
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blocking conditions. To illustrate this concern, consider a simple ex-
ample with three individuals who can choose among three alternatives

. Individual 1 prefers x to y to z. Also, he cares only aboutX p {x, y, z}
the number of individuals in a coalition he joins. His preferences are
given as follows:

x y z

u (7, N )1 1 1/2 1/4
u (7, {1, i})1 2/3 1/3 0
u (7, {1})1 1/5 0 0

The preferences of individuals 2 and 3 are similar except that individual
2 prefers y to z to x, and 3 prefers z to x to y. Super-additivity holds.10

So, from the Pareto point of view, {1, 2, 3} should agree on a common
position. Assume that they attempt to agree on announcing x. Utility
levels of 1, 2, and 3 are, respectively, 1, 1/4, and 1/2. So individuals 2
and 3 can credibly object and threaten to announce together z (which
gives them utility levels of 1/3 and 2/3). Any proposal can be blocked
in the same way: it is not at all clear whether an efficient agreement
will be reached.

B. The Guarantee of Stability

A group should organize itself so as to benefit from gains to coordi-
nation. Ideally, an action in the core should be chosen in super-additive
problems. However, as illustrated in the previous examples, the core is
empty for a large class of super-additive problems. A long-lived organized
group is likely to face many problems with an empty core. A natural
idea is that the group organizes itself so as to avoid instability. This leads
to the following definitions.11

Definition 2. A collection of coalitions guarantees stability if everyC
super-additive problem admits a -stable action. If, in addition, whateverC
coalition S not in , , does not guarantee stability, is said to beC C ∪ S C
maximal.

If is composed of N and all the singletons, -stability coincides withC C
Pareto optimality and individual rationality. Stability is guaranteed, but
the stability requirements are rather weak. In contrast, if is the wholeC
set of coalitions, stability, which coincides with the core concept, is not
guaranteed. A natural question is whether and how some blocking power

10 For example, {1} and {2} are surely better off by joining and choosing either x or y.
Also consider {1}, who chooses x, and {2, 3}, who choose y. Then 1, 2, and 3 are all better
off if they coordinate on y. All other cases are derived by symmetry.

11 Kaneko and Wooders (1982) study a similar concept of stability in the context of
partitioning games.
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can be distributed to intermediate coalitions so as to guarantee stability.
Since the larger the collection the stronger the stability concept is,C
the maximal collections are of particular interest.

Requiring the existence of a stable action in every super-additive prob-
lem may be thought of as strong. This would be the case if a set of
coalitions failed to guarantee stability only because of some “patholog-
ical” or extreme problems. It turns out that this is not the case: if a set
does not guarantee stability, then no -stable action exists in a largeC
class of super-additive problems (see n. 12).

The guarantee of stability imposes quite severe restrictions. In a group
N of three individuals, a collection that contains all doubletons doesC
not guarantee stability (see example 1 in subsection A). The condition
extends to any set N, whatever its cardinality, as follows. Let us say that
three coalitions , , 2, 3, form a Condorcet triple if they intersectS i p 1i

each other but their overall intersection is empty: andS ∩ S ( Mi j

. Using an argument similar to that for three individ-S ∩ S ∩ S p M1 2 3

uals, one can easily show that a collection of coalitions that contains aC
Condorcet triple does not guarantee stability. Furthermore, not only does
stability fail to be guaranteed, but also no stable action exists in a large
class of games. While necessary, the absence of a Condorcet triple is
unfortunately not sufficient to guarantee stability when N contains more
than three individuals. A mathematical characterization for a set to
guarantee stability is quite easy to obtain but difficult to interpret.12 We
are now ready to discuss the stability properties that hold in hierarchical
organizations.

III. On the Stability of Hierarchical Outcomes

I first define a hierarchy and the teams that are associated with it. Then
I construct a hierarchical outcome and study its stability.

A. Hierarchy and Teams

A hierarchy singles out an individual, called the principal, and each
other individual is assigned a unique direct superior. Furthermore, start-
ing from any individual and taking iteratively direct superiors, one
reaches the principal at some step. This can be formally stated as follows.

12 From Scarf’s theorem, a set guarantees stability if and only if any balanced familyC
composed of coalitions in contains a partition (see Kaneko and Wooders 1982). NoteC
also that, thanks to Shapley, exactly the same characterization holds for to guaranteeC
stability in transferable utility problems. Thus restricting attention to a transferable utility
setup has no effect on the analysis. Finally, arguing as in example 1 of subsection A, one
can show that if a balanced family in does not contain a partition, then a large class ofC
super-additive games have no -stable actions.C
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A hierarchical structure on the set of individuals N is given by a
principal, say 1, and a superior function s from to N that satisfiesN � {1}
the following property: for each i other than 1, there is an integer r for
which ;13 r is called the rank of i. Each individualrs (i) p 1 j p s(i),

is said to be superior to i and i subordinate to j. Finally, if j isr… , s (i)
superior to i, that is, for some integer r, the coalitionrj p s (i) {i, s(i),

is called an interval and is denoted [i, j].r… , j p s (i)}
Two simple hierarchies are the standard principal-agent model, in

which every agent is directly subordinate to the principal, and a “chain,”
a hierarchy that totally orders individuals. In general, the relation “su-
perior to” (and its reverse “subordinate to”) partially orders the indi-
viduals. The principal is, of course, superior to each other individual.
Also, individuals in an interval are all comparable among each other.
Two individuals may not be compared, however, as, for instance, two
distinct agents in a principal-agent model. Given a hierarchy, the teams
respect the hierarchy structure: they may be considered as “sub-
hierarchies.”

Definition 3. Given hierarchy s, a coalition T is a team if there is a
member i of T who is superior to each other member j of T, and the
interval [j, i] is included in T.

To understand better under which types of constraints only the teams
can form, the following characterization is useful.

Characterization. A coalition T is a team if and only if, for every
i and j in T, there is a member of T who is superior or equal to both
i and j, and, furthermore, whenever j is superior to i, belongs to T.s(i)

Hence, the teams form only if the two following constraints bear on
a coalition: first, if two members of the coalition are not comparable,
a common superior belongs to the coalition; and second, an individual
cannot be “hired” by a superior without the agreement of his direct
superior.

Singletons and intervals are teams. Two important teams directed by
i are the full team of i, denoted by , which is the set composed of iiT
and all his subordinates, and the direct team of i, which is composed of
i and the (possibly empty) set of i’s direct subordinates.iD

B. Hierarchical Outcomes

In the principal-agent model, a natural outcome is an action that max-
imizes the principal’s utility under the constraints that each agent gets
at least his reservation level. In other hierarchies, such an outcome,

13 If the direct superior of i, , is the principal, take . If not, consider the directs(i) r p 1
superior of , . If is the principal, ; if not, consider his direct2 2s(i) s(s(i)) p s (i) s (i) r p 2
superior , and so on.2 3s(s (i)) p s (i)
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which treats all agents on an equal footing, does not reflect the implicit
power of intermediate agents. A natural idea is to take into account the
power of an individual on his full team. For that purpose, the individual
reservation levels need to be modified, as is performed in the following
algorithm.

Given a hierarchy s and a problem (A, u), compute guarantee levels
by backward induction starting from the individuals whose rankg p (g )i

is maximal R (hence who have no subordinates) as follows:

Step 0: For each i with maximal rank R, is set at i’s reservationgi

level: .g p max {u (a), a � A(i)}i i

Step r, : This step defines the guarantee level forr p 1, … , R gi

each i with rank . Note that the guarantee levels of i’s subor-R � r
dinates have been set at previous steps since their ranks are larger
than i’s. Level is defined as the maximum that i can get by choos-gi

ing an action feasible for his full team that gives each of i’siT
subordinates his guarantee level at least

i ig p sup {u (a) over a � A(T ), and u (a) ≥ g , j � T � {i}}, (3)i i j j

where if no feasible action satisfies the constraints.g p ��i

At step R, the guarantee level for the principal is defined, and ang1

action that solves (3), if any, is called a hierarchical outcome.
At a hierarchical outcome, each individual gets at least his guarantee

level, and the principal gets . To be interesting, guarantee levels shouldg1

not be ��.
Theorem 1. Let a hierarchy be given and denote the set of its teams.T

1. Given a super-additive problem, guarantee levels are finite, and a
hierarchical outcome exists. A hierarchical outcome is not blocked
by any team.

2. The set , which guarantees stability from assertion 1, is maximal.T
That guarantee levels are finite means that an individual, in particular

the principal, can always find an action feasible for his full team that
gives each of his subordinates his guarantee level. This easily follows
from super-additivity (and the compactness and continuity assump-
tions). The stability of a hierarchical outcome with respect to every team
is less obvious. Whereas, by construction, a hierarchical outcome is not
blocked by any full team, an individual may contemplate forming a team
with some, but not all, of his subordinates. According to assertion 1, he
never has any incentive to do so if, in order to attract these subordinates,
he must make them better off than under the hierarchical outcome.
Property 2 states that, allowing any other coalition to block in addition
to the set of teams leads to instability for some problems. This applies
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in particular to coalitions composed of individuals with identical ranks,
say agents in a two-tier hierarchy.

A hierarchical outcome is unique in most problems. Actually, under
a smoothness assumption, even if multiple, all hierarchical outcomes
yield identical payoffs, which are exactly equal to the guarantee levels.
This is the case in transferable utility problems. Given a value function
v, guarantee levels are easily computed as

i jg p v(T ) � v(T ).�i
ij�D

If units are completely ordered, say from one to n, the unit with maximal
rank, n, gets his “standing-alone” value , and each other i gets thev(n)
incremental value over the set of all his subordinates: v([n, i]) � v([n,

. If individuals are not completely ordered, a unit that directlyi � 1])
supervises several subordinates gets more than this incremental value:
By super-additivity of v, . More generally, an in-j i� v(T ) ≤ v(T � {i})ij�D

dividual’s guarantee payoff is always maximal when all his subordinates
are directly subordinate to him. In particular, without management
costs, a principal prefers the principal-agent structure.

Consider now the problem within a party in which the core is empty
(example 3). In a hierarchy in which 2 and 3 are directly subordinate
to 1, guarantee levels are (1, 1/5, 1/5), and the hierarchical outcome
is x. In the chain hierarchy with 3 subordinate to 2, guarantee levels
are (1/2, 2/3, 1/5), and the outcome is y.

So far, only the full teams determine the hierarchical outcome.
Thanks to super-additivity, the teams that are not full do not have to
exercise their power. This is no longer true in problems that are not
super-additive.

C. On Stable Coalition Structures

Whereas super-additivity seems natural—why could not the union rep-
licate what each coalition can do?—in some environments the union
may generate some inefficiencies due, for instance, to congestion, in-
creasing marginal cost of dissemination of information (with respect to
the size of a group), or increasing marginal cost of control. In problems
that are not super-additive, there is no reason, on efficiency grounds,
to focus on an action that is taken by the whole group. Coalition struc-
tures take into account the possibility for the whole group to split into
noninteracting self-sufficient coalitions.

Definition 4. A coalition structure is a family , where(a , S )l l lp1,…,L

is a partition of N, and is feasible for , . It is(S ) a S l p 1, … , Ll lp1,…,L l l

blocked by coalition S if an action b feasible for S makes every member
of S better off: for any i in S, if i belongs to .u (b) 1 u (a ) Si i l l
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A coalition structure specifies simultaneously the coalitions that form
and the action each one is taking. An individual is required to belong
to one coalition only, a coalition that may be restricted to himself. A
coalition blocks if it can make each of its members better off than under
the standing coalition structure (the stability of coalition structures has
been introduced in Aumann and Dreze [1974]).

In order to extend hierarchical outcomes to a setup in which a par-
tition may form, guarantee levels are defined so as to allow an individual
to form any team of which he is the principal. Given a hierarchy, guar-
antee levels are set by backward induction as follows:ˆ ˆg p (g )i

Step 0: Set for all agents i with rank R.ĝ p max {u(a), a � A(i)}i i

Step r, : If i’s rank is equal to , is the maximumˆr p 1, … , R R � r gi

that i can get by forming a team with some of his subordinates while
giving them at least their guarantee level:

ĝ p max {u (a), where a is feasible for a team Ti i

ˆwhose principal is i and u (a) ≥ g , for all j � T � {i}}.j j

An individual can stay alone, so that is at least equal to i’s reservationĝi

level. It can be checked that g and coincide in super-additive problems.ĝ
Otherwise, an individual possibly gets a higher utility level by forming
a team that is smaller than his full team. This may be true for the
principal. If so, he chooses a team that differs from N. Whereas theT1

members of get their “guarantee” levels , outsiders must organizeˆT g1

themselves. So it is unclear whether the payoff is feasible. Theoremĝ
1 is extended as follows.

Theorem 2. Given a hierarchy and a problem, guarantee levels
are feasible: there exists a coalition structure underˆ ˆg p (g ) (a , T)i l l lp1,…,L

which

ˆu (a ) ≥ g for all i � T, all l p 1, … , L.i l i l

The coalition structure is not blocked by any team.(a , T)l l lp1,…,L

According to this result, a hierarchical outcome leads to a stable
partition of the group into teams. The partition is obtained from the
guarantee levels by starting from the top of the hierarchy as follows.
Consider the team and action chosen by the principal; if the team T1

is not the whole set, choose an individual who is not a member of T1

but whose direct superior is; pick the team and action chosen by this
individual and so on14 (see details in the Appendix).

14 Greenberg and Weber (1986) provide an algorithm reaching a stable coalition struc-
ture in consecutive games in which individuals are ordered on a line, starting from one
of the two individuals located at an extreme point. The hierarchical process just defined
may be viewed as an extension of their algorithm to hierarchies.
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Let me illustrate the algorithm in the cost-sharing problem (example
2, Sec. IIA). The utility derived by i for the service is , and the cost tobi

provide a system to S is . Without further assumption on c, thec(S)
problem may not be super-additive. Guarantee levels are charac-ˆ(g )i
terized by two functions, interpreted as costs and prices, and ,ĉ p i pi i

, as follows (where by convention ):1, … , n � p p 0jM

Step 0: For any i whose rank is maximal, i p c(i),ˆ ˆc g p max (b �i i

, and .ˆ ˆc , 0) p p min (b , c )i i i i

Step r, : For each agent i with rank , setr p 1, … , R R � r

ĉ p min c(T) � p over the teams T directed by i ,�i j{ }
j�T�{i}

, and .ˆ ˆ ˆg p max (b � c , 0) p p min (b , c )i i i i i i

The value is the minimal residual cost for i if the service is providedĉi

to one of his teams, each subordinate j in the team contributing .pj

Comparing i’s utility level if he gets the service at this minimal cost,
, with the null payoff if he gets no service gives i’s guarantee level:ˆb � ci i

. Accordingly, i agrees to get the service providedˆ ˆg p max (b � c , 0)i i i

through a superior only if he is asked a contribution no larger than
(which gives him the guarantee level ). The hierarchicalˆ ˆp p min (b , c ) gi i i i

outcome is composed of a partition into teams, together with the con-
tribution of each unit to the service within each team. The overall con-
tribution of each team exactly covers the cost of providing the service
to its members. Units that get no service pay nothing.

D. Information Revelation

If units are asked to reveal a piece of information in order to implement
a hierarchical outcome, some of them have incentives to lie. In a hi-
erarchy, it seems fair to assume that individuals are able to observe their
direct subordinates’ characteristics such as the current workload or the
ability to accomplish a given task. As shown by the implementation
literature, more powerful mechanisms may be used to extract a piece
of information that is shared by several individuals.

This insight can be developed in the cost-sharing problem when the
individuals’ utility parameters are unknown (but the cost function cbi

is still known). Recall that no strategy-proof mechanism makes efficient
decisions and has a balanced budget. In a carefully designed revelation
game, truthful behavior is not only a Nash equilibrium, as is standard,
but also a strong equilibrium, meaning that it is immune to coordinated
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deviations.15 Each individual i announces a characteristic for himself,
, and for each of his direct subordinates, , if any: a strategy for i isb ai j

given by . Thus, except for the principal, individual i’sj p (b , (a ) )ii i j j�D

characteristic is announced twice, once by himself, , and once by hisbi

direct superior, . If , i and are said to disagree. The basica b ( a s(i)i i i

idea is to compute the hierarchical outcome for the utility characteristics
given by the minimum of the announced ones, for each i,min (b , a )i i

but to modify the contribution asked to each subordinate i by assuming
his characteristic to be . More precisely, given the strategymax (b , a )i i

profile , compute recursively costs and prices, , , and ,ˆ(j) c p q i p 1,i i i i

, as follows:… , n

Step 0: For each i whose rank is maximal, i p c(i),ĉ q pi

, and .ˆ ˆmin (max (b , a ), c ) p p min (min (b , a ), c )i i i i i i i

Step r, : For each i with rank , setr p 1, … , R R � r

ĉ p min c(T) � p over the teams T directed by i ,�i j{ }
j�T�{i}

, and .ˆ ˆq p min (max (b , a ), c ) p p min (min (b , a ), c )i i i i i i i i

The final outcome is defined by the partition of N into teams given by
the hierarchical outcome associated with profile ; in each(min (b , a ))i i i�N

team that is provided with the service, the principal of the team receives
from each subordinate j within the team, whereas the subordinatepj

contributes . As a consequence, if a subordinate disagrees with hisqj

direct superior, there is a gap between the contribution asked to the
subordinate and the price received by his direct superior, the latter being
smaller than the former.

If every individual announces the true valuation for himself and for
all his direct subordinates, the hierarchical outcome associated with the
true profile is obtained. It can be shown that these truth-telling strategies
form a strong equilibrium, that is, are robust to coordinated deviations.
It should be noted that the deviation of any coalition, whether a team
or not, is contemplated. The basic idea of the proof (available on re-
quest) is as follows. At the truth-telling profile, each individual gets a
nonnegative payoff (since the hierarchical outcome with respect to the
true profile is reached). Therefore, to be strictly better off by lying, an
individual must get the service and contribute less than under truth

15 In line with this model, the principal’s preferences are announced by him only.
Therefore, the truth-telling profile may not be the unique Nash equilibrium. Indeed,
mechanisms can be designed with full implementation if there is no truly private infor-
mation; i.e., each characteristic is known by at least two distinct individuals (see Postlewaite
and Schmeidler 1986; Saijo 1988). These mechanisms are, however, quite abstract and
may not be immune to coordinated deviations.



770 journal of political economy

telling. This is used to show that his direct superior lies as well. By
backward induction starting from individuals with rank R, a coalition
that makes all its members better off by lying is a team directed by the
principal. This gives a contradiction: the principal cannot get a higher
monetary payoff than under the “true” hierarchical outcome while pay-
ing his subordinates more.

IV. Networks

A hierarchy specifies bilateral relationships that are ordered through
the superior function. In various contexts, individuals are related among
each other but without any ordering. These relationships are repre-
sented by a nondirected network (from now on, network means non-
directed network). For instance, in transportation and telecommuni-
cation, communication between units is processed through a network
of physical links, as given by roads, pipes, cables, or wires. Various prob-
lems, such as cost sharing among customers, must be solved taking into
account the network structure (see Sharkey 1982). A network can also
represent social and economic relationships, such as family links, friend-
ships, personal contacts, alliances, and so on. Following Myerson (1977),
the literature is currently developing fast (see, e.g., the recent survey
by Jackson [2004]). Finally, a network can represent ideological prox-
imity, as, for example, in Black’s (1948) voting model, where individuals
are ranked from left to right. The ranking does not reflect any supe-
riority, but specifies whether an individual is “intermediate” or “between”
two others, as far as preferences are concerned (for a development of
these ideas, see Demange [1994]).

My purpose here is to analyze networks (also called graphs) from the
group stability viewpoint.16 Let us first recall some definitions. A network
G on N is a set of unordered pairs of distinct elements of N. A path of
G is a sequence in which the pairs fori , … , i (i , i ) k p 0, … ,0 m k k�1

are in G and are all distinct. A cycle is a path from a point to itself.m � 1
A network is a tree if two distinct elements are linked by a unique path.
As in a hierarchy, some coalitions respect the existing links. Formally,
given a network G on N, a coalition S is G -connected if for every two
distinct agents in S there is a path between them that is contained in
S.

Hierarchies and trees define similar structures of bilateral relation-
ships. More precisely, if in a hierarchy the relationship between an agent

16 In an exchange economy, interpreting connected coalitions as the ones that can trade
among each other, Kalai, Postlewaite, and Roberts (1978) study the impact of the network
on the core, in particular whether being a middleman, i.e., an individual who connects
two disjoint sets, is advantageous. Since the core is always nonempty in this setup, the
guarantee of stability is not an issue.
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and his direct superior is “undirected” and becomes a link between the
two individuals, the obtained network is a tree: two individuals are con-
nected through a unique path. Conversely, given a tree, a hierarchy is
obtained by picking an individual as the principal and “directing” the
links on the paths starting from him.17 The close relationships between
hierarchies and trees extend to stability properties.

Proposition 1.

1. Given a network G, the set of G -connected subsets guarantees sta-
bility only if G is contained in a tree.

2. Given a tree G, all the hierarchies associated with G admit the same
set of teams, which coincides with the set of G -connected coalitions.

Assertion 1 is easy to understand. A network G that is not included
in a tree contains a cycle. Then a Condorcet triple of G -connected
coalitions is easily found, and stability is not guaranteed. In view of this
result, nondirected networks do not enrich the set of graph structures
that guarantee stability. How does one explain the current development
of networks that are clearly not tree-hierarchical structures? Two distinct
arguments can be put forward. First, in industries, networks such as
alliances typically bear on a limited range of decision problems. For
example, in airline industries, companies agree on sharing some codes.
If they contemplated a more complete integration, our analysis suggests
that they would need a tighter organization. Second, most of the soci-
ological networks one can think of are primarily used to share pieces
of information rather than to take actions. The concept of stability
considered in this paper addresses the problem of taking actions.

Two consequences can be drawn from assertion 2 of proposition 1.
First, given a set of undirected relationships, tree-network outcomes that
are stable with respect to G -connected coalitions are easy to obtain. It
suffices to pick an individual as principal and to take the hierarchical
outcome in the obtained hierarchy.18 Second, given a hierarchy, whereas
the hierarchical outcome is not blocked by any team, it is typically not
the unique one: the hierarchical outcome associated with the same tree
but with a different principal is stable as well. A natural question is
whether hierarchical outcomes enjoy some special properties among all
stable outcomes. In particular, are they in some sense easier to obtain
and more likely to emerge than other stable outcomes? The answer is

17 Formally, given a hierarchy s, the network is defined as the set of pairs (i, j), whereGs

either or . Given a tree G, the hierarchy with individual i as principal isi p s(j) j p s(i)
defined by as follows: for any j different from i, let be the unique path ins i , … , i , ii 0 r�1 r

G from to . Set .i p i i p j s (j) p i0 r i r�1
18 Demange (1994) gives a nonconstructive proof of this result, which relies on the Scarf

theorem on balanced games. The basic argument is that any balanced family of G -con-
nected coalitions contains a partition if G is a tree.
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positive in a sense that I now make precise. For that purpose, attention
may be restricted to super-additive problems with transferable utility.

Given a tree G that links individuals in N and a value function v, the
set of stable payoffs, for a short stable set, is described by the following
system of linear inequalities:

x p v(N ),� i
i�N

x ≥ v(S) for each G -connected S. (4)� i
i�S

The extreme points, which characterize the stable set, play an important
role.19 Intuitively at each extreme point, many coalitions get their min-
imum value since many constraints in (4) are binding. To formalize this
intuition, let us say that a collection of n teams of G is complete if (a)E
N belongs to and (b) for each v there is a unique solution toE x(v, E)
the system of equations

x p v(S) for each S in E.� i
i�S

It can be shown that each extreme point of the stable set is equal to x(v, E)
for some complete collection . Hence hierarchical payoffs are extremeE
points. Indeed denote by the set of full teams in the hierarchy withiF
i as principal. The hierarchical payoff is unique, obtained by solving in
a recursive way the n equations for each full team: isi� x p v(S) Fii�S

complete, and the hierarchical payoff is an extreme point. Moreix(v, F )
generally, the following process finds any other extreme point: first, pick
a complete family , and compute the payoff that gives to eachE x(v, E)
coalition in its value; second, check whether the payoff is stable, thatE
is, whether it satisfies all inequalities (4). Note that the second step is
not necessary if is a set of full teams.E

Example.—Let three players form the links (1, 2) and (2, 3). Consider
a problem with transferable utility described by the value v: v(1, 2,

, , , , and . Super-3) p 1 v(1, 2) p a v(2, 3) p b v(1, 3) p 0 v(i) p 0
additivity holds for a and b nonnegative and smaller than one. Two
shapes for the stable set obtain depending on the value of witha � b
respect to one, as shown in figure 1 (each point that satisfies(x , x , x )1 2 3

and is represented by a point in the triangle).x � x � x p 1 x ≥ 01 2 3 i

In addition to the three hierarchical payoffs ,1H p (1 � b, b, 0)
, and obtained with 1, 2, and 3, re-2 3H p (0, 1, 0) H p (0, a, 1 � a)

spectively, as principal, the other extreme points are as follows: if 1 ≤
, with coalitions {1, 2}, {2, 3}, and {1,a � b A p (1 � a, a � b � 1, 1 � b)

19 Recall that an extreme point is a stable payoff that is not a convex combination of
other stable payoffs. The characterization below is a kind of “folk” result, probably due
to Shapley.
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Fig. 1.—Stable sets for ( , ) and ( , )a � b 1 1 a p 4/5 b p 2/5 a � b ! 1 a p 2/5 b p 2/5

2, 3} binding; and if , with {1, 2}, {2}, and {1,1 ≥ a � b C p (a, 0, 1 � a)
2, 3} binding and with {2, 3}, {2}, and {1, 2, 3} binding.B p (1 � b, 0, b)
Except for the hierarchical payoffs, the stability of a “tentative” extreme
point depends on the problem at hand and has to be checked. This
extends as follows.

Theorem 3. Given a tree G, let be a complete family of G -connectedC
sets. If is not a set of full teams, there are super-additive games v forC
which the payoff vector is not stable.x(v, C)

In other words, for any family other than a full-teams family, the
“tentative” extreme point may be blocked by a connected set. Accord-
ingly, a process that would reach stable outcomes other than the hier-
archical ones is likely to be much more complex than a hierarchical
process.

V. Conclusion

I have shown that hierarchical outcomes enjoy nice properties. They
are easy to implement and satisfy strong-group rationality requirements.
These properties are valid for any hierarchical structure. This calls for
two remarks. First, hierarchical organizations are obviously not all alike,
some appearing more “centralized” than others, independently of the
tree structure itself. This does not contradict the analysis, which allows
one to separate two sources of power: the possibility for a coalition to
make independent decisions, which is determined by the tree structure
only, and the scope of these decisions, described here by the feasible
sets. Hierarchies that give a very limited scope of autonomy to their
teams are indeed centralized. Incorporating the choice of the feasible
sets into the framework of this paper would be most interesting. Second,
according to our results, the choice of a particular hierarchical structure
should be explained by factors other than group stability. Comparing
structures among each other, determining which ones are more appro-
priate to a given situation, would be worth investigating. For example,
without the cost of managing subordinates, a principal has nothing to
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lose to have them all directly subordinate to him; that is, he prefers the
principal-agent structure. In the presence of significant management
costs, however, a trade-off between the cost of directly managing sub-
ordinates and the gains of extracting surplus over them would justify
more complicated structures. Another interesting issue would be to de-
termine who is more efficient or, more likely, to be a principal (on this
point, see the paper by Barbera and Ehlers [2002], who study the choice
of a principal under majority rule).

Appendix

Proof of Theorem 1

Proof of part 1.—By induction, assume that at step r of the algorithm, for each
i with rank , i’s guarantee level is finite, and a hierarchical outcome existsR � r
in the problem restricted to the full team of i; that is, there is an action, say

, that maximizes under the constraintsa u (a)i i

i ia � A(T ), u (a) ≥ g , j � T � {i}. (A1)j j

The induction assumption is true at step 0 since an individual of rank R has no
subordinate. Consider at step r individual i whose rank is . By the continuityR � r
and compactness assumptions, it suffices to show that there is an action that
satisfies constraints (A1). By the induction assumption, for each direct subor-
dinate j in , there is an action in that gives to j and to each of hisi jD a A(T )j

subordinates his guarantee level. Note that the family of teams and ,j{i} T j �
, forms a partition of i’s full team of i (because a subordinate of i is eitheriD

subordinate or equal to one, and only one, direct subordinate of i). Hence, by
super-additivity, given any action b in and the feasible actions in ,jA(i) a A(T )j

, there is an action c in that gives at least the utility level of toi ij � D A(T ) aj

each member of , for every j, and, hence, their guarantee levels. Therefore,jT
action c satisfies constraints (A1) for i, which proves the induction assumption.

Let us prove by contradiction that a hierarchical outcome is not blockeda 1

by any team. If a team T blocks , there is a b in for whicha A(T)1

u (b) 1 u (a ) ≥ g for every j � T. (A2)j j 1 j

Let i be the principal of team T. Since by construction no full team blocks ,a 1

T is a strict subset of , the full team of i. So there is at least a subordinate ofiT
i who does not belong to T but whose direct superior belongs to it. Let K be
the set of such subordinates: . I claim that the familyiK p {k � T , k � T, s(k) � T }
of teams forms a partition of . Suppose it to be true. Since bk i(T, T , k � K) T
and are feasible for T and , respectively, by super-additivity, there is anka Tk

action feasible for that gives to each member j of T at least and to eachiT u (b)j

other member of his guarantee level: by (A2), i gets strictly more than , aiT gi

contradiction.
It remains to show that the family of teams forms a partitionk(T, T , k � K)

of . Consider j in . First, he belongs to at most one of the sets: if j belongsi iT T
to , the interval [j, i] is the disjoint union of [j, k] and , where [j, k]kT [s(k), i]
is disjoint from T (because otherwise k would belong to T), and is[s(k), i]
included in T. This implies that j does not belong to any other set of the family.
Second, j belongs to one of the sets: if j does not belong to T, since i does,
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there is surely some k in the interval [j, i] who does not belong to T and whose
direct superior does. Therefore, k belongs to K, and since j is either equal or
subordinate to k, j belongs to . Q.E.D.kT

Proof of part 2.—Let be a coalition that is not a team. To prove that addingS 0

to the set of teams may lead to instability, it suffices to find two teams, andS S0 1

, such that , , 1, 2, form a Condorcet triple. Since is not a team,S S i p 0 S2 i 0

there are two distinct i and j in such that at least one of the following casesS 0

is true. In case 1, no member of is superior or equal to both i and j. In caseS 0

2, j is superior to i but does not belong to T.s(i)
In case 1, take as the interval from i to 1, which is composed of iS p [i, 1]1

and all his superiors, and similarly . Clearly the sets , , 1, 2,S p [ j, 1] S l p 02 l

intersect each other. Moreover, is formed with the individuals who areS ∩ S1 2

superior or equal to both i and j, so by assumption does not intersectS ∩ S1 2

. In case 2, note that is surely subordinate to j. It suffices to takeS s(i) S p0 1

and . Q.E.D.[i, s(i)] S p [s(i), j]2

Proof of Theorem 2

A coalition structure that gives utility levels at least equal to is clearly notĝ
blocked by any team. So we have to show only that is a feasible payoffˆ ˆg p (g )i
vector.

Let solve . By construction, each member of gets at least hisˆ(T , a ) g T1 1 1 1

guarantee level at . Hence, if is the whole set N, ensures the feasibilitya T (N, a )1 1 1

of . If not, there is a member of who has a direct subordinate, say 2, whoĝ T1

does not belong to .T1

Let solve . We now show that and are disjoint and isˆ(T , a ) g T T T ∪ T2 2 2 1 2 1 2

a team. A member i in is subordinate to 2, so he does not belong toT T2 1

because otherwise 2 would belong to as well: . Moreover i’s su-T T ∩ T p M1 1 2

periors belong to the interval ]i, 1], which is the union of ]i, 2] and .[s(2), 1]
Since ]i, 2] is included in and in , this proves that is aT [s(2), 1] T T ∪ T2 1 1 2

team. If is the whole set N, we are done: and ensureT ∪ T (T , a ) (T , a )1 2 1 1 2 2

the feasibility of . The argument can be repeated so as to obtain, at the endĝ
of step , disjoint teams , , whose union is a team. If thisl � 1 T k p 1, … , l � 1k

union is not the whole set N, one may find , where gives to each member(T, a ) al l l

of his guarantee level, is disjoint from the previous teams, and the overallT Tl l

union is a team. Surely the union is N at some step. Q.E.D.

Proof of Proposition 1

Given a tree G on N and individual i, let be the hierarchy associated with G.is
We first show that each team in is G -connected. An interval is clearly G -is

connected. Now a team T with principal, say, j is the union of all intervals [k,
j] for k running in T. So T is G -connected, as the union of G -connected sets
that have an overall nonempty intersection.

To show that conversely a G -connected coalition T is a team of , pick j in Tis
whose rank r is minimal among the members of T (rank defined in the hierarchy

). We claim that T is a team of j. First let us consider the path from j to principalis
i. By definition of , any agent other than j in this path has a rank strictly loweris
than r and, hence, does not belong to T. Now let k be in T, distinct from j. The
path from j to k is included in the G -connected set T, so that, from the remark
above, it intersects the path from j to i only at j. It follows that the path from
k to i is composed of the path from k to j and j to i: this implies that in the
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hierarchy , k is subordinate to j, and the interval [k, j] coincides with the pathis
from k to j, which is included in T. Q.E.D.

Proof of Theorem 3

The proof is divided into several steps. In what follows, is assumed to be aE
complete family for which the payoff vector is stable whatever the super-x(v, E)
additive game v.

Proof of step 1.—If S and T are elements of , either , , orE S ∩ T p M S O T
. If not, is nonempty, so both and are teams. Moreover,T O S S ∩ T S ∪ T S ∩ T

the game v defined by

a for any C that contains either S or T but not both
v(C) p 1 for any C that contains S ∪ T{0 otherwise

is super-additive for any a between zero and one. At the payoff , thex p x(v, E)
equations and hold. Stability applied to each indi-x(S) p x(T) p a x(N ) p 1
vidual and to the team requires and , which impliesS ∪ T x ≥ 0 x(S ∪ T) ≥ 1

. Nowx(S ∪ T) p 1

x(S ∪ T) p x(S) � x(T) � x(S ∩ T)

yields . Choosing gives a negative payoff to the teamx(S ∩ T) p 2a � 1 a ! 1/2
, which contradicts stability. Q.E.D.S ∩ T

Proof of step 2.—For each i, there is a smallest set in to which i belongs.C Ei

Let us consider the sets in to which i belongs (the whole set N, which belongsE
to , is such a set). All these sets intersect each other (at i). So by step 1, theyE
are nested by inclusion: there is a smallest set. Q.E.D.

Proof of step 3.—If and intersect for distinct, then is a strict subsetC C i ( j Ci j i

of or the converse. The sets and are in , so if they intersect, one is aC C C Ej i j

subset of the other one (from step 1). Now, since the family is complete,E
coordinates and , and not just the sum , are determined by equationsx x x � xi j i j

(4). So there must be a set T in that contains one, and only one, element ofE
the pair i, j. This implies that and are distinct. Q.E.D.C Ci j

Proof of step 4.—There is i such that is the singleton . If is not a singleton,C {i} Ci i

pick j in , j different from i. Since j belongs to , surely is a strict subsetC C Ci i j

of from step 3. If is not a singleton, repeat the argument. Q.E.D.C Ci j

Proof of step 5.— If and (i, j) is a link, then i belongs to . Note thatC p {i} Ci j

is a team if (i, j) is a link. By contradiction, if i does not belong to ,C ∪ {i} Cj j

one may define a super-additive v that satisfies , , andv(i) p 0 v(C ) p 0 v(C ∪j j

. Since and belong to , at , and{i}) 1 0 {i} C E x(v, E) x p v(i) p 0 x(C ) pj i j

, which gives , so blocks. Q.E.D.v(C ) p 0 x(C ∪ {i}) p 0 C ∪ {i}j j j

Proof of step 6.— If , then i is linked to a unique individual; that is, iC p {i}i

is an extreme point of the tree G. Assume by contradiction that (i, j) and (i, k)
are links for j, k distinct. By step 5, and intersect at i, so by step 3, we mayC Cj k

assume and surely . Given a between zero and one, let v be definedC O C k � Cj k j

by , for any C that contains or {i, k}, and zero otherwise.v(N ) p 1 v(C) p a Cj

The game v is super-additive: if two coalitions do not intersect, one at least does
not contain i, so its value is zero. At , since , , and N belong tox p x(v, F) {i} Cj

, we have , , and . Stability requiresE x p v(i) p 0 x(C ) p v(C ) p a x(N ) p 1i j j

and since {i, k} is a team. Since , this impliesx ≥ 0 x � x ≥ v({i, k}) p a x p 0i k i
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that , which is impossible whenever a is higher than one-x(N ) ≥ x(C ) � x ≥ 2aj k

half. This gives the desired contradiction. Q.E.D.
We end the proof by induction on the number of individuals. Assume theorem

3 to be true for any set with at most individuals (it is trivially true for an � 1
unique agent), and consider n individuals. By step 4, there exists an individual,
say n, with , who, moreover, by step 6, is linked to a unique individual,C p {n}n

say . Consider the network obtained from G by dropping the linkn � 1 G�n

: it is a tree on . For each C element of distinct from {n}, take(n � 1, n) N � {n} E
its intersection with , and let be the obtained family. One easily checksN � {n} E�n

that is a complete family of teams in . By the induction assumption, thereE G�n �n

is for which the family is the set of full teams in with i as principal.i ! n E G�n �n

Since any set in that contains contains n (by step 5), this yields thatE n � 1 E
is the set of full teams in G, which ends the proof. Q.E.D.Fi
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