
MPRA
Munich Personal RePEc Archive

Quantum and algorithmic Bayesian
mechanisms

Wu, Haoyang

05. April 2011

Online at http://mpra.ub.uni-muenchen.de/30072/

MPRA Paper No. 30072, posted 05. April 2011 / 12:42

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6702766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/30072/

Quantum and algorithmic Bayesian mechanisms

Haoyang Wu ∗

Abstract

Bayesian implementation concerns decision making problems when agents have incom-
plete information. This paper proposes that the traditional sufficient conditions for Bayesian
implementation shall be amended by virtue of a quantum Bayesian mechanism. Further-
more, by using an algorithmic Bayesian mechanism, this amendment holds in the macro
world too.

1 Introduction

Mechanism design is an important branch of economics. Compared with game the-
ory, it concerns a reverse question: given some desirable outcomes, can we design a
game that produces them? Nash implementation and Bayesian implementation are
two key parts of the mechanism design theory. The former assumes complete infor-
mation among the agents, whereas the latter concerns incomplete information. Ref.
[1] is a seminal work in the field of Nash implementation. It provides an almost
complete characterization of social choice rules that are Nash implementable when
the number of agents is at least three. Palfrey and Srivastava [2], [3], and Jackson
[4] together constructed a framework for Bayesian implementation.

In 2010, Wu [5] claimed that the sufficient conditions for Nash implementation
shall be amended by virtue of a quantum mechanism. Furthermore, this amendment
holds in the macro world by virtue of an algorithmic mechanism [6]. Given these
accomplishments in the field of Nash implementation, this paper aims to investigate
what will happen if the quantum mechanism is applied to Bayesian implementation.

The rest of this paper is organized as follows: Section 2 recalls preliminaries of
Bayesian implementation given by Serrano [7]. In Section 3, a novel property,
multi-Bayesian monotonicity, is defined. Section 4 and 5 are the main parts of this

∗ Wan-Dou-Miao Research Lab, Suite 1002, 790 WuYi Road, Shanghai, 200051, China.
Email addresses: hywch@mail.xjtu.edu.cn, Tel: 86-18621753457 (Haoyang

Wu).

paper, in which we will propose quantum and algorithmic Bayesian mechanisms
respectively. Section 6 draws the conclusions.

2 Preliminaries

Let N = {1, · · · , n} be a finite set of agents with n ≥ 2, A = {a1, · · · , ak} be a finite
set of social outcomes. Let Ti be the finite set of agent i’s types, and the private
information possessed by agent i is denoted as ti ∈ Ti. We refer to a profile of types
t = (t1, · · · , tn) as a state. Consider environments in which the state t = (t1, · · · , tn)
is not common knowledge among the n agents. We denote by T the set of states
compatible with an environment, i.e., a set of states that is common knowledge
among the agents. Let T =

∏
i∈N Ti. Each agent i ∈ N knows his type ti ∈ Ti, but

not necessarily the types of the others. We will use the notation t−i to denote (t j) j,i.
Similarly, T−i =

∏
j,i T j.

Each agent has a prior belief, probability distribution, qi defined on T . We make
an assumption of nonredundant types: for every i ∈ N and ti ∈ Ti, there exists
t−i ∈ T−i such that qi(t) > 0. For each i ∈ N and ti ∈ Ti, the conditional probability
of t−i ∈ T−i, given ti, is the posterior belief of type ti and it is denoted qi(t−i|ti). Let
T ∗ ⊆ T be the set of states with positive probability. Given agent i’s state ti and
utility function ui(·, t) : ∆ × T 7→ R, the conditional expected utility of agent i of
type ti corresponding to a social choice function (SCF) f : T 7→ ∆ is defined as:

Ui(f |ti) ≡
∑

t′−i∈T−i

qi(t′−i|ti)ui(f (t′−i, ti), (t′−i, ti)).

An environment with incomplete information is a list E =< N, A, (ui,Ti, qi)i∈N >.
For simplicity, we shall consider only single-valued rules. An SCF f is a mapping
f : T 7→ A. Let F denote the set of SCFs. Two SCFs f and h are equivalent (f ≈ h)
if f (t) = h(t) for every t ∈ T ∗.

Consider a mechanism Γ = ((Mi)i∈N , g) imposed on an incomplete information envi-
ronment E, g : M 7→ F . A Bayesian Nash equilibrium of Γ is a profile of strategies
σ∗ = (σ∗i)i∈N where σ∗i : Ti 7→ Mi such that for all i ∈ N and for all ti ∈ Ti,

Ui(g(σ∗)|ti) ≥ Ui(g(σ∗−i, σ
′
i)|ti), ∀σ′i : Ti 7→ Mi.

Denote by B(Γ) the set of Bayesian equilibria of the mechanism Γ. Let g(B(Γ))
be the corresponding set of equilibrium outcomes. An SCF f is Bayesian imple-
mentable if there exists a mechanism Γ = ((Mi)i∈N , g) such that g(B(Γ)) ≈ f . An
SCF f is incentive compatible if truth-telling is a Bayesian equilibrium of the direct

2

mechanism associated with f , i.e., if for every i ∈ N and for every ti ∈ Ti,
∑

t′−i∈T−i

qi(t′−i|ti)ui(f (t′−i, ti), (t′−i, ti)) ≥
∑

t′−i∈T−i

qi(t′−i|ti)ui(f (t′−i, t
′
i), (t

′
−i, ti)),

∀t′i ∈ Ti. Consider a strategy in a direct mechanism for agent i, i.e., a mapping
αi = (αi(ti))ti∈Ti : Ti 7→ Ti. A deception α = (αi)i∈N is a collection of such mappings
where at least one differs from the identity mapping. Given an SCF f and a decep-
tion α, let [f ◦ α] denote the following SCF: [f ◦ α](t) = f (α(t)) for every t ∈ T .
For a type ti ∈ Ti, an SCF f , and a deception α, let fαi(ti)(t

′) = f (t′−i, αi(ti)) for all
t′ ∈ T .

An SCF f is Bayesian monotonic if for any deception α, whenever f ◦α 0 f , there
exist i ∈ N, ti ∈ Ti, and an SCF y such that

Ui(y ◦ α|ti) > Ui(f ◦ α|ti), while Ui(f |t′i) ≥ Ui(yαi(ti)|t′i), ∀t′i ∈ Ti. (*).

According to Ref. [7], the sufficient and necessary conditions for Bayesian imple-
mentation are incentive compatibility and Bayesian monotonicity. To facilitate the
following discussion, here we cite the Bayesian mechanism (P404, Line 4, [7]) as
follows: Consider a mechanism Γ = ((Mi)i∈N , g), where Mi = Ti × F × Z+. Each
agent is asked to report his type ti, an SCF fi and a nonnegative integer zi, i.e.,
mi = (ti, fi, zi). The outcome function g is as follows:
(1) If for all i ∈ N, mi = (ti, f , 0), then g(m) = f (t), where t = (t1, · · · , tn).
(2) If for all j , i, m j = (t j, f , 0) and mi = (t′i , y, zi) , (t′i , f , 0), we can have two
cases:
(a) If for all ti, Ui(yt′i |ti) ≤ Ui(f |ti), then g(m) = y(t′i , t−i);
(b) Otherwise, g(m) = f (t′i , t−i).
(3) In all other cases, the total endowment of the economy is awarded to the agent
of smallest index among those who announce the largest integer.

3 Multi-Bayesian monotonicity

An SCF f is multi-Bayesian monotonic if there exist a deception α, f ◦ α 0 f , and
a set of agents Nα = {i1, i2, · · · } ⊆ N, 2 ≤ |Nα| ≤ n, such that for every i ∈ Nα, there
exists ti ∈ Ti and an SCF yi ∈ F satisfy:

Ui(yi ◦ α|ti) > Ui(f ◦ α|ti), while Ui(f |t′i) ≥ Ui(yi
αi(ti)|t′i), ∀t′i ∈ Ti. (**).

Let l = |Nα|. Without loss of generality, let these l agents be the last l agents among
n agents.

Proposition 1: Consider an SCF f that is incentive compatible and Bayesian mono-
tonic, suppose f satisfies multi-Bayesian monotonic, then f ◦ α is not Bayesian

3

implementable by using the traditional Bayesian mechanism, where α is specified
in the definition of multi-Bayesian monotonicity.
Proof: According to Serrano’s proof (Page 404, Line 33, [7]), all equilibrium strate-
gies fall under rule 1, i.e., f is unanimously announced and all agents announce the
integer 0. Consider the deception α specified in the definition of multi-Bayesian
monotonicity. At first sight, if every agent i ∈ N submits (αi(ti), f , 0), then f ◦ α
may be generated as the equilibrium outcome by rule 1. However, For each agent
i ∈ Nα, he has incentives to unilaterally deviate from (αi(ti), f , 0) to (αi(ti), yi, 0) in
order to obtain yi◦α (by rule 2). This is a profitable deviation for each agent i ∈ Nα.
Therefore, f ◦ α is not Bayesian implementable. Note: Since all agents are rational
and self-interested, every agent i ∈ Nα will submit (αi(ti), yi, 0). As a result, rule 3
will be triggered, and the final outcome will be uncertain. �

4 A quantum Bayesian mechanism

Following Ref. [5], here we will propose a quantum Bayesian mechanism to modify
the sufficient conditions for Bayesian implementation. According to Eq (4) in Ref.
[8], two-parameter quantum strategies are drawn from the set:

ω̂(θ, φ) ≡

eiφ cos(θ/2) i sin(θ/2)

i sin(θ/2) e−iφ cos(θ/2)

 , (1)

Ω̂ ≡ {ω̂(θ, φ) : θ ∈ [0, π], φ ∈ [0, π/2]}, Ĵ ≡ cos(γ/2)Î⊗n + i sin(γ/2)σ̂x
⊗n, where γ

is an entanglement measure, and Î ≡ ω̂(0, 0), D̂n ≡ ω̂(π, π/n), Ĉn ≡ ω̂(0, π/n).

Without loss of generality, we assume that:
1) Each agent i has a quantum coin i (qubit) and a classical card i. The basis vectors
|C〉 = (1, 0)T , |D〉 = (0, 1)T of a quantum coin denote head up and tail up respec-
tively.
2) Each agent i independently performs a local unitary operation on his/her own
quantum coin. The set of agent i’s operation is Ω̂i = Ω̂. A strategic operation cho-
sen by agent i is denoted as ω̂i ∈ Ω̂i. If ω̂i = Î, then ω̂i(|C〉) = |C〉, ω̂i(|D〉) = |D〉; If
ω̂i = D̂n, then ω̂i(|C〉) = |D〉, ω̂i(|D〉) = |C〉. Î denotes “Not flip”, D̂n denotes “Flip”.
3) The two sides of a card are denoted as Side 0 and Side 1. The message written on
the Side 0 (or Side 1) of card i is denoted as card(i, 0) (or card(i, 1)). A typical card
written by agent i is described as ci = (card(i, 0), card(i, 1)). card(i, 0), card(i, 1) ∈
Ti × F × Z+. The set of ci is denoted as Ci.
4) There is a device that can measure the state of n coins and send messages to the
designer.

A quantum Bayesian mechanism Γ
Q
B = ((Σ̂i)i∈N , ĝ) describes a strategy set Σ̂i = {σ̂i :

Ti 7→ Ω̂i ×Ci} for each agent i and an outcome function ĝ : ⊗i∈NΩ̂i ×∏
i∈N Ci 7→ A.

4

0ψ

1m

2m

Ĵ

1ψ

... ...

Coin 1

Coin 2

Coin n

C

+
Ĵ

M
ea
su
rin
g
 co
in
 sta
te

nm

1ω̂

2ω̂

nω̂

Fig. 1. The setup of a quantum Bayesian mechanism. Each agent

has a quantum coin and a card. Each agent independently

performs a local unitary operation on his/her own quantum coin.

Card 1

Card 2

Card n

...
Designer

g(m)

C

C

2ψ 3ψ

A strategy profile is σ̂ = (σ̂i, σ̂−i), where σ̂−i : T−i 7→ ⊗ j,iΩ̂ j ×∏
j,i C j. A quantum

Bayesian Nash equilibrium of Γ
Q
B is a strategy profile σ̂∗ = (σ̂∗1, · · · , σ̂∗n) such that

for every i ∈ N and for every ti ∈ Ti,

Ui(ĝ(σ̂∗)|ti) ≥ Ui(ĝ(σ̂∗−i, σ̂
′
i)|ti), ∀σ̂′i : Ti 7→ Ω̂i ×Ci.

Given n ≥ 2 agents, consider the payoff to the n-th agent, we denote by $C···CC

the expected payoff when all agents choose Î (the corresponding collapsed state is
|C · · ·CC〉), and denote by $C···CD the expected payoff when the n-th agent chooses
D̂n and the first n−1 agents choose Î (the corresponding collapsed state is |C · · ·CD〉).
$D···DD and $D···DC are defined similarly.

Given a multi-Bayesian monotonic SCF f , define condition λB as follows:
1) λB

1 : Consider the payoff to the n-th agent, $C···CC > $D···DD, i.e., he/she prefers the
expected payoff of a certain outcome (generated by rule 1) to the expected payoff

of an uncertain outcome (generated by rule 3).
2) λB

2 : Consider the payoff to the n-th agent, $C···CC > $C···CD[1 − sin2 γ sin2(π/l)] +

$D···DC sin2 γ sin2(π/l).

The setup of the quantum Bayesian mechanism Γ
Q
B = ((Σ̂i)i∈N , ĝ) is depicted in Fig.

1. The working steps of Γ
Q
B are given as follows:

Step 1: Nature selects a state t ∈ T and assigns t to the agents. Each agent i knows
ti and qi(t−i|ti). The state of each quantum coin is set as |C〉. The initial state of the
n quantum coins is |ψ0〉 = |C · · ·CC〉︸ ︷︷ ︸

n

.

Step 2: If f is multi-Bayesian monotonic, then goto Step 4.
Step 3: Each agent i sets ci = ((ti, fi, zi), (ti, fi, zi)), ω̂i = Î. Goto Step 7.
Step 4: Each agent i sets ci = ((αi(ti), f , 0), (ti, fi, zi)) (where α is specified in the
definition of multi-Bayesian monotonic). Let n quantum coins be entangled by Ĵ.
|ψ1〉 = Ĵ|C · · ·CC〉.
Step 5: Each agent i independently performs a local unitary operation ω̂i on his/her

5

own quantum coin. |ψ2〉 = [ω̂1 ⊗ · · · ⊗ ω̂n]Ĵ|C · · ·CC〉.
Step 6: Let n quantum coins be disentangled by Ĵ+. |ψ3〉 = Ĵ+[ω̂1⊗· · ·⊗ω̂n]Ĵ|C · · ·CC〉.
Step 7: The device measures the state of n quantum coins and sends card(i, 0) (or
card(i, 1)) as mi to the designer if the state of quantum coin i is |C〉 (or |D〉).
Step 8: The designer receives the overall message m = (m1, · · · ,mn) and let the
final outcome ĝ(σ̂) = g(m) using rules (1)-(3) defined in the traditional Bayesian
mechanism. END.

Proposition 2: Consider an SCF f that is incentive compatible and Bayesian mono-
tonic, if f is multi-Bayesian monotonic and condition λB is satisfied, then f ◦ α is
Bayesian implementable by using the quantum Bayesian mechanism.
Proof: Since f is multi-Bayesian monotonic, then there exist a deception α, f ◦α 0
f , and 2 ≤ l ≤ n agents that satisfy Eq (**), i.e., for each agent i ∈ Nα, there exist
ti ∈ Ti and an SCF yi ∈ F such that:

Ui(yi ◦ α|ti) > Ui(f ◦ α|ti), while Ui(f |t′i) ≥ Ui(yi
αi(ti)|t′i), ∀t′i ∈ Ti.

Hence, the quantum Bayesian mechanism will enter Step 4. Each agent i ∈ N
sets ci = ((αi(ti), f , 0), (ti, fi, zi)). Let c = (c1, · · · , cn). Since condition λB is satis-
fied, then similar to the proof of Proposition 2 in Ref. [5], if the n agents choose
σ̂∗ = (ω̂∗, c), where ω̂∗ = (Î, · · · , Î︸ ︷︷ ︸

n−l

, Ĉl, · · · , Ĉl︸ ︷︷ ︸
l

), then σ̂∗ ∈ B(ΓQ
B). In Step 7, the cor-

responding collapsed state of n quantum coins is |C · · ·CC〉. Hence, for each agent
i ∈ N, mi = (αi(ti), f , 0). In Step 8, ĝ(σ̂∗) = f ◦ α 0 f . �

5 An algorithmic Bayesian mechanism

Following Ref. [6], in this section we will propose an algorithmic Bayesian mech-
anism to help agents benefit from the quantum Bayesian mechanism immediately.
In the beginning, we cite the matrix representations of quantum states from Ref.
[6].

5.1 Matrix representations of quantum states

In quantum mechanics, a quantum state can be described as a vector. For a two-
level system, there are two basis vectors: (1, 0)T and (0, 1)T . In the beginning, we

6

define:

|C〉 =

1

0

 , Î =

1 0

0 1

 , σ̂x =

0 1

1 0

 , |ψ0〉 = |C · · ·CC〉︸ ︷︷ ︸
n

=

1

0

· · ·
0

2n×1

(2)

Ĵ = cos(γ/2)Î⊗n + i sin(γ/2)σ̂⊗n
x (3)

=

cos(γ/2) i sin(γ/2)

· · · · · ·
cos(γ/2) i sin(γ/2)

i sin(γ/2) cos(γ/2)

· · · · · ·
i sin(γ/2) cos(γ/2)

2n×2n

(4)

For γ = π/2,

Ĵπ/2 =
1√
2

1 i

· · · · · ·
1 i

i 1

· · · · · ·
i 1

2n×2n

, Ĵ+
π/2 =

1√
2

1 −i

· · · · · ·
1 −i

−i 1

· · · · · ·
−i 1

2n×2n

(5)

|ψ1〉 = Ĵ |C · · ·CC〉︸ ︷︷ ︸
n

=

cos(γ/2)

0

· · ·
0

i sin(γ/2)

2n×1

(6)

7

agent 1

A
lg
o
rith
m

...

1m

2m

nm

Designer

g(m)...

)1,(

)0,(

,

ncard

ncard

nn φθ

)1,2(

)0,2(

, 22

card

card

φθ

)1,1(

)0,1(

, 11

card

card

φθ

agent 2

agent n

Fig. 2. The inputs and outputs of the algorithm.

5.2 An algorithm that simulates the quantum operations and measurements

Similar to Ref. [6], in the following we will propose an algorithm that simulates
the quantum operations and measurements in Steps 4-7 of the quantum Bayesian
mechanism given in Section 4. The amendment here is that now the inputs and
outputs are adjusted to the case of Bayesian implementation. The factor γ is also
set as its maximum π/2. For n agents, the inputs and outputs of the algorithm are
illustrated in Fig. 2. The Matlab program is given in Fig. 3, which is cited from
Ref. [6].

Inputs:
1) θi, φi, i = 1, · · · , n: the parameters of agent i’s local operation ω̂i, θi ∈ [0, π], φi ∈
[0, π/2].
2) card(i, 0), card(i, 1), i = 1, · · · , n: the information written on the two sides of
agent i’s card, where card(i, 0), card(i, 1) ∈ Ti × F × Z+.

Outputs:
mi, i = 1, · · · , n: the agent i’s message that is sent to the designer, mi ∈ Ti ×F ×Z+.

Procedures of the algorithm:
Step 1: Reading parameters θi and φi from each agent i ∈ N (See Fig. 3(a)).
Step 2: Computing the leftmost and rightmost columns of ω̂1 ⊗ ω̂2 ⊗ · · · ⊗ ω̂n (See
Fig. 3(b)).
Step 3: Computing the vector representation of |ψ2〉 = [ω̂1⊗· · ·⊗ ω̂n]Ĵπ/2|C · · ·CC〉.
Step 4: Computing the vector representation of |ψ3〉 = Ĵ+

π/2|ψ2〉.
Step 5: Computing the probability distribution 〈ψ3|ψ3〉 (See Fig. 3(c)).
Step 6: Randomly choosing a “collapsed” state from the set of all 2n possible states
{|C · · ·CC〉, · · · , |D · · ·DD〉} according to the probability distribution 〈ψ3|ψ3〉.
Step 7: For each i ∈ N, the algorithm sends card(i, 0) (or card(i, 1)) as a message
mi to the designer if the i-th basis vector of the “collapsed” state is |C〉 (or |D〉) (See

8

Fig. 3(d)).

5.3 An algorithmic version of the quantum Bayesian mechanism

In the quantum Bayesian mechanism Γ
Q
B = ((Σ̂i)i∈N , ĝ), the key parts are quantum

operations and measurements, which are restricted by current experimental tech-
nologies. In Section 5.2, these parts are replaced by an algorithm which can be
easily run in a computer. Consequently, the quantum Bayesian mechanism Γ

Q
B =

((Σ̂i)i∈N , ĝ) shall be updated to an algorithmic Bayesian mechanism Γ̃
Q
B = ((Σ̃i)i∈N , g̃),

which describes a strategy set Σ̃i = {σ̃i : Ti 7→ [0, π] × [0, π/2] ×Ci} for each agent
i and an outcome function g̃ : [0, π]n × [0, π/2]n ×∏

i∈N Ci → A. A strategy profile
is σ̃ = (σ̃i, σ̃−i), where σ̃i = (θi, φi, ci) ∈ Σ̃i, σ̃−i : T−i 7→ [0, π]n−1 × [0, π/2]n−1 ×∏

j,i C j. A Bayesian Nash equilibrium of Γ̃
Q
B is a strategy profile σ̃∗ = (σ̃∗1, · · · , σ̃∗n)

such that for any agent i ∈ N and for all ti ∈ Ti,

Ui(̃g(σ̃∗)|ti) ≥ Ui(̃g(σ̃∗−i, σ̃
′
i)|ti), ∀σ̃′i : Ti 7→ [0, π] × [0, π/2] ×Ci.

As we have shown, the factor γ is set as π/2 in the algorithmic Bayesian mecha-
nism. Thus, the condition λB shall be revised as λBπ/2. λBπ/2

1 is the same as λB
1 ; λBπ/2

2 :
Consider the payoff to the n-th agent, $C···CC > $C···CD cos2(π/l) + $D···DC sin2(π/l).

Working steps of the algorithmic Bayesian mechanism Γ̃
Q
B :

Step 1: Given an SCF f , if f is multi-Bayesian monotonic, goto Step 3.
Step 2: Each agent i sets card(i, 0) = (ti, fi, zi), and sends card(i, 0) as the message
mi to the designer. Goto Step 5.
Step 3: Each agent i sets card(i, 0) = (αi(ti), f , 0) and card(i, 1) = (ti, fi, zi) (where
α is specified in the definition of multi-Bayesian monotonic), then submits θi, φi,
card(i, 0) and card(i, 1) to the algorithm.
Step 4: The algorithm runs in a computer and outputs messages m1, · · · ,mn to the
designer.
Step 5: The designer receives the overall message m = (m1, · · · ,mn) and let the
final outcome be g(m) using rules (1)-(3) of the traditional Bayesian mechanism.
END.

5.4 Amending sufficient conditions for Bayesian implementation

Proposition 3: Given an SCF f that is incentive compatible and Bayesian mono-
tonic:
1) If f is multi-Bayesian monotonic and condition λBπ/2 is satisfied, then f is not
Bayesian implementable;

9

2) Otherwise f is Bayesian implementable.
Proof: 1) Given an SCF f , since it is multi-Bayesian monotonic, then the mecha-
nism Γ̃

Q
B enters Step 3.

Each agent i sets ci = (card(i, 0), card(i, 1)) = ((αi(ti), f , 0), (ti, fi, zi)), and submits
θi, φi, card(i, 0) and card(i, 1) to the algorithm. Let c = (c1, · · · , cn). Since condi-
tion λBπ/2 is satisfied, then similar to the proof of Proposition 1 in Ref. [6], if the n
agents choose σ̃∗ = (θ∗, φ∗, c), where θ∗ = (0, · · · , 0︸ ︷︷ ︸

n

), φ∗ = (0, · · · , 0︸ ︷︷ ︸
n−l

, π/l, · · · , π/l︸ ︷︷ ︸
l

),

then σ̃∗ ∈ B(̃ΓQ
B)). In Step 6 of the algorithm, the corresponding “collapsed” state of

n quantum coins is |C · · ·CC〉. Hence, in Step 7 of the algorithm, mi = card(i, 0) =

(αi(ti), f , 0) for each agent i ∈ N. Finally, in Step 5 of Γ̃
Q
B , g̃(σ̃∗) = g(m) = f ◦α 0 f ,

i.e., f is not Bayesian implementable.
2) If f is not multi-Bayesian monotonic or condition λBπ/2 is not satisfied, then
the aforementioned σ̃∗ does not exist. Obviously, Γ̃

Q
B is reduced to the traditional

Bayesian mechanism. Since the SCF f is incentive compatible and Bayesian mono-
tonic, then it is Bayesian implementable. �

6 Conclusions

This paper follows the series of papers on quantum mechanism [5,6]. In this paper,
the quantum and algorithmic mechanisms in Refs. [5,6] are generalized to Bayesian
implementation with incomplete information. It can be seen that for n agents, the
time complexity of quantum and algorithmic Bayesian mechanisms are O(n) and
O(2n) respectively. Although current experimental technologies restrict the quan-
tum Bayesian mechanism to be commercially available, for small-scale cases (e.g.,
less than 20 agents [6]), the algorithmic Bayesian mechanism can help agents ben-
efit from quantum Bayesian mechanism immediately.

Acknowledgments

The author is very grateful to Ms. Fang Chen, Hanyue Wu (Apple), Hanxing Wu
(Lily) and Hanchen Wu (Cindy) for their great support.

References

[1] E. Maskin, Nash equilibrium and welfare optimality, Rev. Econom. Stud. 66 (1999)
23-38.

10

[2] T.R. Palfrey and S. Srivastava, On Bayesian implementable allocations. Rev. Econom.
Stud., 54 (1987) 193-208.

[3] T.R. Palfrey and S. Srivastava, Mechanism design with incomplete information: A
solution to the implementation problem. J. Political Economy, 97 (1989) 668-691.

[4] M.O. Jackson, Bayesian implementation. Econometrica, 59 (1991) 461-477.

[5] H. Wu, Quantum mechanism helps agents combat “bad” social choice rules.
International Journal of Quantum Information, 2010 (accepted).
http://arxiv.org/abs/1002.4294

[6] H. Wu, On amending the sufficient conditions for Nash implementation. Theoretical
Computer Science, 2011 (submitted).
http://arxiv.org/abs/1004.5327

[7] R. Serrano, The theory of implementation of social choice rules, SIAM Review 46
(2004) 377-414.

[8] A.P. Flitney and L.C.L. Hollenberg, Nash equilibria in quantum games with
generalized two-parameter strategies, Phys. Lett. A 363 (2007) 381-388.

11

start_time = cputime

% n: the number of agents. For example, suppose there are 3 agents. N={1, 2, 3}.
% Suppose the SCF is incentive compatible, Bayesian monotonic and
% multi-Bayesian monotonic. ={1, 2}.
n=3;

% gamma: the coefficient of entanglement. Here we simply set gamma to its maximum .
gamma=pi/2;

% Defining the array of and .
theta=zeros(n,1);
phi=zeros(n,1);

% Reading agent 1’s parameters. For example,
theta(1)=0;
phi(1)=pi/2;

% Reading agent 2's parameters. For example,
theta(2)=0;
phi(2)=pi/2;

% Reading agent 3’s parameters. For example,
theta(3)=0;
phi(3)=0;

)2/,0(ˆˆˆ
21 πωω == C

)2/,0(ˆˆˆ
22 πωω == C

)0,0(ˆˆˆ
3 ωω == I

i
θ ni

i
,,1, L=φ

Fig. 3 (a). Reading each agent i s parameters and .
i

θ ni
i

,,1, L=φ

α
N

2/π

Fig. 3 (b). Computing the leftmost and rightmost columns of

% Defining two 2*2 matrices
A=zeros(2,2);
B=zeros(2,2);

% In the beginning, A represents the local operation of agent 1. (See Eq (1))
A(1,1)=exp(i*phi(1))*cos(theta(1)/2);
A(1,2)=i*sin(theta(1)/2);
A(2,1)=A(1,2);
A(2,2)=exp(-i*phi(1))*cos(theta(1)/2);
row_A=2;

% Computing
for agent=2 : n

% B varies from to
B(1,1)=exp(i*phi(agent))*cos(theta(agent)/2);
B(1,2)=i*sin(theta(agent)/2);
B(2,1)=B(1,2);
B(2,2)=exp(-i*phi(agent))*cos(theta(agent)/2);

% Computing the leftmost and rightmost columns of C= A ⊗ B
C=zeros(row_A*2, 2);
for row=1 : row_A

C((row-1)*2+1, 1) = A(row,1) * B(1,1);
C((row-1)*2+2, 1) = A(row,1) * B(2,1);
C((row-1)*2+1, 2) = A(row,2) * B(1,2);
C((row-1)*2+2, 2) = A(row,2) * B(2,2);

end
A=C;
row_A = 2 * row_A;

end
% Now the matrix A contains the leftmost and rightmost columns of

1ω̂

n
ωωω ˆˆˆ

21 ⊗⊗⊗ L

n
ωωω ˆˆˆ

21 ⊗⊗⊗ L

n
ωωω ˆˆˆ

21 ⊗⊗⊗ L

2ω̂
n

ω̂

12

Fig. 3 (c). Computing , , .

% Computing
psi2=zeros(power(2,n),1);
for row=1 : power(2,n)

psi2(row)=A(row,1)*cos(gamma/2)+A(row,2)*i*sin(gamma/2);
end

% Computing
psi3=zeros(power(2,n),1);
for row=1 : power(2,n)

psi3(row)=cos(gamma/2)*psi2(row) - i*sin(gamma/2)*psi2(power(2,n)-row+1);
end

% Computing the probability distribution
distribution=psi3.*conj(psi3);
distribution=distribution./sum(distribution);

23
ˆ ψψ += J

CCCJ
n

LL ˆ]ˆˆˆ[212 ωωωψ ⊗⊗⊗=

33 ψψ

2ψ 3ψ 33 ψψ

% Randomly choosing a “collapsed” state according to the probability distribution
random_number=rand;
temp=0;
for index=1: power(2,n)

temp = temp + distribution(index);
if temp >= random_number

break;
end

end

% indexstr: a binary representation of the index of the collapsed state
% ‘0’ stands for , ‘1’ stands for
indexstr=dec2bin(index-1);
sizeofindexstr=size(indexstr);

% Defining an array of messages for all agents
message=cell(n,1);

% For each agent , the algorithm generates the message
for index=1 : n - sizeofindexstr(2)

message{index,1}=strcat('card(',int2str(index),',0)');
end
for index=1 : sizeofindexstr(2)
 if indexstr(index)=='0' % Note: ‘0’ stands for

message{n-sizeofindexstr(2)+index,1}=strcat('card(',int2str(n-sizeofindexstr(2)+index),',0)');
else

message{n-sizeofindexstr(2)+index,1}=strcat('card(',int2str(n-sizeofindexstr(2)+index),',1)');
end

end

% The algorithm sends messages to the designer
for index=1:n

disp(message(index));
end

end_time = cputime;
runtime=end_time – start_time

33 ψψ

i
mNi∈

n
mmm ,,, 21 L

Fig. 3 (d). Computing all messages . This part corresponds

to Step 7 of the quantum Bayesian mechanism in Section 4.
n
mmm ,,, 21 L

C D

C

13

