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On the number of blocks required to access the coalition structure core∗

Sylvain Béal†, Eric Rémila‡, Philippe Solal§
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Abstract

This article shows that, for any transferable utility game in coalitional form with nonempty
coalition structure core, the number of steps required to switch from a payoff configuration
out of the coalition structure core to a payoff configuration in the coalition structure core is
less than or equal to (n2 + 4n)/4, where n is the cardinality of the player set. This number
considerably improves the upper bound found so far by Kóczy and Lauwers [6].

Keywords: Coalition structure core, excess function, payoff configuration, outsider indepen-
dent domination.
JEL Classification number: C71.

1 Introduction
The core (Gillies [3]) is the solution concept for transferable utility games in coalitional form
(henceforth TU-games) that collects the efficient allocations satisfying the coalitional rationality
property, i.e. the total payoff obtained by each coalition of players is at least as large as its worth.
The core is a very popular solution concept despite the fact that its nonemptiness is not always
guaranteed. In many TU-games with empty cores, the players can reorganize themselves into a
partition that generates a total worth larger than the worth of the grand coalition. Even though
such TU-games are not superadditive, they can be economically meaningful (see Aumann [1] for
examples constructed from bankruptcy problems). Thus this casts some doubt on the notion of
efficiency of core allocations and raises the question of which coalitions will form.

In order two take these two features into account, the coalition structure core (cs-core hence-
forth) has been studied by Shenoy [10], Sengupta and Sengupta [7], Greenberg [4] and Kóczy and
Lauwers [6]. A payoff configuration is constituted by an allocation and a partition such that the
total payoff of each coalition in the partition is equal to its worth. The cs-core collects the payoff
configurations that satisfy the coalitional rationality property. As such, the classical condition of
efficiency used for the core is replaced by an efficiency property over all possible partitions, i.e the
total payoff of a payoff vector in the cs-core is equal to the maximal total worth that a partition
of the players can achieve. By considering payoff configurations, the cs-core enables to tackle the
question of which coalitions will form.

Conditions for which the cs-core is nonempty are provided by Greenberg [4], but they leave
two interesting questions unanswered: if one starts from an arbitrary payoff configuration, can
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the players alter the initial payoff configuration by forming “improving” coalitions in order to
eventually reach a cs-core payoff configuration, and how long can this procedure last? Kóczy and
Lauwers [6] answer the first question by proving that the cs-core is accessible, i.e. for each payoff
configuration, there exists a finite sequence of “improving” payoff configurations that terminates
in the cs-core. This article answers the second question by showing that such a sequence contains
at most (n2 + 4n)/4 elements.

The sequence of improving payoff configurations should be understood as a dynamic bargaining
procedure among the players. An arbitrary payoff configuration is given and then the players are
free to form coalitions and to bargain with the restriction that if a coalition of players forms, then
it cannot claim more than its worth. Given that constraint and a status quo of the bargaining,
a coalition is improving if it can redistribute its worth in such a way that none of its members
is worse off compared to the status quo and such that at least one of its members is better
off. In order to account for the formation of the improving coalition, the status quo partition
is reorganized on three aspects: any of its coalitions that has a nonempty intersection with the
improving coalition splits into singletons, any of its coalitions that has an empty intersection
with the improving coalition remains in the reorganized partition, and of course the improving
coalition belongs to the reorganized partition. The improving payoff configuration is composed
of the improving coalition together with the associated reorganized partition.

The procedure used by Kóczy and Lauwers [6] possesses the following desirable property,
which we preserve in the present article. If a coalition of the current partition has an empty
intersection with the deviating coalition, then it belongs to the next partition in the sequence
and the payoffs of its members remain unchanged. Also, as in Kóczy and Lauwers [6], a cs-core
payoff configuration is used as a target in the sense that the players try to get closer and closer
to this cs-core payoff configuration.

Our article continues the line of research on the accessibility of the core-related solution
concepts initiated by Sengupta and Sengupta [8], who show that the core is accessible. Bounds
on the number of steps required to access the core have been provided by Kóczy [5], Yang [11]
and Béal, Rémila and Solal [2].

The rest of the article is organized as follows. Section 2 contains the definitions of TU-games
and of the cs-core. Section 3 states the main result. It also contains the construction of the
sequence of payoff configurations on which the proof of the main result is based as well as the
proofs of intermediary results. Finally, section 4 concludes.

2 Definitions
Let ⊆ denote weak set inclusion and ⊂ denote proper set inclusion. We use |S| to denote the
number of elements in a finite set S.

Throughout this article, we consider a fixed set N = {1, . . . , n} of n players. Nonempty
subsets of N are called coalitions. A partition is a set of disjoint coalitions whose union is N .
Denote by Π(N) the set of all partitions of N . For a partition Q and a coalition S, we define the
partners’ set of S in Q as

P (S,Q) =
⋃

T∈Q:T∩S 6=∅

T.

A characteristic function on N is a function v : 2N −→ R that assigns a worth v(S) to each
S ∈ 2N , with the convention that v(∅) = 0. A pair (N, v) is a TU-game and since N is fixed, we
shall refer to the TU-game (N, v) as v. An individually rational payoff configuration or simply a
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payoff configuration for the TU-game v is a pair (x,Q) where Q is a partition (of N) and x ∈ Rn

is a payoff vector such that

∀i ∈ N , xi ≥ v({i}) and ∀S ∈ Q, x(S) = v(S),

where x(S) stands for
∑

i∈S xi. Two payoff configurations (x,Q) and (y,R) are payoff equivalent
if x = y. Given a payoff configuration (x,Q), the excess e(x, S) of a coalition S is given by

e(x, S) = v(S)− x(S).

The cs-core of the TU-game v is the set C(v) of payoff configurations (x,Q) that satisfy
coalitional rationality, i.e. for each coalition S we have e(x, S) ≤ 0. We denote by Γ(N) the set of
all TU-games on N and with a nonempty cs-core. A first claim provides a property of the payoff
configurations in the cs-core.

Claim 1 Let
v∗ = max

Q∈Π(N)

∑
S∈Q

v(S)

denote the maximal total worth achieved in v among the partitions of N . Then, for each (x,Q) ∈
C(v), it holds that v∗ = x(N) =

∑
S∈Q x(S).

Proof. Consider any payoff configuration (x,Q) ∈ C(v). On the one hand, for each coalition
T , we have v(T ) ≤ x(T ), which implies

∑
T∈R v(T ) ≤

∑
T∈R x(T ) = x(N) for each partition

R ∈ Π(N). Thus v∗ ≤ x(N). On the other hand,
∑

S∈Q v(S) =
∑

S∈Q x(S) = x(N), which gives
v∗ ≥ x(N). �

A payoff configuration (y,R) outsider-independently dominates or simply o.i.-dominates a
payoff configuration (x,Q) by a coalition S if:

1. y(S) > x(S) and yi ≥ xi for each i ∈ S;

2. S ∈ R and T ∈ R for each T ∈ Q such that T ⊆ N\P (S,Q);

3. yi = xi for each i ∈ N\P (S,Q).

A payoff configuration (y,R) is accessible from a payoff configuration (x,Q) if:

(i) (y,R) and (x,Q) are payoff equivalent, or

(ii) (y,R) sequentially o.i.-dominates (x,Q), i.e. there is a finite sequence of payoff config-
urations ((x0,Q0), (x1,Q1), . . . , (xm,Qm)) with (x0,Q0) = (x,Q) and (xm,Qm) = (y,R),
and a sequence of coalitions (S1, . . . , Sm) such that for each k ∈ {1, . . . ,m}, (xk,Qk) o.i.-
dominates (xk−1,Qk−1) by coalition Sk. The integer m is called the number of steps of the
accessibility.
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3 The result
The main result of this article consists in providing a bound on the accessibility of the cs-core,
i.e. a maximal number of steps necessary for a payoff configuration in the cs-core to be accessible
from any payoff configuration. This result can be stated as follows.

Theorem 1 Let v ∈ Γ(N) be a TU-game. Then the cs-core is accessible in at most (n2 + 4n)/4
steps.

From now on, fix any TU-game with a nonempty cs-core v ∈ Γ(N) and (c,P) an element
of C(v). Let p = |P| be the number of coalitions if the partition P , where p ∈ {1, . . . , n}. We
introduce several notions with respect to (c,P) that will be used in the remainder of the article.
A payoff configuration (x,Q) is P-efficient if for each S ∈ P , it holds that x(S) = v(S), and
P-inefficient otherwise. For a payoff configuration (x,Q), a player i ∈ N is overpaid if xi > ci and
underpaid if xi < ci. Also let O(x) = {i ∈ N : xi > ci} and U(x, S) = {i ∈ S : xi < ci} be the set
of overpaid players in (x,Q) and the set of players in a coalition S who are underpaid in (x,Q)
respectively. Without any loss of generality, the players in U(x, S) are labeled i1, . . . , i|U(x,S)| in
such a way that for each q = 1, . . . , |U(x, S)| − 1, it holds that

iq < iq+1 ⇐⇒ ciq − xiq ≤ ciq+1 − xiq+1 .

A second claim provides a useful property of P-inefficient payoff configurations.

Claim 2 For any P-inefficient payoff configuration (x,Q), there exists a coalition S ∈ P such
that e(x, S) > 0.

Proof. On the one hand, we have
∑

S∈Q v(S) =
∑

S∈Q x(S) = x(N) =
∑

S∈P x(S). On the other
hand, from Claim 1, we have

∑
S∈Q v(S) ≤

∑
S∈P v(S). Thus we have

∑
S∈P x(S) ≤

∑
S∈P v(S),

i.e. ∑
S∈P

e(x, S) ≥ 0.

Since (x,Q) is P-inefficient, there is some S ∈ P such that e(x, S) 6= 0. This means that there
exists T ∈ P (possibly equal to coalition S) such that e(x, T ) > 0. �

The proof of the theorem can be described as follows. Firstly, we show that for any payoff
configuration (x,Q), there exists a P-efficient payoff configuration which is accessible from (x,Q)
in at most p steps. Then we prove that for any P-efficient payoff configuration (x,Q) not in
the cs-core and any coalition S such that e(x, S) > 0, there exists a player in the partners’ set
P (S,Q) of S in Q who is overpaid in (x,Q). We use this feature to show that (x,Q) is o.i.-
dominated by a P-efficient payoff configuration with less overpaid players. Finally, it is enough to
repeat the above steps to construct a payoff configuration without overpaid players, i.e. a payoff
configuration belonging to the cs-core.

All these steps rely on a particular type of o.i.-domination, which we introduce in the following.
So let (x,Q) be any payoff configuration not in the cs-core and S any coalition such that e(S, x) >
0. The S-transformation of (x,Q) is the pair (y,R) such that

R = {S} ∪ {{i} : i ∈ P (S,Q) \ S} ∪ {T ∈ Q : T ⊆ N \ P (S,Q)}
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and for each i ∈ N ,

yi =



ci if i = it ∈ U(x, S) and
t∑

r=1

(
cir − xir

)
≤ e(x, S)

xi + e(x, S)−
t−1∑
r=1

(
cir − xir

)
if i = it ∈ U(x, S) and
t−1∑
r=1

(
cir − xir

)
≤ e(x, S) <

t∑
r=1

(
cir − xir

)
,

xi if i = it ∈ U(x, S) and
t−1∑
r=1

(
cir − xir

)
> e(x, S) or i ∈ (N\P (S,Q)) ∪ (S\U(x, S)),

v({i}) if i ∈ P (S,Q)\S.

In words, the deviating coalition S is an element of the new partition R as well as each
coalition T in Q that has an empty intersection with S. Finally each of the remaining players,
i.e. each player in the partners’ set of S in Q but not in S, forms a singleton coalition in R.
Regarding the new payoff vector y, we first use the excess e(x, S) so as to rise xi up to ci for as
many underpaid players i in U(x, S) as possible. This is the reason why the players i ∈ U(x, S)
are ordered by the smallest amount they need in order to fill in the gap between xi and ci. Then
any other player i ∈ S will keep his original payoff xi as well as each player who is not in the
partners’ set of S in Q. Finally, each player in the partners’ set of S in Q but not in S obtains
his stand-alone worth v({i}).

We continue by two claims about the S-transformation.

Claim 3 Let (x,Q) be a payoff configuration not in the cs-core and S a coalition such that
e(S, x) > 0. Then, the configuration (x,Q) is o.i.-dominated by its S-transformation.

Proof. The proof is divided in two parts. Firstly, we prove that the S-transformation (y,R)
is a payoff configuration. By construction we have y(S) = v(S) and yi = v({i}) for each i ∈
P (S,Q)\S. Furthermore, for each T ∈ Q such that T ⊆ N\P (S,Q), it holds that y(T ) = x(T )
which implies that y(T ) = v(T ) since (x,Q) is a payoff configuration. Thus, we have y(T ) = v(T )
for each T ∈ R. Since yi ≥ xi ≥ v({i}) for each i ∈ N\(P (S,Q)\S) by construction, we also
have yi ≥ v({i}) for all i ∈ N . Therefore, (y,R) is a payoff configuration. Secondly, it is easy to
check that (y,R) o.i.-dominates (x,Q) via S since y(S) > x(S) and yi ≥ xi for each i ∈ S. �

Let us write that (y,R) trans-dominates (x,Q) if there exists a coalition S such that (y,R)
is the S-transformation of (x,Q). Furthermore, if a payoff configuration (y,R) is accessible from
(x,Q) through a chain of trans-dominations, we write that (y,R) is trans-accessible from (x,Q).
The next claim states the only property of the S-transformation which is used later.

Claim 4 The S-transformation (y,R) of (x,Q) satisfies O(y) ⊆ O(x).

Proof. Consider a player i ∈ N such that i ∈ N\O(x), i.e. i is not overpaid in (x,Q). If
i ∈ U(x, S) then either yi = ci for those players for which the gap ci−xi is filled up by the excess
e(x, S) or yi < ci for the other members of U(x, S) since it is assumed that i ∈ N\O(x). In both
cases, i ∈ N\O(y). If i ∈ (N\P (S,Q)) ∪ (S\U(x, S)), then yi = xi ≤ ci and thus i ∈ N\O(y).
Finally, if i ∈ P (S,Q)\S then yi = v({i}) ≤ ci, which means once again that i ∈ N\O(y). �
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Lemma 1 For any P-inefficient payoff configuration (x,Q), there exists a P-efficient payoff con-
figuration, which is trans-accessible from (x,Q) in at most p steps.

Proof. Fix any P-inefficient payoff configuration, which we denote by (x0,Q0) for the sake of no-
tations. Let us construct a sequence of m+1 payoff configurations ((x0,Q0), (x1,Q1), . . . , (xm,Qm))
and a sequence of m coalitions (S1, . . . , Sm) as follows. For each k ∈ {1, . . . ,m} such that
(xk−1,Qk−1) is a P-inefficient payoff configuration, we can choose Sk ∈ P such that xk−1(Sk) <
v(Sk) by Claim 2. Then define (xk,Qk) as the Sk-transformation of (xk−1,Qk−1). By Claim 3, for
each k ∈ {1, . . . ,m}, the payoff configuration (xk,Qk) o.i.-dominates (xk−1,Qk−1). It follows that
(xm,Qm) is trans-accessible from (x0,Q0). It remains to prove that (xm, Qm) is P-efficient after
m ≤ p steps. Recall that for each k ∈ {1, . . . ,m}, the coalition Sk is chosen such that Sk ∈ P
and xk−1(Sk) < v(Sk). In addition, xk(Sk) = v(Sk) and the payoff of any player in Sk will not
be altered in the subsequent steps since for each Sq ∈ P , k < q ≤ m, Sk ∩ P (Sq,Qq) = ∅. This
implies that once Sk has been chosen, it cannot be chosen in a subsequent step, i.e. the sequence
(S1, . . . , Sm) contains m distinct coalitions belonging to P . Because P contains p coalitions, the
sequence of coalitions (S1, . . . , Sm) contains at most p elements. Therefore, there exists some
integer m ≤ p such that we cannot choose Sm+1 ∈ P such that e(xm, Sm+1) > 0. This means
that xm(T ) ≥ v(T ) for each T ∈ P and thus that

∑
T∈P xm(T ) ≥

∑
T∈P v(T ) = v∗. By definition

of v∗, this implies that for each S ∈ P , we have xm(S) = v(S). We conclude that (xm,Qm) is a
P-efficient payoff configuration. �

Lemma 2 Consider any P-efficient payoff configuration (x,Q). For each coalition S such that
e(x, S) > 0, there exists a player in P (S,Q)\S who is overpaid in (x,Q).

Proof. Consider any P-efficient payoff configuration (x,Q) and suppose that there exists some
coalition S such that e(x, S) > 0. Let us show first that P (S,Q)\S is a nonempty set, which is
equivalent to say that there does not exists a set of coalitions K ⊆ Q such that S = ∪T∈KT .
Obviously, it cannot be that S ∈ Q since this would mean x(S) = v(S), a contradiction with
the positive excess required in the choice of S. So, by way of contradiction, assume that S
is the union of at least two elements of Q and denote by {S1, . . . , Sk} the set of these k ∈
{2, . . . , |Q|} elements. Recall that we have e(x, S) > 0 by definition of S. Now, consider the
partition Q′ = (Q\{S1, . . . , Sk}) ∪ {∪k

q=1Sq} or equivalently Q′ = (Q\{S1, . . . , Sk}) ∪ {S}. Then∑
T∈Q′ v(T ) >

∑
T∈Q x(T ) =

∑
T∈Q v(T ) = v∗ a contradiction with the efficiency of (x,Q).

Next, we prove that the nonempty set P (S,Q)\S contains a player overpaid in (x,Q). This
part of the proof is done by contradiction. So assume that none of the players in P (S,Q)\S is
overpaid in (x,Q). On the one hand, this means that x(P (S,Q)\S) ≤ c(P (S,Q)\S). Since, in
addition we have x(S) < v(S) ≤ c(S), we get

x(P (S,Q)) < c(P (S,Q)). (1)

On the other hand, by definition of a payoff configuration, for each T ∈ Q, it holds that

x(T ) = v(T ) ≤ c(T ). (2)

The P-efficiency of (x,Q) also implies that∑
T∈Q

x(T ) =
∑
T∈Q

v(T ) =
∑
T∈Q

c(T ). (3)

From expressions (2) and (3), we obtain x(T ) = c(T ) for each T ∈ Q. Since P (S,Q) is the union
of disjoints elements of Q, we immediately get x(P (S,Q)) = c(P (S,Q)), a contradiction with
inequality (1). �
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We are now ready to prove Theorem 1.

Proof. [Theorem 1] Consider any payoff configuration (x0,Q0) 6∈ C(v). We construct a se-
quence of m+1 payoff configurations ((x0,Q0), (x1,Q1), . . . , (xm,Qm)) and a sequence of m coali-
tions (S1, . . . , Sm) with the following features. For each k ∈ {1, . . . ,m} such that (xk−1,Qk−1) is
not in the cs-core, we choose Sk in the set {S ∈ 2N : e(xk−1, S) > 0} of coalitions with positive
excess with respect to xk−1, and if in addition (xk−1,Qk−1) is not P-efficient, the coalition Sk with
positive excess is taken in P , which is possible by Claim 2. So consider any integer k ∈ {1, . . . ,m}
such that (xk−1,Qk−1) is not in the cs-core. Two possibilities are left. If (xk−1,Qk−1) is P-
efficient, then Lemma 2 and the definition of the Sk-transformation of (xk−1,Qk−1) imply that
O(xk) ⊂ O(xk−1) since any player i in the nonempty set P (Sk, Qk−1)\Sk who is overpaid in
(xk−1,Qk−1) receives xk

i = v({i}) and thus is no longer overpaid in (xk,Qk). If otherwise
(xk−1,Qk−1) is not P-efficient, then Lemma 1 implies that there exists some integer q ∈ {1, . . . , p}
such that (xk−1+q,Qk−1+q) is a P-efficient payoff configuration trans-accessible from (xk−1,Qk−1).
Together with Claim 4 and Lemma 2, this implies that O(xk+q) ⊂ O(xk−1). Since the number
of overpaid players is less than n, it is obvious that this procedure ends up after some finite
number m of steps. The obtained payoff configuration (xm,Qm) can be of two types. Either
there is no overpaid player in (xm,Qm), which means that (xm,Qm) belongs to the cs-core since
its P-efficiency necessarily means that xm = c, or there exist some overpaid players in (xm,Qm)
but they cannot be removed because (xm,Qm) already belongs to the cs-core.

It remains to provide a bound to this number m of steps. Denote by (x,Q) the first P-efficient
payoff configuration that is constructed and by l be the number of overpaid players in this payoff
configuration. Constructing this first P-efficient payoff configuration (x,Q) from (x0,Q0) requires
at most p steps by Lemma 1 and then eliminating its l overpaid players requires at most l(p + 1)
steps as described in the first part of the proof. The total number of steps p+ l(p+1) is equivalent
to (l+1)(p+1)−1. Next, note that l ≤ n−p since each coalition T ∈ P contains at least one player
who is not overpaid in (x,Q). The maximal number of steps required to achieve the accessibility
is thus bounded by (n + 1− p)(p + 1)− 1. Recall that if two integers have a constant sum, then
their product is maximal when they are equal if the sum is even or consecutive if the sum is odd.
Here the sum of the two integer is n + 2 so that the maximal value of (n + 1− p)(p + 1)− 1 is(

n + 2

2

)2

− 1 =
n2 + 4n

4

if n is even or (
n + 3

2

)(
n + 1

2

)
− 1 =

n2 + 4n− 1

4

if n is odd. Since (n2 + 4n)/4 is always an integer number for n even, we conclude that a payoff
configuration in the cs-core is accessible from (x0,Q0) in at most (n2 + 4n)/4 steps. �

4 Conclusion
The polynomial bound on the accessibility of the cs-core provided in this article strongly improves
the existing bound found by Kóczy and Lauwers [6]. Our bound can be lowered in special classes
of games. For instance it is well known from Theorem 8 in Shapley [9] that the core on any
convex TU-game is a von Neumann Morgenstern stable set, which means that any imputation
that is not in the core is dominated by a core imputation. In other words, the core of any convex
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TU-game is accessible in only one step. Since {N} is the unique partition generating v∗ in a
convex TU-game (unless v is additive), this property is still true for the cs-core of any convex
TU-game. However we do not think that our bound can be lowered enough to become linear for
the class of all TU-games with a nonempty cs-core.
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